Extremal Functions for Graph Linkages

Paul Wollan
School of Mathematics
Georgia Institute of Technology
wollan@math.gatech.edu

Abstract

A graph G is k-linked if for every set of vertices $\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$ there exist k disjoint paths P_{i} with ends s_{i} and t_{i}. Robertson and Seymour showed that if G is $2 k$-connected and G contains a $K_{3 k}$ minor, then G is k-linked. This, combined with results of Kostochka and Thomason, implies that there exists a function $f(k)=O(k \sqrt{\log k})$ such that every $f(k)$-connected graph is k-linked. Bollobás and Thomason improved this result to show that $22 k$-connectivity suffices to imply G is k-linked. We give a simple induction argument that improves this constant to $16 k$. With more focused analysis, we are able to further reduce the constant. We use the same induction method to obtain the optimal edge bound in the $k=3$ case. We show that every 6 connected graph on n vertices with $5 n-14$ edges is 3 -linked. This is the best bound possible, in that the result does not hold for 5 -connected graphs, and there exist arbitrarily large 6 -connected graphs with n vertices and $5 n-15$ edges that are not 3 -linked. This is joint work with Robin Thomas.

