Nowhere-Zero 3-Flows and Odd K_{4}-Partitions

Cun-Quan Zhang
Department of Mathematics
West Virginia University
cqzhang@math.wvu.edu

Abstract

An odd K_{4} is a subdivision of K_{4} such that all four cycles corresponding to triangles in the K_{4} are of odd length. It was shown by Catlin that every graph containing no odd K_{4} is 3 -colorable. The purpose of this paper is to establish the following dual version of Catlin's theorem: every 2-edge-connected multigraph with no odd K_{4}-partition admits a nowhere-zero 3-flow, where an odd K_{4}-partition of a multigraph $G=(V, E)$ is a partition $\left\{V_{1}, V_{2}, V_{3}, V_{4}\right\}$ of V such that (i) $G\left[V_{i}\right]$ is connected for each $1 \leq i \leq 4$; (ii) there is at least one edge between V_{i} and V_{j} for each pair $1 \leq i<j \leq 4$; and (iii) the number of edges between V_{i} and $V \backslash V_{i}$ is odd for each $1 \leq i \leq 4$. (Co-authored with Xujin Chen and Wenan Zang)

