MATH 4552

The Riemann sphere

We treat the complex plane \mathbb{C} as the $x y$-plane in a Cartesian 3 -space with the coordinates x, y, ζ. Rather than representing space points as triples (x, y, ζ) of real numbers, we write them as pairs (z, ζ), where $z=x+i y$ is complex, and ζ real.

The Riemann sphere is the sphere Σ in the 3 -space with the radius $1 / 2$, centered at $(0,1 / 2)$. The equation $|w|^{2}+(\zeta-1 / 2)^{2}=1 / 4$, characterizing $w \in \mathbb{C}$ and $\zeta \in \mathbb{R}$ such that the point (w, ζ) lies on Σ, obviously amounts to

$$
\begin{equation*}
|w|^{2}=(1-\zeta) \zeta \tag{1}
\end{equation*}
$$

Complex numbers z are identified with points $(z, 0)$. On Σ there are two distinguished points: $(0,0)$, that is, the complex number 0 , which we also call the south pole and denote by S, and $\infty=(0,1)$, referred to as the point at infinity, or the north pole N.

Since the right-hand side of (1) is negative when $\zeta<0$ or $\zeta>1$ (being the product of one negative and one positive factor), all points $(w, \zeta) \in \Sigma$ have $0 \leq \zeta \leq 1$. The extremum values $\zeta=0$ and $\zeta=1$ are attained only at S and, respectively, at N, since either of those values in (1) gives $w=0$.

The stereographic projection is the mapping

$$
\begin{equation*}
\Sigma \backslash\{N\} \ni(w, \zeta)=P \mapsto z=\frac{w}{1-\zeta} \in \mathbb{C} \tag{2}
\end{equation*}
$$

assigning to every point $P \in \Sigma$ other than the north pole N the unique point z (that is, $(z, 0))$ at which the half-line emanating from N and passing through P intersects the $x y$-plane \mathbb{C}. It is explained below that a unique such z does in fact exist, and it equals $w /(1-\zeta)$ (while, as we just saw, $1-\zeta>0$).

Specifically, points of the line passing through $N=(0,1)$ and $P=(w, \zeta)$ have the form $N+t(P-N)=(t w, 1+t(\zeta-1))$, the last component of which is 0 for one and only one real t, namely, $t=1 /(1-\zeta)$ (which is also positive, so that $(t w, 0)=(w /(1-\zeta), 0)$ lies on the half-line mentioned above).

The stereographic projection (2) is a one-to-one correspondence between $\Sigma \backslash\{N\}$ and \mathbb{C}. In other words, any $z \in \mathbb{C}$ equals $w /(1-\zeta)$ for a unique $(w, \zeta) \in \Sigma \backslash\{N\}$. This unique (w, ζ) appears in the following description of the inverse stereographic projection:

$$
\begin{equation*}
\mathbb{C} \ni z \mapsto P=(w, \zeta)=\left(\frac{z}{|z|^{2}+1}, \frac{|z|^{2}}{|z|^{2}+1}\right) \in \Sigma \backslash\{N\} . \tag{3}
\end{equation*}
$$

Theorem. The images of circles contained in Σ under the stereographic projection (2) are lines or circles in \mathbb{C}, and every line or circle in \mathbb{C} arises in this way. More precisely, lines in \mathbb{C} are the stereographic-projection images of circles contained in Σ and passing through N, from which N has been removed.

Proof. If (p, c) is a (nonzero) vector normal to a fixed plane in 3 -space, then, for a suitable constant d, the equation of the plane reads

$$
\begin{equation*}
\operatorname{Re} p \bar{w}+c \zeta=d \tag{4}
\end{equation*}
$$

that is, (w, ζ) lies in the plane if and only if it satisfies (4). (This becomes obvious when you recall that, with the traditional notation x, y, z for Cartesian coordinates, a plane with a normal vector $(a, b, c) \neq(0,0,0)$ has the equation $a x+b y+c z=d$.) Note that

$$
\begin{equation*}
\text { the plane (4) passes through } N \text { precisely when } c=d \text {, } \tag{5}
\end{equation*}
$$

as one sees setting $(w, \zeta)=N=(0,1)$ in (4). A plane (4) may intersect Σ along a circle, or at a single point, or not intersect it at all, depending on whether the distance δ between the plane and $(0,1 / 2)$ (the center of Σ) is less, equal, or greater than $1 / 2$, the radius of Σ. The first of these three cases occurs if and only if

$$
\begin{equation*}
(2 d-c)^{2}<|p|^{2}+c^{2} \tag{6}
\end{equation*}
$$

In fact, δ is the length of a vector parallel to the normal vector (p, c), which added to $(0,1 / 2)$ produces a point lying in the plane (4). In other words, $\delta^{2}=|t(p, c)|^{2}$ for real t chosen so that $(w, \zeta)=(0,1 / 2)+t(p, c)=(t p, t c+1 / 2)$ satisfies (4). Thus, $t=(d-c / 2) /\left(|p|^{2}+c^{2}\right)$ and, as $\delta^{2}=t^{2}\left(|p|^{2}+c^{2}\right)$, (6) means precisely that $\delta<1 / 2$.

Given $p \in \mathbb{C}$ and $c, d \in \mathbb{R}$ with $(p, c) \neq(0,0)$, satisfying (6), the image under the stereographic projection (2) of the circle contained in Σ, which is the intersection of Σ with the plane (4), consist precisely of those $z \in \mathbb{C}$ satisfying the equation

$$
\begin{equation*}
(c-d)|z|^{2}+\operatorname{Re} p \bar{z}-d=0 \tag{7}
\end{equation*}
$$

To see this, impose condition (4) on (w, ζ) given by (3) (that is, on $P=(w, \zeta)$ to which $z \in \mathbb{C}$ corresponds under the stereographic projection): multiplying both sides by $|z|^{2}+1$, you obtain $\left(|z|^{2}+1\right) d=\operatorname{Re} p \bar{z}+c|z|^{2}$ or, equivalently, (7).

We will use the fact that, for any $z, q \in \mathbb{C}$, one has

$$
\begin{equation*}
|z|^{2}+2 \operatorname{Re} q \bar{z}=|z+q|^{2}-|q|^{2} \tag{8}
\end{equation*}
$$

which is clear since the right-hand side equals $(z+q)(\bar{z}+\bar{q})-q \bar{q}=z \bar{z}+q \bar{z}+\bar{q} \bar{z}$.
First, suppose that the plane (4) does not pass through N, so that $p \in \mathbb{C}, c, d \in \mathbb{R}$, $(p, c) \neq(0,0)$ and, by (5), $c \neq d$. Now (7) divided by $c-d \neq 0$ reads

$$
|z|^{2}+\operatorname{Re} \frac{p \bar{z}}{c-d}-\frac{d}{c-d}=0
$$

which, in view of (8) for $q=p /[2(c-d)]$, amounts to $|z+q|^{2}=a^{2}$, that is,

$$
\begin{equation*}
|z+q|=a, \quad \text { where } q=p /[2(c-d)] \text { and } a=\sqrt{|p|^{2}+c^{2}-(2 d-c)^{2}} \tag{9}
\end{equation*}
$$

Here $a>0$ by (6), so that the image is the circle of radius a centered at q.
Finally, let the plane (4) pass through N. Thus, $p \in \mathbb{C}, c \in \mathbb{R},(p, c) \neq(0,0)$ and, by (5), $d=c$. Hence (7) becomes

$$
\begin{equation*}
\operatorname{Re} p \bar{z}=c \tag{10}
\end{equation*}
$$

and so the image is a line: $p \neq 0$, or else (6) with $d=c$ would give $c^{2}<c^{2}$. Q.E.D.

