
MATH 4552

The Riemann sphere

We treat the complex plane C as the xy-plane in a Cartesian 3-space with the coor-
dinates x, y, ζ. Rather than representing space points as triples (x, y, ζ) of real numbers,
we write them as pairs (z, ζ), where z = x+ iy is complex, and ζ real.

The Riemann sphere is the sphere Σ in the 3-space with the radius 1/2, centered at
(0, 1/2). The equation |w|2 + (ζ − 1/2)2 = 1/4, characterizing w ∈ C and ζ ∈ IR such
that the point (w, ζ) lies on Σ, obviously amounts to

(1) |w|2 = (1− ζ)ζ .

Complex numbers z are identified with points (z, 0). On Σ there are two distinguished
points: (0, 0), that is, the complex number 0, which we also call the south pole and denote
by S, and ∞ = (0, 1), referred to as the point at infinity, or the north pole N.

Since the right-hand side of (1) is negative when ζ < 0 or ζ > 1 (being the product
of one negative and one positive factor), all points (w, ζ) ∈ Σ have 0 ≤ ζ ≤ 1. The
extremum values ζ = 0 and ζ = 1 are attained only at S and, respectively, at N, since
either of those values in (1) gives w = 0.

The stereographic projection is the mapping

(2) Σ r {N} 3 (w, ζ) = P 7→ z =
w

1− ζ
∈ C,

assigning to every point P ∈ Σ other than the north pole N the unique point z (that
is, (z, 0)) at which the half-line emanating from N and passing through P intersects the
xy-plane C. It is explained below that a unique such z does in fact exist, and it equals
w/(1− ζ) (while, as we just saw, 1− ζ > 0).

Specifically, points of the line passing through N = (0, 1) and P = (w, ζ) have the
form N + t(P −N) = (tw, 1 + t(ζ−1)), the last component of which is 0 for one and only
one real t, namely, t = 1/(1− ζ) (which is also positive, so that (tw, 0) = (w/(1− ζ), 0)
lies on the half-line mentioned above).

The stereographic projection (2) is a one-to-one correspondence between Σ r {N}
and C. In other words, any z ∈ C equals w/(1− ζ) for a unique (w, ζ) ∈ Σr{N}. This
unique (w, ζ) appears in the following description of the inverse stereographic projection:

(3) C 3 z 7→ P = (w, ζ) =

(
z

|z|2 + 1
,
|z|2

|z|2 + 1

)
∈ Σ r {N}.

Theorem. The images of circles contained in Σ under the stereographic projection (2)
are lines or circles in C, and every line or circle in C arises in this way. More precisely,
lines in C are the stereographic-projection images of circles contained in Σ and passing
through N, from which N has been removed.



Proof. If (p, c) is a (nonzero) vector normal to a fixed plane in 3-space, then, for a
suitable constant d, the equation of the plane reads

(4) Re pw + cζ = d

that is, (w, ζ) lies in the plane if and only if it satisfies (4). (This becomes obvious when
you recall that, with the traditional notation x, y, z for Cartesian coordinates, a plane
with a normal vector (a, b, c) 6= (0, 0, 0) has the equation ax+ by + cz = d.) Note that

(5) the plane (4) passes through N precisely when c = d,

as one sees setting (w, ζ) = N = (0, 1) in (4). A plane (4) may intersect Σ along a circle,
or at a single point, or not intersect it at all, depending on whether the distance δ between
the plane and (0, 1/2) (the center of Σ) is less, equal, or greater than 1/2, the radius of
Σ. The first of these three cases occurs if and only if

(6) (2d − c)2 < |p|2 + c2.

In fact, δ is the length of a vector parallel to the normal vector (p, c), which added
to (0, 1/2) produces a point lying in the plane (4). In other words, δ2 = |t(p, c)|2 for
real t chosen so that (w, ζ) = (0, 1/2) + t(p, c) = (tp, tc + 1/2) satisfies (4). Thus,
t = (d− c/2)/(|p|2 + c2) and, as δ2 = t2(|p|2 + c2), (6) means precisely that δ < 1/2.

Given p ∈ C and c, d ∈ IR with (p, c) 6= (0, 0), satisfying (6), the image under the
stereographic projection (2) of the circle contained in Σ, which is the intersection of Σ
with the plane (4), consist precisely of those z ∈ C satisfying the equation

(7) (c− d)|z|2 + Re pz − d = 0.

To see this, impose condition (4) on (w, ζ) given by (3) (that is, on P = (w, ζ) to which
z ∈ C corresponds under the stereographic projection): multiplying both sides by |z|2+1,
you obtain (|z|2 + 1)d = Re pz + c|z|2 or, equivalently, (7).

We will use the fact that, for any z, q ∈ C, one has

(8) |z|2 + 2Re qz = |z + q|2 − |q|2,

which is clear since the right-hand side equals (z + q)(z + q)− qq = zz + qz + qz.
First, suppose that the plane (4) does not pass through N, so that p ∈ C, c, d ∈ IR,

(p, c) 6= (0, 0) and, by (5), c 6= d. Now (7) divided by c− d 6= 0 reads

|z|2 + Re
pz

c− d
− d

c− d
= 0,

which, in view of (8) for q = p/[2(c− d)], amounts to |z + q|2 = a2, that is,

(9) |z + q| = a, where q = p/[2(c− d)] and a =
√
|p|2 + c2− (2d− c)2 .

Here a > 0 by (6), so that the image is the circle of radius a centered at q.
Finally, let the plane (4) pass through N. Thus, p ∈ C, c ∈ IR, (p, c) 6= (0, 0) and,

by (5), d = c. Hence (7) becomes

(10) Re pz = c,

and so the image is a line: p 6= 0, or else (6) with d = c would give c2 < c2. Q.E.D.


