## MATH 4552 <br> Cubic equations and Cardano's formulae

Consider a cubic equation with the unknown $z$ and fixed complex coefficients $a, b, c, d$ (where $a \neq 0$ ):

$$
\begin{equation*}
a z^{3}+b z^{2}+c z+d=0 \tag{1}
\end{equation*}
$$

To solve (1), it is convenient to divide both sides by $a$ and complete the first two terms to a full cube $(z+b / 3 a)^{3}$. In other words, setting

$$
\begin{equation*}
w=z+\frac{b}{3 a} \tag{2}
\end{equation*}
$$

we replace (1) by the simpler equation

$$
\begin{equation*}
w^{3}+p w+q=0 \tag{3}
\end{equation*}
$$

with the unknown $w$ (and some constant coefficients $p, q$ ). However, as any pair of numbers $u, v$ satisfies the binomial formula $(u+v)^{3}=u^{3}+3 u^{2} v+3 u v^{2}+v^{3}$, i.e.,

$$
\begin{equation*}
(u+v)^{3}-3 u v(u+v)-\left(u^{3}+v^{3}\right)=0, \tag{4}
\end{equation*}
$$

we will find a solution $w$ to (3) in the form

$$
\begin{equation*}
w=u+v \tag{5}
\end{equation*}
$$

provided that we have managed to choose (complex) numbers $u, v$ in such a way that

$$
\begin{equation*}
p=-3 u v \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
q=-\left(u^{3}+v^{3}\right) . \tag{7}
\end{equation*}
$$

Numbers $u, v$ with (6) and (7) will also satisfy

$$
\begin{equation*}
-\frac{p^{3}}{27}=u^{3} v^{3} \tag{8}
\end{equation*}
$$

and so by (7) their cubes $u^{3}, v^{3}$ will be the two roots of the quadratic equation

$$
\begin{equation*}
t^{2}+q t-\frac{p^{3}}{27}=0 \tag{9}
\end{equation*}
$$

with the (complex) unknown $t$; in fact, we have the identity

$$
\begin{equation*}
\left(t-u^{3}\right)\left(t-v^{3}\right)=t^{2}-\left(u^{3}+v^{3}\right) t+u^{3} v^{3} \tag{10}
\end{equation*}
$$

We now proceed as follows. First, we find the two complex solutions $t$ to (9) and write them as $u^{3}, v^{3}$ (i.e., choose cubic roots $u, v$ of these $t$ ). This will guarantee (8) and (7), but not necessarily (6). (The expressions in (6) then have equal cubes, so they need not be equal; what follows is that either both sides of (6) are zero, or their quotient is a cubic root of unity.) To obtain (6), change $u$ by multiplying it by a suitable cubic root of unity; then, both (6) and (7) will be satisfied. Formula (5) now gives a solution $w=w_{1}$ to (3).

The other two solutions to (3) could be found via factoring out $w-w_{1}$ from (3) and solving the resulting quadratic equation, but we can proceed more directly. Let $\varepsilon=\omega_{3}$ be the primitive cubic root of unity, so that $1, \varepsilon, \bar{\varepsilon}$ are all cubic roots of unity. (We know that $\varepsilon=e^{2 \pi i / 3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \bar{\varepsilon}=\varepsilon^{2}=e^{-2 \pi i / 3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}$.) Our choice of $u, v$ with (6) and (7) is not unique: given such $u, v$ we can replace them with $\varepsilon u, \bar{\varepsilon} v$ as well as $\bar{\varepsilon} u, \varepsilon v$ (and also switch the roles of $u$ and $v$, which is not relevant here). Now we obtain the following expressions for all solutions to (3), known as Cardano's formulae:

$$
\begin{equation*}
w_{1}=u+v, \quad w_{2}=\varepsilon u+\bar{\varepsilon} v, \quad w_{3}=\bar{\varepsilon} u+\varepsilon v . \tag{11}
\end{equation*}
$$

Example. To solve

$$
\begin{equation*}
z^{3}+6 z^{2}+9 z+3=0 \tag{12}
\end{equation*}
$$

complete $z^{3}+6 z^{2}$ to a full cube: $(z+2)^{3}=z^{3}+6 z^{2}+12 z+8$, i.e., rewrite (12) as the simpler equation

$$
\begin{equation*}
w^{3}-3 w+1=0 \tag{13}
\end{equation*}
$$

with the unknown $w=z+2$. To cast (13) in the form (4) with $w=u+v$, we need to find $u, v$ with

$$
u v=1, \quad u^{3}+v^{3}=-1
$$

Hence

$$
\left(t-u^{3}\right)\left(t-v^{3}\right)=t^{2}+t+1
$$

and $u^{3}, v^{3}$ are the roots of the equation

$$
\begin{equation*}
t^{2}+t+1=0 \tag{14}
\end{equation*}
$$

Solving (14) we obtain $t=e^{ \pm 2 \pi i / 3}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ (i.e., the solutions happen to be $\varepsilon$ and $\bar{\varepsilon}$.) Choosing the cubic roots of these solutions to be $u=e^{2 \pi i / 9}$ and $v=e^{-2 \pi i / 9}$, we obtain

$$
w_{1}=u+v=2 \cos \frac{2 \pi}{9}, \quad w_{2}=\varepsilon u+\bar{\varepsilon} v=2 \cos \frac{8 \pi}{9}, \quad w_{3}=\bar{\varepsilon} u+\varepsilon v=2 \cos \frac{4 \pi}{9} .
$$

The solutions to (12) thus are $z_{1}=2 \cos 40^{\circ}-2, z_{2}=-2 \cos \cos 20^{\circ}-2, z_{3}=2 \sin 10^{\circ}-2$, i.e.,

$$
z_{1}=2 \cos \frac{2 \pi}{9}-2, \quad z_{2}=2 \cos \frac{8 \pi}{9}-2=-2 \cos \frac{\pi}{9}-2, \quad z_{3}=2 \sin \frac{\pi}{18}-2
$$

## Quartic (fourth degree) equations and Ferrari's method

To solve a quartic equation

$$
\begin{equation*}
a z^{4}+b z^{3}+c z^{2}+k z+l=0 \tag{15}
\end{equation*}
$$

with the unknown $z$ and fixed complex coefficients $a, b, c, k, l$ (where $a \neq 0$ ), one proceeds as follows. First, we divide both sides by $a$ and complete the highest two terms to a full fourth power $(z+b / 4 a)^{4}$. This means that by setting

$$
\begin{equation*}
w=z+\frac{b}{4 a} \tag{16}
\end{equation*}
$$

we replace (15) by the simpler equation

$$
\begin{equation*}
w^{4}+p w^{2}+q w+r=0 \tag{17}
\end{equation*}
$$

with the unknown $w$ and some constant coefficients $p, q, r$. The next step is to find a factorization

$$
\begin{equation*}
w^{4}+p w^{2}+q w+r=\left(w^{2}-\alpha w+\beta\right)\left(w^{2}+\alpha w+\gamma\right) \tag{18}
\end{equation*}
$$

of the polynomial $w^{4}+p w^{2}+q w+r$ into a product of two quadratic polynomials. Note that the coefficients of $w^{2}$ in both factors can be made equal to 1 by multiplying the factors by suitable constants, and the coefficients of $w$ in the factors then must add up to zero (i.e., have the form $-\alpha$ and $\alpha$ ) as their sum is the coefficient of $w^{3}$ in (17).

Equating the coefficients in (18), we see that our problem is to find, for the given $p, q, r$, some numbers $\alpha, \beta, \gamma$ with

$$
\begin{equation*}
\beta+\gamma=p+\alpha^{2}, \quad \beta \gamma=r \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(\beta-\gamma)=q \tag{20}
\end{equation*}
$$

For any fixed $\alpha$, numbers $\beta, \gamma$ with (19) will be the two roots of the quadratic equation

$$
\begin{equation*}
t^{2}-\left(p+\alpha^{2}\right) t+r \tag{21}
\end{equation*}
$$

with the complex unknown $t$, since we have the identity $(t-\beta)(t-\gamma)=t^{2}-(\beta+\gamma) t+\beta \gamma$ (see also (10)). Thus, solving (21), we see that $\beta$ and $\gamma$ are the numbers

$$
\begin{equation*}
\frac{p+\alpha^{2} \pm \sqrt{\left(p+\alpha^{2}\right)^{2}-4 r}}{2} \tag{22}
\end{equation*}
$$

where $\pm$ indicates that the square root of a complex number is unique only up to multiplication by -1 . Thus,

$$
\begin{equation*}
\beta-\gamma= \pm \sqrt{\left(p+\alpha^{2}\right)^{2}-4 r} \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
(\beta-\gamma)^{2}=\left(p+\alpha^{2}\right)^{2}-4 r \tag{24}
\end{equation*}
$$

and so, by (20),

$$
\begin{equation*}
\alpha^{2}\left[\left(p+\alpha^{2}\right)^{2}-4 r\right]=q^{2}, \tag{25}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\alpha^{6}+2 p \alpha^{4}+\left(p^{2}-4 r\right) \alpha^{2}-q^{2}=0 . \tag{26}
\end{equation*}
$$

This is a cubic equation with the unknown $\alpha^{2}$. Denoting $\alpha$ a fixed square root of a fixed solution to (26) (which we may find using Cardano's formulae) and then defining $\beta$ and $\gamma$ to be the numbers (22), we obtain (19), while in (20) the expressions are either equal or differ only by sign (as their squares coincide in view of (25)). Replacing $\alpha$ with $-\alpha$ if necessary, we thus find complex solutions $\alpha, \beta, \gamma$ to the system (19), (20), which gives rise to the decomposition (18). Solving each of the equations $w^{2}-\alpha w+\beta=0$ and $w^{2}+\alpha w+\gamma=0$, we now find all solutions $w$ to (17).

Example. To solve

$$
\begin{equation*}
48 z^{4}-72 z^{2}+16 \sqrt{6} z-1=0 \tag{27}
\end{equation*}
$$

note that the coefficient of $z^{3}$ already is zero, so a shift of the unknown as in (16) is not needed. A factorization (18), i.e.,

$$
\begin{equation*}
48 z^{4}-72 z^{2}+16 \sqrt{6} z-1=48\left(z^{2}-\alpha z+\beta\right)\left(z^{2}+\alpha z+\gamma\right) \tag{28}
\end{equation*}
$$

amounts to solving for $\alpha, \beta, \gamma$ the system (19), (20) with

$$
\begin{equation*}
p=-\frac{3}{2}, \quad q=\sqrt{\frac{2}{3}}, \quad r=-\frac{1}{48} \tag{29}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\beta+\gamma=\alpha^{2}-\frac{3}{2}, \quad \beta \gamma=-\frac{1}{48}, \quad \alpha(\beta-\gamma)=\sqrt{\frac{2}{3}} \tag{30}
\end{equation*}
$$

Our $\beta, \gamma$ thus coincide with the roots

$$
\begin{equation*}
\frac{\alpha^{2}-\frac{3}{2} \pm \sqrt{\left(\frac{3}{2}-\alpha^{2}\right)^{2}+\frac{1}{12}}}{2} \tag{31}
\end{equation*}
$$

of the quadratic equation

$$
\begin{equation*}
t^{2}+\left(\frac{3}{2}-\alpha^{2}\right) t-\frac{1}{48} \tag{32}
\end{equation*}
$$

while $\alpha$ must satisfy (26) with (29), i.e.,

$$
\begin{equation*}
\alpha^{6}-3 \alpha^{4}+\frac{7}{3} \alpha^{2}-\frac{2}{3}=0 . \tag{33}
\end{equation*}
$$

We now solve this cubic equation for $\alpha^{2}$, using Cardano's formulae. Specifically, setting

$$
\begin{equation*}
w=\alpha^{2}-1 \tag{34}
\end{equation*}
$$

we replace (32) by the simpler equation

$$
\begin{equation*}
w^{3}-\frac{2}{3} w-\frac{1}{3}=0 \tag{35}
\end{equation*}
$$

with the unknown $w$. We now can rewrite (35) in the form (4) with $w=u+v$, provided that we find $u, v$ with (6) and (7) (where $p, q$ now both stand for $-\frac{8}{3}$ ), that is,

$$
u v=\frac{2}{9}, \quad u^{3}+v^{3}=\frac{1}{3}
$$

As before (in (10)), $\left(t-u^{3}\right)\left(t-v^{3}\right)=t^{2}-t / 3+8 / 3^{6}$, so the cubes $u^{3}, v^{3}$ of $u$ and $v$ must be the roots of the quadratic equation

$$
\begin{equation*}
t^{2}-\frac{1}{3} t+\frac{8}{3^{6}}=0 \tag{36}
\end{equation*}
$$

Solving (36) we obtain

$$
t=\frac{9 \pm 7}{54}
$$

and we may choose the cubic roots of these solutions to be

$$
u=\frac{2}{3}, \quad v=\frac{1}{3}
$$

The corresponding solution $w=u+v$ to (35) is $w=1$ and, by (34), it yields $\alpha^{2}=2$. Selecting the suitable sign for $\alpha$, we obtain from (31) the numbers

$$
\alpha=\sqrt{2}, \quad \beta=\frac{3+2 \sqrt{3}}{12}, \quad \gamma=\frac{3-2 \sqrt{3}}{12}
$$

satisfying (30) and hence leading to the decomposition (28) in the form

$$
48 z^{4}-72 z^{2}+16 \sqrt{6} z-1=48\left[z^{2}-\sqrt{2} z+\frac{3+2 \sqrt{3}}{12}\right]\left[\left(z^{2}+\sqrt{2} z+\frac{3-2 \sqrt{3}}{12}\right]\right.
$$

The solutions $z$ to (27) thus are

$$
-\frac{\sqrt{2}}{2} \pm \frac{1}{2} \sqrt{\frac{2}{\sqrt{3}}+1}, \quad \frac{\sqrt{2}}{2} \pm \frac{i}{2} \sqrt{\frac{2}{\sqrt{3}}-1}
$$

