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Cubic equations and Cardano’s formulae

Consider a cubic equation with the unknown z and fixed complex coefficients a, b, c, d
(where a 6= 0):

(1) az3 + bz2 + cz + d = 0 .

To solve (1), it is convenient to divide both sides by a and complete the first two terms
to a full cube (z + b/3a)3. In other words, setting

(2) w = z +
b

3a

we replace (1) by the simpler equation

(3) w3 + pw + q = 0

with the unknown w (and some constant coefficients p, q). However, as any pair of
numbers u, v satisfies the binomial formula (u+ v)3 = u3 + 3u2v + 3uv2 + v3, i.e.,

(4) (u+ v)3 − 3uv(u+ v) − (u3 + v3) = 0 ,

we will find a solution w to (3) in the form

(5) w = u + v ,

provided that we have managed to choose (complex) numbers u, v in such a way that

(6) p = −3uv

and

(7) q = −(u3 + v3) .

Numbers u, v with (6) and (7) will also satisfy

(8) − p3

27
= u3v3

and so by (7) their cubes u3, v3 will be the two roots of the quadratic equation

(9) t2 + qt − p3

27
= 0



with the (complex) unknown t ; in fact, we have the identity

(10) (t− u3)(t− v3) = t2 − (u3 + v3)t+ u3v3 .

We now proceed as follows. First, we find the two complex solutions t to (9) and
write them as u3, v3 (i.e., choose cubic roots u, v of these t). This will guarantee (8) and
(7), but not necessarily (6). (The expressions in (6) then have equal cubes, so they need
not be equal; what follows is that either both sides of (6) are zero, or their quotient is a
cubic root of unity.) To obtain (6), change u by multiplying it by a suitable cubic root of
unity; then, both (6) and (7) will be satisfied. Formula (5) now gives a solution w = w1

to (3).
The other two solutions to (3) could be found via factoring out w−w1 from (3) and

solving the resulting quadratic equation, but we can proceed more directly. Let ε = ω3

be the primitive cubic root of unity, so that 1, ε, ε are all cubic roots of unity. (We know

that ε = e2πi/3 = − 1
2 + i

√
3
2 , ε = ε2 = e−2πi/3 = − 1

2 − i
√
3
2 .) Our choice of u, v with (6)

and (7) is not unique: given such u, v we can replace them with εu, εv as well as εu, εv
(and also switch the roles of u and v, which is not relevant here). Now we obtain the
following expressions for all solutions to (3), known as Cardano’s formulae:

(11) w1 = u + v , w2 = εu + εv , w3 = εu + εv .

Example. To solve

(12) z3 + 6z2 + 9z + 3 = 0 ,

complete z3 + 6z2 to a full cube: (z + 2)3 = z3 + 6z2 + 12z + 8, i.e., rewrite (12) as the
simpler equation

(13) w3 − 3w + 1 = 0

with the unknown w = z + 2. To cast (13) in the form (4) with w = u + v, we need to
find u, v with

uv = 1 , u3 + v3 = −1 .

Hence
(t− u3)(t− v3) = t2 + t + 1 ,

and u3, v3 are the roots of the equation

(14) t2 + t + 1 = 0 .

Solving (14) we obtain t = e±2πi/3 = − 1
2 ± i

√
3
2 (i.e., the solutions happen to be ε and ε.)

Choosing the cubic roots of these solutions to be u = e2πi/9 and v = e−2πi/9, we obtain

w1 = u + v = 2 cos
2π

9
, w2 = εu + εv = 2 cos

8π

9
, w3 = εu + εv = 2 cos

4π

9
.



The solutions to (12) thus are z1 = 2 cos 40◦−2, z2 = −2 cos cos 20◦−2, z3 = 2 sin 10◦−2,
i.e.,

z1 = 2 cos
2π

9
− 2 , z2 = 2 cos

8π

9
− 2 = −2 cos

π

9
− 2 , z3 = 2 sin

π

18
− 2 .

Quartic (fourth degree) equations and Ferrari’s method

To solve a quartic equation

(15) az4 + bz3 + cz2 + kz + l = 0

with the unknown z and fixed complex coefficients a, b, c, k, l (where a 6= 0), one proceeds
as follows. First, we divide both sides by a and complete the highest two terms to a full
fourth power (z + b/4a)4. This means that by setting

(16) w = z +
b

4a

we replace (15) by the simpler equation

(17) w4 + pw2 + qw + r = 0

with the unknown w and some constant coefficients p, q, r. The next step is to find a
factorization

(18) w4 + pw2 + qw + r = (w2 − αw + β)(w2 + αw + γ)

of the polynomial w4 + pw2 + qw + r into a product of two quadratic polynomials. Note
that the coefficients of w2 in both factors can be made equal to 1 by multiplying the
factors by suitable constants, and the coefficients of w in the factors then must add up to
zero (i.e., have the form −α and α) as their sum is the coefficient of w3 in (17).

Equating the coefficients in (18), we see that our problem is to find, for the given
p, q, r, some numbers α, β, γ with

(19) β + γ = p + α2 , βγ = r

and

(20) α(β − γ) = q .

For any fixed α, numbers β, γ with (19) will be the two roots of the quadratic equation

(21) t2 − (p+ α2)t + r



with the complex unknown t, since we have the identity (t−β)(t−γ) = t2− (β+γ)t+βγ
(see also (10)). Thus, solving (21), we see that β and γ are the numbers

(22)
p+ α2 ±

√
(p+ α2)2 − 4r

2
,

where ± indicates that the square root of a complex number is unique only up to multi-
plication by −1. Thus,

(23) β − γ = ±
√

(p+ α2)2 − 4r ,

so that

(24) (β − γ)2 = (p+ α2)2 − 4r

and so, by (20),

(25) α2
[
(p+ α2)2 − 4r

]
= q2 ,

i.e.,

(26) α6 + 2pα4 + (p2 − 4r)α2 − q2 = 0 .

This is a cubic equation with the unknown α2. Denoting α a fixed square root of a fixed
solution to (26) (which we may find using Cardano’s formulae) and then defining β and
γ to be the numbers (22), we obtain (19), while in (20) the expressions are either equal
or differ only by sign (as their squares coincide in view of (25)). Replacing α with −α
if necessary, we thus find complex solutions α, β, γ to the system (19), (20), which gives
rise to the decomposition (18). Solving each of the equations w2 − αw + β = 0 and
w2 + αw + γ = 0, we now find all solutions w to (17).

Example. To solve

(27) 48z4 − 72z2 + 16
√

6z − 1 = 0 ,

note that the coefficient of z3 already is zero, so a shift of the unknown as in (16) is not
needed. A factorization (18), i.e.,

(28) 48z4 − 72z2 + 16
√

6z − 1 = 48(z2 − αz + β)(z2 + αz + γ)

amounts to solving for α, β, γ the system (19), (20) with

(29) p = − 3

2
, q =

√
2

3
, r = − 1

48
,



that is,

(30) β + γ = α2 − 3

2
, βγ = − 1

48
, α(β − γ) =

√
2

3
.

Our β, γ thus coincide with the roots

(31)
α2 − 3

2 ±
√

( 3
2 − α2)2 + 1

12

2
.

of the quadratic equation

(32) t2 + (
3

2
− α2)t − 1

48
,

while α must satisfy (26) with (29), i.e.,

(33) α6 − 3α4 +
7

3
α2 − 2

3
= 0 .

We now solve this cubic equation for α2, using Cardano’s formulae. Specifically, setting

(34) w = α2 − 1

we replace (32) by the simpler equation

(35) w3 − 2

3
w − 1

3
= 0

with the unknown w. We now can rewrite (35) in the form (4) with w = u+ v, provided
that we find u, v with (6) and (7) (where p, q now both stand for − 8

3 ), that is,

uv =
2

9
, u3 + v3 =

1

3
.

As before (in (10)), (t − u3)(t − v3) = t2 − t/3 + 8/36, so the cubes u3, v3 of u and v
must be the roots of the quadratic equation

(36) t2 − 1

3
t +

8

36
= 0 .

Solving (36) we obtain

t =
9 ± 7

54
,

and we may choose the cubic roots of these solutions to be

u =
2

3
, v =

1

3
.



The corresponding solution w = u + v to (35) is w = 1 and, by (34), it yields α2 = 2.
Selecting the suitable sign for α, we obtain from (31) the numbers

α =
√

2 , β =
3 + 2

√
3

12
, γ =

3− 2
√

3

12

satisfying (30) and hence leading to the decomposition (28) in the form

48z4 − 72z2 + 16
√

6z − 1 = 48

[
z2 −

√
2z +

3 + 2
√

3

12

] [
(z2 +

√
2z +

3− 2
√

3

12

]
.

The solutions z to (27) thus are

−
√

2

2
± 1

2

√
2√
3

+ 1 ,

√
2

2
± i

2

√
2√
3
− 1 .


