MATH. 4552, SUMMER '20

ADDITIONAL HOMEWORK

June 12, 2020

1. Find all complex numbers z such that

$$
8 z^{3}-12 \sqrt{3} z^{2}+2 z+13 \sqrt{3}=0 .
$$

2. Find all complex solutions z to the cubic equation

$$
z^{3}-3 z+\sqrt{2}=0
$$

MATH. 4552, SUMMER '20

ADDITIONAL HOMEWORK

June 15, 2020

1. Find all complex solutions z to the quartic equation

$$
2 z^{4}-6 z+3=0
$$

Additional homework, June 12: Solutions

1. We need to rewrite the equation as $w^{3}+p w+q=0$ with a new unknown w and use the identity $(u+v)^{3}-3 u v(u+v)-\left(u^{3}+v^{3}\right)=0$ to obtain a solution $w=u+v$, finding the complex numbers u, v from a quadratic equation for which their cubes u^{3}, v^{3} are the roots. Specifically, for

$$
w=z-\frac{\sqrt{3}}{2}
$$

the equation becomes

$$
w^{3}-2 w+\sqrt{3}=0
$$

As $(u+v)^{3}-3 u v(u+v)-\left(u^{3}+v^{3}\right)=0$, equation $w^{3}-3 u v w-\left(u^{3}+v^{3}\right)=0$ is satisfied by $w=u+v$, and so we can find a solution w to our problem by choosing u, v with

$$
u v=\frac{2}{3}, \quad u^{3}+v^{3}=-\sqrt{3}
$$

For such u and v, the cubes u^{3}, v^{3} must be the roots of the equation

$$
\xi^{2}+\sqrt{3} \xi+\frac{8}{27}=0
$$

with the unknown ξ. Solving it for ξ, we obtain

$$
\xi=-\frac{\sqrt{3}}{18}(9 \pm 7), \quad \text { i.e., } \quad \xi=-\frac{8 \sqrt{3}}{9} \quad \text { or } \quad \xi=-\frac{\sqrt{3}}{9} .
$$

Choosing the cubic roots of these solutions to be

$$
u=-\frac{2 \sqrt{3}}{3}, \quad v=-\frac{\sqrt{3}}{3}
$$

we obtain u, v with the required properties, leading to the solution $w=-\sqrt{3}$. We can now easily factorize

$$
w^{3}-2 w+\sqrt{3}=(w+\sqrt{3})\left(w^{2}-\sqrt{3} w+1\right)
$$

so that we get the solutions

$$
w_{1}=-\sqrt{3}, \quad w_{2}=\frac{\sqrt{3}}{2}+\frac{i}{2}, \quad w_{3}=\frac{\sqrt{3}}{2}-\frac{i}{2}
$$

and, for the original equation

$$
z_{1}=-\frac{\sqrt{3}}{2}, \quad z_{2}=\sqrt{3}+\frac{i}{2}, \quad z_{3}=\sqrt{3}-\frac{i}{2}
$$

2. Again, the identity $(u+v)^{3}-3 u v(u+v)-\left(u^{3}+v^{3}\right)=0$ allows us to obtain a solution $z=u+v$ provided that we can find complex numbers u, v such that $-3 u v$ and $-\left(u^{3}+v^{3}\right)$ are our coefficients. To find u, v we write a quadratic equation for which u^{3}, v^{3} are the roots. To be specific, equation $z^{3}-3 u v z-\left(u^{3}+v^{3}\right)=0$ holds for $z=u+v$, and so we can find a solution z to our original problem by choosing u, v with $u v=1$ and $u^{3}+v^{3}=-\sqrt{2}$. For such u and v, the cubes u^{3}, v^{3} must be the roots of the equation $\xi^{2}+\sqrt{2} \xi+1=0$. Solving that for the unknown ξ, we obtain

$$
\xi=-\frac{\sqrt{2}}{2}(1 \pm i)=e^{\mp 3 \pi i / 4}
$$

Choosing the cubic roots of these two solutions ξ to be

$$
u=e^{\pi i / 4}=\frac{\sqrt{2}}{2}(1+i), \quad v=e^{-\pi i / 4}=\frac{\sqrt{2}}{2}(1-i),
$$

we obtain u, v with the required properties, leading to the solution $z=u+v=\sqrt{2}$. We now use this root to factorize

$$
z^{3}-3 z+\sqrt{2}=(z-\sqrt{2})\left(z^{2}+\sqrt{2} z-1\right)
$$

so that we get the following solutions to the original equation:

$$
z_{1}=\sqrt{2}, \quad z_{2}=\frac{\sqrt{6}-\sqrt{2}}{2}, \quad z_{3}=-\frac{\sqrt{6}+\sqrt{2}}{2} .
$$

Additional homework, June 15: Solution

1. The coefficient of z^{3} already is zero, so we may proceed with searching for a factorization

$$
2 z^{4}-6 z+3=2\left(z^{2}-\alpha z+\beta\right)\left(z^{2}+\alpha z+\gamma\right)
$$

which amounts to finding α, β, γ that satisfy the system (Q.5), (Q.6) with

$$
p=0, \quad q=-3, \quad r=\frac{3}{2}
$$

that is,

$$
\begin{equation*}
\beta+\gamma=\alpha^{2}, \quad \beta \gamma=\frac{3}{2}, \quad \alpha(\beta-\gamma)=-3 \tag{*}
\end{equation*}
$$

The first two relations mean that our β, γ are the roots of a quadratic equation depending on α, and the third relation then is a "consistency condition" which may be used to determine α. Specifically, $\alpha \neq 0$ (by the third relation) and

$$
\frac{9}{\alpha^{2}}=(\beta-\gamma)^{2}=(\beta+\gamma)^{2}-4 \beta \gamma=\alpha^{4}-6
$$

i.e.,

$$
\alpha^{6}-6 \alpha^{2}-9=0
$$

This is a cubic equation in α^{2}, which we can solve using Cardano's formulae, setting $\alpha^{2}=u+v$, with the unknown u, v subject to conditions (C.6) and (C.7) (where p, q now stand for -6 and -9), that is,

$$
u v=2, \quad u^{3}+v^{3}=9
$$

An easy guess is that we may use

$$
u=1, \quad v=2
$$

(Proceeding systematically, we note that, as $\left(\xi-u^{3}\right)\left(\xi-v^{3}\right)=\xi^{2}-9 \xi+8$, the cubes u^{3}, v^{3} of u and v must be the roots of the quadratic equation $\xi^{2}-9 \xi+8=0$. Solving it we obtain

$$
\xi=\frac{9 \pm 7}{2}
$$

and we may choose the cubic roots of these solutions to be $u=1, v=2$.)
The corresponding solution α with $\alpha^{2}=u+v=3$ is $\alpha= \pm \sqrt{3}$. We may choose the sign of α to be positive, and then solve (for β and γ) our equations ($*$), which now read

$$
\beta+\gamma=3, \quad \beta \gamma=\frac{3}{2}, \quad \sqrt{3}(\beta-\gamma)=-3
$$

Thus, β and γ are the roots ζ of the quadratic equation $0=(\zeta-\beta)(\zeta-\gamma)=\zeta^{2}-3 \zeta+3 / 2$, i.e., they are the numbers $(3 \pm \sqrt{3}) / 2$, and ordering them so that $\beta-\gamma<0$ we have

$$
\alpha=\sqrt{3}, \quad \beta=\frac{3-\sqrt{3}}{2}, \quad \gamma=\frac{3+\sqrt{3}}{2}
$$

The required the decomposition of the original quartic polynomial now is

$$
2 z^{4}-6 z+3=2\left[z^{2}-\sqrt{3} z+(3-\sqrt{3}) / 2\right] \cdot\left[z^{2}+\sqrt{3} z+(3+\sqrt{3}) / 2\right]
$$

Solving the two separate quadratic equations

$$
z^{2}-\sqrt{3} z+(3-\sqrt{3}) / 2=0, \quad z^{2}+\sqrt{3} z+(3+\sqrt{3}) / 2=0
$$

we now find the solutions

$$
\frac{1}{2}[\sqrt{3} \pm \sqrt{2 \sqrt{3}-3}], \quad \frac{1}{2}[-\sqrt{3} \pm i \sqrt{2 \sqrt{3}+3}]
$$

to the original problem.

