79

Section 3.4 Subsequences and the Bolzano-Weierstrass Theorem

gence or the divergence of the sequence. We will also prove the important existence such that the selected terms form a new sequence. Usually the selection is made for a number of significant results. theorem known as the Bolzano-Weierstrass Theorem, which will be used to establish a definite purpose. For example, subsequences are often useful in establishing the conver-Informally, a subsequence of a sequence is a selection of terms from the given sequence In this section we will introduce the notion of a subsequence of a sequence of real numbers.

3.4.1 Definition Let $X = (x_n)$ be a sequence of real numbers and let $n_1 < n_2 < \cdots < n_k < \cdots$ be a strictly increasing sequence of natural numbers. Then the sequence $X' = x_n < x_$ (x_{n_k}) given by

$$(x_{n_1},x_{n_2},\ldots,x_{n_k},\ldots)$$

is called a subsequence of X.

the subsequence For example, if $X := (\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots)$, then the selection of even indexed terms produces

$$X' = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots, \frac{1}{2k}, \dots\right),$$

where $n_1 = 2$, $n_2 = 4$,..., $n_k = 2k$,.... Other subsequences of X = (1/n) are the following:

$$\left(\frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \dots, \frac{1}{2k-1}, \dots\right), \quad \left(\frac{1}{2!}, \frac{1}{4!}, \frac{1}{6!}, \dots, \frac{1}{(2k)!}, \dots\right).$$

The following sequences are *not* subsequences of X = (1/n):

$$\left(\frac{1}{2},\frac{1}{1},\frac{1}{4},\frac{1}{3},\frac{1}{6},\frac{1}{5},\cdots\right),\quad \left(\frac{1}{1},0,\frac{1}{3},0,\frac{1}{5},0,\cdots\right).$$

corresponds to the sequence of indices A tail of a sequence (see 3.1.8) is a special type of subsequence. In fact, the m-tail

$$n_1 = m + 1, n_2 = m + 2, \dots, n_k = m + k, \dots$$

But, clearly, not every subsequence of a given sequence need be a tail of the sequence. Subsequences of convergent sequences also converge to the same limit, as we now show

3.4.2 Theorem If a sequence $X = (x_n)$ of real numbers converges to a real number x, then any subsequence $X' = (x_{n_k})$ of X also converges to x.

 $n_1 < n_2 < \cdots < n_k < \cdots$ is an increasing sequence of natural numbers, it is easily proved (by Induction) that $n_k \ge k$. Hence, if $k \ge K(\varepsilon)$, we also have $n_k \ge k \ge K(\varepsilon)$ so that **Proof.** Let $\varepsilon > 0$ be given and let $K(\varepsilon)$ be such that if $n \ge K(\varepsilon)$, then $|x_n - x| < \varepsilon$. Since $|x_{n_k} - x| < \varepsilon$. Therefore the subsequence (x_{n_k}) also converges to x.

3.4.3 Examples (a) $\lim_{n \to \infty} (b^n) = 0$ if 0 < b < 1.

follows from Bernoulli's Inequality that $\lim(x_n) = 0$. Alternatively, we see that since We have already seen, in Example 3.1.11(b), that if 0 < b < 1 and if $x_n := b^n$, then it

> clear that $0 \le x_n \le 1$, so it follows from the Monotone Convergence Theorem 3.3.2 that 0 < b < 1, then $x_{n+1} = b^{n+1} < b^n = x_n$ so that the sequence (x_n) is decreasing. It is also from Theorem 3.4.2 that $x = \lim(x_{2n})$. Moreover, it follows from the relation $x_{2n} = b^{2n}$ the sequence is convergent. Let $x := \lim x_n$. Since (x_{2n}) is a subsequence of (x_n) it follows $(b^n)^2 = x_n^2$ and Theorem 3.2.3 that

$$x = \lim(x_{2n}) = (\lim(x_n))^2 = x^2$$

bounded above by b < 1, we deduce that x = 0. Therefore we must have either x = 0 or x = 1. Since the sequence (x_n) is decreasing and

(b) $\lim(c^{1/n}) = 1 \text{ for } c > 1.$

then $z_n > 1$ and $z_{n+1} < z_n$ for all $n \in \mathbb{N}$. (Why?) Thus by the Monotone Convergence argument. We give here an alternative approach for the case c>1. Note that if $z_n:=c^{1/n}$, addition, it follows from the relation Theorem, the limit $z := \lim(z_n)$ exists. By Theorem 3.4.2, it follows that $z = \lim(z_{2n})$. In This limit has been obtained in Example 3.1.11(c) for c > 0, using a rather ingenious

$$z_{2n} = c^{1/2n} = (c^{1/n})^{1/2} = z_n^{1/2}$$

and Theorem 3.2.10 that

$$z = \lim(z_{2n}) = (\lim(z_n))^{1/2} = z^{1/2}.$$

 $n \in \mathbb{N}$, we deduce that z = 1. Therefore we have $z^2 = z$ whence it follows that either z = 0 or z = 1. Since $z_n > 1$ for all

We leave it as an exercise to the reader to consider the case 0 < c < 1.

leads to a convenient way to establish the divergence of a sequence. The following result is based on a careful negation of the definition of $\lim(x_n) = x$. It

equivalent: **3.4.4 Theorem** Let $X = (x_n)$ be a sequence of real numbers, Then the following are

(i) The sequence $X = (x_n)$ does not converge to $x \in \mathbb{R}$

 $n_k \ge k$ and $|x_{n_k} - x| \ge \varepsilon_0$. (ii) There exists an $\varepsilon_0 > 0$ such that for any $k \in \mathbb{N}$, there exists $n_k \in \mathbb{N}$ such that

(iii) There exists an $\varepsilon_0 > 0$ and a subsequence $X' = (x_{n_k})$ of X such that $|x_{n_k} - x| \ge \varepsilon_0$ for

words, for each $k \in \mathbb{N}$ there exists a natural number $n_k \ge k$ such that $|x_{n_k} - x| \ge \epsilon_0$. each $k \in \mathbb{N}$ it is not true that for all $n \ge k$ the inequality $|x_n - x| < \varepsilon_0$ holds. In other find a natural number k such that for all $n \ge k$ the terms x_n satisfy $|x_n - x| < \varepsilon_0$. That is, for **Proof.** (i) \Rightarrow (ii) If (x_n) does not converge to x, then for some $\varepsilon_0 > 0$ it is impossible to

(ii) \Rightarrow (iii) Let ϵ_0 be as in (ii) and let $n_1 \in \mathbb{N}$ be such that $n_1 \ge 1$ and $|x_{n_1} - x| \ge \epsilon_0$. Now let $n_2 \in \mathbb{N}$ be such that $n_2 > n_1$ and $|x_{n_2} - x| \ge \epsilon_0$; let $n_3 \in \mathbb{N}$ be such that $n_3 > n_2$ and $|x_{n_3} - x| \ge \epsilon_0$. Continue in this way to obtain a subsequence $X' = (x_{n_k})$ of X such that $|x_{n_k} - x| \ge \epsilon_0$ for all $k \in \mathbb{N}$.

(iii) \Rightarrow (i) Suppose $X = (x_n)$ has a subsequence $X' = (x_{n_k})$ satisfying the condition

X' would also converge to x. But this is impossible, since none of the terms of X' belongs to in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence the ε_0 -neighborhood of x.

sequence is bounded Since all subsequences of a convergent sequence must converge to the same limit, we have part (i) in the following result. Part (ii) follows from the fact that a convergent

- following properties, then X is divergent. **3.4.5 Divergence Criteria** If a sequence $X = (x_n)$ of real numbers has either of the
- (i) X has two convergent subsequences $X' = (x_{n_k})$ and $X'' = (x_{r_k})$ whose limits are not
- (ii) X is unbounded
- **3.4.6 Examples** (a) The sequence $X := ((-1)^n)$ is divergent.

The subsequence $X' := ((-1)^{2n}) = (1, 1, ...)$ converges to 1, and the subsequence $X'' := ((-1)^{2n-1}) = (-1, -1, ...)$ converges to -1. Therefore, we conclude from Theorem 3.4.5(i) that X is divergent.

(b) The sequence $(1, \frac{1}{2}, 3, \frac{1}{4}, \dots)$ is divergent.

carr easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is This is the sequence $Y = (y_n)$, where $y_n = n$ if n is odd, and $y_n = 1/n$ if n is even. It

(c) The sequence $S := (\sin n)$ is divergent.

This sequence is not so easy to handle. In discussing it we must, of course, make use of elementary properties of the sine function. We recall that $\sin(\pi/6) = \frac{1}{2} = \sin(5\pi/6)$ and that $\sin x > \frac{1}{2}$ for x in the interval $I_1 := (\pi/6, 5\pi/6)$. Since the length of I_1 is $5\pi/6 - \pi/6 = 2\pi/3 > 2$, there are at least two natural numbers lying inside I_1 ; we let n_1 be the first such number. Similarly, for each $k \in \mathbb{N}$, $\sin x > \frac{1}{2}$ for x in the interval

$$I_k := (\pi/6 + 2\pi(k-1), 5\pi/6 + 2\pi(k-1)).$$

Since the length of I_k is greater than 2, there are at least two natural numbers lying inside I_k : property that all of its values lie in the interval $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$. we let n_k be the first one. The subsequence $S' := (\sin n_k)$ of S obtained in this way has the

Similarly, if $k \in \mathbb{N}$ and J_k is the interval

$$J_k := (7\pi/6 + 2\pi(k-1), 11\pi/6 + 2\pi(k-1)),$$

property that all of its values lie in the interval $\left[-1, -\frac{1}{2}\right]$. the first natural number lying in J_k . Then the subsequence $S'' := (\sin m_k)$ of S has the then it is seen that $\sin x < -\frac{1}{2}$ for all $x \in J_k$ and the length of J_k is greater than 2. Let m_k be

S" lies entirely outside of the $\frac{1}{2}$ -neighborhood of c. Therefore c cannot be a limit of S. Since $c \in \mathbb{R}$ is arbitrary, we deduce that S is divergent. Given any real number c, it is readily seen that at least one of the subsequences S' and

The Existence of Monotone Subsequences

has a monotone subsequence. While not every sequence is a monotone sequence, we will now show that every sequence

3.4.7 Monotone Subsequence Theorem If $X = (x_n)$ is a sequence of real numbers, then there is a subsequence of X that is monotone.

 $x_m \ge x_n$ for all n such that $n \ge m$. (That is, x_m is never exceeded by any term that follows it **Proof.** For the purpose of this proof, we will say that the *m*th term x_m is a "peak" if

> increasing sequence, no term is a peak. in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an

We will consider two cases, depending on whether X has infinitely many, or finitely

subscripts: $x_{m_1}, x_{m_2}, \ldots, x_{m_k}, \ldots$ Since each term is a peak, we have Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing

$$x_{m_1} \geq x_{m_2} \geq \cdots \geq x_{m_k} \geq \cdots$$

Therefore, the subsequence (x_{m_k}) of peaks is a decreasing subsequence of X.

subsequence (x_{s_k}) of X. there exists $s_3 > s_2$ such that $x_{s_2} < x_{s_3}$. Continuing in this way, we obtain an increasing peak. Since x_{s_1} is not a peak, there exists $s_2 > s_1$ such that $x_{s_1} < x_{s_2}$. Since x_{s_2} is not a peak, increasing subscripts: $x_{m_1}, x_{m_2}, \dots, x_{m_r}$. Let $s_1 := m_r + 1$ be the first index beyond the last Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by

increasing, and another subsequence that is decreasing It is not difficult to see that a given sequence may have one subsequence that is

The Bolzano-Weierstrass Theorem

Theorem, which states that every bounded sequence has a convergent subsequence. on the Nested Interval Property. Because of the importance of this theorem we will also give a second proof of it based We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a convergent subsequence.

subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2 bounded sequence, then it has a subsequence $X'=(x_{n_k})$ that is monotone. Since this that the subsequence is convergent. First Proof. It follows from the Monotone Subsequence Theorem that if $X = (x_n)$ is a

interval $I_1 := [a, b]$. We take $n_1 := 1$. Second Proof. Since the set of values $\{x_n : n \in \mathbb{N}\}$ is bounded, this set is contained in an

 $\{n \in \mathbb{N} : n > 1\}$ into two parts: We now bisect I_1 into two equal subintervals I_1' and I_1'' , and divide the set of indices

$$A_1 := \{ n \in \mathbb{N} : n > n_1, x_n \in I_1' \}, \quad B_1 = \{ n \in \mathbb{N} : n > n_1, x_n \in I_1'' \}.$$

number in B_1 . finite set, then B_1 must be infinite, and we take $I_2 := I_1''$ and let n_2 be the smallest natural If A_1 is infinite, we take $I_2 := I_1$ and let n_2 be the smallest natural number in A_1 . If A_1 is a

 $\{n \in \mathbb{N} : n > n_2\}$ into two parts: We now bisect I_2 into two equal subintervals I'_2 and I''_2 , and divide the

$$A_2 = \{ n \in \mathbb{N} : n > n_2, x_n, \in I_2' \}, \quad B_2 := \{ n \in \mathbb{N} : n > n_2, x_n \in I_2'' \}$$

finite set, then B_2 must be infinite, and we take $I_3 := I_2''$ and let n_3 be the smallest natural number in B_2 If A_2 is infinite, we take $I_3 := I_2'$ and let n_3 be the smallest natural number in A_2 . If A_2 is a

We continue in this way to obtain a sequence of nested intervals $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_k \supseteq \cdots$ and a subsequence (x_{n_k}) of X such that $x_{n_k} \in I_k$ for $k \in \mathbb{N}$. Since the length of I_k is equal to $(b-a)/2^{k-1}$, it follows from Theorem 2.5.3 that there is a (unique) common point $\xi \in I_k$ for all $k \in \mathbb{N}$. Moreover, since x_{n_k} and ξ both belong to I_k , we have

$$|x_{n_k} - \xi| \le (b - a)/2^{k-1}$$

whence it follows that the subsequence (x_{n_k}) of X converges to ξ .

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for sequences, because there is another version of it that deals with bounded sets in \mathbb{R} (see Exercise 11.2.6).

It is readily seen that a bounded sequence can have various subsequences that converge to different limits or even diverge. For example, the sequence $((-1)^n)$ has subsequences that converge to -1, other subsequences that converge to +1, and it has subsequences that diverge.

Let X be a sequence of real numbers and let X' be a subsequence of X. Then X' is a sequence in its own right, and so it has subsequences. We note that if X'' is a subsequence of X', then it is also a subsequence of X.

3.4.9 Theorem Let $X = (x_n)$ be a bounded sequence of real numbers and let $x \in \mathbb{R}$ have the property that every convergent subsequence of X converges to x. Then the sequence X converges to x.

Proof. Suppose M > 0 is a bound for the sequence X so that $|x_n| \le M$ for all $n \in \mathbb{N}$. If X does not converge to x, then Theorem 3.4.4 implies that there exist $\varepsilon_0 > 0$ and a subsequence $X' = (x_{n_k})$ of X such that

$$|x_{n_k} - x| \ge \varepsilon_0 \quad \text{for all} \quad k \in \mathbb{N}.$$

Since X' is a subsequence of X, the number M is also a bound for X'. Hence the Bolzano-Weierstrass Theorem implies that X' has a convergent subsequence X''. Since X'' is also a subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the ε_0 -neighborhood of x, contradicting (1).

Limit Superior and Limit Inferior .

A bounded sequence of real numbers (x_n) may or may not converge, but we know from the Bolzano-Weierstrass Theorem 3.4.8 that there will be a convergent subsequence and possibly many convergent subsequences. A real number that is the limit of a subsequence of (x_n) is called a *subsequential limit of* (x_n) . We let S denote the set of all subsequential limits of the bounded sequence (x_n) . The set S is bounded, because the sequence is bounded.

For example, if (x_n) is defined by $x_n := (-1)^n + 2/n$, then the subsequence (x_{2n}) converges to 1, and the subsequence (x_{2n-1}) converges to -1. It is easily seen that the set of subsequential limits is $S = \{-1, 1\}$. Observe that the largest member of the sequence itself is $x_2 = 2$, which provides no information concerning the limiting behavior of the sequence.

An extreme example is given by the set of all rational numbers in the interval [0, 1]. The set is denumerable (see Section 1.3) and therefore it can be written as a sequence (r_n) . Then it follows from the Density Theorem 2.4.8 that every number in [0, 1] is a subsequential limit of (r_n) . Thus we have S = [0, 1].

A bounded sequence (x_n) that diverges will display some form of oscillation. The activity is contained in decreasing intervals as follows. The interval $[t_1, u_1]$, where $t_1 :=$

inf $\{x_n : n \in \mathbb{N}\}$ and $u_1 := \sup\{x_n : n \in \mathbb{N}\}$, contains the entire sequence. If for each $m = 1, 2, \ldots$, we define $t_m := \inf\{x_n : n \ge m\}$ and $u_m := \sup\{x_n : n \ge m\}$, the sequences (t_m) and (u_m) are monotone and we obtain a nested sequence of intervals $[t_m, u_m]$ where the m-th interval contains the m-tail of the sequence.

The preceding discussion suggests different ways of describing limiting behavior of a bounded sequence. Another is to observe that if a real number ν has the property that $x_n > \nu$ for at most a finite number of values of n, then no subsequence of (x_n) can converge to a limit larger than ν because that would require infinitely many terms of the sequence be larger than ν . In other words, if ν has the property that there exists N_{ν} such that $x_n \le \nu$ for all $n \ge N_{\nu}$, then no number larger than ν can be a subsequential limit of (x_n) .

This observation leads to the following definition of limit superior. The accompanying definition of limit inferior is similar.

- **3.4.10 Definition** Let $X = (x_n)$ be a bounded sequence of real numbers
- (a) The **limit superior** of (x_n) is the infimum of the set V of $v \in \mathbb{R}$ such that $v < x_n$ for at most a finite number of $n \in \mathbb{N}$. It is denoted by

$$\limsup \sup (x_n)$$
 or $\limsup X$ or $\lim (x_n)$.

(b) The **limit inferior** of (x_n) is the supremum of the set of $w \in \mathbb{R}$ such that $x_m < w$ for at most a finite number of $m \in \mathbb{N}$. It is denoted by

$$\liminf (x_n)$$
 or $\liminf X$ or $\underline{\lim}(x_n)$.

For the concept of limit superior, we now show that the different approaches are equivalent.

3.4.11 Theorem If (x_n) is a bounded sequence of real numbers, then the following statements for a real number x^* are equivalent.

- (a) $x^* = \lim \sup (x_n)$.
- **(b)** If $\varepsilon > 0$, there are at most a finite number of $n \in \mathbb{N}$ such that $x^* + \varepsilon < x_n$, but an infinite number of $n \in \mathbb{N}$ such that $x^* \varepsilon < x_n$.
- (c) If $u_m = \sup\{x_n : n \ge m\}$, then $x^* = \inf\{u_m : m \in \mathbb{N}\} = \lim(u_m)$
- (d) If S is the set of subsequential limits of (x_n) , then $x^* = \sup S$.

Proof. (a) implies (b). If $\varepsilon > 0$, then the fact that x^* is an infimum implies that there exists a ν in V such that $x^* \le \nu < x^* + \varepsilon$. Therefore x^* also belongs to V, so there can be at most a finite number of $n \in \mathbb{N}$ such that $x^* + \varepsilon < x_n$. On the other hand, $x^* - \varepsilon$ is not in V so there are an infinite number of $n \in \mathbb{N}$ such that $x^* - \varepsilon < x_n$.

(b) implies (c). If (b) holds, given $\varepsilon > 0$, then for all sufficiently large m we have $u_m < x + \varepsilon$. Therefore, $\inf\{u_m : m \in \mathbb{N}\} \le x^* + \varepsilon$. Also, since there are an infinite number of $n \in \mathbb{N}$ such that $x^* - \varepsilon < x_n$, then $x^* - \varepsilon < u_m$ for all $m \in \mathbb{N}$ and hence $x^* - \varepsilon \le \inf\{u_m : m \in \mathbb{N}\}$. Since $\varepsilon > 0$ is arbitrary, we conclude that $x^* = \inf\{u_m : m \in \mathbb{N}\}$. Moreover, since the sequence (u_m) is monotone decreasing, we have $\inf(u_m) = \lim_{n \to \infty} (u_m)$.

(c) implies (d). Suppose that $X'=(x_{n_k})$ is a convergent subsequence of $X=(x_n)$. Since $n_k\geq k$, we have $x_{n_k}\leq u_k$ and hence $\lim X'\leq \lim (u_k)=x^*$. Conversely, there exists n_1 such that $u_1-1\leq x_{n_1}\leq u_1$. Inductively choose $n_{k+1}>n_k$ such that

$$u_k - \frac{1}{k+1} < x_{n_{k+1}} \le u_k.$$

Since $\lim (u_k) = x^*$, it follows that $x^* = \lim (x_{n_k})$, and hence $x^* \in S$.

that $w - \varepsilon$ is not in V, and hence $w - \varepsilon \le \limsup (x_n)$. Since $\varepsilon > 0$ is arbitrary, we hand, there exists a subsequence of (x_n) converging to some number larger than $w - \varepsilon$, so with $w + \varepsilon < x_n$. Therefore $w + \varepsilon$ belongs to V and $\limsup (x_n) \le w + \varepsilon$. On the other conclude that $w = \limsup (x_n)$. (d) implies (a). Let $w = \sup S$. If $\varepsilon > 0$ is given, then there are at most finitely many n

the limit inferior of a bounded sequence of real numbers. As an instructive exercise, the reader should formulate the corresponding theorem for

3.4.12 Theorem A bounded sequence (x_n) is convergent if and only if $\limsup (x_n) =$ $\lim \inf (x_n)$.

We leave the proof as an exercise. Other basic properties can also be found in the

Exercises for Section 3.4

- 1. Give an example of an unbounded sequence that has a convergent subsequence.
- 2 Use the method of Example 3.4.3(b) to show that if 0 < c < 1, then $\lim(c^{1/n}) = 1$.
- ω Let (f_n) be the Fibonacci sequence of Example 3.1.2(d), and let $x_n := f_{n+1}/f_n$. Given that $\lim(x_n) = L$ exists, determine the value of L.
- Show that the following sequences are divergent.

(a)
$$(1-(-1)^n+1/n)$$
,

S

(b)
$$(\sin n\pi/4)$$
.

- Let $X=(x_n)$ and $Y=(y_n)$ be given sequences, and let the "shuffled" sequence $Z=(z_n)$ be defined by $z_1:=x_1,z_2:=y_1,\ldots,z_{2n-1}:=x_n,z_{2n}:=y_n,\ldots$ Show that Z is convergent if and only if both X and Y are convergent and $\lim X=\lim Y$.
- 6. Let $x_n := n^{1/n}$ for $n \in \mathbb{N}$.
- <u>a</u> $\lim(x_n)$ exists. Use the fact that the subsequence (x_{2n}) also converges to x to conclude that x = 1. Show that $x_{n+1} < x_n$ if and only if $(1 + 1/n)^n < n$, and infer that the inequality is valid for $n \ge 3$. (See Example 3.3.6.) Conclude that (x_n) is ultimately decreasing and that x :=
- 9
- Establish the convergence and find the limits of the following sequences:

(a)
$$\left((1+1/n^2)^{n^2} \right)$$
,

(b)
$$((1+1/2n)^n)$$
,

(c)
$$((1+1/n^2)^{2n^2})$$
,

$$\left(\left(1+2/n\right)^n\right).$$

<u>a</u>

œ Determine the limits of the following.

(a)
$$((3n)^{1/2n})$$
,

(b)
$$((1+1/2n)^{3n})$$
.

- 9. Suppose that every subsequence of $X = (x_n)$ has a subsequence that converges to 0. Show that
- <u>.</u> Let (x_n) be a bounded sequence and for each $n \in \mathbb{N}$ let $s_n := \sup\{x_k : k \ge n\}$ and $S := \inf\{s_n\}$. Show that there exists a subsequence of (x_n) that converges to S.
- Ξ Suppose that $x_n \ge 0$ for all $n \in \mathbb{N}$ and that $\lim_{n \to \infty} ((-1)^n x_n)$ exists. Show that (x_n) converges.
- 12. Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $\lim(1/x_{n_k})=0.$
- 13. If $x_n := (-1)^n/n$, find the subsequence of (x_n) that is constructed in the second proof of the Bolzano-Weierstrass Theorem 3.4.8, when we take $I_1 := [-1, 1]$.

- 14. Let (x_n) be a bounded sequence and let $s := \sup\{x_n : n \in \mathbb{N}\}$. Show that if $s \notin \{x_n : n \in \mathbb{N}\}$, then there is a subsequence of (x_n) that converges to s.
- 15. Let (I_n) be a nested sequence of closed bounded intervals. For each $n \in \mathbb{N}$, let $x_n \in I_n$. Use the Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.
- 16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence
- 17. Alternate the terms of the sequences (1+1/n) and (-1/n) to obtain the sequence (x_n) given by

$$(2,-1, 3/2,-1/2,4/3,-1/3,5/4,-1/4,\ldots)$$
.

Determine the values of $\limsup (x_n)$ and $\lim \inf (x_n)$. Also find $\sup \{x_n\}$ and $\inf \{x_n\}$

Show that if (x_n) is a bounded sequence, then (x_n) converges if and only if $\limsup (x_n) =$ $\lim \inf (x_n)$.

18.

19. Show that if (x_n) and (y_n) are bounded sequences, then

$$\limsup (x_n + y_n) \le \limsup (x_n) + \limsup (y_n)$$

Give an example in which the two sides are not equal

Section 3.5 The Cauchy Criterion

significant drawback that it applies only to sequences that are monotone. It is important for us to have a condition implying the convergence of a sequence that does not require us to Cauchy Criterion, which will be established in this section, is such a condition. know the value of the limit in advance, and is not restricted to monotone sequences. The The Monotone Convergence Theorem is extraordinarily useful and important, but it has the

 $n, m \ge H(\varepsilon)$, the terms x_n, x_m satisfy $|x_n - x_m| < \varepsilon$. if for every $\varepsilon>0$ there exists a natural number $H(\varepsilon)$ such that for all natural numbers **3.5.1 Definition** A sequence $X = (x_n)$ of real numbers is said to be a Cauchy sequence

knowing the limit of the sequence. Cauchy sequence. This will give us a method of proving a sequence converges without section, which asserts that a sequence of real numbers is convergent if and only if it is a The significance of the concept of Cauchy sequence lies in the main theorem of this

However, we will first highlight the definition of Cauchy sequence in the following

3.5.2 Examples (a) The sequence (1/n) is a Cauchy sequence

If $\varepsilon > 0$ is given, we choose a natural number $H = H(\varepsilon)$ such that $H > 2/\varepsilon$. Then if $m, n \ge H$, we have $1/n \le 1/H < \varepsilon/2$ and similarly $1/m < \varepsilon/2$. Therefore, it follows that

$$\left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that (1/n) is a Cauchy sequence

The sequence $(1 + (-1)^n)$ is *not* a Cauchy sequence.

every H there exist at least one n > H and at least one m > H such that $|x_n - x_m| \ge \varepsilon_0$. For The negation of the definition of Cauchy sequence is: There exists $\varepsilon_0 > 0$ such that for

the terms $x_n := 1 + (-1)^n$, we observe that if n is even, then $x_n = 2$ and $x_{n+1} = 0$. If we take $\varepsilon_0 = 2$, then for any H we can choose an even number n > H and let m := n + 1 to get

$$|x_n - x_{n+1}| = 2 = \varepsilon_0.$$

We conclude that (x_n) is not a Cauchy sequence.

Remark We emphasize that to prove a sequence (x_n) is a Cauchy sequence, we may not assume a relationship between m and n, since the required inequality $|x_n - x_m| < \varepsilon$ must hold for $all\ n$, $m \ge H(\varepsilon)$. But to prove a sequence is not a Cauchy sequence, we may specify a relation between n and m as long as arbitrarily large values of n and m can be chosen so that $|x_n - x_m| \ge \varepsilon_0$.

Our goal is to show that the Cauchy sequences are precisely the convergent sequences. We first prove that a convergent sequence is a Cauchy sequence.

3.5.3 Lemma If $X = (x_n)$ is a convergent sequence of real numbers, then X is a Cauchy sequence.

Proof. If $x := \lim X$, then given $\varepsilon > 0$ there is a natural number $K(\varepsilon/2)$ such that if $n \ge K(\varepsilon/2)$ then $|x_n - x| < \varepsilon/2$. Thus, if $H(\varepsilon) := K(\varepsilon/2)$ and if $n, m \ge H(\varepsilon)$, then we have

$$\begin{aligned} |x_n - x_m| &= |(x_n - x) + (x - x_m)| \\ &\leq |x_n - x| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon. \end{aligned}$$

Since $\varepsilon > 0$ is arbitrary, it follows that (x_n) is a Cauchy sequence.

In order to establish that a Cauchy sequence is convergent, we will need the following result. (See Theorem 3.2.2.)

3.5.4 Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let $X := (x_n)$ be a Cauchy sequence and let $\varepsilon := 1$. If H := H(1) and $n \ge H$, then $|x_n - x_H| < 1$. Hence, by the Triangle Inequality, we have $|x_n| \le |x_H| + 1$ for all $n \ge H$. If we set

$$M := \sup\{|x_1|, |x_2|, \dots, |x_{H-1}|, |x_H| + 1\},\$$

then it follows that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Q.E.D.

We now present the important Cauchy Convergence Criterion.

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence.

Conversely, let $X = (x_n)$ be a Cauchy sequence; we will show that X is convergent to some real number. First we observe from Lemma 3.5.4 that the sequence X is bounded. Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence $X' = (x_{n_k})$ of X that converges to some real number x^* . We shall complete the proof by showing that X converges to x^* .

Since $X = (x_n)$ is a Cauchy sequence, given $\varepsilon > 0$ there is a natural number $H(\varepsilon/2)$ such that if $n, m \ge H(\varepsilon/2)$ then

$$|x_n-x_m|<\varepsilon/2$$

Since the subsequence $X'=(x_{n_k})$ converges to x^* , there is a natural number $K\geq H(\varepsilon/2)$ belonging to the set $\{n_1,n_2,\ldots\}$ such that

$$|x_K - x^*| < \varepsilon/2.$$

Since $K \ge H(\varepsilon/2)$, it follows from (1) with m = K that

$$|x_n - x_K| < \varepsilon/2$$
 for $n \ge H(\varepsilon/2)$.

Therefore, if $n \ge H(\varepsilon/2)$, we have

$$|x_n - x^*| = |(x_n - x_K) + (x_K - x^*)|$$

$$\leq |x_n - x_K| + |x_K - x^*|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since e > 0 is arbitrary, we infer that $\lim(x_n) = x^*$. Therefore the sequence X is convergent.

We will now give some examples of applications of the Cauchy Criterion.

3.5.6 Examples (a) Let $X = (x_n)$ be defined by

$$x_1 := 1, \quad x_2 := 2, \quad \text{and} \quad x_n := \frac{1}{2}(x_{n-2} + x_{n-1}) \quad \text{for} \quad n > 2.$$

It can be shown by Induction that $1 \le x_n \le 2$ for all $n \in \mathbb{N}$. (Do so.) Some calculation shows that the sequence X is not monotone. However, since the terms are formed by averaging, it is readily seen that

$$|x_n - x_{n+1}| = \frac{1}{2^{n-1}}$$
 for $n \in \mathbb{N}$.

(Prove this by Induction.) Thus, if m > n, we may employ the Triangle Inequality to obtain

$$|x_n - x_m| \le |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_m|$$

$$= \frac{1}{2^{n-1}} + \frac{1}{2^n} + \dots + \frac{1}{2^{m-2}}$$

$$= \frac{1}{2^{n-1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{m-n-1}} \right) < \frac{1}{2^{n-2}}.$$

Therefore, given $\varepsilon > 0$, if n is chosen so large that $1/2^n < \varepsilon/4$ and if $m \ge n$, then it follows that $|x_n - x_m| < \varepsilon$. Therefore, X is a Cauchy sequence in \mathbb{R} . By the Cauchy Criterion 3.5.5 we infer that the sequence X converges to a number x.

To evaluate the limit x, we might first "pass to the limit" in the rule of definition $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ to conclude that x must satisfy the relation $x = \frac{1}{2}(x + x)$, which is true, but not informative. Hence we must try something else.