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Section 3.4 Subsequences and the Bolzano-Weierstrass Theorem

In this section we will introduce the notion of a subsequence of a sequence of real numbers.
Informally, a subsequence of a sequence is a selection of terms from the given sequence
such that the selected terms form a new sequence. Usually the selection is made for a
definite purpose. For example, subsequences are often useful in establishing the conver-
gence or the divergence of the sequence. We will also prove the important existence
theorem known as the Bolzano-Weierstrass Theorem, which will be used to establish a
number of significant results.

3.4.1 Definition Let X = (x,) be a sequence of real numbers and let ny <ny <--- <
nx < --- be a strictly increasing sequence of natural numbers. Then the sequence X' =
(Xn,) given by

A.f:.s_t:.t«:t.:v

is called a subsequence of X.

For example, if X := ﬁ , w , W, .. v then the selection of even indexed terms produces
the subsequence

111 1
X' = (2,2,
2°4°6 2k’ ’
where n; =2, m =4,...,n =2k,.... Other subsequences of X = (1/n) are the
following:
ww_ 1 11 1 1
1'3'5 " "2k—1"777) \2r4re!’ U (2k)!
The following sequences are not subsequences of X = (1/n):
111111 1 1 1
M‘M,NMMJWMW,".. ’ H“‘OMW«O,W,OM...

A tail of a sequence (see 3.1.8) is a special type of subsequence. In fact, the m-tail
corresponds to the sequence of indices

n=m+lnp=m+2,... . n=m+k,....

But, clearly, not every subsequence of a given sequence need be a tail of the sequence.
Subsequences of convergent sequences also converge to the same limit, as we now show.

3.4.2 Theorem If a sequence X = (x,) of real numbers converges to a real number x,
then any subsequence X' = (x,,) of X also converges to x.

Proof. Lete > 0 be given and let K (&) be such that if n > K (&), then |x, — x| < &. Since
ny <ny <---<n <---isanincreasing sequence of natural numbers, it is easily proved
(by Induction) that n; > k. Hence, if k > K(e), we also have nx > k > K(g) so that
|xn, — x| < &. Therefore the subsequence (x,, ) also converges to x. Q.ED.

3.43 Examples (a) lim(0")=0if0<b < L.
We have already seen, in Example 3.1.11(b), thatif 0 < b < 1 and if x,, := b", then it
follows from Bernoulli’s Inequality that lim(x,) = 0. Alternatively, we see that since
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0 < b < 1, then x, = b"! < b" = x,, so that the sequence (x,) is decreasing. It is also
clear that 0 < x, < 1, so it follows from the Monotone Convergence Theorem 3.3.2 that
the sequence is convergent. Let x := lim x,. Since (X2,) is a subsequence of (x,) it follows
from Theorem 3.4.2 that x = lim(x»,). Moreover, it follows from the relation x», = =
(b")* = x? and Theorem 3.2.3 that

x = lim(xz,) = A:B?Lv“ =x.
Therefore we must have either x = 0 or x = 1. Since the sequence (x,) is decreasing and
bounded above by b < 1, we deduce that x = 0.
() Lim(c"/") = 1forc > 1. .

This limit has been obtained in Example 3.1.11(c) for ¢ > 0, using a rather ingenious
argument. We give here an alternative approach for the case ¢ > 1. Note that if z,, := ¢'/",
then z, > 1 and 2,4, < z, for all n € N. (Why?) Thus by the Monotone Convergence
Theorem, the limit z := lim(z,) exists. By Theorem 3.4.2, it follows that z = lim(z2,). In
addition, it follows from the relation

Zom = e — An{:v_\w — ..\;__\N

and Theorem 3.2.10 that
z = lim(z,) = A:BTJ_VV_\N =12

Therefore we have z2 = z whence it follows that either z = O or z = 1. Since z, > 1 for all

n € N, we deduce that z = 1.
We leave it as an exercise to the reader to consider the case 0 < ¢ < 1. O

The following result is based on a careful negation of the definition of lim(x,) = x. It
leads to a convenient way to establish the divergence of a sequence.

3.44 Theorem Let X = (x,) be a sequence of real numbers, Then the following are
equivalent:

(i) The sequence X = (x,) does not converge to x € R.

(ii) There exists an e > 0 such that for any k € N, there exists ny € N such that
ng > k and |x,, — x| > €.

(iii) There exists aney > 0 and a subsequence X' = (xy,) of X such that |x,, — x| > & for
all k € N.

Proof. (i) = (ii) If (x,) does not converge to x, then for some & > 0 it is impossible to
find a natural number k such that for all n > k the terms x,, satisfy |x, — x| < &. Thatis, for
each k € N it is not true that for all n > k the inequality |x, — x| < & holds. In other
words, for each k € N there exists a natural number n; > k such that |%n, — X| > &0.

(ii) = (iii) Leteobe asin (ii) and let n; € Nbe such thatn; > 1and |x, — x| > &o.
Now let 7, € N be such that ny > njand |x,, — x| > eo; let n3 € N be such that
n3 > ny and | x,, — x| > &. Continue in this way to obtain a subsequence X' = (xy,) of
X such that |x,, — x| > ¢ for all k € N.

(iii) = (i) Suppose X = (x,) has a subsequence X’ = (xn, ) satisfying the condition
in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence
X' would also converge to x. But this is impossible, since none of the terms of X’ belongs to
the &y-neighborhood of x. QED.
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Since all subsequences of a convergent sequence must converge to the same limit, we
have part (i) in the following result. Part (ii) follows from the fact that a convergent
sequence is bounded.

3.4.5 Divergence Criteria If a sequence X = (x,) of real numbers has either of the
following properties, then X is divergent.

(i) X has two convergent subsequences X' = (x,,) and X" = (x;,) whose limits are not
equal.
(ii) X is unbounded.

3.4.6 Examples (a) The sequence X := ((—1)") is divergent.

The subsequence X' := ((—1)*") = (1, 1, ...) converges to 1, and the subsequence
X" = ((=1)*") = (~1,—1, ...) converges to —1. Therefore, we conclude from Theo-
rem 3.4.5(i) that X is divergent.

(b) The sequence (1,4,3,},...) is divergent.

This is the sequence Y = (y,), where y, = nif nis odd, and y, = 1/nif nis even. It
can easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is
divergent.

(¢) The sequence S := (sin n) is divergent.

This sequence is not so easy to handle. In discussing it we must, of course, make use of
elementary properties of the sine function. We recall that sin(/6) = § = sin(57/6) and
that sin x >4 for x in the interval I, := (/6, 57/6). Since the length of I; is
57/6 — w/6 = 27/3 > 2, there are at least two natural numbers lying inside /;; we let
n, be the first such number. Similarly, for each k € N, sinx > W for x in the interval

‘ Iy = (/6 + 27(k — 1),57/6 + 27 (k — 1)).
Since the length of I is greater than 2, there are at least two natural numbers lying inside I
we let 1 be the first one. The subsequence S’ := (sin nx) of S obtained in this way has the
property that all of its values lie in the interval mu :.

Similarly, if k € N and Jy, is the interval

Ji = (Tn/6 +27(k — 1), 117/6 + 27(k — 1)),

then it is seen that sin x < — W for all x € J; and the length of Jy is greater than 2. Let my, be
the first natural number lying in J;. Then the subsequence S” := (sinmy) of S has the
property that all of its values lie in the interval T__ l&

Given any real number ¢, it is readily seen that at least one of the subsequences S and
S” lies entirely outside of the {-neighborhood of ¢. Therefore ¢ cannot be a limit of S. Since
¢ € R is arbitrary, we deduce that S is divergent. O

The Existence of Monotone Subsequences

While not every sequence is a monotone sequence, we will now show that every sequence
has a monotone subsequence.

3.4.7 Monotone Subsequence Theorem [f X = (x,) is a sequence of real numbers,
then there is a subsequence of X that is monotone.

Proof. For the purpose of this proof, we will say that the mth term x,, is a “‘peak” if
X > X, forall nsuchthatn > m. (That is, x,,, is never exceeded by any term that follows it

3.4 SUBSEQUENCES AND THE BOLZANO-WEIERSTRASS THEOREM 81

in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an
increasing sequence, no term is a peak.
We will consider two cases, depending on whether X has infinitely many, or finitely

many, peaks.
Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing
SUbSCTIPLS: Xy, , Xptgs - - - » Xy - - - - SiNCE each term is a peak, we have

Xmy VRSuV.A.V.Ai»V....

Therefore, the subsequence (x,, ) of peaks is a decreasing subsequence of X.

Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by
increasing subscripts: X, , X, - - - , Xm,- Let 1 := m, + 1 be the first index beyond the last
peak. Since x;, is not a peak, there exists s, > 51 such that x;, < X,. Since X, is not a peak,
there exists s3 > 53 such that x;, < X,,. Continuing in this way, we obtain an increasing
subsequence (xy,) of X. QE.D.

It is not difficult to see that a given sequence may have one subsequence that is
increasing, and another subsequence that is decreasing.

The Bolzano-Weierstrass Theorem

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass
Theorem, which states that every bounded sequence has a convergent subsequence.
Because of the importance of this theorem we will also give a second proof of it based
on the Nested Interval Property.

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a
convergent subsequence.

First Proof. Tt follows from the Monotone Subsequence Theorem that if X = (xn) is a
bounded sequence, then it has a subsequence X' = (x,,) that is monotone. Since this
subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2
that the subsequence is convergent. Q.E.D.

Second Proof. Since the set of values {xp:neN } is bounded, this set is contained in an
interval /| := [a,b]. We take nj := 1.

We now bisect /; into two equal subintervals I{ and I{, and divide the set of indices
{n € N:n> 1} into two parts:

A :={neN:n>n,x, €li}, Bi={neN:n>n,x,lf

If A, is infinite, we take I := I{ and let n, be the smallest natural number in A;. If A, is a
finite set, then B, must be infinite, and we take I, := I{ and let n, be the smallest natural

number in Bj.
We now bisect [, into two equal subintervals [5 and I3, and divide the set

{n € N:n> n,} into two parts:
Ay={neN:n>mxn€h}, Bi:={neN:n>mx, e}
If A, is infinite, we take I3 := I5 and let n3 be the smallest natural number in A,. If Ay is a

finite set, then B, must be infinite, and we take /3 := I'5 and let n3 be the smallest natural
number in B,.
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We continue in this way to obtain a sequence of nested intervals [y 21, D --- 2
I D - - - and a subsequence (X, ) of X such that x,, € Iy fork € N. Since the length of I is
equal to (b — a)/2¥~!, it follows from Theorem 2.5.3 that there is a (unique) common point
£ € I, for all k € N. Moreover, since x,, and £ both belong to /i, we have

n, — &1 < (6—a)/2"7",
whence it follows that the subsequence (x,,) of X converges to &. QED.

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for sequences,
because there is another version of it that deals with bounded sets in R (see Exercise 11.2.6).

It is readily seen that a bounded sequence can have various subsequences that converge
to different limits or even diverge. For example, the sequence ((—1)") has subsequences
that converge to — 1, other subsequences that converge to +1, and it has subsequences that
diverge.

Let X be a sequence of real numbers and let X’ be a subsequence of X. Then X'isa
sequence in its own right, and so it has subsequences. We note that if X " is a subsequence of
X', then it is also a subsequence of X.

3.4.9 Theorem Let X = (x,) be a bounded sequence of real numbers and let x € R have
the property that every convergent subsequence of X converges to x. Then the sequence X
converges 1o X.

Proof. Suppose M > 0 is a bound for the sequence X so that |x,| < M foralln € N.IfX
does not converge to X, then Theorem 3.4.4 implies that there exist g >0 and a
subsequence X' = (xy,) of X such that

(1) [Xn, — X| > &0 forall keN.

Since X is a subsequence of X, the number M is also a bound for X’. Hence the Bolzano- |

Weierstrass Theorem implies that X’ has a convergent subsequence X”. Since X" is also a
subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the
go-neighborhood of x, contradicting (1). ' Q.E.D.

Limit Superior and Limit Inferior

A bounded sequence of real numbers (x,) may or may not converge, but we know from the
Bolzano-Weierstrass Theorem 3.4.8 that there will be a convergent subsequence and possibly
many convergent subsequences. A real number that is the limit of a subsequence of (xn)
is called a subsequential limit of (x,). We let S denote the set of all subsequential limits of
the bounded sequence (x,). The set S is bounded, because the sequence is bounded.

For example, if (x,) is defined by x, := (—1)" + 2/n, then the subsequence (x2,)
converges to 1, and the subsequence (x2,—1) converges to — 1. It is easily seen that the set of
subsequential limits is § = {—1, 1}. Observe that the largest member of the sequence itself
is x, = 2, which provides no information concerning the limiting behavior of the sequence.

An extreme example is given by the set of all rational numbers in the interval [0, 1].
The set is denumerable (see Section 1.3) and therefore it can be written as a sequence (7).
Then it follows from the Density Theorem 2.4.8 that every number in [0, 1] is a
subsequential limit of (r,). Thus we have S = [0, 1].

A bounded sequence (x,) that diverges will display some form of oscillation. The
activity is contained in decreasing intervals as follows. The interval [f,, u1], where ¢; :=
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inf {x, : n € N} and u; := sup{x, : n € N}, contains the entire sequence. If for each
m=1,2,...,wedefine t,, := inf{x, : n > m} and u,, := sup{x, : n > m}, the sequences
(t,,) and (u,,) are monotone and we obtain a nested sequence of intervals [¢,,, 4] where the
mth interval contains the m-tail of the sequence.

The preceding discussion suggests different ways of describing limiting behavior of a
bounded sequence. Another is to observe that if a real number v has the property that x, > v
for at most a finite number of values of n, then no subsequence of (x,) can converge to a
limit larger than v because that would require infinitely many terms of the sequence be
larger than v. In other words, if v has the property that there exists N, such that x, < v forall
n > N,, then no number larger than v can be a subsequential limit of (x;).

This observation leads to the following definition of limit superior. The accompanying
definition of limit inferior is similar.

3.4.10 Definition Let X = (x,) be a bounded sequence of real numbers.

(a) The limit superior of (x,) is the infimum of the set V of v € R such that v < x, for at
most a finite number of # € N. It is denoted by

limsup(x,) or limsupX or Tlim(x,).

(b) The limit inferior of (x,) is the supremum of the set of w € R such that x,,, < wforat
most a finite number of m € N. It is denoted by

liminf(x,) or liminfX or lm(x,).

For the concept of limit superior, we now show that the different approaches are equivalent.

3.4.11 Theorem If (x,) is a bounded sequence of real numbers, then the following
statements for a real number x* are equivalent.

(a) x* = limsup(x,).

(b) Ife > 0, there are at most a finite number of n € N such that x* + ¢ < x,, but an
infinite humber of n € N such that x* — & < x,.

(¢) If up = sup{x, : n > m}, then x* = inf{u, : m € N} = lim(un,).

(d) IfS is the set of subsequential limits of (x,), then X* = sup S.

Proof. (a) implies (b). If ¢ > 0, then the fact that x* is an infimum implies that there
exists a vin V such that x* < v < x* + &. Therefore x* also belongs to V, so there can be at
most a finite number of n € N such that x* + ¢ < x,. On the other hand, x* — ¢isnotin V
so there are an infinite number of #n € N such that x* — ¢ < x,.

(b) implies (c). If (b) holds, given ¢ > 0, then for all sufficiently large m we have
Uy, < x + & Therefore, inf{u,, : m € N} < x* + &. Also, since there are an infinite number
of n € N such that x* — ¢ < x,, then x* — & < u, for all m € N and hence x" —¢& <
inf{w, : me N}. Since &> 0 is arbitrary, we conclude that x* = inf{u,, : m € N}.
Moreover, since the sequence (1, is monotone decreasing, we have inf(u,,) = lim(i,).

(c) implies (d). Suppose that X' = (x,,) is a convergent subsequence of X = (xn)-
Since ny > k, we have x,, < i and hence lim X’ < lim(u) = x*. Conversely, there exists
ny such that u; — 1 < x,,, < uy. Inductively choose ngy; > ny such that

1

Uy — ﬂ < Xy < U

Since lim (1) = x*, it follows that x* = lim(x,, ), and hence x* € S.

i
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(d) implies (a). Let w = sup S. If & > 0 is given, then there are at most finitely many n
with w -+ & < X,. Therefore w + ¢ belongs to V and lim sup (x,) < w + ¢. On the other
hand, there exists a subsequence of (x,) converging to some number larger than w — ¢, so
that w — ¢ is not in V, and hence w — ¢ < lim sup (x,). Since ¢ >0 is arbitrary, we
conclude that w = lim sup (x,). QED.

As an instructive exercise, the reader should formulate the corresponding theorem for
the limit inferior of a bounded sequence of real numbers.

3.4.12 Theorem A bounded sequence (x,) is convergent if and only if lim sup (x,) =
lim inf (x,).

We leave the proof as an exercise. Other basic properties can also be found in the
exercises.

Exercises for Section 3.4

1. Give an example of an unbounded sequence that has a convergent subsequence.
Use the method of Example 3.4.3(b) to show that if 0 < ¢ < 1, then lim(c'/") = 1.

3. Let (f,) be the Fibonacci sequence of Example 3.1.2(d), and let x, = f41/fn- Given that
lim(x,) = L exists, determine the value of L.

[

4. Show that the following sequences are divergent.

@ (1-(=1)"+1/n), (b) (sinnm/4).
5. Let X = (x,) and ¥ = (y,) be given sequences, and let the “shuffled” sequence Z = (z,) be
defined by z) 1= X1,22 = Y|, ..., Z2u=1 = Xn, Z2n := Yp, .- - Show that Z is convergent if and

only if both X and Y are convergent and limX = lim Y.

6. Let x, :=n'""forneN.
(a) Show that x,;; < X, ifand onlyif (1 + 1/n)" < n, and infer that the inequality is valid for
n > 3. (See Example 3.3.6.) Conclude that (x,) is ultimately decreasing and that x :=
lim(x,) exists.
(b) Use the fact that the subsequence (xz,) also converges to x to conclude that x = 1.

7. Establish the convergence and find the limits of the following sequences:

@ ((1+1ym)), ®) ((1+1/20)),

© ?i\éiv, @ ((1+2/n)".
8. Determine the limits of the following.

@ ((3n)"™), M ((1+1/20)").

9. Suppose that every subsequence of X = (x,) has a subsequence that converges to 0. Show that
limX = 0.

10. Let (x,) be a bounded sequenc® and for each n € N let s, := sup{x : k > n} and § := inf{s,}.
Show that there exists a subsequence of (x,) that converges to S.

11. Suppose that x, > 0 for all # € N and that :BQIC:R‘.V exists. Show that (x,) converges.

12. Show that if (x,) is unbounded, then there exists a subsequence (x,) such that
lim(1/x,,) = 0.

13. If x, := (=1)"/n, find the subsequence of (x,) that is constructed in the second proof of the
Bolzano-Weierstrass Theorem 3.4.8, when we take I, := [—1, 1].
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14. Let (x,) be a bounded sequence and let s := sup{x, : n € N}. Show that if s ¢ {x, : n € N},
then there is a subsequence of (x,) that converges to s.

15. Let (I,) be a nested sequence of closed bounded intervals. For each n € N, let x,, € /.. Use the
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.

16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence
is dropped.

17. Alternate the terms of the sequences (1 + 1/n) and (—1/n) to obtain the sequence (x,) given by
(2,—1, 3/2,—1/2,4/3,—1/3, 5/4,~1/4,...).
Determine the values of lim sup(x,) and lim inf(x,). Also find sup{x,} and inf{x,}.
18. Show that if (x,) is a bounded sequence, then (x,) converges if and only if lim sup(x,) =
lim inf(x,).
19. Show that if (x,) and (y,) are bounded sequences, then
lim sup(x, +y,) < limsup(x,) + lim sup(y,).

Give an example in which the two sides are not equal.

Section 3.5 The Cauchy Criterion

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the
significant drawback that it applies only to sequences that are monotone. It is important for
us to have a condition implying the convergence of a sequence that does not require us to
know the value of the limit in advance, and is not restricted to monotone sequences. The
Cauchy Criterion, which will be established in this section, is such a condition.

3.5.1 Definition A sequence X = (x,) of real numbers is said to be a Cauchy sequence
if for every & > O there exists a natural number H(g) such that for all natural numbers
n,m > H(g), the terms X, X, satisfy |x, — Xm| <&

The significance of the concept of Cauchy sequence lies in the main theorem of this
section, which asserts that a sequence of real numbers is convergent if and only if itis a
Cauchy sequence. This will give us a method of proving a sequence converges without
knowing the limit of the sequence.

However, we will first highlight the definition of Cauchy sequence in the following
examples.

3.5.2 Examples (a) The sequence (1/n) is a Cauchy sequence.

If ¢ > 0 is given, we choose a natural number H = H(e) such that H > 2/e. Then if
m,n > H, we have 1/n < 1/H < ¢/2 and similarly 1/m < &/2. Therefore, it follows that
if m, n > H, then

Since ¢ > 0 is arbitrary, we conclude that (1/n) is a Cauchy sequence.
(b) The sequence (1 + (—1)") is not a Cauchy sequence.

The negation of the definition of Cauchy sequence is: There exists & > 0 such that for
every H there exist at least one n > H and at least one m > H such that |x, — x| > €. For
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the terms x, := 1 + (=1)", we observe that if n is even, then x,, = 2 and x,+; = 0. If we
take &y = 2, then for any H we can choose an even number n > H and letm :=n + 1 to get

_.dz - .«:+L =2 =g.

We conclude that (x,,) is not a Cauchy sequence. O

Remark We emphasize that to prove a sequence (x,,) is a Cauchy sequence, we may not
assume a relationship between m and n, since the required inequality |x, — X,,| < & must
hold for alln,m > H(e). But to prove a sequence is not a Cauchy sequence, we may specify
a relation between n and m as long as arbitrarily large values of n and m can be chosen so

that |x, — x| > €.

Our goal is to show that the Cauchy sequences are precisely the convergent sequences.
We first prove that a convergent sequence is a Cauchy sequence.

3.5.3 Lemma IfX = (x,) is a convergent sequence of real numbers, then X is a Cauchy
sequence.

Proof. If x :=lim X, then given ¢ > 0 there is a natural number K(g/2) such that if
n > K(e/2) then |x, — x| < ¢/2. Thus, if H(¢) := K(¢/2) and if n,m > H(e), then we
have

_./.z - k.:_ = _A./.z - ./.v + A./. - ,«.E:
|xp — x|+ |xm — x| <&/24+¢/2 =¢.

IN

Since ¢ > 0 is arbitrary, it follows that (x,) is a Cauchy sequence. QE.D.

In order to establish that a Cauchy sequence is convergent, we will need the following
result. (See Theorem 3.2.2.)

3.5.4 Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let X := (x,) be a Cauchy sequence and let ¢ := 1. If H:= H(l) and n > H,
then |x, — xy| < 1. Hence, by the Triangle Inequality, we have |x,| < |xy|+ 1 for all
n> H. If we set

M := sup{}:

then it follows that |x,| < M for all n € N. Q.E.D.

vl lxaaal, lxeml + 13

We now present the important Cauchy Convergence Criterion.

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy
sequence.

Conversely, let X = (x,) be a Cauchy sequence; we will show that X is convergent to
some real number. First we observe from Lemma 3.5.4 that the sequence X is bounded.
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X' = (x)
of X that converges to some real number x*. We shall complete the proof by showing that X
converges to x".
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Since X = (x,) is a Cauchy sequence, given ¢ > 0 there is a natural number H(z/2)
such that if n, m > H(e/2) then

() [Xn — Xm| < &/2.

Since the subsequence X’ = (x,, ) converges to x*, there is a natural number K > H(¢/2)
belonging to the set {n|,n,,...} such that

|xg — x*| <e/2.
Since K > H(g/2), it follows from (1) with m = K that
|x, — x| <&/2  for n>H(e/2).

Therefore, if n > H(¢/2), we have

Il

_A\dz I.Akv T AHN I\«J_

IN

[xy — xk| + |xx — x*|

e/2+¢/2=c¢.

N

Sincee ¢ > 0 is arbitrary, we infer that lim(x,) = x*. Therefore the sequence X is
convergent. Q.E.D.

We will now give some examples of applications of the Cauchy Criterion.

3.5.6 Examples (a) Let X = (x,) be defined by
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H_.NH ., X,:=2, and X, “HM?:L +Xx,1) for n>2.

It can be shown by Induction that 1 < x, < 2foralln € N. (Do so0.) Some calculation
shows that the sequence X is not monotone. However, since the terms are formed by
averaging, it is readily seen that
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(Prove this by Induction.) Thus, if m > n, we may employ the Triangle Inequality to obtain

|Xn — ml < lxn = Xns1] + [Xns1 = Xpa2| + o0 + |Xm-1 — X
1 1 |
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1 1 1 1
=g\ttt <5

Therefore, given & > 0, if n is chosen so large that 1/2" < /4 and if m > n, then it follows
that |x, — x| < ¢&. Therefore, X is a Cauchy sequence in R. By the Cauchy Criterion 3.5.5
we infer that the sequence X converges to a number x.

To evaluate the limit x, we might first ““pass to the limit” in the rule of definition
%y = (Xuo1 + Xu2) to conclude that x must satisfy the relation x = L (x+ x), which is
true, but not informative. Hence we must try something else.



