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1. Introduction. A Riemannian manifold M with a (possibly indef-
inite) metric ¢ is said to be conformally symmetric [1] if its Weyl con-
formal tensor

(1) Cupp = Bpye— (943 Bpx + gni By — 9y B — 9 Bg) [(n — 2) +
+ B (g 0ne — Ing i) [(0 —1)(n —2)

satisfies the condition

(2) Crgreq = 0,

where n = dimM > 4, and R, By, R and the comma denote the
curvature tensor, Ricci tensor, scalar curvature and covariant differen-
tiation, respectively. Conformally symmetric manifolds which are neither
conformally flat (C,;;, = 0) nor locally symmetric (Ryy,; = 0) are called
essentially conformally symmetric (e.c.s. in short). For existence remarks,
see Section 2. Every e.c.s. manifold M satisfies ([7], Theorem 3) a relation
of the form

(3) Rtj Rm: - RM R{k =F Chijk

for some function F, called the fundamental function of M. In what follows
we restrict our consideration to e.c.s. manifolds with F = const. By
Lemma 1, such a manifold is either elliptic (F +# 0, R,; semidefinite every-
where) or hyperbolic (F # 0, K, semidefinite nowhere), or else para-
bolic (F = 0).

In the present paper we treat the elliptic case only (the hyperbolic
and parabolic ones are dealt with by the forthcoming papers [3] and [4]).
The main result of this paper (Theorem 4) gives a general local form for
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elliptic e.c.s. manifolds with F = const. Theorem 1 shows the existence
of such manifolds which are also homogeneous. Moreover, we derive some
topological and metric properties of homogeneous elliptic e.c.s. manifolds
(Theorems 2, 3, 5 and Corollaries 1-4).

Throughout this paper, all manifolds are assumed to be connected,
paracompact and of class 0. However, all results and arguments remain
valid, mutatis mutandis, in the analytic category. Considering Riemannian
manifolds, we shall identify contravariant and covariant vectors (by
raising and lowering indices).

2. General remarks. The conformal curvature tensor satisfies the
following well-known relations:

(4) Crige = —Oag = — Chig = Oy
(6) Orisr+ Ongis+Opeyy = 0,
(6) Cry = 04y =0y, = 0.

The metric of an e.c.s. manifold is never definite (see [12] and [5],
Theorem 2). Moreover, every e.c.s. manifold satisfies

(7) By = Ra.j)

(8) B =0,

(9) R Ciiam + By Croitm + B Cijim, = 0,
(10) Bym = Byu

(see [6], Theorems 7, 9 and formula (6), and [7], Theorem 7).

Examples of e.c.s. manifolds can be found in [11] (Theorem 3), [2]
and [7] (Theorem 6). It is easy to see that, given an e.c.s. manifold M
and a point p € M, the fundamental function F defined by (3) vanishes
at p if and only if rank B;(p) < 1. It may happen that 7 = 0 identically
([11] and [7], loc. cit.) or F' = const 7 0, or F' is non-constant ([2],
cases ¢ = 0 and ¢ #0).

LEMMA 1. Let M be an e.c.s. manifold whose fundamental function
F = const. Then one of the following cases holds:

(i) F #0, rank R; = 2 and R, i3 semidefinite at each point of M;

(ii) ' # 0, rank By; = 2 everywhere and Ry is semidefinite at no
point of M;

(iii) # = 0 and rank B, < 1 everywhere.

Proof. We haverank B, < 2 for every e.c.s. manifold ([7], Theorem 5).
Therefore, ¥ = const # 0 implies rank B;; = 2 everywhere and our asser-
tion can be obtained from an elementary algebraic argument.
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Given an e.c.8. manifold M and a point p € M, we shall say that

(a) M is elliptic at p if rank R;(p) =2 and R;(p) is semidefinite;

(b) M is hyperbolic at p if rank R,(p) =2 and RE,(p) is not semi-
definite;

(c) M is parabolic at p if rank R;(p) <1 (i.e. F'(p) =0, F being
the fundamental function of M).

The whole manifold M is called elliptic (respectively, hyperbolic,
parabolic) it it is so at each point. Thus, Lemma 1 states that any e.c.s.
manifold with constant fundamental funection is either elliptic or hypers
bolic, or parabolic.

Since the present paper is devoted to elliptic e.c.s. manifolds with
constant fundamental function, it seems reasonable to start from estab-
lishing their existence. The example given in the sequel is homogeneous,
more precisely — it is a Lie group with a left-invariant metrie.

THEOREM 1. Let G be the open subset of R* defined by
G = {(u!, w? u®, w*) | (u?)?—3(u?)? # 0}.

By identifying (ul, u?, u3, u*) € G with the matriz

ut w 0 0
3u? ut 0 O
w —ut 1 0
Su* —u® 0 1

we introduce in @ a Lie group structure such that G becomes isomorphic to
a closed subgroup of GL(4, R). Let M be the tdentity component of G. Denote
by g the left-invariant metric on M determined at the unit element ¢ € G by

9e(dyydg) =1, g,(ds, dy) =2Q, ¢.(dyydy) = g,(dy, d) =1,
9c(adyy dy) = g.(dyy dy) = g,(ds, d3) = 0,

ge(d” da) = gc(di’ d‘) = gc(du dy) = 0,

dyy oo, d, being the canonical frame of R* at e, where t and Q are fixed real
numbers with Q # 0.

Then (M, g) i8 an elliptic e.c.8. Riemannian manifold with fundamental
function F = 8Q~".

Proof. The left-invariant vector fields d; on M whose values at
e are just d;,¢ =1, ..., 4, satisfy

(11)

12) [an 3,] = 0, [‘71"73] = —Js’ [31’24] = ""74’
[3,, as] = En [Eu 34] = 3‘73) [Ear Ec] = 0.



62 A. DERDZINSKI

From now on we refer all tensor and connection components to the
left-invariant frame field

6, = —dy, 6 =d,,
6g = —d,, ¢ =dy—1idy—Qd,.
Thus, setting g,; = g(e,, ¢;), from (11) we obtain
1 if {i,j} = (1,3} or {§, 4} = (2,4}
N ’ ’ ’ ? %5
(14) by =9 {0 otherwise.

L J
The components of the Riemannian connection D of g, given by
D,,¢; = Tije,, can be determined by the relations

De‘ej_Dejei = [e;,¢,] and  g(D,.e,¢) = —g(e, D,,6),

which may also be written in the form

(13)

(15) rg—rIy =
and
(16) P;dgjr = —Pl:jgir?

ci; being the structure constants defined by [e;, ¢;] = of;e,. Adding up
the equalities

9o T — 91e T3t = 92r s
gjfnk—gjrm = GjrCiks g{rrzd_g{rl}rk = GirChi)
which follow from (15), and using (16), we obtain

1 , 1
(17) Tf = 5 9" (9u 0+ 90 0) + 5 %-
From (12) and (13) we obtain the commutator expressions
(18) [e1) €] =0, [e1,6]= —e, [e,6]=eé,
[6s) 5] = —es, [, 6] =36y, [e5 6] = te,—Qe,,

which yield, in view of (17) and (14), the following formulae for covariant
derivatives:

D, e, =D, e, =D,e = D, e = D,e, =D,e; =0,
D,es = —2¢3, D6, =2e, D, =e,
D, 6 = —é3, D,y = —tes—6y, D6 =1l6;+6,
D6, = —6yy D,y = —6, D,b,=0Qe+6, D,6 = —Qe -+6.
Using the formula
Ry = 9(6, D, D, 6;—D,D, 6;— Dy, ..6)

(19)
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and relations (18), (19) and (1), it is now easy to see that the only non-
-zero components of the curvature tensor, Ricci tensor and Weyl con-
formal tensor are those related to

Ryy =2, Ry = -2, Ry = —ZQ;'

and

(20) Ry = R,y = —4,
and

(21) Cpns = —29Q.

It follows now from the formula
CMjk.l = - 'r,l,;l Ortjk - P l'; Ghrjk ) Chirk — Lk Ch{jr

that (M, g) is conformally symmetric. Moreover, Ry 4 = — 8, whence M
is e.c.s. The relation F = 8Q~! and ellipticity of M are immediate conse-
quences of (3), (21) and (20). This completes the proof.

Remark 1. For any homogeneous e.c.s. manifold, constancy of the
fundamental function follows immediately from homogeneity.

Remark 2. The Ricei tensor of the homogeneous e.c.s. manifold
described in Theorem 1 is negative semidefinite. As we shall see later
(Corollary 3) it cannot be positive semidefinite for any homogeneous e.c.s.
manifold. _

A Riemannian manifold is called Ricci-recurrent if it satisfies the
relation KR, ;, = B, R,;;. An e.c.s. manifold may be Ricci-recurrent
(see [11]) or not ([2] and [7], Theorem 6). If an e.c.s. manifold is Riceci-
-recurrent, then it is parabolic ([7], Theorem 5), but the converse state-
ment fails in general ([7], Theorem 6).

LemmA 2 ([7), Theorem 4). If M i8 a non-Ricci-recurrent e.c.s. mant-
Jold, then

(22) Chige = Swpg0p,
where |8] =1 and o i8 a parallel, absolule (i.e. determined at each point
up lo a sign) exterior 2-form on M such that rankw =2 and w, " = 0.

LEMMA 3. Let M be a non-Ricci-recurrent e.c.s. manifold (e.g. an
elliptic or hyperbolic one). Then

(i) The image imw of w (the absolute 2-form defined by (22)), i.e. the
set of all vectors u of the type u; = + wy?v’, is a parallel field of totally iso-
tropic (2-dimensional) planes, which contains all vectors u of the form

(23) U; = R‘jvj.

(ii) The orthogonal complement of imw coincides with the kernel kerw
of  (the set of all vectors v with + wyv’ = 0) and it is contained in kerR,.
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(iii) The (n—2)-plane field kerw 48 imiegrable (involutive) and its
leaves (integral manifolds) are totally geodesic submanifolds of M, flat
with respect to the symmetric connection tnherited from M (cf. [10], p. 56-59).

(iv) The tensor fields Ry and Ry, are parallel along leaves of kerw.

Proof. By (9) and (22), any vector » of form (23) satisfies
(24) urw =0,

i.e. lies in imw. Therefore, Lemma 2 yields (i). Assertion (ii) follows now
from skew-symmetry of » and from symmetry of E;. As imw is parallel,
so is kerw, and hence it is integrable and its leaves are totally geodesic.
By (1), (8) and (3), we have R,;*o*viv] =0 for any vectors v,, v, v
of ker w, which implies (iii) (cf. [10], p. 58). In view of (7) and (10), the
tensor fields R, and R, ; are symmetric in all indices. Therefore,
differentiating (9) twice covariantly and using (22), we deduce from (24)
that imew contains all vectors u of the form u, = R, ,viv] or u, =
= Ry uvivjvf. Thus, if v is orthogonal to imw, then Ry ,v* =0 and
Ry v = 0, which completes the proof.

The assertion of the following lemma reduces easily to showing the
existence of a cross-section in a certain fibre bundle. However, it seems
more convenient to prove it directly.

LeMMA 4, Let M be a Riemannian manifold with an indefinile metric g.
Suppose that a, b is a O°-field of 2-frames on M (i.e. a pair of C* vector
fields, linearly independent at each point of M) such that

(2B) a0t = ab* =bb' =0.

Then M admits a C™-field ¢, d of 2-frames which is dual to a, b in the
sense that

a‘d‘ = b‘O‘ = 0‘0‘ = oid‘ = d‘d‘ = 0, c‘ai = dib‘ =1

and a, b, ¢, d are linearly independent at each point of M.

Proof. Choose a positive definite 0° Riemannian metric %4 for M.
For p € M, let V(p) be the (n —2)-plane at p, h-orthogonal to a and b.
Define a new positive definite metric 2 by

h(a,a) =h(b,b) =1,
h(a,b) = h(a(p), V(p)) =h(b(p), V(p) =0 and h=1%

on V(p) for any p € M. Now let «' = ¢g*h,,a® and ©° = ¢g"h,b°. Clearly,
we have g(a,u) =g(b,v) =1 and g(a,v) = g(b, ) = 0. To obtain the
required vector fields it is now sufficient to set

1 1 1 1
¢ = u—Eg(u,u)a—-gg(u,v)b, d=v—29g(u,va——-g(o, v)d.
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Linear independence of a, b, ¢, d follows immediately from their
inner product relations, which completes the proof.

Remark 3. The argument above works equally well in the analytio
category. In fact, in virtue of Grauert’s embedding theorem ([8], Theorem 3,
p. 470), every analytic paracompact manifold admits a positive definite
analytic Riemannian metric.

LeMMA 5. Let M be a non-Ricci-recurrent e.c.8. mamifold (e.g. an
elliptic or hyperbolic one). Suppose that a, b are :'vectors at p e M (respec-
tively, vector fields in a neighbourhood of p € M) which span the plane im w
at p (respectively, span the plane field imw in a neighbourhood of p). Then
we have

(26) Ry = Aa,a;a;,+ Bb;b;by,+ C(a;b; by, + bya; by + bydyay) +
+ D(a;a;b,+ a;b;a;,+ b;a;ay)

at p, where A, B, C, D are real numbers (respectively, in a meighbourhood
of p, for certain C®-functions A, B, 0, D).

Proof. By (7), B;, is symmetric in all indices. Thus, in view of
(iv) of Lemma 3, any vector « of the form u, = R, vv% is orthogonal
to ker w, and so it lies in im w. By a simple algebraic argument, this implies
that R, is a combination of tensor products of powers of a and b. The
particular relations among the coefficients occurring in (26) follow from
(7), which completes the proof.

LEMMA 6. Let M be a non-Ricci-recurrent e.c.s. manifold of dimension
n>= 4 and let p € M. Suppose that a, b are two C® vector fields in a meigh-
bourhood of p, which span im w and are parallel along ker w (cf. Lemma 3).
Then the 2-frame field a, b can be completed, in a sufficiently small neigh-
bourhood of p, to a C° n-frame field ¢, d, égy ...y €,_34 b, @ salisfying the
relations

(27) g(a,e;) = g(b,e;) =g(oye;) =9g(d,e) =0,
(28) gla,d) =g(b,c) =g(c,c) =g(o,d) = g(d,d) =0,
(29) g(a,c) =g(b,d) =1,

(30) gle,6) =0 for £y, gle,e)=2¢, gl =1,
(31) Dge, = Dye, = De,% =0,

(32) D,¢ = Dy¢ =D, ¢ = D,d = Dyd = D, d =0,

where z,y =3,...,n—2 and D denotes the Riemannian covariant deriv-
ative. In other words, (31) and (32) state that the whole frame field i8 to be
parallel along ker w.

5 — Colloquium Mathematicum XLII



66 A. DERDZINSKI

Proof. Choose a two-dimensional submanifold N of M, passing
through p and transverse to kerw in a neighbourhood of p. It is easy to
gee (cf. Lemma 4) that we may choose O vector fields ¢, d, €;, ..., €,_,
along N, satisfying (27)-(30). In a neighbourhood of p, each (local) leaf
of ker w meets N at a unique point, so that we can extend ¢, d, €3, ..., ¢,_,
to vector fields in a neighbourhood of p by displacing them parallel along
geodesics in the leaves, starting radially from the intersection points.
In view of our hypothesis, relations (27)-(30) remain valid in a neigh-
bourhood of p. By (27), e, are tangent to the leaves of kerw, and hence
(iii) of Lemma 3 yields (31) in virtue of our extension procedure. All we
have to do now is to modify our frame field so as to obtain (32). Note
that (27)-(31) keep holding if we replace ¢,d by ¢ = ¢c—hd, d = d+ha
for an arbitrary C*-function h. The equalities

D, = g(Dy0, &b, Dyo =g(Dyo, d)b, Do = g(D, e, )b,
D,d=—g(Ds0,d)a, Dyd=—g(Dyo,d)a, D,d=—g(D,0,da

can be verified by inner multiplication of both sides by our frame vectors,
applying the Leibniz rule. Thus, ¢, d, 6, ..., €, 4, b, a will satisfy our
assertion if A is a solution of the system

(34) Db = g(Dye,d), Dyh =g(Dye, d), D, h=g(D,e0c,d).

Using the fact that a,b and e.’s mutually commute (as they are
parallel along one another) and taking into account the formula

(33)

1 1
(36) Ry = F(RGRM: — Ry Ry) + g 9u Bt 9By — Iy B — 9 Biy)

which follows immediately from (1), (3), (8), we can verify the integrability
conditions of (34) as follows:

Dy(g(Dya0y d) — Dylg(Dyey d)) = Ryppb®a’e’d* =0

(ct. (33)), and so on. By the existence theorem for systems of partial dif-
ferential equations (cf. [13], Chapter IX, §1) we may choose a solution &
of (34), which clearly completes the proof.

3. Local structure theorem. Throughout this section, we shall often
assume the following hypothesis:

(36) (M, g) is an n-dimensional (n > 4) elliptic e.c.s. Riemannian mani-
fold with fundamental function F = const # 0 whose Ricci tensor
is e-semidefinite (i.e. positive or negative semidefinite according
a8 e =1 or e = —1) and p is a point of M such that

(37) Byx(p) #0.
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Note that a point p satisfying (37) always exists, since M is not
locally symmetric.

Under hypothesis (36), a 2-frame a, b at p is called spectal if the
equalities

(38) R‘j = E(G‘ aj + b‘ bj)
and
(39) R, = 2¢8(a;a;a;, — a;bsb, —b,a;b, — b,b;a;)

are satisfied at p for some real number § = 8(p) > 0.

The following lemma asserts nothing but the existence of local ortho-
normal frame fields in a certain 2-dimensional Riemannian vector bundle.
Nevertheless, we give a direct proof for the sake of completeness.

LEMMA 7. Suppose that M is an e.c.8. manifold, p € M and M 13 elliptio
at p. Then there exists a C™-field a, b of 2-frames in a neighbourhood of p whioch
satisfies (38) at each point, e being 1 or —1.

Proof. By (i) of Lemma 3 we may choose vector fields @, b spanning
imw = imR, in a neighbourhood of p. Therefore,

aa =ab'="00'=0 and R, = Xaa+ Y(ab;+0ba,)+2bb,

for some functions X, Y and Z. Let ¢, d be a field of 2-frames dual to
@, b (cf. Lemma 4). We assert that Z(p) = 0. In fact, Z(p) = 0 would
yield

eRy (¢ —1d*) (¢! —1d!) = (X —2tX) >0

at p for each real ¢, whence Y (p) = 0 and rank R, (p) < 1, a contradiction.
Setting

a = |X— Yzz—lluz‘-, and b = Ilelzz_l_o:YIZl—l/za

in a neighbourhood of p, we obtain Ry = na,a,+ 0bb,, |y =|0] =1.
Consequently, a, b are linearly independent, and ellipticity yields » = 0,
which completes the proof.

LEMMA 8. Assume (36). Then

(i) There exist finitely many (at least one) special 2-frames at p.

(ii) Bvery special 2-frame at p can be extended to a unique C™-field of
2-frames in a neighbourhood of p, which is special at each point.

(iii) Ewery C™-field of special 2-frames in a neighbourhood of p i8 parallel
along the (n—2)-plane field kerw (cf. Lemma 3).

Proof. Choose a C®-field a, b of 2-frames in a neighbourhood of p,
satisfying (38) at each point (Lemma 7). Clearly, ¢ and b span im Ry;
hence, by (i) of Lemma 3, they satisty (25). Let ¢, d be a 2-frame field
dual to a,b (Lemma 4). Transvecting the formula R, B+ ByRaxm
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= Ry, mBa + Byy By, s Which follows from (3) by covariant differentiation,
with d'd’c*c*c™ and with ¢'¢’d*d*d™, in terms of Lemma 5 we obtain
C+A =D+B = 0. Thus, by Lemma 5 we have, in a neighbourhood

of p,
(40) R“.k = .A(a‘a,ak—-a,-bjb,,—b‘ajbk—bib,ak)+
+B(b‘bjbk—biaja/k—a‘bja]¢—aiajbk)

for some O®-functions A and B. Now let @, b be another field of 2-frames
in a neighbourhood of p, satisfying (38) :(hence spanning imRE;) and
inducing, at each point sufficiently near to p, the same orientation of
im Ry as a, b does. Then @, b arise from a, b by linear combinations with
function coefficients. By (38) we have

d@ = cosp-a—sing:b, b =sing-a+cosp-b,

@ being a real function. A field ¢, d of 2-frames, satisfying together with
@, b the duality relations (28) and (29), can be defined by

¢ = cosp-c—sing-d, d =sing-c+cosp-d.

The function B, determined by @, b according to (40), is now equal
to B = R, d'd'd*, i.e. to

(41) f(A, B, ¢) = Asin’p—3A4singpeos?p -+ Beos’y —3Bcosgpsinte.

Clearly, the field @, b consists of special 2-frames if and only if B = 0
(note that the inequality 8 > 0 in (39) can be checked by changing signs
of both @ and b, if necessary). The function f = f(4, B, ¢) of three real
variables A, B, ¢, which we define for A*+B?*> 0 (cf. (37)) by (41),
is periodic in ¢ for fixed 4 and B and has finitely many (at least one)
zeros in each period interval. Hence to either orientation of imR;(p)
there corresponds a non-empty finite set of special 2-frames, which im-
plies (i). Moreover, it is easy to verify that

of ,

9 [goo”
so that (ii) follows immediately from the implicit function theorem. Now
let y be a differentiable curve contained in a leaf of ker R;. Given a special
2-frame at the origin of y, its parallel displacement along y eonsists of
special 2-frames, which follows immediately from (88), (39) and (iv) of
Lemma 3. This completes the proof.

Remark 4. Under hypothesis (36), the number 8 = 8(p) > 0 oceur-
ring in (39) is independent of the choice of the special 2-frame a, b. In
fact, from (38) it follows easily that

(42) 28(p) = max{R, wu'u* | ueT,M, BRyu'u' = ¢}.
I 4 1 ) i
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The non-negative real function §: p — S(p), defined by (42) for each
pe M (not necessarily satisfying (37)) will be called the fundamental
invartant of M. Note that 8 is continuous on M and even C* on the open
set defined by 8 > 0.

In Theorem 1 we have established the existence of homogeneous
elliptiec e.c.s. manifolds. We shall now derive a certain topological prop-
erty of such manifolds.

THEOREM 2. Let M be an elliptio e.c.8. manifold with constant fundamental
Sfunction such that R, , # 0 everywhere (e.g. a homogeneous one). Then
there exists a finite Riemannian covering n: M — M such that M admils
a global C™-field of special 2-frames.

Proof. Using a standard covering construction, let us consider the
set of all special 2-frames, which in view of Lemma 8 forms a (possibly
disconnected) finite fibre subbundle of the 2-frame bundle of M. For
any connected component M of this set, the bundle projection n: M - M
is a finite covering and induces an elliptic e.c.s. metric on M. We can now
define the desired 2-frame field by

M > (a,b)— (7a(at)(8)y Ta(a,t)(D))s

which completes the proof.

COROLLARY 1. For any elliptic e.c.8. manifold with constant fundamental
function, satisfying R, # 0 everywhere (e.g. a homogeneous one), there
exists a finite covering M — M such that M admits a C™-field of 4-frames.

Proof. By (38), any special 2-frame spans im R, and so its vectors
a, b satisfy (28). Our assertion follows now from Lemma 4 combined
with Theorem 2.

COROLLARY 2. Every elliptic e.c.s. mamifold with constant fundamental
funmction, of dimension n = 4 or n= b, salisfying Ry , # 0 everywhere, can
be finitely covered by a parallelizable manifold.

LEMMA 9. Under hypothesis (36), let a, b be a O®-field of special 2-frames
in a neighbourhood of p. Then

(43) a,-'j = Sa‘aj + O'b‘bj'l'}ub‘aj’
(44) b‘.j = — ﬂ.a¢a, — Sb‘aj bt (28"' 0') a‘b],
8 being the fundamental invariant of M (see Remark 4), while ¢ and 1 are
certain C°-functions in a neighbourhood of p.

Proof. The plane field imR,; = imw spanned by a, b is parallel
in view of Lemma 3. On the other hand, by (iii) of Lemma 8, a,,¢’

= b,,,v’ = 0 for any vector » of ker w. Hence each vector w of the form
w; = @y 44' or w; = b u' is orthogonal to kerw, and so it lies in imw.
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This implies that a,; and b, are combinations of tensor squares and
products of a and b. To determine the coefficient functions, it is sufficient
to differentiate (38) covariantly and compare the resulting expression
with (39), which completes the proof.

Assume now (36). A O®-field o,d, ¢, ...,6, 5, b, a of n-frames in
a neighbourhood of p will be called special if a, b is a field of special
2-frames and the whole frame field satisfies (27)-(32), i.e. the assertion
of Lemma 6.

Here and in the sequel the final letters x, y, z will assume values
from the range {3, ..., n—2} (empty for n = 4).

LeMmA 10. Under hypothesis (36), every special O™ 2-frame field a, b
can be completed to a special n-frame field o, d, é3y ..., €,_5, b, @ in a neigh-
bourhood of p. Moreover, any special m-frame field o, d, ey, ...,6,_,, b, a
satisfies the relations

Do = tb—8o+id— D e, 4,6,

z

D,d = —¢a—je+8d—) ¢, B,e,,
x

D6, = 4,6+ B,b+ D Ope,, Cp= —s,6,0,,
(45) '
Db = —2a—8b, D,a=S8a+4ib,

Dy = yb+(28+0)d— D 6,Ee,;, Dyd = —ya—ac— D s, F,e,,
z 2
Dye, = Boa+F b+ DGye, Gy = —e,6,G,,
y

D;b = —(28+0)a, Dsa=0b, D,...=D,..=D,...=0,

where ... stands for any frame vector, e, = g(e,, 6,), 8 18 the fundamental
invariant of M (cf. Remark 4), 1 and o are determined by a, b as tn Lemma 9,
and &, 9, A,, B,, E,, F,, C,,, G, are certain 0°-functions which salisfy the
conditions
(46) D8 =D,C,, =D,G, =D,A, =D,F, =0,
(4N D,B, =D,A=D,0 =D,E, =0,

D,y = —(n—2)""e, D¢ =0,
(48) D,8 = D,0,, = DG, = D,A, =D, F, =0,

(49) Dsz = .Dbl = .Dba = DbEz = .wa = 0, Dbe = (n—2)'le,
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1
(80)  Dyyp—Dgé+aE+(8+0)p+ D) e(4.F,—B,B,)+ = =0,
(51)
D3 A,— DB, —(28+0)(B,+ B,) + MF,— 4,)+ ) (0B, — G, A,) =0,
v

(52) Dde—Dch'l'a(Az_Fz) _A(Bz'l'Ez) +2(0wa—G;wBy) = 01
)

(83) DG, —D;0,,+(8+0)G,+1C,, +2(Gu0w —0,4,) =0,

(54) D,8 =D,0,, =D,6,=0, D A, =D, F,= —ee(n—2)"4,,

(55) D, B, =D, i=D,o=0,
(56) D E,=D,y=D,¢ =0,
(57) DyA—D,0+ 80— —a'—(n—2)""e =0,
(58) D;8—382 =0, D,8+38+380 =0.

Proof. Our existence statement follows immediately from Lemma 6
and (iii) of Lemma 8. Consider now a special n-frame field. Formulae (45)
are then immediate ‘consequences of (25)-(32), (48) and (44) together
with the Leibniz rule and (iii) of Lemma 8. Using (25)-(30), (356) and
(38) it is easy to verify that the only non-zero components of the cur-
vature tensor in our frame field are those related to

Rw,‘ohdtoldk= —F-l, Rh“koheicjeg =Rh‘ﬂ‘dheid’0’;= —883('”1—2)-1,
By l@ bt = —e(n—2)"', R, Pdda* =e(n—2)7".

We can now obtain relations (46)-(58) by using the Jacobi identity
and comparing (59) with the curvature components obtained from

(59)

(60) RWI:uho‘u{vllc = 9(’”1: DuDou'l _DrDu'ul —-D[u.v] ul) H [u) ‘D] = Duv —Dv U,

by means of (45). Thus, (46) follows from (60) applied to R,
= Rypa'da’d®, R, = Ryatc'ele, Rouyy Rowes Raaazy (47) from
Rocazy Racadr Rasads Rodozy Ragoay Bacoa With (46), (48) from Rypgy Rpery,
Ridrys Rocezy Boaazy (49) from Ryz,y Ryop, and [[a, b], d]+ ... =0 with
(46) and (47), Rogezy Rodcar Boceas (50) from Roueg, (51) from Rz, (52)
from R;,, (63) from R,,,, (54) and (55) from |[[a, c], czf +... = 0 with
(46) and (47), Beysy Racysy Reotyy Rozoyy Bazays [[8s @), €] +... = 0 with
(46) and (47). Finally, (56) follows from [[c, d], ¢,] +... = 0 with (51)-(55),
while (57) and (58) are consequences of [[a, ¢], d]+...= 0 and [[b, o], d] +
+... = 0 together with (46)-(49). This completes the proof.
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LeMMA 11. Under hypothesis (36), let ¢, d, é5, ..., 6,_5, b, a be a 8pecial
n-frame field in a neighbourhood of p. Then the systems of differential
equations

(61) D' =67, D,u' =D, u =Dyl = Dut =0
and
(62) D,u* =67, D,u* =D, u* = Dyu? = D,u* =0,

where, in the notation of Lemma 10,
1
(63) T=—- 3 log8,
are completely integrable and, therefore, define the functions ul, u® unique-
ly up to additive constants. If we set
u = —(n—2)ee,4,, U !'=(n—2)e&, U'=—(n—2)ey,
then u', u?, ..., u"™ i3 a coordinate system in a neighbourhood of p. The cor-

responding basic vector fields are givem by

—ai—l = (n—2)ee" D,yp-a—(n—2)e6T D & b+ (n—2) aeTZ e, D, A, e,+¢eTo,
=

— = (n—2)eeTDd1p-a—(n—2)seTDd£'b+(n—2)eeTZerdAz-é,+er,
x

(64) 0 0 0

e L

Proof. Integrability conditions for (61) and (62) follow immediately
from (63), (68), (46)-(64). In fact, we have
Dc.Dd‘ul - .Dd.Dcul - 'D[c.d] ul = - Dd}glls + }.Dcul

- — %s—*/'(pds—sm) =0,

ete. The vector fields 9/0u’ defined by (64) clearly satisty

9 .
du‘(w =6f, d,j=1,...,n,
which completes the pfoof.
LEMMA 12. (i) Under hypothesis (36), every C°-field a, b of special
2-frames in a neighbourhood of p oan be completed to a special n-frame field
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0,8, 65y irey€y_sy by & 10 a neighbourhood of p such that (in the motation
of Lemma 10).

(65) Oy = Goy = 0
(66) B,—=E,=0, F,—=A, DA,=DA, =0,
(67) D,p+8p+At+ = 2 A’+——0
(68) Dyp+(28+0)¢ =0,
(69) D,t—1p—B8E =0,

1 , 1
(70) Ddé“—mp-——z-;a,zi, 57 =0

(ii) Moreover, the above-defined n-frame field may be chosen so that

v(p) = é(p) = 4,(p) =0.

Proof. First step. By Lemma 10 we may complete a, b to a special
n-frame field ¢, d, ¢, ..., €, 5, b, a in a neighbourhood of p. In wew of
(46), (48) and (63) the system of differential equations

csz = - 2 L)) 2y -Ddtzu = _2 7:szzw
e
Dy, Tay = DpTpy = Dy7yy = 0,

with unknown functions 7, is completely integrable. Let z,, be its solu-
tion with the initial value 7,,(p) = §,,. By differentiation we can verify
that

2 & Vs Tys = €; 02y,

which implies that ¢, d, &, ..., &,_,, b, a, where
e ; ; Tay )
is a special n-frame field. Applyi_ﬁg to it the obvious formulae
= 8yf(De?;, 8)5~ Gy = &,9(Dal,, 7))

(the barred coefficients being the onés corresponding to the new frame),
we see that it satisfies (65).
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Second step. Choose a special n-frame field ¢, d, 5, ..., €,_,, b, a
satisfying (656). Consider the system of differential equations

Dty = M, —8L,— A+, Dyl =(28+0),—E,,
D, t, = Dyt, = Dot, =0,
Dty = 8i,— A, —B,, Dat, = —0l,—F,+2x,
D, = Dyt, = Dyt =0,
Dyx, = —(n—2)"'el,, Dgx, = —(n—2)""ey,,
D, ¥ = —(n—2)"'ee,8,,, Dy, =D,x, =0

with unknown functions {,, ¢,, »,. Its integrability conditions follow
immediately from (45)-(49), (b61), (62), (564)-(58) and (65). Choosing
& solution ¢{,, ¢, », of (71) and setting

1
¢ =c— 2 6,826, — E‘Z ezc::a’
z z
- 1 -
d=d— 2 extzez-gz 6,2b— 2 6,lot,0, & = 6+ a+ub,
z z x

it is easy to verify, using (71) and Lemma 10, that &, d, &, ..., ¢,_,, b, @
is a special n-frame field satisfying (65) and (66). To make the barred
coefficients A4, satisty 4,(p) = 0, it is sufficient, in view of 4,= g(D,é,, c)
= x%,, 0 choose a solution of (71) with »,(p) = 0.

Third step. Let ¢, d, ¢5,...,€,_,, b, a be any special n-frame field
satisfying (65) and (66) and such that 4,(p) = 0. The system of differential
equations

(71)

Dt =a, Dsh =B, D,_h=Dh=Dh=0,

D,a = Sa+if— - 12 ch+ D, 5— Ay — 8¢,
_ 1 2 1
Dya = of+Doy+8p+ 4+ 5 O e, di+——  (of. (50)),
(72) :
D, .a = Dya = Dya =0,

D, = D,y+8yp+2¢+ — ZsA’+-—I—,—la 8B,

1
D8 = Dyp+(28+0)(§—a)— n_gm D =D =D, =0
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with unknown functions ‘4, a, § is completely integrable in view of Lem-
ma 10. For instance, the commutator relation

: 1
D;D ¢ =D, D; &+ m ey+AD ¢+ (8 +0)D; &
yields, by (66),

Dcha—Dcha—.D[c’dla = ('p—ﬂ) (Ddl—Dca+Sa—lz—oz_ nl 2 8)+

1
+H(E—a)(Dg =380 +0( Doy = Daf + 48+ (8 + )y + Y eadit 1) +

1
+D0[D0V’—Dd45+lf+(ﬂ+a)tp+ Z ezA:+F]’
4

which vanishes in view of (50), (57), (58) and (66), etc. Therefore, we may
choose a solution &, a, # of (72). Setting ¢ = ¢—hb, d = d+ha we can
eagily verify that G, d, e, ..., €,_,, b, @ i8 a special n-frame field satistying
our assertion, which completes the proof of (i).

The barred coefficients v, £, 4, corresponding to the new frame are
given by

v = g(D38,d) =yp—B, E=g(D;¢,d)=¢E—a, 4, = g(Dse,, 0) = 4,,
whence, in order to check (ii), it is sufficient to take a solution of (72)

with a(p) = &(p), B(p) = v(p). This completes the proof.

Under hypothesis (36), by a distinguished n-frame field in a neigh-
bourhood of p we shall mean a special n-frame field satisfying (65)-(70),
i.e. the assertion of (i) of Lemma 12.

LeMMA 13. Assume (36). If ¢y dy €5y ..y €,_5y b, @ aN@ Gy By &3y o0y &4y
by & are two distinguished n-frame fields in a connected neighbourhood of
P, then

(73) g, = 2H,,e,+K,a+L,b,
Y

where K, L, are certain C™-functions, and H,, are constanis salisfying
(74) D g H H,, =¢,0,.

Proof. Since ¢,...,6,_,,b, a span kerw, we obtain (73) for some
O*-functions H,,. Relation (74) follows immediately from (30). Expressing
¢ as a combination of the unbarred fields and applying (29), we obtain
a relation of the form

¢ = o+2{1 U.e,+Vb+Wa.
z
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Formulae (31), (45), (65) and (66), applied to the barred frame, yield
D,H,, = D,H,, =D, H,, =0, -
D,¢, = D,&, = D, 8, = 0.

By (45), (65) and (67), D e, = D_ée, is a multiple of a and D;e, = DB,
is a multiple of b, which clearly implies D,H,, = D;H,, = 0. This com-
pletes the proof.

THEOREM 3. Let (M, g) be an n-dimensional (n > 4) stmply connected
elliptio e.c.s. Riemannian manifold with constant fundamental function, such
that Ry, # 0 at each point (this i3, e.g., the case where M i8 homogeneous).
Then M is parallelizable.

Proof. By Lemma 3, imw and kerw are vector subbundles of TM
such that imw < kerw and the former is the orthogonal complement of
the latter. Therefore, g induces an indefinite Riemannian metric § in
the quotient bundle ker w /im w, and the set of bases v,, ..., v,_, of quotient
fibres which are orthonormal, i.e. satisfy §(v,, v,) = ¢,6,,, forms a princi-
pal fibre bundle P over M whose structure group H consists of all ma-
trices H,, satisfying (74). Using Theorem 2 we may fix a global C*-field
a, b of special 2-frames on M. It is clear that any completion of a, b to
a local distinguished n-frame field ¢, d, ¢, ..., ¢,_,, b, & determines a local
section of P by p — {6,+imwy},.s,... n_2s €.+imw, being the coset of
imw, through e,(p) in kerw,. Such sections may clearly be viewed as
submanifolds of P. The family of n-dimensional submanifolds thus defined
is clearly invariant under the action of H, hence it covers P and, by
Lemma 13, if two manifolds of the family meet at a point, they must
have equal tangent spaces. Therefore, the tangent spaces of our submani-
folds form a distribution on P which is a connection in the sense of [9],
p. 63. The existence of integral manifolds through any point, i.e. involu-
tivity of the distribution, means that the connection is flat. Therefore,
the principal bundle P is trivial ([9], p. 92, Corollary 9.2), i.e. it admits
a global 0®-gection. As kerw/imw is isomorphic to a subbundle of ker w,
transverse to im w, the last statement implies that M admits 0* vector
fields ¢, ..., ¢,_, orthogonal to a, b and satisfying (30). Choosing fields
¢,d on M dual to a,b as in Lemma 4, we obtain a global n-frame field
ey dyeyy ... 6, 5,b, a. This completes the proof.

We are now in a position to prove the local structure theorem for
elliptic e.c.s. manifolds with constant fundamental function.

THEOREM 4. (i) Let (M, g) be an n-dimensional (n > 4) elliptic e.0.8.
manifold with a non-zero constant fundamental fumction F. Given a point
p €M at which Ry, (p)# 0, there ewists a coordinate sysiem u?, ..., u" in
a neighbourhood of p such that ul(p) =u(p) =... =u"(p) =0 and
the _components of g are the following functions of coordinates:
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g = 2u"e T - 2u e 3,1’—(1&—2)"30“'2 &, (U%): — (n—2)eF~ &7,

Gas = 2u™(eT O, T —e™T)— (n—2)“se”'2 &, (%) — (n—2) e 167,

x
(75) G1a = —u"eT 0, T—u" (670, T+2¢77), g, = J2n—1= e’
91,n-1 = J2n = On-1,n-1 = In—1,n = Jnn = 0,
91z = P2z = Jzn-1 = Gan = 07

Iy =0 Jor @ £y, gor =8, lgl =1,
where ¢ = 11 8 the sign of Ry, and T is a function of the first two variables
uly u? (related by (63) to the fundamental invariant 8 of M given by (42)),
satisfying the quasi-linear elliptic partial differential equation
(76) 0,0, T+ 030, +-2¢7*T 4 (n —2)'ee’T = 0.

(ii) Oonversely, given real numbers F # 0, &, e, with |e] = |e;| =1 and
a function T' of two real variables u*, u® satisfying (76), formulae (75) define
an e.c.8. Riemannian metric with fundamental function equal to F, which is
elliptic (namely, its Ricoi tensor is c-semidefinite). The fundamental invariant
of this meiric (cf. Remark 4) i3 given by 8 = e~ (hence R, , # 0 everywhere),

Proof. (i) By Lemmas 8 and 12 there exists a distinguished n-frame
field ¢, d, €5, ...y €,_,, b, a in a neighbourhood of p, which, according to
Lemma 11, determines a local coordinate system u!,...,«". Choosing
the solutions #!, u* of (61) and (62) with «!(p)= u*(p) = 0 and using
(ii) of Lemma 12, we may claim u‘(p) =0, ¢ =1, ..., n. In the notation
of Lemma 10, we have clearly

(17) & =n—-2)"tew"!, = —(n—2)"eu", A, = —(n—2)eg,u"
Defining the function 7 by (63), from (58) and (64) we obtain
(18) 0,T =0,_,T =06,T =0, A= —¢T0T, o=eT0,T—e,

The components of g in our chart are given by

0 0
99 = 9 Frk W)’

whence, by (64), (25), (27)-(30) and'(66), we have ¢,;, = 2(n—2)ee’7 D, y,
etc., which yields (75) in virtue of (67)-(70), (77) and (78). Relation (76)
follows now immediately from (567) together with (78), which proves (i).

(i) The only non-zero contravariant components of our metric are
related to

gt ="l =", ¢F =g, = -y,

gn—l.n — _e'—z'.l'glz and gnn = —e
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Now we can compute the following components of the Riemannian
connection:

I, = 0T —e ™, T, = 0,7, T3, =0_2T—31T; Iy = —o,T,
Iy =0,T+e ™, TIj =0T, I? =1I%=(n—2)"«"u
I, =0, I'yjy=I}=I;=0 ifi>2o0rj>2,

I = ut[20,T-0,T— 0,0, — 26T 9,T]1+
+um"[(n—2)""e6*T + 36779, T — (8, T)*] in view of (76),
Iyt = u[(0,7)? — (0, TV + 0,0, T +2¢*T+ €729, T]+

+u”—l[31T'33T+26_2T32T]+(n—2)—186—T2 ez(uz)z'l‘

+(n—2)eF e 7,

rpt=o0, ITRli=—e, Iifi= -0, Iyl =0,
Iy = ur[4677 0, T —26,T -0, T + 0,0, T] +u*"*[2674T —6~*T 0, T — (8, T)*],
Iyt = —(n—2)"eg,6"u®, Ip' =0,T—e 7,

'Y = ut[267%T —3867T 0, T —(0,T) "1+ u""'[0,0,T —20,T-9,T]—

—(n—2)""e6"T ) g, (u)* — (n—2)eF 677,

I = wr[0,T9,T — 26727 9, T]+
+ur 1 [(8, ) — (8,T) + 0,0, T + 3¢™°T 0, T + 2¢7*7],
I, = —m-2)"eTeu®, IT,_, =0T, Iy =¢7, TIL=0,
ry,.,=—-o6,T-e?**, Iy =0, g l=Ig=0 if 4,j>2.
It is easy to verify that
Ryt =0, Ry = 0,0,T+0,0,T+ 2677,
Ryl = — 0,0, T — 0,0, — 26747,
and
By = —2u"(n—2) e —2u" " (n—2) 66 O,T + (n —2) 267 ) e, (u”) +

+[0,0, T+ 030, T+ 2¢7*T + (n —2) e’ [2u™e 2T — 20" 0, T+ w0, T} +
+ 'u” 31 [al 61T+ 3, 3,T+26-‘T+ (’n -_— 2)—18321']-

Simplifying these formulae with the aid of (76), it is easy to see that
the only non-zero components of Ry, By, By, and Oy, are those
related to



LOCAL STRUCTURE OF MANIFOLDS 79

Rise = —2u™(n—2)"'ee®” 0,7 — 20" (n —2) 166’7 0, T +
+2(n_2)~264T2 ez(u¢)2+F—le4T’

T

RBigyp—1 = ‘—('”'-2)—183”7 Riyg90 = (”—2)-159’1"
Ry = Ropyy, = —(n—2)""ee, 67,
and
(79) Ry, = Ry = “’wr
and
(80) R,,, =2, R, =Ry, = —2,
and
(81) Or1s = —F 6.

It is now easy to verify that our metric is e.c.s. By (81) and (79),
R, is c-semidefinite and the fundamental function is equal to F. Defining
vector fields a,b by a = 9/ou™, b = 0/ou™"', so that their covariant
components are given by a, =e%, a3 =... =a, =0 and b, = é7,
by =b; =...=0b, =0, and using (79) and (80), we obtain (38) and
(39) with § = ¢~%T. In view of Remark 4, this completes the proof.

A Riemannian manifold M is called locally homogeneous if for any
two points p, ¢ of M there exists an isometry of a neighbourhood of p
onto a neighbourhood of ¢, which sends » onto gq.

THEOREM 5. Let M be an elliptic e.c.8. manifold with constant funda-
mental function. Then the following two conditions are equivalent:

(i) M 78 locally homogeneous.

(ii) The fundamental imvariant 8 of M (defined by (42)) t8 constant.

- Proof. By (42), (i) implies (ii). Now suppose that 8 is constant
(hence R, # 0 everywhere) and let p, g € M. In the notation of Theo-
rem 4, the equality 8 = ¢~37 together with (76) implies

(82) e =(2n—4)"" = —1.

Choosing now coordinate systems centered at p and ¢ according to
(i) of Theorem 4, we note that the expressions for the metric thus obtained
are identical (the number of minus signs among the g, is an algebraic
invariant of the metric). Thus, p and ¢ are congruent by a local isometry,
which completes the proof.

As an immediate consequence of (82), we have

COBOLLARY 3. The Ricoi tensor of amy locally homogeneous elliptio
6.0.8. manifold i3 negative semidefinite.

Remark 5. Using Theorems 4 and 5, we can describe the local struc-
ture of locally homogeneous elliptic e.c.s. manifolds as follows. For any
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point p of such a manifold M there exists a local coordinate system
¥, ..., 4" in a neighbourhood of p such that «‘(p) =0, i =1,...,n
(n = dimM > 4) and the only non-zero components of the metric are

p— 2u"e-T+(n—2)-leﬂ'2 e, (W) + (n—2) F 167,

Jo2 = gnu—4u"eT, gy =gy = —2u"'e77,

oz = &gy Jin = 9n1 = Ga,n—1 = In—-1,2 = 01”

where T' = }log(2n —4), |e,| = 1, and F # 0 is the (constant) fundamental
function of M. Conversely, the metric defined by these data is locally
homogeneous, e.c.s., elliptic and its fundamental function equals F.

The argument used in the proof of Theorem 5 shows also that two
locally homogeneous elliptic e.c.s. manifolds of equal dimensions, indices
and fundamental functions are locally isometric. Moreover, from (3) it
is clear how multiplying the metric by a constant affects the fundamental
function. Thus, we obtain '

COROLLARY 4. If M, and M, are two locally homogeneous elliptic .0.8.
manifolds of equal dimensions and equal indices, then they are locally homo-
thetic. If their (constant) fundamental fumctions coincide, then they are
locally isometric.

By the index of (the metric of) a Riemannian manifold (M, g) we
mean here the number of negative entries in a diagonal form of g at any
point of M. For the metric g given by (75), we have clearly (index of g)
= 2+ (the number of x with ¢, = —1).
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