THE LOCAL STRUCTURE

OF ESSENTIALLY CONFORMALLY SYMMETRIC MANIFOLDS WITH CONSTANT FUNDAMENTAL FUNCTION

III. THE PARABOLIC CASE

BY

A. DERDZIŃSKI (WROCŁAW)

1. Introduction. A Riemannian manifold M of dimension $n \ge 4$ (whose metric g may be indefinite) is said to be conformally symmetric [1] if its Weyl conformal curvature tensor

$$\begin{array}{ll} (1) & C_{hijk} = R_{hijk} - (n-2)^{-1} (g_{ij} R_{hk} + g_{hk} R_{ij} - g_{hj} R_{ik} - g_{ik} R_{hj}) + \\ & + R(n-1)^{-1} (n-2)^{-1} (g_{ij} g_{hk} - g_{hj} g_{ik}) \end{array}$$

is parallel, that is

$$C_{hijk,l} = 0.$$

Here and in the sequel we denote by R_{hijk} , R_{ij} and R the curvature tensor, Ricci tensor and scalar curvature, respectively, while the comma stands for covariant differentiation. Clearly, conformal flatness $(C_{hijk} = 0)$ implies conformal symmetry, and so does local symmetry $(R_{hijk,l} = 0)$. By essentially conformally symmetric (shortly, e.c.s.) Riemannian manifolds we shall mean those which satisfy (2), but are neither conformally flat nor locally symmetric.

E.c.s. manifolds exist ([9], Corollary 3), but their metrics are never definite ([4], Theorem 2). Every e.c.s. manifold satisfies the relation ([6], Theorem 3) $R_{ij}R_{hk}-R_{hj}R_{ik}=FC_{hijk}$ for a certain function F, called the fundamental function of M. Two recent papers [2] and [3] are devoted to the e.c.s. manifolds for which $F=\mathrm{const}\neq 0$. In the present paper we treat the so-called parabolic e.c.s. manifolds, i.e. those for which F=0 identically, which is clearly equivalent to the condition

(3)
$$\operatorname{rank} R_{ij} \leqslant 1$$

everywhere.

As shown in [9], there exist e.c.s. manifolds which are *Ricci-recurrent* in the sense that $R_{ij}R_{hk,l} = R_{hk}R_{ij,l}$. Such manifolds are always parabolic ([6], Theorem 5). In [9] Roter described the local structure of e.c.s. Ricci-recurrent manifolds. Thus, we shall be mostly concerned with parabolic e.c.s. manifolds which are not Ricci-recurrent (their existence has been established in [6], Theorem 6).

The main result of this paper (Theorem 1) gives a description of the local structure of non-Ricci-recurrent parabolic e.c.s. manifolds. We also show that a non-Ricci-recurrent parabolic e.c.s. manifold is never locally homogeneous (Proposition 1).

In the sequel, all manifolds are assumed to be connected, paracompact and of class C^{∞} (although all results remain valid in the analytic category). The methods we use are closely related to those of [2] and [3].

2. Preliminaries. Every e.c.s. manifold satisfies the relations

$$(4) R_{ii,k} = R_{ik,i},$$

$$(5) R = 0,$$

$$R_{ir}C^{r}_{jkl}=0,$$

$$R_{hi}C_{jklm} + R_{hj}C_{kilm} + R_{hk}C_{ijlm} = 0$$

(see [5], Theorems 7, 9 and formula (6), and [6], Theorem 7).

LEMMA 1. Let M be an n-dimensional Riemannian manifold with a (not necessarily definite) metric g which satisfies (4) and (3). Given a point $p \in M$ such that

$$(8) R_{ii}(p) \neq 0,$$

there exists a noighbourhood of p together with two C^{∞} vector fields a and b which are uniquely (up to a sign of a) determined by the following two conditions:

$$(9) R_{ii} = \varepsilon a_i a_i, |\varepsilon| = 1,$$

$$R_{ii,k} = b_i R_{ik} + b_i R_{ki} + b_k R_{ii}.$$

Moreover, a and b satisfy the relations $a_i a^i = a_i b^i = 0$ and

(11)
$$a_{i,j} = \frac{1}{2} a_i b_j + b_i a_j.$$

Proof. From (3) and (8) we obtain (9) in a neighbourhood of p, $a \neq 0$ being unique up to a sign. From the well-known identity

$$R_{i,r}^{r} = \frac{1}{2} R_{i}$$

([7], p. 82) it follows by (4) that

$$a_i a^i = \varepsilon R = \text{const},$$

so, by (9),

$$(14) 0 = (a_i a_k)^k = a^k a_{i,k} + a^k_{i,k} a_i.$$

In view of (4) and (9) we have

$$(15) a_{i,k}a_i + a_ia_{i,k} = \varepsilon R_{ii,k} = \varepsilon R_{ik,j} = a_{i,j}a_k + a_ia_{k,j}.$$

Transvecting this with a^k and using (13), we obtain $\varepsilon R a_{i,j} = a^k a_{i,k} a_j + a^k a_{i,k} a_i$ (since $a^k a_{k,j} = 0$ by (13)). In view of (14), this yields

$$\varepsilon Ra_{i,j} = -2a_{,k}^k a_i a_j.$$

Contracting the last equality with g^{ij} and using (13), we obtain $\varepsilon Ra^k_{,k} = 0$ and, consequently, by (16),

$$a^k_{,k}=0$$

and $Ra_{i,j} = 0$, which implies $R = \varepsilon a_i a^i = 0$ (for $R = \operatorname{const} \neq 0$ we have $a_{i,j} = 0$ and, in view of the Ricci identity, $0 = a^i R_{ij} = Ra_j$ by (9) and (13)). Consider now, in a neighbourhood of p, the (n-1)-plane field ker a consisting of all vectors u for which $a_i u^i = 0$ (i.e. $u^i R_{ij} = 0$). Given vector fields $u, v \in \ker a$, we have, by the Leibniz rule and (4),

$$v^r u^i_{,r} R_{ij} = -v^r u^i R_{ij,r} = -v^r u^i R_{ir,j} = -(v^r u^i R_{ir})_{,j} = 0$$

so that $D_v u \in \ker a$ (*D* being the Riemannian connection). Therefore, $[u, v] = D_u v - D_v u \in \ker a$ whenever $u, v \in \ker a$, i.e. $\ker a$ is integrable, which, in terms of the differential 1-form a, can be expressed as

$$a \wedge da = 0$$

or, in the local coordinates,

$$a_i a_{i,k} + a_j a_{k,i} + a_k a_{i,j} - a_i a_{k,j} - a_j a_{i,k} - a_k a_{j,i} = 0.$$

Subtracting this from

$$a_i a_{i,k} + a_i a_{i,k} - a_k a_{i,j} - a_i a_{k,j} = 0,$$

which is an obvious consequence of (15), we obtain

$$a_i(2a_{i,k}-a_{k,i}) = a_k(2a_{i,j}-a_{j,i}).$$

Since $a \neq 0$, this yields

$$2a_{j,i}-a_{i,j}=\frac{3}{2}b_ja_i$$

for some vector field b. Alternating this in i and j, we obtain

$$2a_{i,j}-2a_{j,i}=b_ia_j-b_ja_i,$$

so, adding up the last two equalities, we get (11). Using (9), we now obtain (10), which assures the uniqueness of b. Finally, contraction of (11) with g^{ij} yields $a_i b^i = 0$ in view of (17). This completes the proof.

LEMMA 2 ([6], Theorem 4). If M is a non-Ricci-recurrent e.c.s. manifold, then

$$C_{hijk} = \eta \omega_{hi} \omega_{jk},$$

where $|\eta| = 1$ and ω is a parallel, absolute (i.e. determined at each point up to a sign) exterior 2-form on M such that rank $\omega = 2$ and $\omega_{ir}\omega^{r}_{i} = 0$.

LEMMA 3. Let M be a non-Ricci-recurrent e.c.s. manifold. Then

(i) The image im ω of ω (the absolute 2-form determined by (18)), i.e. the set of all vectors u of type $u_i = \pm \omega_{ij} v^j$, is a parallel field of totally isotropic (2-dimensional) planes and it contains any vector u of the form $u_i = R_{ij} v^j$ or

$$u_i = R_{ii,k} v_1^j v_2^k.$$

- (ii) The orthogonal complement of im ω coincides with the kernel $\ker \omega$ of ω (the set of all v with $\omega_{ij}v^j=0$) and it is contained in $\ker R_{ij}$.
- (iii) The (n-2)-plane field $\ker \omega$ is integrable and its leaves are totally geodesic submanifolds of M, flat with respect to the symmetric connection they inherit from M ([8], p. 56-59).
 - (iv) The tensor fields R_{ij} and $R_{ij,k}$ are parallel along the leaves of ker ω .

Proof. In view of Lemma 3 of [2], all we have to show is that any vector u of form (19) lies in im ω . However, differentiating (7) covariantly and using (2), (4) and (18), we obtain $u \wedge \omega = 0$, which completes the proof.

In the sequel, we shall often assume the following hypothesis:

(20) (M, g) is an *n*-dimensional $(n \ge 4)$ non-Ricci-recurrent parabolic e.c.s. manifold and $p \in M$ is a point such that

(21)
$$R_{ij}(p)R_{hk,l}(p) \neq R_{hk}(p)R_{ij,l}(p)$$
.

Note that a point p satisfying (21) must exist as M is not Ricci-recurrent.

LEMMA 4. Under hypothesis (20), there exists a C^{∞} -field a, b of 2-frames in a neighbourhood of p, which is parallel along $\ker \omega$, spans $\operatorname{im} \omega$ (cf. Lemma 3) and satisfies relations (9)-(11) and

$$(22) b_{i,j} = b_i b_j + 3\lambda b_i a_j + \lambda a_i b_j + \sigma a_i a_j$$

for some C^{∞} -functions λ and σ . Moreover, we have

$$C_{hijk} = -\Phi(a_h b_i - a_i b_h)(a_i b_k - a_k b_i)$$

for a certain (uniquely determined) function Φ .

Proof. Choose the vector fields a, b as in Lemma 1 (cf. (4) and (21)). In view of (21), (9) and (10), they are linearly independent. Parallelity of a and b along ker ω follows immediately from (iv) of Lemma 3. By (i) of Lemma 3, a and b span im ω , hence ω is a functional multiple of $a \wedge b$, which by (18) yields (23). As b lies in the (parallel) span of a and b and is parallel along its orthogonal complement, $b_{i,j}$ must be a combination of tensor products and squares of a and b. To find the corresponding coefficient functions, we may use the equality $a^r R_{rijk} = 0$, which follows immediately from (1), (6), (5) and (9), and can be rewritten as

$$0 = a_{i,jk} - a_{i,kj} = \frac{1}{2} a_i (b_{j,k} - b_{k,j}) + (b_{i,k} a_j - b_{i,j} a_k) + b_i (b_j a_k - b_k a_j).$$

This completes the proof.

Under hypothesis (20), a C^{∞} -field $c, d, e_3, \ldots, e_{n-2}, b, a$ of *n*-frames in a neighbourhood of p is called *special* if a and b are the vector fields determined by Lemma 4 and

$$\begin{cases} g(c, e_x) = g(d, e_x) = g(b, e_x) = g(a, e_x) = 0, \\ g(e_x, e_y) = \varepsilon_x \delta_{xy}, & |\varepsilon_x| = 1, \quad x, y = 3, ..., n-2, \end{cases}$$

(25)
$$\begin{cases} g(a, a) = g(a, b) = g(b, b) = 0, & g(c, a) = g(d, b) = 1, \\ g(c, c) = g(d, d) = g(c, d) = g(c, b) = g(d, a) = 0, \end{cases}$$

and

$$D_a c = D_a d = D_a e_x = D_b c = D_b d = D_b e_x = D_{e_x} c = D_{e_x} d = D_{e_x} e_y = 0,$$

$$x, y = 3, \dots, n-2.$$

Here and in the sequel we adopt the convention that the indices x, y, z run over the set $\{3, \ldots, n-2\}$ (empty for n = 4).

LEMMA 5. Assume (20). Then

- (i) There exists a special n-frame field in a neighbourhood of p.
- (ii) Any special n-frame field $c, d, e_3, \ldots, e_{n-2}, b, a$ in a neighbourhood of p satisfies the relations

$$\begin{split} D_c c &= \xi b - \sigma d - \sum_x \varepsilon_x A_x e_x, \quad D_c d = -\xi a - c - 3\lambda d - \sum_x \varepsilon_x B_x e_x, \\ D_c e_x &= A_x a + B_x b + \sum_y C_{xy} e_y, \quad C_{yx} = -\varepsilon_x \varepsilon_y C_{xy}, \end{split}$$

$$D_c b = 3\lambda b + \sigma a, \quad D_c a = b,$$
 (26)
 $D_d c = \psi b - \frac{1}{2} c - \lambda d - \sum_x \varepsilon_x E_x e_x, \quad D_d d = -\psi a - d - \sum_x \varepsilon_x F_x e_x,$
 $D_d e_x = E_x a + F_x b + \sum_y G_{xy} e_y, \quad G_{yx} = -\varepsilon_x \varepsilon_y G_{xy},$
 $D_d b = b + \lambda a, \quad D_d a = \frac{1}{2} a, \quad D_{e_x} \dots = D_b \dots = D_a \dots = 0,$

where ... stands for any frame vector, λ and σ are determined by (22), and ξ , ψ , A_x , B_x , E_x , F_x , C_{xy} , G_{xy} are certain C^{∞} -functions. These functions satisfy the relations

(27)
$$D_{a}\xi = D_{a}\sigma = D_{a}A_{x} = D_{a}B_{x} = D_{a}C_{xy} = D_{a}\lambda = D_{a}\psi$$
$$= D_{a}F_{x} = D_{a}E_{x} = D_{a}G_{xy} = 0,$$

$$(28) \begin{cases} D_b \, \xi = (n-2)^{-1} \varepsilon, \\ D_b \, \sigma = D_b A_x = D_b B_x = D_b C_{xy} = D_b \lambda = D_b \psi = 0, \\ D_b F_x = D_b E_x = D_b G_{xy} = 0, \end{cases}$$

$$\begin{array}{l} (29) \ \begin{cases} D_{e_x} \xi = D_{e_x} \sigma = 0, & D_{e_x} A_y = -(n-2)^{-1} \varepsilon \varepsilon_x \delta_{xy}, \\ D_{e_x} B_y = D_{e_x} C_{y\varepsilon} = D_{e_x} \lambda = D_{e_x} \psi = D_{e_x} F_y = D_{e_x} E_y = D_{e_x} G_{y\varepsilon} = 0, \\ \end{cases}$$

$$(30) \begin{cases} D_d A_x - D_c E_x + \lambda B_x - \sigma F_x - 2\lambda E_x + \sum_y (C_{xy} E_y - G_{xy} A_y) = 0, \\ D_d B_x - D_c F_x + \frac{1}{2} B_x - E_x - 5\lambda F_x + \sum_y (C_{xy} F_y - G_{xy} B_y) = 0, \\ D_c G_{xy} - D_d C_{xy} + \frac{1}{2} C_{xy} + 2\lambda G_{xy} + \sum_s (G_{xs} C_{sy} - C_{xs} G_{sy}) = 0, \end{cases}$$

$$(31) \begin{cases} D_d \sigma - D_c \lambda - \sigma + \lambda^2 + (n-2)^{-1} \varepsilon = 0, & D_d \lambda - \frac{3}{2} \lambda = 0, \\ D_d \xi - D_c \psi - 5 \lambda \psi + \xi + \sum_x \varepsilon_x (E_x B_x - A_x F_x) = \Phi, \end{cases}$$

Φ being the function determined by (23). Moreover, we have

$$(32) \qquad D_c \Phi = -6\lambda \Phi, \qquad D_d \Phi = -3\Phi, \qquad D_{c_x} \Phi = D_b \Phi = D_a \Phi = 0.$$

Proof. According to Lemma 4, the vector fields a and b determined by (9) and (10) span im ω and are parallel along ker ω , so that the existence of a special n-frame field is an immediate consequence of Lemma 6 of [2].

Now let $c, d, e_3, \ldots, e_{n-2}, b, a$ be a special *n*-frame field in a neighbourhood of p. Relations (26) follow immediately from (11), (22), (24) and (25) by means of the Leibniz rule. Moreover, the only non-trivial components of R_{hijk} with respect to our frame are, in view of (1), (5), (9) and (23), those related to

$$egin{aligned} R_{hijk}c^hd^ic^jd^k &=& -arPhi, & R_{hijk}b^hc^ic^jd^k &=& (n-2)^{-1}arepsilon, \ R_{hijk}c^he_x^ic^je_x^k &=& -(n-2)^{-1}arepsilonarepsilon_x. \end{aligned}$$

On the other hand, we can find these components from the formulae

$$R(u,v)w = D_u D_v w - D_v D_u w - D_{[u,v]} w$$

and

$$[u,v] = D_u v - D_v u.$$

Thus, (27) can be obtained from computing $R_{acc} = R(a, c)c$, $R_{acx} = R(a, c)e_x$, R_{adb} , R_{add} and R_{adx} , (28) from $R_{bcc} = (n-2)^{-1}\varepsilon b$, R_{bcx} , R_{bdb} , R_{bdd} and R_{bdx} , (29) from $R_{cxc} = -(n-2)^{-1}\varepsilon e_x$, $R_{cxy} = (n-2)^{-1}\varepsilon e_x \delta_{xy}$, R_{dxb} , R_{dxd} and R_{dxy} , (30) from R_{cdx} , (31) from $R_{cdb} = (n-2)^{-1}\varepsilon a$ and $R_{cdc} = -\Phi b - (n-2)^{-1}\varepsilon d$. Finally, (32) follows from the obvious (in view of (23) and (25)) relation $C_{hijk} \sigma^h d^i c^j d^k = -\Phi$ together with (2) and (26). This completes the proof.

A Riemannian manifold M is said to be locally homogeneous if for any two points $p, q \in M$ there exists an isometry of a neighbourhood of p onto a neighbourhood of q, sending p onto q.

PROPOSITION 1. Let M be a non-Ricci-recurrent parabolic e.c.s. manifold. Then M is not locally homogeneous.

Proof. If M were locally homogeneous, then (23) would imply Φ = const (in view of (9) and (10), any local isometry leaves $\pm a$ and b invariant). This, together with (32), would yield $\Phi = 0$ (as Lemma 5 works), a contradiction, which completes the proof.

LEMMA 6. Under hypothesis (20), there exists a special n-frame field $c, d, e_3, \ldots, e_{n-2}, b$, a in a neighbourhood of p such that, in the notation of Lemma 5,

$$C_{xy}=G_{xy}=0,$$

$$E_x = F_x = 0,$$

$$(36) B_x = D_d A_x = 0,$$

$$(37) \psi = 0,$$

(38)
$$D_c(D_c \xi + 3\lambda \xi)$$

$$= \sigma \xi - \frac{1}{2} \sum_{x} \varepsilon_{x} A_{x}^{2} + \Phi \left(\frac{3}{2} D_{c} \lambda - 5 \lambda^{2} + \frac{1}{2} \sigma - \frac{1}{6} (n-2)^{-1} \varepsilon \right).$$

Proof. 1st step. In view of Lemma 5, we may choose a special n-frame field $c, d, e_3, \ldots, e_{n-2}, b, a$ in a neighbourhood of p. The integrability conditions for the system of differential equations

$$D_c \tau_{xy} = -\sum_s \tau_{xs} C_{sy}, \quad D_d \tau_{xy} = -\sum_s \tau_{xs} G_{sy},$$

$$D_{e_a} \tau_{xy} = D_b \tau_{xy} = D_a \tau_{xy} = 0,$$

with indeterminates τ_{xy} follow immediately from (27)-(30). Choosing the solution τ_{xy} of (39) with initial value $\tau_{xy}(p) = \delta_{xy}$, it is easy to verify (by differentiation) that

$$\sum_{\mathbf{z}} \varepsilon_{\mathbf{z}} \tau_{xx} \tau_{yz} = \varepsilon_{x} \delta_{xy}.$$

Therefore, the n-frame field

$$c, d, \bar{e}_3, \ldots, \bar{e}_{n-2}, b, a, \quad \text{where } \bar{e}_x = \sum_y \tau_{xy} e_y,$$

is special and satisfies (34).

2nd step. Let $c, d, e_3, \ldots, e_{n-2}, b, a$ be a special n-frame field satisfying (34). Consider the underdetermined system of differential equations

$$D_d \zeta_x = -\frac{1}{2} \zeta_x - \lambda \iota_x - E_x, \quad D_{e_y} \zeta_x = D_b \zeta_x = D_a \zeta_x = 0,$$

$$(40)$$

$$D_d \iota_x = -\iota_x - F_x, \quad D_{e_x} \iota_x = D_b \iota_x = D_a \iota_x = 0$$

with unknown functions ζ_x and ι_x . Since the vector fields d, e_3 , ..., e_{n-2} , b, a span an involutive distribution (which follows immediately from (26) and (33)), it is clear that a solution of (40) will exist if its integrability conditions (which do not involve differentiation along c) are satisfied. However, these conditions follow immediately from (27)-(29). Choosing a solution ζ_x , ι_x of (40) and setting

$$ar{c} = c - \sum_x arepsilon_x \zeta_x e_x - rac{1}{2} \sum_x arepsilon_x \zeta_x^2 a,$$
 $ar{d} = d - \sum_x arepsilon_x \iota_x e_x - rac{1}{2} \sum_x arepsilon_x \iota_x^2 b - \sum_x arepsilon_x \zeta_x \iota_x a, \quad ar{e}_x = e_x + \zeta_x a + \iota_x b,$

it is easy to verify that \bar{c} , \bar{d} , \bar{e}_3 , ..., \bar{e}_{n-2} , b, a is a special n-frame field satisfying (34) and (35).

3rd step. Choose a special *n*-frame field $c, d, e_3, ..., e_{n-2}, b, a$ satisfying (34) and (35) and set, in the notation of Lemma 5,

$$ar{c} = c + \sum_{x} \varepsilon_x B_x e_x - \frac{1}{2} \sum_{x} \varepsilon_x B_x^2 a, \quad \bar{e}_x = e_x - B_x a.$$

Using (27)-(30) it is easy to see that \bar{c} , d, \bar{e}_3 , ..., \bar{e}_{n-2} , b, a is a special *n*-frame field satisfying (34), (35) and $B_x = 0$. The relation $D_d A_x = 0$ follows now immediately from (30).

4th step. Let a special *n*-frame field $c, d, e_3, \ldots, e_{n-2}, b, a$ satisfy (34)-(36) and set $\bar{c} = c - hb$, $\bar{d} = d + ha$, where h is any solution of the underdetermined system

$$D_d h = \psi - \frac{3}{2} h, \quad D_{e_x} h = D_b h = D_a h = 0$$

(completely integrable in view of (27)-(29)). It is now easy to verify that $\bar{c}, \bar{d}, e_3, \ldots, e_{n-2}, b, a$ satisfies (34)-(37).

5th step. Let $e, d, e_3, \ldots, e_{n-2}, b, a$ be a special *n*-frame field satisfying (34)-(37). Using Lemma 5 and (33), it is easy to verify that, in the notation of Lemma 5,

$$\begin{split} D_{a}D_{c}\lambda &= D_{b}D_{c}\lambda = D_{e_{x}}D_{c}\lambda = 0, & D_{d}D_{c}\lambda = 2D_{c}\lambda + 3\lambda^{2}, \\ D_{a}D_{c}D_{c}\lambda &= D_{b}D_{c}D_{c}\lambda = D_{e_{x}}D_{c}D_{c}\lambda = 0, \\ D_{d}D_{c}D_{c}\lambda &= \frac{5}{2} D_{c}D_{c}\lambda + 10\lambda D_{c}\lambda + 6\lambda^{3}, \\ D_{a}D_{c}\xi &= -(n-2)^{-1}\varepsilon, & D_{b}D_{c}\xi = -3(n-2)^{-1}\varepsilon\lambda, & D_{e_{x}}D_{c}\xi = 0, \\ D_{d}D_{c}\xi &= -\frac{1}{2} D_{c}\xi - 4\lambda D_{d}\xi - 6\lambda\xi, & D_{a}D_{d}\xi = D_{e_{x}}D_{d}\xi = 0, \\ \end{split}$$

$$(41)$$

$$D_{b}D_{d}\xi &= -(n-2)^{-1}\varepsilon, & D_{c}D_{d}\xi = -D_{c}\xi - 6\lambda D_{d}\xi - 6\lambda\xi, \\ D_{d}D_{d}\xi &= -4D_{d}\xi - 3\xi, & D_{x}D_{c}D_{c}\xi = 3(n-2)^{-1}\varepsilon\lambda, \\ D_{e_{x}}D_{c}D_{c}\xi &= (n-2)^{-1}\varepsilon\lambda^{2}, \\ D_{b}D_{c}D_{c} &= (n-2)^{-1}\varepsilon\sigma + 9(n-2)^{-1}\varepsilon\lambda^{2} - 3(n-2)^{-1}\varepsilon D_{c}\lambda, \\ D_{d}D_{c}D_{c} &= 12\lambda^{2}\xi - 3\lambda D_{c}\xi - 4D_{c}\lambda \cdot D_{d}\xi + 16\lambda^{2}D_{d}\xi - 6\xi D_{c}\lambda - (n-2)^{-1}\varepsilon\xi, \\ D_{a}D_{c}A_{x} &= D_{b}D_{c}A_{x}^{\beta} &= D_{e_{y}}D_{c}A_{x} = 0, & D_{d}D_{c}A_{x} &= \frac{1}{2}D_{c}A_{x}. \\ \mathrm{Set} \end{split}$$

$$\begin{split} Q &= D_c D_c \xi + 3\lambda D_c \xi + 3\xi D_c \lambda - \sigma \xi + \frac{1}{2} \sum_x \varepsilon_x A_x^2 - \\ &- \Phi \Big(\frac{3}{2} D_c \lambda - 5\lambda^2 + \frac{1}{2} \sigma - \frac{1}{6} (n-2)^{-1} \varepsilon \Big). \end{split}$$

From (41) and Lemma 5 we obtain $D_aQ=D_bQ=D_{e_x}Q=D_dQ=0$. Consider now the system of differential equations

$$D_{c}h = a, \quad D_{d}h = -\frac{3}{2}h, \quad D_{e_{x}}h = D_{b}h = D_{a}h = 0,$$
 $D_{c}a = \beta, \quad D_{d}a = -a - 3\lambda h, \quad D_{e_{x}}a = D_{b}a = D_{a}a = 0,$
(42)
$$D_{c}\beta = Q - 3hD_{c}D_{c}\lambda - 9aD_{c}\lambda - 6\lambda\beta - 18\lambda hD_{c}\lambda - 9\lambda^{2}a + \sigma a + 3\lambda\sigma h - (n-2)^{-1}\varepsilon a,$$
 $D_{d}\beta = -\frac{1}{2}\beta - 5\lambda a - 3hD_{c}\lambda - 6\lambda^{2}h, \quad D_{e_{x}}\beta = D_{b}\beta = D_{a}\beta = 0$

with unknown functions h, a and β . Its integrability conditions are immediate consequences of (26)-(29), (32) and (31). For instance, we have

$$D_c D_d \beta - D_d D_c \beta - D_{[c,d]} \beta = -(a+3\lambda h) (D_d \sigma - D_c \lambda - \sigma + \lambda^2 + (n-2)^{-1} \varepsilon),$$

which vanishes in virtue of (31), etc. Choose now a solution h, a, β of (42). It is easy to verify that the *n*-frame field \bar{c} , \bar{d} , e_3 , ..., e_{n-2} , b, a, where $\bar{c} = c - hb$ and $\bar{d} = d + ha$, satisfies our assertion. This completes the proof.

3. Local structure theorem. We are now in a position to prove our main result.

THEOREM 1. (i) Let g be the indefinite metric on an open subset U of \mathbb{R}^n $(n \ge 4)$ whose non-zero components at any point (u^1, \ldots, u^n) of U are given by

$$g_{11} = \sum_{x} \varepsilon_{x} P_{x}^{2} - 2(n-2) \delta \varepsilon e^{-4T} \varphi'' - (n-2) \delta \varepsilon e^{-6T} \tau + \frac{2}{3} \delta e^{-8T} - \frac{2}{3} \delta e^{-8T} - \frac{2}{3} \delta e^{-2T} = \frac{2}$$

where

$$|\delta| = |\varepsilon| = |\varepsilon_x| = 1,$$

and P_x , τ and φ are functions depending only on the first variable u^1 and such that

$$\varphi(u^1)-u^2>0$$

for any $(u^1, \ldots, u^n) \in U$, while T is defined by

(46)
$$T(u^1, u^2) = -\frac{1}{2} \log (\varphi(u^1) - u^2).$$

Then g is e.c.s., parabolic and non-Ricci-recurrent (more precisely, (21) holds at each point $p \in U$).

(ii) Conversely, given an n-dimensional ($n \ge 4$) parabolic e.c.s. non-Riccircurrent manifold (M,g) and a point $p \in M$ satisfying (21), there exists a local coordinate system u^1, \ldots, u^n in a neighbourhood of p such that the components of g are given by (43), (44) and (46), where P_x , τ and φ are functions of u^1 satisfying (45) in a neighbourhood of p.

Proof. (i) The non-zero contravariant components of our metric are

$$g^{1n} = e^{T}, \quad g^{2,n-1} = e^{-2T}, \quad g^{xx} = \varepsilon_{x}, \quad g^{xn} = -e^{T}\varepsilon_{x}P_{x},$$
 $g^{n-1,n-1} = -e^{-4T}g_{22}, \quad g^{n-1,n} = -e^{-T}g_{12}, \quad g^{nn} = e^{2T}\left(\sum_{x} \varepsilon_{x}P_{x}^{2} - g_{11}\right).$

We can now compute the following components of the Riemannian connection:

$$\begin{split} \Gamma_{11}^{1} &= \Gamma_{12}^{2} = \frac{1}{2} \, \varphi' e^{2T}, \quad \Gamma_{12}^{1} = -e^{2T}, \quad \Gamma_{22}^{1} = \Gamma_{22}^{2} = 0, \\ \Gamma_{11}^{2} &= \frac{1}{2} \, \varphi'' - \frac{1}{4} \, (\varphi')^{2} e^{2T} + \tau e^{-2T} - (n-2)^{-1} \varepsilon e^{-4T}, \\ \Gamma_{11}^{x} &= \varepsilon_{x} P'_{x} + (n-2)^{-1} \varepsilon e^{-2T} u^{x} - \frac{1}{2} \, \varepsilon_{x} P_{x} e^{2T} \varphi', \quad \Gamma_{12}^{x} = e^{2T} \varepsilon_{x} P_{x}, \quad \Gamma_{22}^{x} = 0, \\ (47) \qquad \qquad \Gamma_{ij}^{1} &= \Gamma_{ij}^{2} = \Gamma_{ij}^{x} = 0 \quad \text{if} \quad i > 2 \text{ or } j > 2, \\ \Gamma_{11}^{n-1} &= u^{n-1} \left[5 (\varphi')^{2} e^{4T} - \frac{5}{2} \, \varphi'' e^{2T} - 2\tau + 3 (n-2)^{-1} \varepsilon e^{-2T} \right] - \\ &- \frac{3}{2} \, u^{n} \varphi' e^{T} - \frac{1}{2} \, (n-2)^{-1} \varepsilon e^{-2T} \sum_{x} \, \varepsilon_{x} (u^{x})^{2} - \frac{1}{4} \, (n-2) \, \delta \varepsilon (\varphi')^{2} e^{-2T} - \\ &- \frac{1}{2} \, (n-2) \, \delta \varepsilon \varphi'' e^{-4T} + \frac{1}{2} \, (n-2) \, \delta \varepsilon \tau e^{-6T} - \frac{2}{3} \, \delta e^{-8T}, \end{split}$$

$$\begin{split} &\Gamma_{12}^{n-1} = -5u^{n-1} \; \varphi' e^{4T} + \frac{3}{2} \; u^n e^T + \frac{1}{2} \; (n-2) \, \delta \varepsilon \varphi' e^{-2T}, \\ &\Gamma_{22}^{n-1} = 2u^{n-1} e^{4T} + (n-2) \, \delta \varepsilon e^{-2T}, \quad \Gamma_{1x}^{n-1} = \Gamma_{2x}^{n-1} = 0, \\ &\Gamma_{1,n-1}^{n-1} = -\frac{3}{2} \; e^{2T} \varphi', \quad \Gamma_{1n}^{n-1} = e^{-T}, \quad \Gamma_{2,n-1}^{n-1} = e^{2T}, \quad \Gamma_{2n}^{n-1} = 0, \\ &\Gamma_{12}^{n} = u^{n-1} \left[2(\varphi')^2 e^{7T} - \frac{3}{2} \; \varphi'' e^{5T} + (n-2)^{-1} \varepsilon e^T - 2\tau e^{3T} \right] - \\ &- \frac{3}{4} \; u^n \varphi' e^{4T} - \frac{1}{2} \; (n-2)^{-1} \varepsilon e^T \; \sum_{x} \; \varepsilon_{x} (u^{x})^2 - \frac{2}{3} \; \delta e^{-5T} + \frac{1}{2} \; (n-2) \, \delta \varepsilon \tau e^{-3T} - \\ &- \frac{1}{4} \; (n-2) \, \delta \varepsilon (\varphi')^2 e^T. \end{split}$$

It is easy to verify that

$$R_{121}^{1} = 0$$
, $R_{121}^{2} = -(n-2)^{-1} \varepsilon e^{-2T}$ and $R_{121}^{n-1} = -\delta e^{-6T}$.

From (47) it follows immediately that $R_{ijk}^{l} = 0$ whenever $l \leq n-2$ and $k \geq 3$, which implies $R_{ijkl} = 0$ if $k, l \geq 3$. Therefore, the only non-zero components of the curvature tensor, Ricci tensor and Weyl's tensor are related to

$$egin{align*} R_{1212} &= \delta e^{-4T} - 2 \, (n-2)^{-1} \, arepsilon u^{n-1} e^{2T}, & R_{121,n-1} &= - \, (n-2)^{-1} \, arepsilon, \ & R_{1x1x} &= - \, (n-2)^{-1} \, arepsilon arepsilon e^{-2T} & ext{and} & R_{11} &= arepsilon e^{-2T}, & C_{1212} &= - \, \delta e^{-4T}. \end{split}$$

It is now a trivial matter to check that $C_{hijk,l} = 0$. Moreover, $R_{11}R_{12,1} - R_{12}R_{11,1} = e^{-2T}$, which completes the proof of (i).

(ii) Using the notation of Lemma 5, choose a special *n*-frame field $c, d, e_3, \ldots, e_{n-2}, b, a$ in a neighbourhood of p, which satisfies (34)-(38) (cf. Lemma 6). Define the function T by

$$\Phi = \delta e^{-6T}, \quad |\delta| = 1,$$

so that, by (32),

(49)
$$D_c T = \lambda$$
, $D_d T = \frac{1}{2}$, $D_{e_x} T = D_b T = D_a T = 0$.

Therefore, and in view of (26), the systems of differential equations

$$D_c u^1 = s^T, \quad D_d u^1 = D_{e_x} u^1 = D_b u^1 = D_a u^1 = 0$$

and

$$D_d u^2 = e^{-2T}, \quad D_c u^2 = D_{e_x} u^2 = D_b u^2 = D_a u^2 = 0,$$

with unknown functions u^1 , u^2 , are completely integrable. Choosing their solutions u^1 , u^2 and setting

(50)
$$u^{x} = -(n-2)\varepsilon\varepsilon_{x}A_{x}, \quad u^{n-1} = (n-2)\varepsilon\xi, \\ u^{n} = -(n-2)\varepsilon(D_{c}\xi + 3\lambda\xi),$$

we obtain a local coordinate system $u^1, ..., u^n$ in a neighbourhood of p. In fact, the vector fields ∂_i dual to $du^1, ..., du^n$ are given by

$$\begin{split} \partial_1 &= e^{-T} o + (n-2) \varepsilon e^{-T} \sum_x \varepsilon_x D_c A_x e_x - (n-2) \varepsilon e^{-T} D_c \xi \cdot b + \\ &+ (n-2) \varepsilon e^{-T} \left[\sigma \xi - \frac{1}{2} \sum_x \varepsilon_x A_x^2 + \Phi \left(\frac{3}{2} D_c \lambda - 5\lambda^2 + \frac{1}{2} \sigma - \frac{1}{6} (n-2)^{-1} \varepsilon \right) \right] a, \end{split}$$

$$(51)$$

$$\begin{array}{l} \partial_2 \,=\, e^{2T}d - (n-2)\, \varepsilon e^{2T}D_d\,\xi \cdot b - \frac{1}{2}\, (n-2)\, \varepsilon e^{2T}(D_c\,\xi + 3\lambda\xi + 2\lambda D_d\,\xi)\,a\,,\\ \\ \partial_x \,=\, e_x, \qquad \partial_{n-1} \,=\, b\,, \qquad \partial_n \,=\, a\,, \end{array}$$

which follows immediately from (27)-(29), (38), (41), (36) and (31). Now (49) and (51) yield

$$\partial_n e^{-2T} = \partial_{n-1} e^{-2T} = \partial_x e^{-2T} = 0, \quad \partial_2 e^{-2T} = -1,$$

which implies (46) for some function φ of u^1 , satisfying (45). From (49) we obtain

(52)
$$\lambda = D_c T = \partial_1 e^T = -\frac{1}{2} \varphi'(u^1) e^{3T}.$$

Moreover, by (50),

(53)
$$D_{e}\xi = -(n-2)^{-1}\varepsilon u^{n} + \frac{3}{2}(n-2)^{-1}\varepsilon u^{n-1}\varphi'e^{3T}$$

and, by (37), (35), (48), (31) and (50),

$$D_d \xi = \delta e^{-6T} - (n-2)^{-1} \varepsilon u^{n-1}$$

and, in view of (49),

(55)
$$D_c \lambda = -\frac{1}{2} \varphi'' e^{4T} + \frac{3}{4} (\varphi')^2 e^{6T}.$$

On the other hand, (41) yields

$$\partial_n D_c A_x = \partial_{n-1} D_c A_x = \partial_y D_c A_x = 0, \quad \partial_z D_c A_x = \partial_z T \cdot D_c A_x,$$

6 - Colloquium Mathematicum XLIV.2

whence

$$D_c A_x = (n-2)^{-1} \varepsilon P_x(u^1) e^T$$

for some functions P_x . Setting

$$\tau = e^{-2T} [D_c \lambda - \sigma - 2\lambda^2 + (n-2)^{-1} \varepsilon],$$

in view of (41), (27)-(29), (31) and (49) we obtain

$$D_{a}\tau=D_{e_{x}}\tau=D_{b}\tau=D_{a}\tau=0,$$

which, in terms of our chart, states that τ is a function only of u^1 . Thus

(57)
$$\sigma = D_c \lambda - \tau(u^1) e^{2T} - 2\lambda^2 + (n-2)^{-1} \varepsilon.$$

Computing now the components $g_{ij} = g(\partial_i, \partial_j)$ of the metric from (51), (24), (25) and (50) and (52)-(57), we obtain (43). This completes the proof.

REFERENCES

- [1] M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian Journal of Mathematics 5 (1963), p. 113-122.
- [2] A. Derdziński, The local structure of essentially conformally symmetric manifolds with constant fundamental function, I. The elliptic case, Colloquium Mathematicum 42 (1979), p. 59-81.
- [3] The local structure of essentially conformally symmetric manifolds with constant fundamental function, II. The hyperbolic case, ibidem 44 (1981), p. 77-95.
- [4] and W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor, New Series, 31 (1977), p. 255-259.
- [5] Some theorems on conformally symmetric manifolds, ibidem 32 (1978), p. 11-23.
- [6] Some properties of conformally symmetric manifolds which are not Ricci-recurrent, ibidem 34 (1980), p. 11-20.
- [7] L. P. Eisenhart, Riemannian geometry, Princeton 1949.
- [8] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, New York 1969.
- [9] W. Roter, On conformally symmetric Ricci-recurrent spaces, Colloquium Mathematicum 31 (1974), p. 87-96.

WROCLAW UNIVERSITY
MATHEMATICAL INSTITUTE, WROCLAW

Reçu par la Rédaction le 1. 10. 1978