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1. Introduction. A Riemannian manifold M of dimension n > 4 (whose
metric ¢ may be indefinite) is said to be conformally symmetric [1] it
its Weyl conformal curvature tensor

(1)  Cugr = Bugge— (8 —2) 7 (guy Rz + gnie By — 9y Ba — G Bg) +

' +R(n—1)""(n—2)""(gyIre — Ins Iux)
is parallel, that is

(2) ahiﬂc.l = 0.

Here and in the sequel we denote by R, , K, and R the curvature
tensor, Ricci tensor and scalar curvature, respectively, while the comma
stands for covariant differentiation. Clearly, conformal flatness (Opy = 0)
implies conformal symmetry, and so does local symmetry (R, = 0).
By essentially conformally symmetric (shortly, e.c.s.) Riemannian manifolds
we shall mean those which satisfy (2), but are neither conformally flat
nor locally symmetric.

E.c.s. manifolds exist ([9], Corollary 3), but their metrics are never
definite ([4], Theorem 2). Every e.c.s. manifold satisfies the relation.
([6], Theorem 3) RyR,, — R;; R, = FCyy for a certain function F, called
the fundamental function of M. Two recent papers [2] and [3] are devoted
to the e.c.s. manifolds for which F = const #* 0. In the present paper
we treat the so-called parabolic e.c.s. manifolds, i.e. those for which F = 0
identically, which is clearly equivalent to the condition

(3) rank B, <1
everywhere.
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As shown in [9], there exist e.c.s. manifolds which are Ricoi-recurrent
in the sense that Ry Ry, ; = R, Ry,;. Such manifolds are always parabolic
([6], Theorem 5). In [9] Roter described the local structure of e.c.s. Ricci-
recurrent manifolds. Thus, we shall be mostly concerned with parabolic
e.c.8. manifolds which are not Ricci-recurrent (their existence has been
established in [6], Theorem 6).

The main result of this paper (Theorem 1) gives a description of the
local structure of non-Ricei-recurrent parabolic e.c.s. manifolds. We also
show that a non-Ricci-recurrent parabolic e.c.s. manifold is never locally
homogeneous (Proposition 1).

In the sequel, all manifolds are assumed to be connected, paracom-
pact and of class O® (although all results remain valid in the analytic
category). The methods we use are closely related to those of [2] and [3].

2. Preliminaries. Every e.c.s. manifold satisfies the relations

(4) By = By )

() R =0,

(6) ROy =0,

(7) BriCjiim + BryOruim + BriOiim = 0

(see [6], Theorems 7, 9 and formula (6), and [6], Theorem 7).

LEMMA 1. Let M be an n-dimensional Riemannian manifold with
a (not necessarily definite) metrio g which satisfies (4) and (3). Given a point
P € M such that
(8) : Ry(p) # 0,

there exists a neighbourhood of p together with two 0% vector fields a and b
which are uniquely (up to a sign of a) determined by the following two cond:i-
tions: )
(9) Ry = ea;ay, |¢| =1,
(10) Ry = bRy + by Ry + b By

Moreover, a and b satisfy the relations a,a® = a;b* = 0 and

1
(11) a‘., = E‘ a‘b’+b‘aj.
Proof. From (3) and (8) we obtain (9) in a neighbourhood of p, a # 0

being unique up to a sign. From the well-known identity

1
(12) B/, =5 B,
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([7], p. 82) it follows by (4) that

(13) a;a' = eR = const,
so, by (9),
(14) 0 = (a;a,)* = a"a‘,k+a".ka_,-.

In view of (4) and (9) we have
(15) @0+ 0;0;, = Ry, = eRy ; = a0+ agay .
Transvecting this with a* and using (13), we obtain eRa,; = a*a, .a,+
+a*a, . a, (since a*a, ; = 0 by (13)). In view of (14), this yields
(16) eRa,; = —2a*, a0,

Oontracting the last equality with ¢g¥ and using (13), we obtain
eRa*; = 0 and, consequently, by (16),

(17)

and Ra,; = 0, which implies B = sa;a’ = 0 (for B = const # 0 we have
a;,; = 0 and, in view of the Ricciidentity,0 = a‘R,; = Ra, by (9) and (13)).
Consider now, in a neighbourhood of p, the (n—1)-plane field kera
consisting of all vectors « for which a,u* = 0 (i.e. u*R, = 0). Given vector
fields u, v € kera, we have, by the Leibniz rule and (4),

af) =0

v Ry, = —vWw'R,;, = —vu'R,; = —(vVvw'R,),; =0,

so that D,u ekera (D being the Riemannian connection). Therefore,
[u, v] = D,v—D,u € kera whenever u, v € kera, i.e. kera is integrable,
which, in terms of the differential 1-form a, can be expressed as

anda =0
or, in the local coordinates,
OOyt Oy + Oy B — BBy — By By — BBy = 0.
Subtracting this from
Q05+ Q8 — BB — Gty ; = O,
which is.an obvious consequence of (156), we obtain
a;(2a,, — 8y g) = @ (26, ;—a).

Since a # 0, this yields

3
20— 6, = 5 b;a;
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for some vector field b. Alternating this in ¢ and j, we obtain
201‘., - 2aj.‘ = b‘ aj - bj a‘ ’

80, adding up the last two equalities, we get (11). Using (9), we now obtain
(10), which assures the uniqueness of b. Finally, contraction of (11) with
Y yields a,b* = 0 in view of (17). This completes the proof.
LEMMA 2 ([6], Theorem 4). If M is a non-Ricci-recurrent e.c.s. manifold,
then

(18) O = N0p; gy

where |n] =1 and o t8 a parallel, absolute (i.e. determined at each point
up to a sign) exterior 2-form on M such that rankw = 2 and w " = 0.

LeMMA 3. Let M be a non-Ricci-recurrent e.c.s. manifold. Then
(i) The tmage imw of w (the absolute 2-form determined by (18)),
i.6. the set of all vectors u of type u; = + wyv’, is a parallel field of totally
180tropic (2-dimensional) planes and it contains amy veotor u of the form
U = R‘,vj or

(19) Uy = Ru,kv{v’z‘-

(ii) The orthogonal complement of im w coincides with the kernel ker w
of w (the set of all v with wyv’ = 0) and it is contained in ker Ry.

(iii) The (n —2)-plane field ker w ig integradble and its leaves are totally
geodesio submanifolds of M, flat with respect to the symmetric connection they
inherit from M ([8], p. 56-59).

(iv) The tensor fields R, and R, are parallel along the leaves of ker w.

Proof. In view of Lemma 3 of [2], all we have to show is that any
vector % of form (19) lies in im w. However, differentiating (7) covariantly
and using (2), (4) and (18), we obtain uA w = 0, which completes the
proof.

In the sequel, we shall often assume the following hypothesis:

(20) (M, g) is an n-dimensional (n > 4) non-Ricci-recurrent parabolic
e.c.8. manifold and p € M is a point such that

(21) By (p) By (P) # Byr(p) By i (D).

Note that a point p satisfying (21) must exist as M is not Ricci-recur-
rent.

LevMmA 4. Under hypothesis (20), there exists a O°-field a, b of 2-frames
in a neitghbourhood of p, which is parallel along ker @, spang imw (cf. Lem-
ma 3) and satisfies relations (9)-(11) and

(22) b{,j = b"bj -+ 3}.b,-a, -+ ).a,- bj + oa; a;
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for some C®-functions A and o. Moreover, we have
(23) Cre = — P(anb;— a;by) (a;b, — ay b))

Jor a certain (uniquely determined) fumotion P.

Proof. Choose the vector fields a, b as in Lemma 1 (cf. (4) and (21)).
In view of (21), (9) and (10), they are linearly independent. Parallelity
of a and b along ker w follows immediately from (iv) of Lemma 3. By (i)
of Lemma 3, ¢ and b span imw, hence o is a functional multiple of aA b,
which by (18) yields (23). As b lies in the (parallel) span of a and b and is
parallel along its orthogonal complement, b;; must be a combination of
tensor products and squares of ¢ and b. To find the corresponding coef-
ficient functions, we may use the equality a" R,y = 0, which follows im-
mediately from (1), (6), () and (9), and can be rewritten as

1
0 =a;;—a,,; = ) a;(by 5 — by 3) + (by, 85— bg ;@) + by (bya, — by @) .

This completes the proof.

Under hypothesis (20), a C*-field ¢, d, 65, ..., 6,5, b, @ of n-frames
in a neighbourhood of p is called special if a and b are the vector fields
determined by Lemma 4 and

g(cye;) = g(d,e,) = g(b,e,) =g(a,e) =0,
g6z 6) = 8,04, e =1, @,y =3,...,n—2,

CANN

(25) {g(a, a) = g(a,b) = g(6,5) =0, g(o,a) = g(d, ) =1,
gle,¢) = g(d,d) = g(¢,d) = g(o,b) = g(d,a)= 0,

and
D,¢ = D,d = D,e, = Dy6 = D,d = Dye, = D, 6 =D, d=D,e¢, =0,
,Y =3,...,—2.
Here and in the sequel we adopt the convention that the indices

@, y, 2 run over the set {3, ..., » —2} (empty for n = 4).

LeMMA 5. Assume (20). Then

(i) There ewists a special n-frame fwld in a neighbourhood of p.

(ii) Any special n-frame field o, @, €y, ..., €,_,, b, @ in a neighbourhood
of p satisfies the relations

D,c = ¢b—od— 2 e, A0,y D@ = —éa—c—3id— 2 &; Btz
z

T

De, = A,a+B,b+ D 0,0,  Cpp = —,80z,
4



254 A. DERDZINSKI 4

Db = 3Ab+oa, D,a=20,
(26)

1
Dyo = yb— 3 o—}.d—;‘ e Bye,, Dyd — —ypa—d— 2,: & P,

D, = Bya+Fb+ ) Gy, Gy = —2,6,6,,,
v

1
Ddb = b+la, .Dda =?a, .Dcz... =‘Db ces — .Da... = 0,

where ... stands for any frame vector, A and o are determined by (22), and
&Ly A, B, B, Fy, Oy, Gy, are certain C®-functions. These fumctions
satisfy the relations

(27) D,¢ = Dyo =D, A, = D,B, = D,C,, = D,A =D,y
=D,F, = D,E, = DG, =0,
D, ¢ = (n—2)" e,
(28) Dyo = Dy A, = DB, = D)0,y = Dyi= Dyy = 0,
‘DbFz = 'DbEz = .Dwa = 0,
(29) D, ¢=D,0=0, D, A, = —(n—2)""ee,d,,
Desz = Dezouz = -Dez}' = Dc,,'P = Desz = De,,Ev = Dchw =0,
( DyA,—D,E,+iB,—oF,—2\H,+ ) (CpyB,—G,A,) =0,
v

1
(30) f DaBz-Dch+‘é‘Bx—Ez—5mz+Z(GWF,—GWB,) =0,
y

1
\ DGy — Dy + 5 O+ 26 + D (6.0, ~0,.8,,) = 0,
8

Dyo—D,A—o+2+(n—2)""e =0, D,,J.—% A=0,

(31)
D3é —D,y—blyp+ E+Z & (E,B,—A,F,) = ®,

D being the function determined by (23). Moreover, we have
(32) D P = —-6i0, D;9= -390, D, P=D®=D,P=0.

Proof. According to Lemma 4, the vector fields a and b determined
by (9) and (10) span im w and are parallel along ker w, so that the existence
of a special n-frame field is an immediate consequence of Lemma 6 of [2].
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Now let e, d, ¢, ... 6,_,, b, a be a special n-frame field in a neighbourhood
of p. Relations (26) follow immediately from (11), (22), (24) and (25) by
means of the Leibniz rule. Moreover, the only non-trivial components
of R, with respect to our frame are, in view of (1), (5), (9) and (23),
those related to

Rh‘jkchdicjdk == —¢, R’“'ﬂ‘bhcicjdk = (%""2)-18,
Rypctezd'ey = —(n—2)"es,.
On the other hand, we can find these components from the formulae

R(u, v)w = D,D,w—D,D,w— D, 4w
and
(33) [u,v] = D,v—Dyu.

Thus, (27) can be obtained from computing R, = R(a, )¢, R,,,
= R(a,0)e,, R,z Ruq and R,;,, (28) from R, = (n—2)"'eh, R,.,,
Ryaps Rpaq and Ryg,, (29) from R, = —(n—2)7'e6,, Ry = (—2) e, 8,,,
Ry Rapq and Ry, (30) from R, (31) from R,y = (8 —2)"'ea and R,
= — ®b—(n—2)"'ed. Finally, (32) follows from the obvious (in view of
(23) and (25)) relation C,y*d'c’d* = — & together with (2) and (26).
This completes the proof. '

A Riemannian manifold M is said to be locally homogeneous it for
any two points p, qe M there exists an isometry of a neighbourhood
of p onto a neighbourhood of ¢, sending p onto g.

PROPOSITION 1. Let M be a non-Ricci-recurrent parabolic e.0.8. manifold.
Then M s not locally homogeneous.

Proof. If M were locally homogeneotis, then (23) would imply &
= const (in view of (9) and (10), any local isometry leaves +a and b
invariant). This, together with (32), would yield ¢ = 0 (a8 Lemma 5
works), a contradiction, which completes the proof.

LEMMA 6. Under hypothesis (20), there exists a special n-frame field
6, d, 63, ...,6,_,, b, ain a neighbourhood of p such that, in the notation of
Lemma 5, ’

(34) C,, =G,y =0,
(36) E,=F, =0,
(36) B, = D4, =0,
(37) v =0,

(38) D.D &+ 34¢)

1 . 3 s, 1 1 _
= 0'5——2-23: szA,-l-Q(E D,A—54 +§ Ly (n—2) le).
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Proof. 1st step. In view of Lemma 5, we may choose a special
n-frame field ¢, d, e;,...,6,_,, b, a in a neighbourhood of p. The inte-
grability conditions for the system of differential equations

Dyt = —2 T2COsyy DTy = —2 T2aGoys

with indeterminates 7, follow 1mmed13.tely from (27)-(30). Choosing the
solution z,, of (39) w1th initial value 7,,(p) = d,,, it is easy to verify
(by differentiation) that

2 85T Tys = 8202y
s

Therefore, the n-frame field

(39)

0,8,%,...,¢,_,,b,a, where ¢, =Z Ty @
v

is special and satisfies (34).
2nd step. Let ¢, d,e,, ..., 6,_,, b, a be a special n-frame field satis-
fying (34). Consider the underdetermined system of differential equations

1
Ddcz = - "Z—Cz—)"z— Ez? 'Deycz = Dbcz = Datz =0,

(40)

'Dd‘z = —lz—Fz, .De”

with unknown functions ¢, and ¢,. Since the vector fields d, ¢,, ..., €,_,, b, 8
span an involutive distribution (which follows immediately from (26) and
(33)), it is clear that a solution of (40) will exist if its integrability condi-
tions (which do not involve differentiation along ¢) are satisfied. However,
these conditions follow immediately from (27)-(29). Choosing a solution
lzy 4y Of (40) and setting

c=c¢— €000, — &la,
PP
3=d—28 ¢e—_23czb—-26£‘¢a, ¢, = e,+L6+ ¢,

it is easy to verify that ¢€,d, &, ..., &,_,, b, a is a special n-frame field
satisfying (34) and (35).

3rd step. Choose a special n-frame field o, d, ¢,, ..., €,_,, b, a satis-
fying (34) and (35) and set, in the notation of Lemma b,

1
c = c—l—z 8’B‘0‘——52 e,Bla, €, =e,—B,a.
z x

t, = Db‘z = .Da‘z =0
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Using (27)-(30) it is easy to see that ¢, d, &, ..., €,_,, b, & i8 & special
n-frame field satisfying (34), (35) and' B, = 0. The relation D;4, = 0
follows now immediately from (30).

4th step. Let a special n-frame field ¢, d, e, ..., 6,_,, b, a satisty
(34)-(36) and set ¢ = 0 —hb, d = d+ ha, where h is any solution of the
underdetermined system

3
.Ddh = '[’——2—h, .Dezh = Dbh = .Dah =0

(completely integrable in view of (27)-(29)). It is now easy to verify that
€,d,65 ..., 6,5, b, a satisties (34)-837).

bthstep.Leto, d,e,, ..., ¢,_,, b, a be a special n-frame field satisfying
(34)-(37). Using Lemma 5 and (33), it is easy to verify that, in the notation
of Lemma 5,

D,D,% = DyD,i = D, DA =0, DD 4 = 2D,A+3%,
D,D,D,A = D,D,D,A = D, DD, = 0,
D;D,D,A =% D,D,A+10AD,A+ 64,
DD,k = —(n—2)"e, D,D,f= —3(n—2)"'eA, D, D=0,

1
D;D,¢ = —?DOE—4).D¢E—6}.E, D,D;¢ = D, Dy = 0,

(41)
‘DdeE = —(“_2)_187 -D.;Daf = —D,E—ﬁlDdE—GlE,
D;D;6 = —4D3é—3¢, D,D,D,¢ = 3(n—2)"'él,
-DochDcE = (n—2)""ed,,

D,D,D, = (n—2)"'s0+9(n—2)"'eA? —3(n—2)"'eD,A,
D;D,D, = 124*§ —3AD, £ —4D,A-Dyé+ 162D & —6ED,A— (n—2) ek,

1
D,D,A, = D,D,4,= D, DA, =0, DDA, = = D,A4,.
Set

1
Q= Dch£+3ADcE+3ED°1—aE+-2—Z o, A2 — .

3 ., 1 1 -
—¢(—2— D, A—bA +? - (n—2) e).
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From (41) and Lemma 5 we obtain D@ = D,@ = D, @ = D;Q = 0.
Consider now the system of differential equations

3
D,h =a, Dzh= —3 ky D, h = Dyh =D,k =0,
D,a=pf, Dza= —a—-3ih, D,a=Dya=Da=0,
(42)
D, =Q—3hD,D,A—9aD,A— 628 —18AhD,A—94%a+
+ oa+3Ach—(n—2)"'¢a,

Dy = — _;_ B—bla—3kD,A—8h, D, =D, = D,p =0

with unknown functions %, a and B. Its integrability conditions are im-
mediate consequences of (26)-(29), (32) and (31). For instance, we have

.Dchﬂ—.Dchﬂ—D[c.d]ﬂ = —(a+32h)(.Dda—Dcl—-a+).2+('n—2)'"le),

which vanishes in virtue of (31), etec. Choose now a solution &, a, § of (42).
It is easy to verify that the n-frame field ¢,d,e,, ..., 6¢,_,, b, @, Where
¢ =o0—hb and d = d+ha, satisfies our assertion. This completes the
proof.

. 3. Local structure theorem. We are now in a position to prove our
main result.

THEOREM 1. (i) Let g be the indefinite metric on an open subset U of

R" (n > 4) whose non-zéro componenis at any point (u', ..., u") of U are
given by

O = 2 8, P:—2(n—2)d8e6 7" —(n—2)de6~ T v + —;— d6~°T —
z

—n—2) e Y ey

+ un-l[_;_ 041’(¢r)2 _ equ)n —927 + 2 (” _2)—180—21’]’

3 1
J1s = g = —2u _I‘P""T"'E w6 + ) (n—2) dep’6™%7,

(43)
Jas = —2(n—2) 8867 4+ 2u"" 167,

Gz =9 = Pz(u’l)’ 2z = 8z

Jin = 9Im = 7, Poon—1 = Gp—-1,2 = e,
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where
(44) 18] = le|l = l&| =1,
and P,, v and ¢ are functions depending only on the first variable u' and
such that
(456) p(ut)—ut>0
- for amny (w2, ..., u") € U, while T is defined by

(46) T(u', u?) = — % log (p(u?) — u?).

Then g i3 e.c.8., parabolic.and non-Ricoi-recurrent (more precisely, (21)
holds at each point p € U).

(ii) Conversely, given an n-dimensional (n > 4) parabolic e.c.s8. non-Riooi-
reourrent manmifold (M, g) and a point p € M satisfying (21), there ewists
a local coordinate system u', ..., u" in a neighbourhood of p such that the
components of g are given by (43), (44) and (46), where P,, v and ¢ are
functions of ut satisfying (45) in a neighbourhood of p.

Proof. (i) The non-zero contravariant components of our metric are

gln — GT, gz’“-l = 0_2T, gm = &g, = _oTssz,
g = —6 gy, gV = —6Tg, ¢ = "M(Z szP:-gn)'
z

We can now compute the following components of the Riemannian
connection :

1
I'111=I'122= ’2‘?"02T1 Pllz=_921" Pz‘2=Pzzz=0’

1 1
I'le —_ '5' ‘P" _ I (wr)z 62T+ 10-21' — (” _2)-186—41',

' -1 .- 1 '
I'i‘l = 8sz+(”‘—'2) 183 zruz_ —2;' eszozT ’ I'i'z = eﬁTssz, P:z = 0’
(47) Iy=I3=I§=0 ifi>2o0rj>2,
= u""[ﬁ(q:’)’o""'——g-q>"o""'—2t+3(n—2)“eo‘”']_

- ’;’ ug'e" —% (n—2)"tee™*" Z &, (w") ——‘i-.(n—2) de(gp') 6™ —

z

1 1 2
-5 (n—2)8ep’ 67T + ry (n —2) dere™ T — 3 de~oT,
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3 1
Ivlr;—-l = —pur! (p1041'+_2_uu01'+ E (,n__z)aaprc—ﬂ"

I2t = 2016 4 (n—2) de6~F, I™' = It =0,
111':7011:__2'921' ’ Pl’:;l':oT’ I’z':nll=821'7 1121:.1_:0’

1111; — ,un-l [2 (¢')267T— i

> ¢"05T+(n—2)"ao""—2w”']--

3 asar 1 -1_,T o 2 4 sp, 1 -37
—Iu ¢p'e 2(n 2) "ee Ze,(u)—gdo +-§('n-—2)dsro —

— % (n—2)8e(p')e”.

It is easy to verify that
Rl’ll = 0’ .R]ala = —'(”—2)—188_21’ and Rlaln-l = —(’0-6’.

From (47) it follows immediately that R,,' = 0 whenever I <n—2
and k > 3, which implies B;; = 0 if %, I > 3. Therefore, the only non-zero
components of the curvature tensor, Ricci tensor and Weyl’s tensor are
related to

By = 34T —2 (n— 2)-1 Wn_lﬂzry Biyip—1 = —(n— 2)_13’
Rlzlz = — ('n . 2)-1 3886-21' 311(1 ‘Rll = 80_21', 01’13 = - 60-‘1’.

It is now a trivial matter to check that Oy, = 0. Moreover, By, R,y , —
— Ry R,y = 67*%, which completes the proof of (i).

(ii) Using the notation of Lemma 5, choose a special n-frame field
6,d,65y...,6,_3,b,a in a neighbourhood of p, which satisfies (34)-(38)
(cf. Lemma 6). Define the function T' by

(48) D = M—‘T: 4] = 1,
so that, by (32),

1
(49) DT =1, D=5, D,T=DT=DT=0.

Therefore, and in view of (26), the systems of differential equations
Dt = 6", Dyut =D, w = Dyut = D,ut =0
and

Dyur = ¢2*, D =D, u? = Dyut = Du? =0,
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with unknown functions %!, 4%, are completely integrable. Choosing their
solutions «!, u* and setting

(50) Ut = —(n—2)ec, 4,, u"' = (n—2)s&,
u* = —(n—2)e(D,E+348),
we obtain a local coordinate system «!, ..., 4" in a neighbourhood of p.

In fact, the vector fields 9; dual to du?, ..., du" are given by

0, = e‘To+(»—2)ee‘TZ e, D, A e,—(n—2)ee™TD, &b+

1 3 1 1
—ovea=Tl gt — E' 2 dl R g ()1
+ (n—2)se [crE 5 L ezAz+¢(2 D, A—bA*+ 2%~ (n—2) e)]a,

z

(61)
9 = éra-(n'—z)se’fbae-b-‘;‘ (n—2)e6'" (D, £ +34¢+24Dy6)a,
Op =6, Op,=b, 0,=a,

which follows immediately from (27)-(29), (38), (41), (36) and (31). Now
(49) and (51) yield

—a7 -7 —aT —a7
Op 6 = Op_,6 = 0,6 =0, 046 = —1,

which implies (46) for some function ¢ of !, satisfying (45). From (49)
we obtain

(52) A=D,T = 86T = ——%'-cp’(ul)ew.

Moreover, by (50),
(63) D¢t = —(n—2)"teu+ —‘;’— (n—2)"eu""1¢'e*T

and, by (37), (35), (48), (31) and (50),
(54) D& = 86T —(n—2) ey !
and, in view of (49),

1 3
(55) DA = — 3 @' 6T + Y (¢') 6T .

On the other bhand, (41) yields
oD, A, = 0, DA, = 0,D, A, =0, 0,D. A, =,T-D,A,,
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whence
(56) DA, = (n—2)"'eP,(u) 6T

for some functions P,. Setting
T = ¢ T[D,A—0—22+(n—2)""¢],
in view of (41), (27)-(29), (31) and (49) we obtain
Div = D, v = Dyt = D,z = 0,
which, in terms of our chart, states that = is a function only of «'. Thus
(67) 0 = D A—7(u)eT -2+ (n—2)"'s.

Computing now the components g,; = g(0;, 9;) of the metric from
(61), (24), (25) and (50) and (52)-(b7), we obtain (43). This completes the
proof.
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