COMPACT RIEMANNIAN MANIFOLDS WITH HARMONIC CURVATURE AND NON-PARALLEL RICCI TENSOR

Andrzej Derdziński Wrocław University, Mathematical Institute

For any (pseudo) Riemannian manifold, the divergence δR of its curvature tensor R satisfies the well-known identity

$$\delta R = dS ,$$

where S is the Ricci tensor (viewed as a vector-valued 1-form) and dS denotes its Riemannian exterior derivative (so that, using the metric, one may consider dS as a 1-form with values in exterior 2-forms). The local coordinate expression for (1) is

(2)
$$\nabla^{i}R_{hijk} = \nabla_{k}S_{hj} - \nabla_{j}S_{hk}.$$

While every manifold with parallel Ricci tensor has harmonic curvature (i.e. satisfies $\delta R = 0$), there are examples ([3], Theorem 5.2) of open Riemannian manifolds with $\delta R = 0$ and $\nabla S \neq 0$. In [1] J.P. Bourguignon has asked the question whether the Ricci tensor of a *compact* Riemannian manifold with harmonic curvature must be parallel.

The aim of this note is to describe an easy example answering this question in the negative. More precisely, metrics with $\delta R = 0$ and $\nabla S \neq 0$ are exhibited on $S^1 \times N^3$, N^3 being e.g. the 3-sphere or a lens space. By taking products of these manifolds with themselves or with arbitrary compact Einstein manifolds, one gets similar examples in all dimensions greater than three.

THEOREM. Let (N^3,h) be a three-dimensional Riemannian manifold with constant positive sectional curvature K. Define the Riemannian manifold (M^4,g) by $M^4=S^1\times N^3$,

$$g_{((\cos t, \sin t), x)}(u + X, v + Y) = (u, v) + F(t)h_{X}(X, Y)$$
,

for $u, v \in T_{(\cos t, \sin t)} S^1$ and $X, Y \in T_X N^3$, where <, > is the standard metric of $S^1 = R/2\pi Z$ and

(3)
$$F(t) = 2Km^{-2} + A \cos mt + B \sin mt,$$

the positive integer m and real numbers A,B being chosen so that

$$0 < A^2 + B^2 < 4Km^{-4}$$

which implies that the function F is non-constant, positive and periodic.

Then (M⁴,g) has harmonic curvature tensor, but its Ricci tensor field is not parallel.

Proof. It seems convenient to use local coordinates. In a product chart $\mathbf{x}^{O} = \mathbf{t}$, \mathbf{x}^{1} , \mathbf{x}^{2} , \mathbf{x}^{3} for $\mathbf{S}^{1} \times \mathbf{N}^{3}$ we have, setting $\mathbf{q}(\mathbf{t}) = \log \mathbf{F}(\mathbf{t})$, $\mathbf{g}_{oo} = \mathbf{1}$, $\mathbf{g}_{oi} = \mathbf{0}$, $\mathbf{g}_{ij} = \mathbf{e}^{\mathbf{q}}\mathbf{h}_{ij}$, $\mathbf{F}_{oo}^{O} = \mathbf{F}_{oi}^{O} = \mathbf{F}_{oo}^{i} = \mathbf{0}$, $\mathbf{F}_{ij}^{O} = -\frac{1}{2}\mathbf{q}^{i}\mathbf{e}^{\mathbf{q}}\mathbf{h}_{ij}$, $\mathbf{F}_{oj}^{i} = \frac{1}{2}\mathbf{q}^{i}\mathbf{s}_{ij}^{i}$, $\mathbf{F}_{jk}^{i} = \mathbf{H}_{jk}^{i}$, $\mathbf{S}_{oo} = -\frac{3}{4}(2\mathbf{q}^{i} + (\mathbf{q}^{i})^{2})$, $\mathbf{S}_{oi} = \mathbf{0}$, $\mathbf{S}_{ij} = (2\mathbf{K} - \frac{1}{2}\mathbf{e}^{\mathbf{q}}\mathbf{q}^{i} + \frac{3}{4}\mathbf{e}^{\mathbf{q}}(\mathbf{q}^{i})^{2})\mathbf{h}_{ij}$, $\mathbf{V}_{o}\mathbf{S}_{oo} = -\frac{3}{2}(\mathbf{q}^{i} + \mathbf{q}^{i}\mathbf{q}^{i}) = -3\frac{d}{dt}(\mathbf{F}^{-\frac{1}{2}}\frac{d^{2}}{dt^{2}}(\mathbf{F}^{\frac{1}{2}}))$, $\mathbf{V}_{o}\mathbf{S}_{io} = \mathbf{V}_{i}\mathbf{S}_{oo} = \mathbf{0}$, $\mathbf{V}_{o}\mathbf{S}_{ij} = -(2\mathbf{K}\mathbf{q}^{i} + \frac{1}{2}\mathbf{e}^{\mathbf{q}}\mathbf{q}^{i}\mathbf{q}^{i}) + \frac{3}{2}\mathbf{e}^{\mathbf{q}}\mathbf{q}^{i}\mathbf{q}^{i})\mathbf{h}_{ij}$, $\mathbf{V}_{k}\mathbf{S}_{ij} = \mathbf{0}$, where \mathbf{i} , \mathbf{j} , \mathbf{k} run through $\mathbf{q}^{i}\mathbf{q}^$

REMARK 1. It is easy to verify that the manifold (M^4,g) defined above is *conformally flat*, that is, its Weyl tensor W = 0. (Conformal flatness together with constancy of the scalar curvature is well-known to imply harmonicity of the curvature tensor. On the other hand, the scalar curvature is constant whenever $\delta R = 0$.)

the proof.

hand, $\nabla S \neq 0$, since $\nabla S = 0$ would mean that the non-constant positive periodic function F^2 is an eigenfunction of d^2/dt^2 . This completes

REMARK 2. One can prove ([2], Theorem 3) that every four-dimensional compact analytic Riemannian manifold with harmonic curvature, whose Ricci tensor is not parallel and has less than three distinct eigenva-

lues at any point, is covered isometrically by $S^1 \times S^3$ with a metric closely related to the one described above.

REFERENCES

- [1] J.P. Bourguignon, On harmonic forms of curvature type (pre-print).
- [2] A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, to appear in Mathematische Zeitschrift.
- [3] A. Gray, Einstein-like manifolds which are not Einstein, Geometriae dedicata, 7(1978), 259-280.