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CONFORMALLY RECURRENT INDEFINITE
METRICS ON TORI.

By Andrzej DERDZINSKI.

Let M be a manifold with a (possibly indefinite) Riemannian metric. A tensor
field S of type (p, q) on M is said to be recurrent if at any ze M such that S, # 0
there exists a covariant vector u (called the recurrence vector) which satisfies

(1) rS), = S, Qu,

I’ being the Riemannian connection. The coordinate expression for (1) is S;; x = Siju,
where we have taken (p,q) = (0,2) for simplicity of notation. A Riemannian mani-
fold is called recurrent [4]'' (Ricci-recurrent {2], conformally recurrent [1]) if .its
curvature tensor (resp. Ricci tensor, Weyl’s conformal curvature tensor) is recurrent.

Suppose we are given an open subset M of the Euclidean n-space R*, n = 4.
Let G be a function of two variables, 4 and B functions of one wvariable and ¢ a
non-zero constant. In the sequel we shall denote points of M by n-tuples (x, y, ...),
while partial differentiations will be marked by subscripts (H, = dH/dx). Define the
indefinite Riemannian metric g;; on M by

—2 if i=j=1
{(2) gi; ={expF; if i+j=n41
0 otherwise,
where the functions F; = F,,,_; are given by
Fux,y, ..0=G, )+ Ax) .,  Filx,p, ...)=G(x, ) + B(y) .
Fyx, y, ...)=G(x,)).
We adopt here the convention that Greek indices 2,p,... range over the set
{3, ....n— 2} (empty for n = 4) and that repeated indices are not to be summed

over.
The reciprocal g" of g;; is clearly of the form

(3)

2€CXP(—2F1) if i=j=n
g“: exp(—F;) if i4+j=n+1
0 otherwise.

It is now easy to verify that the only components of the Riemannian connection,
curvature tensor, Ricci tensor and Weyl’s conformal tensor, which may not vanish,
are those related to

v 1 W 2 a m-1
]u:Gz'*"Az, 12=[21=r;n='%6ya 12:-[‘12:[?.::4:"2'0:.
2 “n—1 2k
rzg-‘:Gy -+ Bv, 11,,, =—-§Gyexp(F,—F2) s [;z'—"—EGyeXP(—-F‘) .
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and
Ri210 _'ESG: » Rizin1 = %(2631: - Gi - 2G.4;) exp F,,
Ry = GG, — 26, ) exp Fy, Rysz n-1 =2 —Rygpaexp(F. — F) ,
Rizn = HGE + 2G,B, — 2G,Yexp F, , Ritnri-2 = Rypaar eXp (F1 = Fy) ,
Ry ni-1 = —Rpnexp (F; — F), Ropsnit-i= —Rypmexp(F; — F),

(l

and
Ry = (2 — MRy nreXp(—F2) , Ry; = (n — 2)Rpexp (—F)) .
R22 = (’l - 2)R122" exp (—Fl) ?

and, respectively, Cyy, = ¢(G,, — G,B, — G3). It follows now easily that Cy;;,; =
CrijnF .1 \vherever Ciijt # 0, the function F being given by

F = log|Cya) — 3G —24 - 2B .
Thus, we have proved

Theorem 1. The n-dimensional Riemannian manifold M with the metric given by
(2) and (3) is conformally recurrent.

Remark 1. 1In the above notations, let M = R" and suppose that G, A and B
are (doubly) periodic. Then it is clear that the group of translations K generated
by a suitably chosen basis of R" leaves g,;; invariant. Thus g;; determines a con-
formally recurrent indefinite metric on the n-torus T" = R"/K.

A Riemannian manifold is said to be conformally symmetric if its Weyl’s con-
formal tensor is parallel. A conformally recurrent manifold is called essentially
conformally recurrent if it is neither recurrent, nor conformally symmetric.

First examples of essentially conformally recurrent manifolds were given by
Roter in [3]. Al his examples are Ricci-recurrent and satisfy the relations

(4) Rije = Ry
and
(5) fankR;jSl.

Essentially conformally recurrent metrics with the properties just stated can also
be constructed on tori. However, as we shall show, these properties do not follow
from essential conformal recurrency.

Theorem 2. For each n >4 the n-torus T admits an essentially conformally
recurrent indefinite metric which is Ricci-recurrent and satisfies (4) and (5).

Proof. Setting in (3) G(x,))=siny, A=B=0 and ¢=1, we can define a
metric with desired properties in R*. In view of Remark I, we may project it
onto 7.

Theorem 3. For each n >4 the n-dimensional torus T* admits an essentially
conformally recurrent indefinite metric which is not Ricci-recurrent and satisfies neither
(4) nor (5).

Proof. In view of Remark 1 it is sufficient to define the metric g¢;; in R" by
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(2) and (3) with G(x, y) =sinx+ 2siny, A=B8B=0, :=1. It is now easy to
verify that

Ry, ofR) #: Ryy 2[Ry, Ry R,y — (R12)2 #=0, Ryy2 # Rys

at some points, which implies our assertion.
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