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The motion of vortex sheets is susceptible to the onset of the Kelvin-Helmholz instability.

There is now a large body of evidence that the instability leads to the formation of a

curvature singularity in finite time. Vortex blob methods provide a regularization for

the motion of vortex sheets. Instead of forming a curvature singularity in finite time,

the curves generated by vortex blob methods form spirals. Theory states that these

spirals will converge to a classical weak solution of the Euler equations as the blob size

vanishes. This theory assumes that the blob method is the result of a convolution of

the sheet velocity with an appropriate choice of a smoothing function. We consider four

different blob methods, two resulting from appropriate choices of smoothing functions

and two not. Numerical results indicate that the curves generated by these methods

form different spirals, but all approach the same weak limit as the blob size vanishes. By

scaling distances and time appropriately with blob size, the family of spirals generated

by different blob sizes collapses almost perfectly to a single spiral. This observation is the

next step in developing an asymptotic theory to describe the nature of the weak solution

in detail.
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1. Introduction

Originally, vortex sheets were viewed as models for thin shear layers based on physical

intuition. This view has been verified formally by Moore (1978), Baker & Shelley (1990),

Dhanak(1994a), and Dhanak (1994b) who show that a vortex sheet is the limit as the

thickness of a shear layer vanishes. The assumptions underlying this work are those

normally associated with a long wave limit, so, perhaps, it is not too surprising that

vortex sheet motion suffers from the spontaneous appearance of singularities as often

happens in long wave models. See Cowley, Baker & Tanveer (1999) for both a review

and a consistent asymptotic theory that supports the evidence for the formation of a

curvature singularity on a vortex sheet in finite time ts. Caflisch & Orellana (1989)

establish that singular solutions are closely associated with the ill-posedness of vortex

sheet motion. Results from standard applications of numerical techniques to vortex sheet

motion have been bedevilled by the onset of irregular motion of the points representing

the sheet, driven by the ill-posed nature of vortex sheet motion. Hopes that vortex sheets

could be used reliably as models for thin shear flows, such as wakes shed by bodies, were

damped, if not dashed.

The introduction of vortex blob methods by Chorin & Bernard (1973) and Kuwahara

& Takami (1973) opened up new directions for the study of vortex sheet motion. The

points representing the vortex sheet are replaced by vortices of prescribed (and fixed)

shape. Numerical calculations show regular motion for the centers of the blobs even after

ts and, what’s more, the motion shows the formation of a spiral, the expected physical

behavior. In particular, Krasny (1986b) uses a special form of the vortex blob method to

calculate the roll up of a periodic vortex sheet which results from the classical Kelvin–

Helmholtz instability. However, details of the spiral structure depend on the choice of

the size of the vortex blob, measured by a parameter δ. Further, there is no direct link
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between the choice of δ and some physical regularization such as the thickness of the

shear layer or the presence of viscosity. Comparisons with direct numerical simulations

of the viscous motion by Tryggvason, Dahm, & Sbeih (1991) and inviscid layers of small

thickness by Baker & Shelley (1990) show good agreement away from the spiral center.

Liu & Xin (1995) have placed the use of blob methods for vortex sheet motion on

a sound footing by proving that in the limit of δ → 0 the vortex sheet approaches a

classical weak solution to the Euler equations. The existence of a weak solution when

the vortex sheet strength is of one sign has been established by Delort (1991) and Majda

(1993). Of course, the weak solution is unlikely to be unique and will depend on the

choice of regularization. The proof of Liu & Xin (1995) uses several assumptions, the

one of interest here is that the blob method is the result of a convolution with a suitably

defined smoothing function. For example, Krasny (1987) uses an appropriate smoothing

function, which has an algebraic decay, to study roll-up of trailing vortices in the wake

of an aircraft. Curiously, Krasny (1986b) does not use the periodic version of this blob

method but introduces a modified version that has a simple form for periodic motion.

The underlying smoothing function is not identified. We derive the smoothing function

in this article, and show that it does not satisfy the sufficient conditions of Liu & Xin

(1995) for convergence to a weak solution. Nevertheless, numerical results still show

apparent convergence as δ → 0. Perhaps the sufficient conditions of Lui & Xin (1995)

are not necessary.

Beale & Majda (1985) suggest a family of blob methods based on the choice of a

Gaussian profile for the smoothing function multiplied by a specific polynomial whose

order dictates the degree of accuracy in the approximation. The leading member of this

family satisfies the assumptions of the theory of Liu & Xin (1995), and thus provides a
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different blob method which will converge to a weak solution. The interest here, then, is

whether different blob methods give different weak solutions.

We consider four different blob methods: two of them are convolutions with an appro-

priate smoothing function, and two are regularizations without a clear connection to a

convolution with an appropriate smoothing function. Numerical results indicate that the

curves form spirals that are different, but approach the same weak limit as δ → 0 for all

four cases. For times before ts, the curves calculated with different δ approach the vortex

sheet linearly in δ. After ts, the situation is different, For points on the curves away from

the spiral region, the convergence is linear, but in the spiral region the convergence is

different.

Animations of the motion of the spirals suggest they rotate uniformly, and by tracking

the angle of the tangent at the spiral center we observe a linear growth in time with the

rate of growth dependent on δ. By picking a specific angle θ, we may compare spirals

determined with different δ’s geometrically. Of course, the time T it takes the tangent at

the spiral center to reach θ depends on δ: the numerical results indicate this dependency

is linear for small enough δ. Consequently, by an appropriate scaling in time we may

coordinate all spirals with different δ’s to have the same angle for the tangents at their

centers. By a further rescaling of distances by δ, the spirals collapse almost perfectly

onto one spiral. The results suggest that the spiral may be expressed in a simple form, at

least in the limit of vanishing δ, and this form must satisfy a specific version of the vortex

sheet equation of motion. However, challenges remain on how to connect the solution to

the motion of the vortex sheet outside the spiral.
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2. Mathematical Preliminaries

For a comprehensive, detailed treatment of vorticity and the streamfunction we refer

the reader to Majda and Bertozzi (2002). Here we simply provide an overview with an

emphasis on the origin of blob methods.

The velocity u = (u, v) generated by a vorticity distribution ω in two-dimensional flow

is given in terms of the streamfunction ψ as

(u, v) =

(

∂ψ

∂y
, −∂ψ

∂x

)

, (2.1a)

where

ψ(x, y) = −
∫ ∞

−∞

∫ ∞

−∞

ω(x′, y′)G(x − x′, y − y′) dx′ dy′ . (2.1b)

Here G is the free-space Green’s function for Laplace’s equation

∇2G(x, y) = δ(x) δ(y) (2.1c)

and is given as

G(x, y) =
1

4π
ln
(

x2 + y2
)

. (2.1d)

The velocity may be expressed directly in terms of the vorticity by differentiating (2.1b),

leading to integrals containing derivatives of G. These integrals are singular and must

be taken in the principal-value sense. These results are valid even when the vorticity is

itself singular, for example, when the vorticity corresponds to a vortex sheet, the case of

interest in this study. Then, ω = γ(s) δ(n) where n is the normal to the sheet and s the

arclength along it from some reference point.

Vortex sheets form curvature singularities in finite time where derivatives of the velocity

become singular. One way to avoid the formation of singularities is to convolute the

velocity with a cutoff function φδ that ensures smooth velocities (uδ , vδ) and so regularizes
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the motion of the sheet. Specifically,

uδ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

u(x′, y′)φδ(x − x′, y − y′) dx′ dy′

=

∫ ∞

−∞

∫ ∞

−∞

u(x− x′, y − y′)φδ(x
′, y′) dx′ dy′ , (2.2a)

vδ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

v(x′, y′)φδ(x− x′, y − y′) dx′ dy′

=

∫ ∞

−∞

∫ ∞

−∞

v(x− x′, y − y′)φδ(x
′, y′) dx′ dy′ . (2.2b)

From (2.2a) and (2.2b) we see that we may write the velocity in terms of a smoothed

streamfunction

ψδ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

ψ(x − x′, y − y′)φδ(x
′, y′) dx′ dy′ . (2.3a)

By substituting (2.1b) into (2.3a), we may express the smoothed streamfunction in terms

of the vorticity and a smoothed Greens function Gδ :

ψδ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

ω(x′, y′)Gδ(x− x′, y − y′) dx′ dy′ , (2.3b)

Gδ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

G(x − x′, y − y′)φδ(x
′, y′) dx′ dy′ . (2.3c)

One of the simplest ways to connect Gδ and φδ is to substitute Gδ into Laplace’s equation

∇2Gδ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

δ(x − x′) δ(y − y′)φδ(x
′, y′)dx′ dy′

= φδ(x, y) . (2.4)

While many choices of φδ will regularize the motion of the curve, the desirable choices

are those that ensure the curve approaches a weak solution to Euler’s equations as δ →

0. According to Lui & Xin (1995), the choice φδ(x, y) = φ(x/δ, y/δ)/δ2 will ensure

convergence to a weak limit if φ(x, y) satisfies the following conditions:

(i) φ > 0 has continuous second-order derivatives and decays at least as fast as 1/|x|3,

(ii)

∫ ∞

−∞

∫ ∞

−∞

φ(x, y) dx dy = 1 , (2.5a)
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(iii)

∫ ∫

|x|<1

φ(x, y) dx dy ≥ 1

2
. (2.5b)

Krasny’s (1987) choice

Gδ(x, y) =
1

4π
ln
(

x2 + y2 + δ2
)

(2.6a)

which arises from the smoothing function

φδ(x, y) =
1

π

(

δ

x2 + y2 + δ2

)2

, (2.6b)

is a good example that satisfies the conditions to ensure convergence to a weak limit.

Another choice is that of Beale & Majda (1985)

Gδ(x, y) =
1

4π

∫ x2+y2

0

1 − exp(−r/δ2)
r

dr , (2.7a)

which arises from the smoothing function

φδ(x, y) =
1

πδ2
exp

(

− (x2 + y2

δ2

)

. (2.7b)

2.1. Periodic Blobs

Now let’s turn our attention to velocities that are 2π-periodic in x. Obviously, the

vorticity ω will also be 2π-periodic. With the additional restriction that v has no mean

value, the streamfunction ψ will also be 2π-periodic. Thus we may take (2.1b) and split

the range of integration in x into an infinite number of 2π intervals.

ψ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

ω(x′, y′)G(x − x′, y − y′) dx′ dy′

=

∫ ∞

−∞

∞
∑

k=−∞

∫ 2(k+1)π

2kπ

ω(x′, y′) G(x − x′, y − y′) dx′ dy′ . (2.8a)

Now introduce a change of variable x′ = ξ + 2kπ, so

ψ(x, y) =

∫ ∞

−∞

∞
∑

k=−∞

∫ 2π

0

ω(ξ + 2kπ, y′)G(x− ξ − 2kπ, y − y′) dξ dy′

=

∫ ∞

−∞

∫ 2π

0

ω(x′, y′)Gp(x − x′, y − y′) dx′ dy′ , (2.8b)
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where

Gp(x, y) =
∞
∑

k=−∞

G(x+ 2kπ, y) (2.8c)

is a periodic Greens function that can be calculated by the method of images. Note that

∇2Gp(x, y) = δ(y)

∞
∑

k=−∞

δ(x− 2kπ) . (2.8d)

If we convolute a periodic streamfunction ψ with a cut-off function φδ , we obtain a

periodic smoothed streamfunction ψδ from (2.3a). When we substitute (2.8b) into (2.3a),

we must replace (2.3b) and (2.3c) with

ψδ(x, y) =

∫ ∞

−∞

∫ 2π

0

ω(x′, y′)Gpδ(x − x′, y − y′) dx′ dy′ , (2.9a)

Gpδ(x, y) =

∫ ∞

−∞

∫ 2π

0

Gp(x − x′, y − y′)φδ(x
′, y′) dx′ dy′ . (2.9b)

By substituting (2.8c) into (2.9b), we may view the derivation of a periodic smoothed

kernel as the convolution with a periodic cut-off function

Gpδ(x, y) =

∫ ∞

−∞

∫ 2π

0

G(x − x′, y − y′)φpδ(x
′, y′) dx′ dy′ , (2.10a)

where

φpδ(x, y) =
∞
∑

k=−∞

φδ(x + 2kπ, y) . (2.10b)

Finally, we note the connection between Gpδ and φpδ :

∇2Gpδ(x, y) =

∫ ∞

−∞

δ(y − y′)

∫ 2π

0

∞
∑

k=−∞

δ(x− x′ + 2kπ)φδ(x
′, y′) dx′ dy′

= φpδ(x, y) . (2.10c)

There is a problem with these results in that the sum in (2.8c) does not converge. One

way past this difficulty is to take the sum of the derivatives of G, and then integrate

the result. Remember that it is the derivatives of G that appear in the final form of the

integrals that determine the velocities. To illustrate the procedure, consider the sum of
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the free-space Greens function (2.1d). Take the x-derivative of (2.8c)

∂Gp

∂x
=

1

2π

∞
∑

k=−∞

x+ 2kπ

(x + 2kπ)2 + y2
. (2.11a)

This sum may be evaluated in closed form; see Appendix A for details. By using (A 12),

∂Gp

∂x
=

1

4π

sin(x)

cosh(y) − cos(x)
. (2.11b)

The y-derivative of (2.8c)

∂Gp

∂y
=

1

2π

∞
∑

k=−∞

y

(x+ 2kπ)2 + y2
(2.12a)

may be evaluated by using (A 8)

∂Gp

∂y
=

1

4π

sinh(y)

cosh(y) − cos(x)
. (2.12b)

These results suggest the choice

Gp =
1

4π
ln (cosh(y) − cos(x)) . (2.12c)

Now let’s consider the periodic extension of Krasny’s smoothing function (2.6b). First,

we determine Gpδ by the method of images, and then take its derivatives:

∂Gpδ

∂x
=

1

2π

∞
∑

k=−∞

x+ 2kπ

(x+ 2kπ)2 + y2 + δ2

=
1

4π

sin(x)

cosh
√

y2 + δ2 − cos(x)
, (2.13a)

∂Gpδ

∂y
=

1

2π

∞
∑

k=−∞

y

(x+ 2kπ)2 + y2 + δ2

= − 1

4π

y
√

y2 + δ2
sinh

√

y2 + δ2

cosh
√

y2 + δ2 − cos(x)
. (2.13b)

These results suggest the choice

Gpδ =
1

4π
ln
(

cosh
√

y2 + δ2 − cos(x)
)

(2.13c)
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which corresponds to the periodic smoothing function

φpδ =
1

4π

δ2

(y2 + δ2)3/2











√

y2 + δ2
[

cos(x) cosh
√

y2 + δ2 − 1
]

[

cosh
√

y2 + δ2 − cos(x)
]2

+
sinh

√

y2 + δ2
[

cosh
√

y2 + δ2 − cos(x)
]

[

cosh
√

y2 + δ2 − cos(x)
]







. (2.13d)

While the form of Gpδ looks simple, it results in somewhat complicated expressions

for the derivatives (2.13). Krasny (1986) introduces instead the much simpler form

Gpδ = − 1

4π
ln
(

cosh y − cos(x) + δ2
)

(2.14a)

which corresponds to the periodic smoothing function

φpδ =
δ2

4π

cosh(y) + cos(x)

(cosh(y) − cos(x) + δ2)
2 . (2.14b)

The underlying smoothing function that generates this periodic version is derived in

Appendix B:

φδ =
δ2

π

[

α(L2 − x2)

(L2 + x2)2
+

βL

L2 + x2

]

, (2.14c)

where

α =
cosh(y) + cosh(L)

2 sinh2(L)
, (2.14d)

β =
1 + cosh(y) cosh(L)

2 sinh3(L)
, (2.14e)

and

exp(−L) = cosh(y) + δ2 −
√

(cosh(y) + δ2)2 − 1 . (2.14f )

For small values of x, y and δ, (2.14c) takes the form of (2.6b), but the far-field behavior

is very different:

φδ ≈ δ2

π
e−|y| |y|(x2 + y2) + 2((y2 − x2)

(x2 + y2)
2 . (2.15)

The form of (2.14c) does not satisfy the property φδ = φ(x/δ, y/δ)/δ2. There is no current

theoretical guarantee that this choice will converge to a weak limit. We will provide
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numerical evidence that the results of using (2.13c) and (2.14a) are very similar, and it

is therefore likely that the sufficient conditions of Lui & Xin (1995) are not necessary for

convergence to a weak limit.

We are unaware of any closed forms for the sums of (2.7). Fortunately, the sums can be

evaluated accurately by keeping only the terms k = −1, 0, 1 because of the rapid decay

of the Gaussians for large arguments.

2.2. Vortex Sheet Motion

A vortex sheet is a singular distribution of vorticity along a curve. Specifically, ω =

γ(p) δ(n) where n is the normal to the sheet and p is a Lagrangian label for a marker on

the sheet given in parametric form x(p, t) = (x(p, t), y(p, t)). The motion of this marker

may be obtained by differentiating (2.1b) and setting its velocity to be that of the average

velocity determined by (2.1a) on the sheet. Details are available in Majda and Bertozzi

(2002). As a consequence of these steps,

∂x

∂t
(p, t) =

∫ ∞

−∞

γ(p′)K (x(p, t),x(p′, t)) dp′ , (2.16a)

where

K(x,x′) =

(

−∂G
∂y

(x− x′, y − y′) ,
∂G

∂x
(x− x′, y − y′)

)

. (2.16b)

For periodic vortex sheet motion, we have x(p+ 2πk) = 2πk+x(p), y(p+ 2πk) = y(p)

and γ(p + 2πk) = γ(p). We may replace the range of integration in (2.16a) by a 2π

interval, and use the periodic version of G (2.12c) in (2.16b) which gives

K(x,x′) =
1

4π

(

− sinh (y − y′), sin (x− x′)
)

cosh (y − y′) − cos (x− x′)
. (2.17)

Vortex-blob methods are a consequence of replacing G by Gδ . We make four choices.

First, we use (2.13c) to obtain

KBP(x,x′) =

(

− (y − y′)
√

(y − y′)2 + δ2
sinh

√

(y − y′)2 + δ2, sin (x− x′)

)

/D , (2.18a)
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where

D = 4π
[

cosh
(

√

(y − y′)2 + δ2
)

− cos(x− x′)
]

. (2.18b)

This form is rather cumbersome and expensive to evaluate, but it conforms to the

assumptions used by Lui & Xin (1995) to prove convergence of the vortex blob method

and the existence of a weak limit.

Second, we use Krasny’s choice (2.14a) which leads to

KK(x,x′) =
1

4π

(

− sinh(y − y′), sin(x − x′)
)

cosh(y − y′) − cos(x − x′) + δ2
. (2.19)

The other two smoothed kernels come from the periodic version of the first member of

the Beale & Majda family (1985). By using (2.7a) with (2.8c),

KBM(x,x′) =
1

4π

(

− sinh(y − y′), sin(x− x′)
)

cosh(y − y′) − cos(x− x′)
−

2

∞
∑

k=−∞

(x− x′ + 2πk) + i(y − y′)

(x− x′ + 2πk)2 + (y − y′)2
×

exp
[

−
(

(x− x′ + 2πk)2 + (y − y′)2
)

/δ2
]

. (2.20)

Because of the rapid decay of the Gaussian for large arguments, only three terms in the

sum, k = −1, 0, 1, are needed for an accurate evaluation of the sums. The obvious way to

avoid the sums is to incorporate Krasny’s idea expressed in (2.19) into the kernel (Beale,

private communication)

KBMK(x,x′) =
1

4π

(− sinh(y − y′), sin(x− x′))

cosh(y − y′) − cos(x− x′)
×

{

1 − exp
[

−2
(

cosh(y − y′) − cos(x− x′)
)

/δ2
]

}

. (2.21)

Notice that a factor of two has been inserted into the argument of the Gaussian. This

factor of two ensures that the Gaussians in (2.20) and (2.21) approach the same form

as p′ aprroaches p. Unfortunately, we do not know whether the kernel (2.21) results

from the convolution with a smooth cut-off function that satisfies the assumptions in the

theory of Liu & Xin (1995). On the other hand, (2.20) does.
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3. Numerical Results

All four choices of the vortex-blob methods described in the previous section are used

to calculate the roll-up of a spiral that forms as a consequence of Kelvin-Helmholtz insta-

bility. The first objective is to compare the spirals and determine whether they approach

the same weak limit as δ → 0. Subsequently, we seek to determine the dependency of

the structure of the spirals on δ. It is the precise nature of the scalings of the structure

with δ that is needed to form an asymptotic theory that will describe the nature of the

weak solution as δ → ∞.

3.1. Numerical Implementation

There are two numerical tasks to perform in calculating the evolution of a vortex sheet

using (2.16a) with smoothed kernels. The first is to calculate the integral numerically.

This is done using the spectrally-accurate trapezoidal rule introduced by Baker (1983)

and analyzed subsequently by Sidi and Israeli (1988). The second task is to evolve the

vortex sheet position in time. The fourth-order Runge-Kutta method can be used to

obtain the position for the first four time steps. For all others, the fourth-order Adams-

Bashforth method is used. More details are available in Pham (2001).

We use Krasny’s (1986b) initial condition which is a small perturbation of a flat vortex

sheet by the sinusoidal perturbation that grows unstably.

x(p, 0) = p+
2π

100
sin p , y(p, 0) = − 2π

100
sin p . (3.1)

The factors of 2π are present because Krasny uses a periodicity of 1 whereas we use

a periodicity of 2π. Otherwise, (3.1) is exactly the same as Krasny’s (1986b) choice.

We run our code up to a final time T = 2π which is well past the singularity time ts,

estimated by Krasny (1986a) to be 3/8×(2π), where the vortex sheet develops a curvature

singularity without the δ regularization. Typical vortex sheet locations are shown Figure
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Figure 1. The position of the sheet at two times: t = 1.005 (dashed) and t = 6.283 (solid).

Also shown are the locations of the Lagrangian points p = π/4 (×) and p = 3π/4 (◦).

1 at two different times, t = 0.16 × (2π) = 1.005 which is before the singularity time,

and t = 2π = 6.283 which is well past the singularity time. Although the vortex sheet

locations are shown for the specific choice δ = 0.1, the results are typical in that the

sheet evolves slowly at first then rapidly forms a spiral which spins around creating more

and more arms. The questions we explore here concern the comparisons of the spirals

generated by different δ-regularizations, and the nature of the spiral as δ → 0. In the

former regard, we show also the locations of two Lagrangian points defined by p = π/4

and p = 3π/4. These points will be used later to assess the convergence in δ.

The accuracy of the vortex sheet location is controlled in the following way. Let

the smoothing parameter δ be fixed. Let xi(N,4t) be the marker locations for the

vortex sheet at t = 2π using N points and a time step of 4t. Our code computes

xi(N,4t), x(s)
i (2N,4t), and x

(t)
i (N, 0.54t). Then the comparison between x and x(s),

and between x and x(t) are done pointwise. If the errors Es = maxi,timesteps |xi − x
(s)
i |

and Et = maxi,timesteps |xi − x
(t)
i | are within some tolerance ε, then for all smoothing
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δ N 4t/(2π) Es Et trestart

0.1 1024 0.00125 1.5 × 10−6 1.4 × 10−5

0.09 1024 0.00125 1.4 × 10−5 3.1 × 10−5

0.08 1024 0.00125 8.9 × 10−5 7.2 × 10−5

0.07 2048 0.000625 3.2 × 10−6 6.6 × 10−6

0.06 2048 0.000625 6.4 × 10−5 2.0 × 10−5

0.05 4096 0.000625 3.9 × 10−5 7.4 × 10−5

0.04 2048 0.0003125 3.9 × 10−13 4.5 × 10−12 2.199

4096 0.0003125 2.9 × 10−4 2.0 × 10−5

0.03 4096 0.00015625 1.1 × 10−14 8.1 × 10−11 1.319

8192 0.00015625 7.7 × 10−13 2.4 × 10−10 2.073

16384 0.00015625 4.3 × 10−3 5.1 × 10−2

Table 1. Measuring the spatial error Es and temporal error Et as a function of N and 4t.

parameters greater then δ, N markers with a time step 4t can be used with an error

tolerance less then ε. Table 1 shows the required resolution to achieve the errors shown

for KBP.

It is clear that as δ → 0, it becomes increasingly more difficult to obtain good accuracy.

We introduce two important modifications to help achieve high accuracy. First, we note

that the accuracy deteriorates rapidly for times beyond the formation of a spiral. Thus

we split the calculations into subintervals of time and increase the resolution as needed

for later times. For example, we ran our code for δ = 0.4 up to t = 2.199 with 2048

points and a time step of 0.0003125× 2π with exceptional accuracy. After that time the

accuracy deteriorates significantly. We restart the calculation at t = 2.199 with more

points by simply using interpolation based on a Fourier series. In this way, we achieve

the accuracy shown in Table 1. This strategy is repeated for the smaller choices of δ.
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Second, we find that round-off errors become increasingly significant. While the in-

clusion of δ regularizes the integrand of the Biot-Savart integral, the integrand suffers

catastrophic cancellation for contributions on either side of p′ = p – see (2.16) and

(2.18a). The remedy is to subtract a suitable multiple of the integral

∫ 2π

0

[sin (x(p) − x(p′)) xp(p
′) + F (p, p′) (y(p) − y(p′)) yp(p

′)]
dp′

D(p, p′)
, (3.2)

where

f(p, p′) =
sinh

√

(y(p) − y(p′))2 + δ2
√

(y(p) − y(p′))2 + δ2

and D is given in (2.18b). The integrand now remains of one sign and has a double root

at p′ = p. Further, the integrand does not become large for small δ.

Lastly, application of the Krasny spectral filter prevents any growth of round-off errors:

the filter level is set at 10−15.

3.2. Convergence To A Weak Limit

All four smoothed kernels show the formation of a spiral after ts, centered at the point

(π, 0). The spirals are similar but differ in detail. The first task, then, is to establish

whether these spirals tend to the same spiral as δ → 0. We follow Krasny (1986b) in

choosing the locations where the spiral arms cross the x-axis as a measure of the spirals.

Specifically, we seek the intersection locations x = sj(δ) along the segment (π, 2π)×{0}.

The set S(δ) with m(δ) elements can be ordered from large to small

s1(δ) > s2(δ) > . . . > sm(δ)(δ).

With decreasing δ, the spiral has more and more spiral arms. Thus, the number of

intersection points m(δ) is an increasing function with decreasing δ. The objective, then,

is to study

lim
δ→0

sj(δ)
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Figure 2. The location of the first outer arm s1(δ) for all four methods as δ is varied.

and to asses whether the limit is the same for all the kernels.

The numerical data consists of the set { (xj , yj) : 0 ≤ j ≤ N } where xj = x(j4p),

yj = y(j4p) and 4p = 2π/N . The functions x(p) − p and y(p) are both odd functions

of p. Smooth functions x̃(p) − p and ỹ(p) can be constructed as a sum of sines with the

coefficients given by the discrete Fourier transform. Then, the intersection point si(δ)

can be determined by finding the roots of ỹ(p). This task is carried out numerically by

Newton’s method once the interval in which yj changes sign has been located. The first

guess for Newton’s method is the midpoint of the interval.

In Figure 2, we plot s1(δ) at t = 2π for all four kernels. The results suggest strongly

that the outer arms all tend to the same limit as δ → 0 but at different rates. The rates

clearly depend on the form of the cutoff function. For the two kernels associated with the

Gaussian smoothing function the rates are very close. The reason is that the forms are

similar as p′ approaches p: the insertion of a factor 2 in the argument of the exponential
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Figure 3. A comparison of s1(δ) for KBM and KBMK.

of KBMK (2.21) guarantees this since

2
cosh(y − y′) − cos(x − x′)

δ2
≈ (x− x′)

2
+ (y − y′)

2

δ2
(3.3a)

when x′, y′ are close to x, y. The close agreement of the results is evident in the expanded

view of the curves in Figure 3.

Similarly, we may compare the expansions of the denominators of the smoothed kernels

KBP and KK. From (2.18b) and (2.19),

[

cosh
(

√

(y − y′)2 + δ2
)

− cos(x− x′)
]

≈ (x− x′)
2

+ (y − y′)
2

+ δ2

2
(3.3b)

cosh(y − y′) − cos(x− x′) + δ2 ≈ (x− x′)
2

+ (y − y′)
2

+ 2δ2

2
(3.3c)

The forms match if the δ in KK is replaced by
√

2 δ. When δ is rescaled, the curve for

KK falls very closely to that of KBP. Unfortunately, there is no obvious way to connect

the δ’s in KBP and KBM.

In Figures 4 and 5, we show the results for the second and third arm respectively. They

also appear to converge to the same limit as δ → 0, adding further evidence that the weak
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Figure 4. The location of the second outer arm s2(δ) for all four methods as δ is varied.
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Figure 5. The location of the third outer arm s3(δ) for all four methods as δ is varied.

limit is the same. The results for the Gaussian kernels are again very close. The results

also illustrate that the spirals for the Gaussian kernels are much more tightly wound for

the same choice of δ. For example, when δ = 0.2, KK produces one arm of the spiral;
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KBP produces two arms; while KBM or KBMK produce at least three arms. Presumably,

the short-range influence of the Gaussian smoothing functions, in contrast to the long-

range influence of the algebraic decay in the other smoothing functions, produces the

more tightly wound spirals.

Clearly visible in Figures 4 and 5 is a small oscillatory variation in the curves for the

Gaussian kernels. By watching animations of the motion of the spirals the explanation

becomes clear. As the spiral center turns and creates a new arm, the remaining arms

pulse outwards by a small amount along a radial ray. The larger deviation occurs on

the spiral arms nearest the center. Overall, the appearance is that of a travelling wave

synchronized on all the arms and rotating uniformly around the spiral center. An impor-

tant consequence of this wave is that its presence for the choice of kernels KK and KBP,

while not easily noticeable, is sufficient to ruin any effort to fit the locations of the arms

to a polynomial in δ. Later, we will demonstrate the data matches to a special form. In

the meantime, we will confirm that before the singularity time or outside of the spiral

region, the sheet does converge linearly in δ.

To that end, consider the locations of the Lagrangian markers p = π/4 and p = 3π/4

shown in Figure 1. In Table 2, we give the locations of the markers as δ is decreased at a

time t = 0.16× (2π) = 1.005 before ts. We include the location when δ = 0.0 which must

be computed in a special way to avoid the rapid growth of round-off errors as pointed

out by Krasny (1986a). He introduced a spectral filter that sets to zero all amplitudes in

the Fourier spectrum that fall below a certain level. We also use that filter with N = 512

points and a timestep of 0.000625×(2π). Simultaneously, we can fit the Fourier spectrum

to that associated with a branch point singularity in the complex p-plane. Our procedure

follows that suggested by Shelley (1992) and Cowley et. al. (1999). By extrapolating

the locations of the singularity in δ, we predict the singularity reaches the real axis, and
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p = π/4 p = 3π/4

δ x y x y

0.10 0.8540464 -0.0693656 2.430926 -0.0709793

0.09 0.8541808 -0.0696088 2.431211 -0.0713376

0.08 0.8543159 -0.0698536 2.431500 -0.0717026

0.07 0.8544515 -0.0701002 2.431796 -0.0720746

0.06 0.8545877 -0.0703484 2.432097 -0.0724537

0.05 0.8547244 -0.0705983 2.432403 -0.0728402

0.04 0.8548617 -0.0784975 2.432716 -0.0732343

0.03 0.8549995 -0.0711029 2.433035 -0.0736364

0.02 0.8551378 -0.0713575 2.433361 -0.0740466

0.01 0.8552766 -0.0716138 2.433694 -0.0744651

0.00 0.8554159 -0.0718716 2.434033 -0.0748924

Table 2. Location of the Lagrangian markers as δ is varied

thus becomes physical, at a time ts = 2.30. This time is slightly earlier than Krasny’s

(1986a) time t = 2.36 based on when the tangent of the sheet first becomes vertical.

The data in Table 1 for δ 6= 0 falls almost perfectly on straight lines:

x(π/4) = 0.8554− 0.0137 δ (3.4a)

y(π/4) = −0.0718 + 0.0250 δ (3.4b)

x(3π/4) = 2.4340− 0.0307 δ (3.4c)

y(3π/4) = −0.0748 + 0.0387 δ (3.4d)

Moreover, their intercepts agree very closely to the values calculated with δ = 0.

For the later time t = 2π = 6.283, we have no sheet location for δ = 0, but we may

still determine whether the coordinates fall on straight lines in δ. This is true for the

Lagrangian marker at p = π/4, but not true for the one at p = 3π/4. In Figure 6 we
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Figure 6. Variation of the x-coordinates with δ for the two markers p = π/4 (×) and

p = 3π/4 (◦). Also shown is the straight line fit to the data for p = π/4.

show the variation of the x-coordinate of the markers p = π/4 and p = 3π/4 with δ. A

straight line fit of the data for p = π/4 shows that it falls very closely to a straight line,

whereas the data for p = 3π/4 isn’t close to a straight line at all.

Our results show that even beyond the singularity formation time regions of the sheet

well away from the spiral still converge linearly in δ. On the other hand, the behavior for

markers inside the spiral region is different. The way forward is to note that the center

of the spiral appears to be in solid body rotation. To confirm this behavior, we study

the evolution of the tangent at the the spiral center (p = π). It is easier to display the

results as the time Tδ taken to reach the angle θ. The results are shown in Figure 7 for

a range of choices in δ. The numerical results are displayed as a series of symbols placed

at regular spacings in time. Quite remarkable is the clear indication of a linear relation

between Tδ and θ. We have included the best straight line fit

Tδ = a(δ) + b(δ)θ (3.5)

in the range 3 < θ < 40 for each choice of δ and they are displayed as straight lines.
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Figure 7. Time as a function of the sheet angle at the center for δ ranging from 0.01 to 0.10

in steps of ∆δ = 0.1; δ = 0.1 (+), δ = 0.01 (O).

The fits are extremely accurate with a deviation less then 10−4. Also noticeable is the

tendency for the angle to vary very rapidly in time for the smaller values of δ. This rapid

variation of the angle means many turns of the spiral form very quickly.

The next stage in understanding the limit δ → 0 is to consider the dependency of the

slope b(δ) and intercept a(δ) in the straight line fit (3.5). We show the intercept and

slope in Figure 8 for the range in δ given in Figure 7. We also show the least squares fit

to a cubic polynomial:

a = 2.387 + 16.0 δ − 99.06 δ2 + 379.6 δ3 (3.6a)

b = −0.00044 + 0.9856 δ+ 3.231 δ2 − 7.386 δ3 (3.6b)

The accuracy of these form fits is difficult to assess since they have been applied to data

that is already the consequence of a straight line fit. The cubic fit to b appears reliable

since the cubic term is small over the range in δ. Unfortunately, all terms are important

for the cubic fit to a for values of δ ≈ 0.1. However, the visible comparison afforded in

Figure 8 is very good.
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Figure 8. The intercept a (×) and slope b (◦) as functions of δ. The solid curves are the least

squares fit to a cubic.

One notes that the constant 0.00044 in the cubic fit to b is much smaller in magnitude

than the other three constants in the cubic. Further, the impression gained from the

curves in Figure 7 is that the slope is becoming horizontal as δ → 0. We assume,

therefore, that the constant term in b should really be zero. If this is true, (3.5) should

be written as

Tδ = 2.387 + 16.0 δ + . . .+ (0.9856 δ+ 3.231 δ+ . . .) θ (3.7)

or more appropriately when δ is small

τ =
t− 2.387

δ
= 16.0 + 0.9856 θ (3.8)

This relation tells us clearly that to study the geometric similarity in the spirals (same

θ), we must scale time to keep τ fixed. The origin of τ is t = 2.387 which is very close to

estimates for the singularity time ts = 2.356 by Krasny (1986a) and ts = 2.30 by us.

Unfortunately, (3.8) proves inadequate to determine the time at which spirals generated

with δ in the range (0.01, 0.1) will have the same angle θ at their centers because higher
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Figure 9. Vortex sheet locations with δ varying from 0.07 to 0.1 in steps of 0.01. Times are

given in the text.

order effects in δ as indicated in (3.6) are important. Instead, we use the form fit (3.5) to

determine the time it will take for the spiral to reach an angle θ = 5π at its center. For

each choice of δ the time is different: in particular, for δ = 0.1, t = 5.3061; for δ = 0.9,

t = 5.0153; for δ = 0.08, t = 4.7249; for δ = 0.07, t = 4.4370; for δ = 0.06, t = 3.8638;

for δ = 0.04, t = 3.5738; and for δ = 0.02, t = 2.9956. We display the results in Figure 9

for a limited range in choices for δ simply to maintain clarity in the Figure. Otherwise,

the curves overlap and the pattern in the results is obscured.

The striking feature of the locations in Figure 9 is that they appear to be evenly spaced.

This suggests that the spiral should be scaled according to

x̂(p) =
x(p) − π

δ
and ŷ(p) =

y(p)

δ
(3.9)

We show the consequences of this rescaling in Figure 10. The collapse onto a single spiral

is almost perfect. Outside the spiral region, the curves don’t overlap but that is expected.

Recall that Lagrangian points outside the spiral region converge linearly in δ when their

locations are taken at the same time – see Figure 6. This pattern will be broken when
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Figure 10. Rescaled vortex sheet locations for δ = 0.02, 0.04, 0.06, 0.08, 0.1. Times are given

in the text.

locations are chosen at different times, as is the case here. On the other hand, the lack of

linear convergence for Lagrangian points inside the spiral region can now be understood

as the consequence of choosing the locations at the same time instead of the scaled times

used here. To pursue this point further, we show the y-coordinate of the vortex sheet as

a function of the Lagrangian parameter p in Figure 11 for the cases shown in Figure 9.

We have shifted the Lagrangian parameter so that it is centered at the spiral center and

we have zoomed onto the region of the spiral. The oscillatory pattern in the y-coordinate

illustrates the turns of the spiral. The height of the oscillations reflect the scaling in δ

given in (3.9), but what is also apparent is a uniform shift in the location of the peaks

of the oscillation. Clearly, the Lagrangian variable should also be scaled,

p̂ =
p− π

δ
. (3.10)

The results of the scaling, shown in Figure 12, are less impressive than the scaled spirals

in Figure 10. There remains a small non-uniform spacing between the curves. There are

several possible explanations for the spacing in the curves, the most obvious being that
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Figure 11. The y-coordinate of the vortex sheet as a function of the Lagrangian variable p for

the same cases as in Figure 9.

p− π should be expressed in a power series similar to the one for the time variable (3.7)

and that higher order terms in δ are still important. Bearing in mind that that gaps

corresponds to a difference of a few percent in the original data, it seems reasonable to

assume that the leading order behavior is given by (3.10).

In summary, the numerical evidence suggests that after ts, the vortex sheet location

behaves as

x(p, t) = X(p, t) + δX1(p, t) . . . , (3.11a)

y(p, t) = Y (p, t) + δY1(p, t) . . . , (3.11b)

outside the spiral region, and as

x(p, t) = π + δF

(

p− π

δ
,
t− tc
δ

)

+ . . . (3.12a)

y(p, t) = δG

(

p− π

δ
,
t− tc
δ

)

+ . . . (3.12b)

inside the spiral region. Upon substitution of (3.12) into (2.16),(2.18), we obtain to
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Figure 12. The scaled y-coordinate of the vortex sheet as a function of the scaled Lagrangian

variable p for the same cases as in Figure 10.

leading order

∂F

∂τ
(ξ, τ) = − 1

2π

∫ ∞

∞

G(ξ, τ) −G(ξ′, τ)
(

F (ξ, τ) − F (ξ′, τ)
)2

+
(

G(ξ, τ) −G(ξ′, τ)
)2

+ 1
dξ′(3.13a)

∂G

∂τ
(ξ, τ) =

1

2π

∫ ∞

∞

F (ξ, τ) − F (ξ′, τ)
(

F (ξ, τ) − F (ξ′, τ)
)2

+
(

G(ξ, τ) −G(ξ′, τ)
)2

+ 1
dξ′ (3.13b)

where ξ = (p− π)/δ and τ = (t− ts)/δ.

The first observation about (3.13) that should be made is that a solution exists globally

in time because the equations are nothing more than the blob equations with δ = 1. To

construct a unique solution we anticipate the need for far-field conditions |ξ| → ∞ and

an initial condition at some time τi. Unfortunately, there are no obvious choices for these

conditions. We will discuss the issues involved for each condition separately.

At first thought, it would seem that the natural initial condition for (3.13) would be

at τi = 0, when the singularity would form in the vortex sheet. However, the estimate

for ts from the form fit (3.8) is slight later than the estimate based on the trajectory

of the branch point singularity in the complex plane. The question arises whether this
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Figure 13. Time as a function of the sheet angle at the center for δ ranging from 0.01 to 0.10

in steps of ∆δ = 0.1.

occurs because there is another time scale close to the singularity formation during which

the curve adjusts prior to settling into a late time pattern. A close examination of the

tangent angles at the center as they evolve in time is shown in Figure 13. The results

are the same as in Figure 7 except curves are drawn in place of discrete values and the

straight line fits have been removed.

The question that must be resolved is whether the curves indicate a dependency of

the form θ = f(τ). If this form is correct, then (3.13) will describe the transition of

the curves from before the singularity time τ << 0 through to the times where the

relationship becomes linear. Consequently, the initial condition may be replaced by the

requirement that solution to (3.13) as τ → −∞ must match the behavior of the solution

to (2.16) using KBP just before ts as δ → 0.

By keeping θ = 0.4 fixed, it may be observed that the spacing between the curves grows

slowly as δ → 0. Of course, this trend will simply reflect the effects of higher order terms

in δ. On the other hand, the trend may signal a difference scale in time, for example,
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(t − ts)/
√
δ. If this is true, there is another equation that describes the transition of

the solution to the blob equations prior and after ts. More detailed calculations will be

needed near ts with much smaller values of δ to resolve these questions.

The impression from Figure 10 is that the spiral which is a solution to (3.13) connects

to the vortex sheet away from the spiral in a transition region. If P is a Lagrangian point

in the transition or matching region to the right of π, then a solution to (3.13) must be

found as δ → 0 such that δξ = P − π. This means that in the limit ξ = (P − π)/δ → ∞

the solution must match the behavior of the vortex sheet at p. The process is a familiar

one associated with matched asymptotic expansions. Since the whole spiral appears to

collapse to a single point in the limit as δ → 0, one possible matching condition is that

the far-field behavior of the spiral is the approach to some straight line.

The situation is made more complex because of the assumption of periodicity. The

length scale implied by periodicity may force the transition region to occur close to the

spiral, for instance, on the outer arms of the spiral. If periodicity is removed and the

generation of the spiral occurs at a single location on the sheet, it is possible that the far-

field behavior of the spiral is simply to asymptote to a flat vortex sheet, an assumption

made by Pullin (1981) in his study of the generalizations to the Kaden spirals. There

is some indication in Figure 10 that the transition region moves further away from the

spiral center as δ → 0, when the influence of periodicity diminishes. One way to settle

the matter then is to repeat our calculations without the assumption of periodicity and

we are actively engaged in such calculations.

4. Conclusions

The evidence is strong that vortex blob methods provided a regularization of the vortex

sheet for many choices of the smoothing function. If true, this would imply that the
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conditions assumed in the theory of Liu & Xin (1995) are not necessary, only sufficient.

Out study of the convergence of the curves generated with a Krasny-type kernel (KBP )

show two different regimes. In one, either prior to the singularity formation time or

outside the spiral region, the convergence is clearly linear in δ. After the singularity

time, the convergence in the spiral region is different: they scale according to (3.12).

There remains some uncertainty about the nature of the curves near the singularity

point at times very close to the singularity time as δ → 0.

The authors are deeply grateful for extremely valuable discussions with Dr. Stephen

Cowley and Professor Saleh Tanveer.

Appendix A. Evaluation of the sums

Consider the contour integral,

I =
1

2πi

∫

C

f(z) cot (zπ) dz (A 1)

where the contour C traverses anti-clockwise around the rectangle with the corner points,

(±(K + 1/2),±L) with K some positive integer. The contributions to the integral along

the bottom IB and the top IT may be expressed as

IB + IT = − 1

2π

∫ K+1/2

−K−1/2

[f(x+ iL) + f(x− iL)]
1 + exp (2(ix− L)π)

1 − exp (2(ix− L)π)
dx (A 2a)

while those along the left, IL, and right, IR, may be expressed as

IL + IR =
i

2π

∫ L

−L

[f (−X + iy) − f (X + iy)] tanh(y) dy (A 2b)

where X = K + 1/2. Two choices for f(z) give the two sums that will be needed in this

article.

Case 1 Choose

f(z) =
1

(z + a)2 + b2
(A 3)
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and note that

f(x+ iL) + f(x− iL) =
2
[

(x+ a)2 + b2 − L2
]

[(x+ a)2 + b2 − L2] + 4L2(x+ a)2
(A 4a)

f(−X + iy) − f(X + iy) =
(X − a)2 + b2 − y2 + 2iy(X − a)

[y2 + (X − a)2 − b2]
2

+ 4b2(X − a)2

− (X + a)2 + b2 − y2 − 2iy(X + a)

[y2 + (X + a)2 − b2]
2
+ 4b2(X + a)2

(A 4b)

Keeping X fixed, the nature of (A 4a) implies IB + IT → 0 as L → ∞. Since tanh(y) is

an odd function, only the odd part of (A 4b) contributes a non-zero result for IL + IR.

Thus,

IL + IR = − 2

π

∫ L

0

[

y(x− a)

[y2 + (x− a)2 − b2]
2

+ 4b2(x− a)2

+
y(x− +a)

[y2 + (x+ a)2 − b2]
2

+ 4b2(x+ a)2

]

tanh(y) dy (A 5)

Since tanh(y) < 1, there is a simple bound for these integrals as L→ 0.

|IL + IR| <
1

2bπ

[

π − arctan

(

(x− a)2 − b2

2b(x− a)

)

− arctan

(

(x+ a)2 − b2

2b(x+ a)

)]

(A 6)

and |IL + IR| → 0 as X = K + 1/2 → ∞.

In summary, the limits L,K → ∞ give the result I = 0. From the residue theorem,

∞
∑

k=−∞

f(k) = −π
∑

i

cot (ρi) lim
z→ρi

(z − ρi)f(z) (A 7)

where the sum over i includes all the residues from poles in f(z) at ρi. We have assumed

simple poles and no poles occur at z = k, an integer. The modifications necessary when

these restrictions are violated are easily incorporated into (A 7). With the choice (A 3),

there are simple poles at −a± ib. Thus,

∞
∑

k=−∞

1

(a+ k)2 + b2
=

π

2b

cosh(bπ) sinh(bπ)

cosh2(bπ) − cos2(aπ)
(A 8)

Case 2 For the choice

f(z) =
z + a

(z + a)2 + b2
(A 9)
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we find

f(x+ iL) + f(x− iL) = 2(x+ a)

[

(x+ a)2 + b2 − L2
]

+ 4L2

[(x+ a)2 + b2 − L2]2 + 4L2(x+ a)2
(A 10a)

and the odd part of

f(−X + iy) − f(X + iy) = −iy

{

y2 − b2 + (X − a)2

[y2 − b2 + (X − a)2]
2
+ 4b2(X − a)2

− y2 − b2 + (X + a)2

[y2 − b2 + (X + a)2]
2

+ 4b2(X + a)2

}

(A 10b)

Keeping K fixed, IB +IT → 0 as L→ ∞. The nature of (A 10b) indicates that the result

is odd in a, so we may assume a > 0 for the purpose of seeking a bound on |IL + IR|.

Thus,

|IL + IR| <
1

π

∫ ∞

0

{

y2 − b2 + (X − a)2

[y2 − b2 + (X − a)2]
2

+ 4b2(X − a)2

− y2 − b2 + (X + a)2

[y2 − b2 + (X + a)2]2 + 4b2(X + a)2

}

y dy

< ln

{

[

(X + a)2 − b2
]2

+ 4b2(X + a)2

[(X − a)2 − b2]2 + 4b2(X − a)2

}

(A 11)

which vanishes as X → ∞. Thus, (A 7) holds true and the simple poles at −a± ib lead

to the result,

∞
∑

k=−∞

a+ k

(a+ k)2 + b2
=
π

2

cos(aπ) sin(aπ)

cosh2(bπ) − cos2(aπ)
(A 12)

Appendix B. The Smoothing function for Krasny’s Periodic Blobs

Suppose Φ(x, y) is a 2π-periodic function in x and that it has a discrete Fourier series

with coefficients,

Am =

∫ 2π

0

Φ(x, y) eimx dx (B 1)

We seek φ(x, y) such that

Φ(x, y) =

∞
∑

k=−∞

φ(x + 2kπ, y) (B 2)



34 Gregory R. Baker and Lan D. Pham

Substitute (B 2) into (B 1).

Am =

∫ 2π

0

∞
∑

k=−∞

φ(x+ 2kπ, y) eimx dx

=

∫ ∞

−∞

φ(x, y) eimx dx (B 3)

Thus the obvious choice for φ is that function with Fourier coefficients a(m) = Am. In

other words,

φ(x, y) =
1

2π

∫ ∞

−∞

a(m) eimx dm (B 4)

However, there are many functions whose periodic version is identical zero, for example,

f(x+ π, y) − f(x− π, y). Any function with Fourier coefficients a(m) that vanish when

m is an integer can be added to φ with changing its periodic version.

For the Krasny periodic smoothing function (2.14b), the calculation of the Fourier

coefficients Am is simplified by introducing the change of integration variable z = exp(ix).

Am = −2i

∮

z2 + 2Cz + 1

[z2 − 2(C + δ2)z + 1]
2 z

m dz (B 5)

where C = cosh(y) and the integration is around the unit circle in the anti-clockwise

direction. The integrand has a double pole inside the unit circle at

z = e−L ≡ C + δ2 −
√

(C + δ2)2 − 1 (B 6)

By the residue theorem,

Am = δ2















(mα+ β) e−mL for m > 0

(−mα+ β) emL for m < 0

(B 7)

Finally, the basic smoothing function is determined by (B 4).

φ(x, y) =
δ2

2π

∫ ∞

0

(mα+ β) e−(L+ix)m dm

+
δ2

2π

∫ 0

−∞

(−mα+ β) e(L− ix)mdm

=
δ2

π

[

α(L2 − x2)

(L2 + x2)2
+

βL

L2 + x2

]

(B 8a)
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where

α =
exp(−L)

2 sinh2(L)

[

(cosh(y) + δ2)(2 cosh(y) + δ2) − δ2 sinh(L)
]

(B 8b)

β =
1

2 sinh3(L)

[

cosh(y)(cosh(y) + δ2) + 1
]

(B 8c)

exp(−L) = cosh(y) + δ2 −
√

(cosh(y) + δ2)2 − 1 (B8d)

We are unable to find a function f(x, y), whose periodic version fp(x, y) =
∑∞

k=−∞ f(x+

2kπ, y) is identically zero, that can be added to (B 8a ) so that the result will satisfy the

sufficient conditions for convergence to a weak limit.
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