Math 6112 – Spring 2020 Problem Set 3 Due: Friday 31 January 2020

- 10. As an application of Yoneda's Lemma, show that there is a bijection between
 - the class of natural transformations between the functors $Hom_{\mathcal{C}}(A, -)$ and $Hom_{\mathcal{C}}(A', -)$ for two objects A, A' of \mathcal{C}
 - the set $Hom_{\mathcal{C}}(A, A')$.
- 11. Let G be a group and <u>G</u> the associated category as in Problem 1, so the category with a single object, call it *, and such that $Hom_G(*,*) = G$.
 - (a) Show that a covariant functor $F : \underline{G} \to \underline{Set}$ is determined by a set X = F(*) and a left action of G on X. Call this functor F_X .
 - (b) Show that a natural transformation $\eta : F_X \to F_Y$ determines a *G*-equivariant map $\eta : X \to Y$, i.e., $\eta(g \cdot x) = g \cdot \eta(x)$ for all $g \in G$ and $x \in X$.
 - (c) Show that Yoneda's Lemma for the functor $F = Hom_{\underline{G}}(*, -)$ from <u>G</u> to <u>Set</u> gives Cayley's Theorem: G is isomorphe to a subgroup of Sym(G), the permutations on G as a set.
- 12. Dualize Yoneda's Lemma to show that if F is a contravariant functor from \mathcal{C} to <u>Set</u> and $A \in Ob(\mathcal{C})$, then any natural transformation of $Hom_{\mathcal{C}}(-, A)$ to F has the form $B \mapsto a_B$, where a_B is a map from $Hom_{\mathcal{C}}(B, A)$ to F(B) determined by an element $a \in F(A)$ as $a_B : g \mapsto$ F(g)(a). Show that this gives a bijection of the set F(A) with the class of natural transformations of Hom(-, A) to F.

The next two exercises investigates the definition of kernels and cokernels in a categorical context. Let C be a category with a zero object, denoted $0_{\mathcal{C}}$. Let $f \in Hom(A, B)$.

We call a morphism $k \in Hom(K, A)$ a kernel of f if

- (1) k is monic
- (2) fk = 0 where $0 \in Hom(K, B)$ is defined by the composition $K \to 0_{\mathcal{C}} \to B$.

(3) for any $g \in Hom(G, A)$ such that fg = 0 there exists a $g' \in Hom(G, K)$ such that g = kg'. [Since k is monic, such a g' is unique.]

Dually, we call a morphism $c \in Hom(B, C)$ a cokernel of f if

- (1) c is epic
- (2) cf = 0 where $0 \in Hom(A, C)$ is defined by the composition $A \to 0_{\mathcal{C}} \to C$.
- (3) for any $h \in Hom(B, H)$ such that hf = 0 there exists a $h' \in Hom(C, H)$ such that h = h'c. [Since c is monic, such a h' is unique.]

Note: Categorical kernels and cokernels are unique up to isomorphism.

- 13. In $R \underline{mod}$ show that this recovers the usual notion of kernel and cokernal, that is
 - (i) if $f \in Hom(A, B)$ and we let $K = ker(f) \subset A$ and $k : K \hookrightarrow A$ is the embedding of K into A, then $k \in Hom(K, A)$ is a kernel of f in the categorical sense for $R - \underline{mod}$.
 - (ii) If $f \in Hom(A, B)$ and we let C = B/f(A) and $c : B \to C$ the canonical quotient map, then $c \in Hom(B, C)$ is a cokernel of f in the categorical sense in $R \underline{mod}$.
- 14. In $R \underline{mod}$ show that
 - (i) If $f \in Hom(A, B)$ is monic, then it is a kernel of its cokernel.
 - (ii) If $f \in Hom(A, B)$ is epic, then it is a cokernel of its kernel.

Definition: A category C is called *abelian* if it is an additive category having the following additional properties:

- (AC4) every morphism in \mathcal{C} has a kernel and a cokernel.
- (AC5) Every monic is a kernel of its cokernel and eveny epic is a cokernel of its kernel.
- (AC6) Every morphism can be factored as f = me where is e is epic and m is monic.