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In classical analytic number theory there are several trace formulas or summation formulas
for modular forms that involve integral transformations of test functions against classical
Bessel functions. Two prominent such are the Kuznetsov trace formula and the Voronoi
summation formula. Not surprisingly, these formulas also involve related Kloosterman sums.
In the 1960’s the analytic paradigm for understanding modular forms shifted from a study of
real or complex analytic functions on the upper half plane to the study of automorphic forms
on GL2 and automorphic representations of GL2. This naturally leads one to ask whether
the Bessel functions and Kloosterman sums that arise in the classical summation formulas
have a representation theoretic interpretation.

Since the paradigm shift to automorphic representations had great impetus in the Soviet
Union, it is not surprising that we find the first intimation of such a interpretation in the
book of Gelfand, Graev, and Piatetski-Shapiro [15], albeit for GL1. In Section 2.9 of Chapter
2 we find the Bessel function attached to a multiplicative character of a locally compact field
K. The formula given there, formula (8) of that section defines the Bessel function of
the multiplicative character π as a Mellin transform of the same expression one builds a
Kloosterman sum from, that is, an additive character evaluated at x + x−1. Moreover, in
their expression (9) for the Bessel function it is presented as the convolution of a pair of
Gauss sums, as appear in the functional equation of Tate’s local functional equation.

Shifting focus to GL2, from the GL1 situation we expect that if we can attach Bessel
functions to representations of GL2(K), where K is a local field, then it will be related to
factors appearing in local functional equations. When asking questions about representa-
tions of local fields that occur as factors of automorphic representations or even questions
about cuspidal automorphic representations, insight can often be gained by looking at the
analogous questions over a finite field. One early mention of a Bessel function attached to
a representation of GL2 is over the finite field and can be found in Piatetski-Shapiro’s book
[20]. There he defines the Bessel function of a representation of GL2(K), where now K is
a finite field. In doing so, he establishes the basic relation between the Bessel function of
a representation π and the γ-factor γ(ω, π) that appears in the finite field analogue of the
local functional equation of Jacquet and Langlands [17], namely that γ(ω, π) is the Mellin
transform of the Bessel function. This fundamental relation over the local field has been
used to great effect in recent years in proofs of Langlands’ functoriality conjectures. We will
review the theory of Bessel functions attached to representations of GL2 over a finite field
in Section 1 below.

Over the course of this work, we were partially supported by the NSA, the Ellentuck Fund of the IAS,
and by NSF grant DMS–0968505.
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Returning to the motivating question in the first paragraph, the question becomes whether
there are Bessel functions associated to representations of GL2(R) and whether these play
a role in the Kuznetsov and Voronoi formulas. The Bessel functions for representations of
PGL2(R) were first defined in [9] following the lead from the finite field situation. The
purpose of [9] was to then use these Bessel functions to establish a version of the Kuznetsov
trace formula for arbitrary Fuchsian groups of the first kind Γ ⊂ PGL2(R). So indeed, in the
case of the Kuznetsov formula, the Bessel functions that arise in the integral transforms do
have a representation theoretic interpretation. The theory of Bessel functions of representa-
tions of GL2(R) is reviewed in Section 2 below. The question still remains for the integral
transforms arising in the Voronoi formula. In Section 3 we give a derivation of the basic level
1 Voronoi summation formula for GL2 in terms of the Bessel functions of representations.
Along the same lines we show how to get the versions with additive twists and with square
free level as well. Currently there are versions of Voronoi summation formula for GLn, but
none of them are in terms of Bessel functions of representations for GLn(R); in fact, we do
not know of a definition of such Bessel functions at this time.

In Section 4 we turn to Bessel functions for GL2 over a p-adic field. In this section we con-
centrate on the basic relation that the γ-factor that appears in the local functional equation
should be the Mellin transform of a Bessel function. What we find in this section is that the
γ-factor/Bessel function relation satisfies one of the basic properties of integral transforms,
namely that the transform of a product should be the convolution of the transforms. What
would convolution mean in our context? What Soudry shows is that if one has two represen-
tations π1 and π2 of GL2(K) for K a p-adic field, then it is the Rankin-Selberg convolution
factor γ(s, π1×π2, ψ) which is obtained as the Mellin transform of the product of the Bessel
functions jπ1(x)jπ2(x). The Rankin-Selberg convolution L-functions or γ-functions are very
subtle arithmetic invariants and to see the persistence of this basic property of integral
transforms in this arithmetic context is something to ponder.

The fact that the local γ-factor appearing in the local functional equation can be written
and analyzed in terms of a Bessel function associated to a representation has been used to
great effect in recent work on functoriality and the fine analysis of local constants. In our
final section we briefly discuss some of these relations and Bessel functions for groups other
than GL2.

One topic that we do not discuss is the use of Bessel functions in the relative trace formula
of Jacquet. This is a pity, but it would take us too far afield. Jacquet’s relative trace formula
is a full representation theoretic version of the Kuznetsov trace formula. In the relative
trace formula, Bessel functions of representations play an analogous role to the characters of
representations in the Arthur-Selberg trace formula. Jacquet used the relative trace formula
for GL2 to reprove the result of Waldspurger on the central value of automorphic L-functions.
Baruch and Mao continued Jacquet’s program, and in particular undertook the local analysis
of Jacquet’s relative trace formula. In doing so they did extensive work on Bessel functions
of representations of GL2. I refer the reader to their papers [3, 4, 5] for more details.

This paper grew out of a question of P. Michel during the 1999/2000 special year at the
IAS in Princeton. In the process of writing [18], Kowalski, Michel, and Venderkam had
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discovered a relation among classical Bessel functions and Euler’s Γ-function that amounted
to the fact that the Mellin transform of a product of Bessel functions gave the Rankin-Selberg
convolution γ-factor in the archimedean context. (See the calculations in Section 6.3 of [18].)
Michel asked if there was a structural reason for this fact. In order to explain this I wrote
a note explaining the philosophy of the relation between Bessel functions of representations
and local γ-factors that appear in Sections 1, 2,and 4 below. Given the previous work with
Bessel functions of representations and the Kuznetsov trace formula in [9] and the derivation
of the Voronoi summation formula in [18], it was then natural to try to derive the Voronoi
formula in these terms, and this second note became Section 3 here. I hope that making
these two notes available to a broader public will be of value.

I would like to think Philippe Michel for asking the questions that prompted me to origi-
nally write these notes and Dinakar Ramakrishnan for encouraging me to make them avail-
able to a wider public. Finally, I would like to thank the referee for keeping me honest.

1. Bessel functions for GL2(K), with K a finite field

When asking questions about representations of local fields that occur as factors of au-
tomorphic representations or even questions about cuspidal automorphic representations,
insight can often be gained by looking at the analogous questions over a finite field. This
has the advantage that one doesn’t have to worry about convergence issues, but one also
loses the analytic tool of ignoring sets of measure 0, so one has to have a bit of care going
from the finite field to local fields or global fields. Over the finite field there are two versions
of Bessel functions attached to a representation, but we find here avatars of basic relations
that are more subtle to prove in the local situations.

The basic reference for what follows is the book of Piatetski-Shapiro [20] and Section 3 of
[9].

1.1. Whittaker Models. LetK be a finite field with q elements and ψ a non-trivial additive

character of K. Let G = GL2(K) and N =

{
n =

(
1 x
0 1

)
| x ∈ K

}
its maximal unipotent

subgroup. ψ defines a character of N by ψ(n) = ψ

(
1 x
0 1

)
= ψ(x).

Consider the induced representation W(ψ) = indGN(ψ) = {f : G → C | f(ng) =
ψ(n)f(g)}. It is not too hard to show the following facts.

(i) dimW(ψ) = (q − 1)2(q + 1)
(ii) W(ψ) is the direct sum of all irreducible representations π of G with dim(π) > 1,

each with multiplicity one.
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For any π of dimension greater than 1 we let W(π, ψ) ⊂ W(ψ) denote the corresponding
constituent of W(ψ). W(π, ψ) is called the Whittaker model of π. Then

W(ψ) = ⊕W(π, ψ).

If we have π realized on a space Vπ then we denote the intertwining map Vπ −→W(π, ψ) by
v 7→ Wv(g) and the intertwining property becomes π(g′)v 7→ Wπ(g′)v(g) = Wv(gg

′).

1.2. The Bessel function Jπ(g). Every representation π of dimension greater than one
has a unique (up to scalar multiples) Whittaker vector (or Bessel vector) which, given the
character ψ, is a non-zero vector v0 ∈ Vπ satisfying π(n)v0 = ψ(n)v0. If we fix a non-
trivial G-invariant unitary form on Vπ then we can normalize the Whittaker vector v0 by
(v0, v0) = 1. The map to the Whittaker model is then given by v 7→ (π(g)v, v0) = Wv(g).

Definition 1.1. The Bessel function Jπ(g) of π is the Whittaker function of the normalized
Whittaker vector, i.e., Jπ(g) = (π(g)v0, v0) = Wv0(g).

Note that we could define the Bessel function using any choice of non-zero Whittaker
vector v0 by setting

Jπ(g) = Wv0(I)−1Wv0(g)

since in general Wv0(I) = (v0, v0) 6= 0.

Some of the elementary properties of the Bessel function are:

(i) Jπ(n1gn2) = ψ(n1)ψ(n2)Jπ(g) for n1, n2 ∈ N .
(ii) Jπ(I) = 1 and Jπ(aI) = ωπ(a) where ωπ is the central character of π.

(iii) Jπ

(
a 0
0 1

)
= 0 if a 6= 1.

(iv) Jπ(g) = Jπ(g−1).

Some applications of the Bessel function are the following. For any finite group H and
any function f on H we let ∫

H

f(h)dh =
∑
h∈H

f(h)

to ease the analogy with the local field situation. The following can be found in [9], or can
be worked out fairly quickly.

• A formula for Jπ: For any Wv ∈ W(π, ψ) we have

1

|N |

∫
N

Wv(gn)ψ−1(n) dn = Wv(I)Jπ(g).

• Reproducing kernel: If Wv ∈ W(π, ψ) then

Wv(h) =
dimVπ
|G|

∫
G

Wv(g)Jπ(hg−1) dg.
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• Spectral projector: According to the decomposition

W(ψ) = ⊕πW(π, ψ).

for any f ∈ W(ψ) we have the decomposition

f(g) =
∑
π

Fπ(f)(g)

with Fπ(f) ∈ W(π, ψ). Then

Fπ(f)(h) =
dimVπ
|G|

∫
G

f(g)Jπ(hg−1) dg.

One can formulate a version of the Kuznetsov formula over the finite field as in [9]. For
any γ ∈ G we can define a Kloosterman distribution on W(ψ) by

f ∈ W(ψ) 7→ K(f, γ) =
1

|N |

∫
N

f(γn)ψ−1(n) dn

Then this distribution has a spectral decomposition

K(f, γ) =
∑
π

Jπ(γ)
dimVπ
|G|

∫
G

f(g)Jπ(g−1) dg.

This is a finite field version of the Petersson/Kuznetsov formula. We see that the Bessel
function of representations play the role of the kernel function for the integral transform
that appears.

1.3. The Bessel function jπ(y). For some applications, a variant of the Bessel function
as a function on K× is preferable. By the Bruhat decomposition G = B ∪ NwB where

B =

(
a x
0 b

)
and w =

(
0 1
1 0

)
and the transformation properties of Jπ given above we see

that Jπ is completely determined by its values Jπ

(
0 1
y 0

)
. So we set

jπ(y) = Jπ

(
0 1
y−1 0

)
.

Two applications of this avatar of the Bessel function of a representation are:

• The action of w in the Kirillov model: Often it is useful to restrict the Whittaker

functions to the diagonal: Wv

(
x 0
0 1

)
. This is gives the Kirillov model K(π, ψ) of π. For

v ∈ Vπ set ϕv(x) = Wv

(
x 0
0 1

)
. Then the action of w in this model is given by

ϕπ(w)v(x) = ωπ(x)

∫
K×

ϕv(y)jπ(xy) dy

that is, the Bessel function jπ gives an integral kernel for the action of the Weyl element w
in the Kirillov model.
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•Relation with the γ-factor: The γ-factor of a representation is defined by the relation

γ(ω, π)

∫
K×

Wv

(
x 0
0 1

)
ω(x) dx =

∫
K×

Wv

(
0 1
x 0

)
ω(x) dx

where ω is a multiplicative character of K×. This is the analogue of the “local functional
equation” of Jacquet and Langlands [17] and it holds for all v ∈ Vπ. In particular, if we take
v to be our Whittaker vector we get the Bessel function and the above becomes

γ(ω, π) =

∫
K×

jπ(x)ω−1(x) dx

that is, the γ-factor is the Mellin transform of the Bessel function.

2. Bessel functions for GL2(R)

Now take K = R and (π, Vπ) an irreducible infinite dimensional unitary generic represen-
tation of G = GL2(R). Let V ∞π be the space of smooth vectors for π. The reference for this
section is [9].

2.1. The Whittaker and Kirillov models. Fix a non-trivial additive character of R. π
will have a Whittaker model W(π, ψ), that is, a realization as a subspace of the space of
functions W(ψ) = indGN(ψ) ⊂ {f : GL2(R) → C | f(ng) = ψ(n)f(g)} as before. Again we
let the map Vπ → W(π, ψ) be given by v 7→ Wv(g). For v ∈ V ∞π the functions Wv(g) are
smooth.

These representations of GL2(R) also have a Kirillov model realization on L2(R×), denoted
by K(π, ψ). If we denote the map from Vπ → K(π, ψ) by v 7→ ϕv(x) then the Whittaker and
Kirillov model are related by

ϕv(x) = Wv

(
x 0
0 1

)
.

In the Kirillov model, the center Z of G acts by the central character ωπ, and the group of

matrices of the form

{(
a b
0 1

)}
acts by

π

(
a b
0 1

)
v 7→ ϕ

π

a b
0 1

v(x) = ψ(bx)ϕv(ax).

So this action is the same for all representations π and we see that the different Kirillov
models K(π, ψ) are distinguished by the action of the center (through the central character)

and the Weyl group element w =

(
0 −1
1 0

)
. In the Kirillov model, the action of w can be

given by an integral kernel kπ(x, y) so that

ϕπ(w)v(x) =

∫
R×
kπ(x, y)ϕv(y) d×y.
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2.2. The Bessel function jπ(x). Using the kernel kπ(x, y) , we define the one variable
Bessel function jπ(x) by analogy with one of the properties of the one variable Bessel function
over the finite field, namely that it should give the action of w in the Kirillov model.

Definition 2.1. If π is an infinite dimensional unitary representation of GL2(R) we define
jπ(x) = ω−1π (x)kπ(x, 1).

Then one checks that in fact for ϕv ∈ K(π, ψ) one has

ϕπ(w)v(x) = ωπ(x)

∫
R×
jπ(xy)ϕv(y) d×y.

Note: This definition differs slightly from that taken in [9] by the inclusion of the central
character in the definition of jπ. The advantage is that it makes the formulas for the action
of w in the Kirillov model for R and the finite field agree. This should be compared with
the corresponding formula over the finite field. It does not effect the results of [9] since we
quickly assumed trivial central character there.

From now on, we will restrict to representations having trivial central character, i.e.,
representations of PGL2(R).

These Bessel functions can be explicitly computed. They are as follows. We take ψ(x) =
e2πinx.

Let π = σ(d) be holomorphic discrete series, d = 1, 2, 3, . . . . σ(d) corresponds to holomor-
phic forms of weight 2d, in the sense that if one takes a holomorphic modular form of weight
2d which is a Hecke eigenform and lifts it to an automorphic representation of GL2, as in
say [7], then the archimedean component of that representation will be isomorphic to σ(d).
Then

jσ(d)(x) = (−1)d2π|n|
√
xJ2d−1(4π|n|

√
x)

if x > 0 and jσ(d)(x) = 0 for x < 0.

Let π = π(ir) with r ∈ R. These correspond to Maass forms. Then

jπ(ir)(x) =
−π|n|

√
x

sin(πir)
{J2ir(4π|n|

√
x)− J−2ir(4π|n|

√
x)}

for x > 0 and a similar expression in I2ir and I−2ir for x < 0.

Letπ = π(r) with −1
2
< r < 1

2
. These will correspond to exceptional eigenvalues. Then

jπ(r)(x) =
−π|n|

√
x

sin(πr)
{J2r(4π|n|

√
x)− J−2r(4π|n|

√
x)}

for x > 0 and a similar expression in I2r and I−2r for x < 0.
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These can all be put in a single formula. If we set

κ =


d− 1

2
π = σ(d)

ir π = π(ir)

r π = π(r)

then we have

jπ(x) =

{
−π|n|

√
x

sin(πκ)
{J2κ(4π|n|

√
x)− J−2κ(4π|n|

√
x)} x > 0

−π|n|
√
x

sin(πκ)
{I2κ(4π|n|

√
x)− I−2κ(4π|n|

√
x)} x < 0

.

While these formulas are to be found in [9], there derivation is not. One can find these
formulas derived in the archimedean paper of Baruch and Mao [4].

One can derive the Kloosterman-Spectral formula for modular forms for a discrete sub-
group Γ ⊂ PGL2(R) in terms of these jπ. This is the content of the first half of [9]. It leads
to a variant of the Petersson/Kuznetsov formula.

These Bessel functions are also related to the γ–factors coming from the integral repre-
sentations. In terms of the Kirillov models, the γ-factors satisfy

γ(ω, π, ψ)

∫
R×
ϕv(x)ω(x) d×x =

∫
R×
ϕπ(w)v(x)ω−1(x) d×x

for all ϕv ∈ K(π, ψ). In terms of the local L-function and ε-factors (i.e., the usual “Γ”–factors

in the functional equation) we have, for ω(x) = |x|s−
1
2 ,

γ(s, π, ψ) =
ε(s, π, ψ)L(1− s, π̃)

L(s, π)
.

In accordance with what happens in the finite field, we once again get that γ is the Mellin
transform of Bessel, i.e.,

γ(ω, π, ψ) =

∫
R×
jπ(x)ω−1(x) d×x.

3. Voronoi Summation

The Voronoi summation formula for GL2 has a natural formulation in terms of the Bessel
functions of representations of R, through the local functional equation at the archimedean
place and the relation with the γ-factor and Mellin inversion. This is more or less what
the derivation of Kowalski, Michel, and Vanderkam does. (See Appendix B of [18] for their
derivation of this formula. Note that their Jg is essentially jπ for x > 0 and their Kg is
essentially jπ for x < 0.) In this section we would like to give a conceptually simple proof
based on the fact that the Bessel function gives the action of w in the Kirillov model.

We start with a cuspidal automorphic representation of GL2(A), where for simplicity A
is the adele ring of Q. Take ϕ ∈ Vπ which is decomposable, so under the isomorphism
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Vπ → ⊗Vπv we have ϕ = ⊗ϕv with ϕv(gv) the normalized Kv-fixed vector for almost all
v <∞. ϕ∞ will be arbitrary. We let W (g) be the associated Whittaker function

W (g) =

∫
Q\A

ϕ

((
1 x
0 1

)
g

)
ψ(x) dx

where ψ is the standard additive character for A trivial on Q as in Tate’s thesis. If ϕ is
decomposable as above then this will factor as W (g) =

∏
vWv(g) where Wv(g) ∈ W(πv, ψv)

is in the Whittaker model of the corresponding local representation. For more details on this
one can consult [6] or [7]. Set Wf =

∏
v<∞Wv the finite part of the Whittaker function.

3.1. Simple Voronoi summation – Level 1. In the level one case, here is an elementary
derivation. We assume trivial central character for now. We take a cuspidal representation
π such that for all v < ∞ we have πv is unramified. Take ϕ ∈ Vπ with ϕ = ⊗ϕv with ϕv
the normalized unramified vector at all finite v. The classical Fourier expansion of ϕ(g∞) is
then

ϕ(g∞) =
∑
n

Wf

(
n

1

)
W∞

((
n

1

)
g∞

)
so ϕ(I) =

∑
n a(n)F (n) where

a(n) = Wf

(
n

1

)
and F (x) = W∞

(
x

1

)
∈ K(π∞, ψ).

Now, by invariance of ϕ under the rational points we (essentially) have

ϕ(I) = ϕ(w) =
∑
n

Wf

((
n

1

)
w

)
W∞

((
n

1

)
w

)
=
∑
n

Wf

(
n

1

)
W∞

((
n

1

)
w

)
=
∑
n

a(n)

∫
R×
jπ∞(ny)F (y) d×y

since convolution with jπ∞ gives the action of w in the Kirillov model of π∞.

Hence we have the Voronoi summation formula in this simple case:∑
n

a(n)F (n) =
∑
n

a(n)

∫
R×
jπ∞(ny)F (y) d×y.

The different representations are distinguished by the action of w, that it, their Bessel
functions.

The proof in the more complicated situation of [18] is now simply the question of (1) level
and (2) using a W -operator in place of simply w.
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3.2. Voronoi summation with additive twists – Level 1. We start with a cuspidal
automorphic representation π of GL2(A) with trivial central character as in the previous
section, ϕ ∈ Vπ factorizable, W (g) its Whittaker function.

First note that

ϕ(1) = ϕ(1∞, 1f ) =
∑
γ∈Q×

W

(
γ

1

)
=
∑
γ∈Q×

Wf

(
γ

1

)
W∞

(
γ

1

)
.

Now Wf

(
γ

1

)
= 0 unless γ ∈ Z, so that

ϕ(1) =
∑′

n∈Z

Wf

(
n

1

)
W∞

(
n

1

)
=
∑′

n∈Z

a(n)F (n)

where a(n) = Wf

(
n

1

)
is the Fourier coeffecient and F (x) = W∞

(
x

1

)
is in the Kirillov

model K(π∞, ψ∞) of π∞ and ψ∞(x) = e(x) = e2πix.

Let a, c ∈ Z with c 6= 0 and (a, c) = 1. Complete this to a 2× 2 matrix(
a b
c d

)
∈ SL2(Z)

and let

δ =

(
a b
c d

)(
1

c2

)
w−1 =

(
a b
c d

)(
1

−c2
)

=

(
−bc2 a
−dc2 c

)
∈ GL2(Q).

Now consider

ϕ(1∞, δf ) =
∑
γ∈Q×

Wf

((
γ

1

)
δ

)
W∞

(
γ

1

)
.

By a simple matrix calculation (via Bruhat) we have

δ =

(
1 a

c
1

)(
c
c

)
α

where

α =

(
−1 0
−dc2 1

)
∈ SL2(Z).

Hence

Wf

((
γ 0
0 1

)
δ

)
= ψf

(
γ
(a
c

))
Wf

(
γ 0
0 1

)
and as before for this to be non-zero we must have γ = n ∈ Z. Then ψf (γ(a/c)) =
ψf (na/c) = ψ∞(−na/c) the last equality following from the fact that ψ = ψ∞ψf is trivial
on Q. Hence we have

ϕ(1∞, δf ) =
∑′

n∈Z

e(−an/c)Wf

(
n

1

)
W∞

(
n

1

)
=
∑′

n∈Z

e(−an/c)a(n)F (n)

and we have achieved our additive twists.
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For the other side, we use the fact that ϕ(g) is left invariant under PGL2(Q), and in
particular under

w

(
1

c−2

)
=

(
0 −c−2
1 0

)
so that

ϕ(1∞, δf ) = ϕ

(
w

(
1

c−2

)
, w

(
1

c−2

)
δf

)
=
∑
γ∈Q×

Wf

((
γ

1

)
w

(
1

c−2

)
δ

)
W∞

((
γ

1

)
w

(
1

c−2

))
.

Now another simple matrix calculation gives

w

(
1

c−2

)
δ =

(
0 −c−2
1 0

)(
a b
c d

)(
0 1
−c2 0

)
=

(
1 −ā/c

1

)
η

where ā is an inverse to a mod c and

η =

(
d− ābc 1

c
(aā− 1)

−bc2 a

)
∈ SL2(Z).

Thus

Wf

((
γ

1

)
w

(
1

c−2

)
δ

)
= Wf

((
γ

1

)(
1 −ā/c

1

)
η

)
= ψf (−γā/c)Wf

(
γ

1

)
and again we have γ = n ∈ Z and ψf (−nā/c) = e(nā/c). Hence

ϕ(1∞, δf ) = ϕ

(
w

(
1

c−2

)
, w

(
1

c−2

)
δf

)
=
∑′

n∈Z

e(nā/c)Wf

(
n

1

)
W∞

((
n

1

)
w

(
1

c−2

))
=
∑′

n∈Z

e(nā/c)a(n)W∞

((
nc−2

1

)
w

)
and since the action of w in the Kirillov model is given by convolution with the Bessel
function jπ∞ we have

ϕ(1∞, δf ) =
∑′

n∈Z

a(n)e(nā/c)

∫
R×
F (x)jπ∞

(nx
c2

)
d×x.

So, equating our two expressions for ϕ(1∞, δf ) we have the Voronoi summation formula
with additive twists∑′

n∈Z

a(n)e(−an/c)F (n) =
∑′

n∈Z

a(n)e(nā/c)

∫
R×
F (x)jπ∞

(nx
c2

)
d×x

for all F ∈ K(π∞, ψ∞).
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3.3. Voronoi summation with additive twists – square free Level D. Let D be a
square free integer, D > 1. We begin with a cuspidal automorphic representation π = ⊗′πv
of GL2(A) corresponding to forms of level D with Nebentypus character of finite order mod
D. Therefore, if we let

K0(p) =

{
k =

(
a b
c d

)
∈ GL2(Zp) | c ≡ 0 mod p

}
then for each p|D we have that there is a unique (normalized) vector ϕ◦p such that for each
k ∈ K0(p) as above we have πp(k)ϕ◦p = ωp(d)ϕ◦p where ωp is the central character of πp. At
those finite p which do not divide D we have a unique (normalized) Kp fixed vector ϕ◦p. The
component π∞ will have central character ω∞ either trivial or the sign character.

We take ϕ ∈ Vπ a cuspidal automorphic form and assume that ϕ = ⊗ϕv is decomposable
and for each p < ∞ we have ϕp = ϕ◦p. As always, ϕ∞ is arbitrary. If we let W (g) be
the Whittaker function associated to ϕ as before, we have W = WfW∞ and now Wf is

satisfies Wf (gk) = ωf (d)Wf (g) for k =

(
a b
c d

)
∈ K0(D) =

∏
p|DK0(p)

∏
p-DKp. Note that

GL2(Q) ∩K0(D) = Γ0(D).

As before we have

ϕ(1) = ϕ(1∞, 1f ) =
∑
γ∈Q×

W

(
γ

1

)
=
∑
γ∈Q×

Wf

(
γ

1

)
W∞

(
γ

1

)

=
∑′

n∈Z

Wf

(
n

1

)
W∞

(
n

1

)
=
∑′

n∈Z

a(n)F (n).

Fix integers a, c such that (a, c) = 1. Let D1 = (c,D) and write D = D1D2 and c = D1c2.
Since D is square free we have (D2, c) = 1. Then we also have (aD2, c) = 1. We extend the

relatively prime pair aD2, c to a 2× 2 matrix

(
aD2 b
c d

)
. Note that(

aD2 b
c d

)
=

(
1 aD2

c
1

)(
1 0
−dc 1

)(
c−1

c

)
w.

Hence if we set

δ =

(
aD2 b
c d

)
w−1

(
c
c−1

)(
D2

1

)
we have

δ =

(
1 aD2

c
1

)(
D2

1

)(
1 0

−dcD2 1

)
and that (

1 0
−dcD2 1

)
=

(
1 0

−dc2D 1

)
∈ Γ0(D).

Write g ∈ GL2(A) as g = (g∞, gf ) with g∞ ∈ GL2(R) and gf ∈ GL2(Af ).
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Now consider

ϕ

((
D2

1

)
∞
, δf

)
=
∑
γ∈Q×

Wf

((
γ

1

)
δ

)
W∞

(
γD2

1

)

=
∑
γ∈Q×

Wf

((
γ

1

)(
1 aD2

c
1

)(
D2

1

))
W∞

(
γD2

1

)

=
∑
γ∈Q×

ψf (γaD2/c)Wf

(
γD2

1

)
W∞

(
γD2

1

)
.

As before, this forces γD2 = n ∈ Z. So we write γ = n/D2 we get

ϕ

((
D2

1

)
∞
, δf

)
=
∑′

n∈Z

ψf

(
n

D2

aD2

c

)
Wf

(
n

1

)
W∞

(
n

1

)
=
∑′

n∈Z

e
(
−na
c

)
a(n)F (n).

This is the left hand side of our summation formula.

To get the right hand side, we use that ϕ is left invariant under GL2(Q) and left translate
by the element (

c−1

c

)
w =

(
0 −c−1
c 0

)
.

Then

ϕ

((
D2

1

)
∞
, δf

)
= ϕ

((
0 −c−1
c 0

)(
D2

1

)
∞
,

(
0 −c−1
c 0

)
δf

)
=
∑
γ∈Q×

Wf

((
γ

1

)(
0 −c−1
c 0

)
δ

)
W∞

((
γ

1

)(
0 −c−1
c 0

)(
D2

1

))
.

Now one computes that (
0 −c−1
c 0

)
δ =

(
1 −aD2

c
1

)
WD2

where aD2 is an inverse to aD2 mod c and WD2 is an Atkin-Lehner involution as in [18]:

WD2 =

(
−D2(b+ baD2)

1
c
(aD2aD2 − 1)

bcc2D aD2

)
and that (

0 −c−1
c 0

)(
D2

1

)
=

(
1

c2D2

1

)(
cD2

cD2

)
w.

Thus

Wf

((
γ

1

)(
0 −c−1
c 0

)
δ

)
= e(γaD2/c)Wf

((
γ

1

)
WD2

)



14 JAMES W. COGDELL

and

W∞

((
γ

1

)(
0 −c−1
c 0

)(
D2

1

))
= W∞

((
γ

1

)(
1

c2D2

1

)(
cD2

cD2

)
w

)
= ω∞(cD2)W∞

(( γ
c2D2

1

)
w

)
= ω∞(cD2)ω∞(γ/c2D2)

∫
R×
F (x)jπ∞(γx/c2D2) d

×x

= ω∞(γ/c)

∫
R×
F (x)jπ∞(γx/c2D2) d

×x.

So we have

ϕ

((
D2

1

)
∞
, δf

)
=
∑
γ∈Q×

e(γaD2/c)Wf

((
γ

1

)
WD2

)
ω∞(γ/c) ×

×
∫
R×
F (x)jπ∞(γx/c2D2) d

×x.

Now, an elementary matrix calculation shows that if m ∈ Z then(
1 m

1

)
WD2 = WD2ηm

with ηm ∈ Γ0(D). Hence we have for m ∈ Z

Wf

((
γ

1

)
WD2

)
= Wf

((
γ

1

)
WD2ηm

)
= Wf

((
γ

1

)(
1 m

1

)
WD2

)
= ψf (γm)Wf

((
γ

1

)
WD2

)
and hence this is 0 unless ψf (γm) = e(−γm) = 1 for all m ∈ Z. So we must have γ = n ∈ Z.
So the above becomes

ϕ

((
D2

1

)
∞
, δf

)
=
∑′

n∈Z

e(naD2/c)Wf

((
n

1

)
WD2

)
ω∞(n/c) ×

×
∫
R×
F (x)jπ∞(nx/c2D2) d

×x.

Now, let ϕ′(g) = ϕ(gWD2). Then this will have a Fourier expansion

ϕ′(g∞, 1f ) =
∑′

n∈ZZ

a′(n)W ′
∞

((
n

1

)
g∞

)
with

a′(n) = W ′
f

(
n

1

)
= Wf

((
n

1

)
WD2

)
.
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With this notation the above becomes

ϕ

((
D2

1

)
∞
, δf

)
=
∑′

n∈Z

e(naD2/c)a
′(n)ω∞(n/c)

∫
R×
F (x)jπ∞(nx/c2D2) d

×x.

This is our left hand side.

Equating our two expressions for ϕ

((
D2

1

)
∞
, δf

)
we get our summation formula

∑′

n∈Z

e(−an/c)a(n)F (n) =
∑′

n∈Z

e(naD2/c)a
′(n)ω∞(n/c)

∫
R×
F (x)jπ∞(nx/c2D2) d

×x

where the a(n) are the Fourier coefficients of ϕ(g), the a′(n) are the Fourier coefficients of
ϕ′(g) = ϕ(gWD2), and F ∈ K(π∞, ψ∞).

Note that Kowalski, Michel, and Vanderkam [18] have a slightly different form and use a
slightly different WD2 . Also recall that either ω∞(y) ≡ 1 or ω∞(y) = sgn(y).

3.4. Voronoi summation for GLn. Recently Ichino and Templier have developed an adelic
version of the Voronoi summation formula for GLn [16]. This is based on the functional
equation for the Rankin-Selberg convolution for GLn×GL1. The transforms that arise there
are based on the local functional equations, which define the local γ-factors γ(s, πv×χv, ψv).
The philosophy presented here is that these local factors, and the transforms that occur in
the Voronoi formula, should come from Bessel functions of representations. The theory of
Bessel functions for GLn(R), other than the case n = 2 treated above, is not well developed.
Zhi Qi is working on the theory of archimedean Bessel functions for GLn in his OSU thesis.

4. Bessel functions for GL2(K) with K a p-adic field

The main reference for this section is the paper of Soudry [22]. It illustrates an interesting
phenomenon in the relation between Bessel functions and γ-factors. We will follow Soudry’s
normalizations, which are a bit different from the above. Let q be the order of the residue
field of K, i.e., q = |o/p|.

4.1. Whittaker models and Kirillov models. Again take π to be an infinite dimensional
irreducible generic representation of GL2(K). Fix a non-trivial character ψ of K. Such π
will have a Whittaker model W(π, ψ) and Kirillov model K(π, ψ) as in the real case, again
related by

ϕv(x) = Wv

(
x 0
0 1

)
for v ∈ Vπ.
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4.2. The Bessel function jπ(x). In this context Soudry defines the Bessel function in a
way related to the formula for the Bessel function Jπ over the finite field. If Wv ∈ W(π, ψ)
then the integral

`(v, x) =

∫
N

Wv

((
0 x
−1 0

)(
1 n
0 1

))
ψ−1(n) dn

converges in the sense of stabilizing as one integrates over an exhaustive system of compact
open subgroups of N . For fixed x, this defines a Whittaker functional on Vπ, as does the
functional v 7→ Wv(I). Whittaker functionals are unique, so these functionals differ by a
constant.

Definition 4.1. The Bessel function jπ(x) is the constant of proportionality (a function of
x as `(v, x) varies), that is,∫

N

Wv

((
0 x
−1 0

)(
1 n
0 1

))
ψ−1(n) dn = jπ(x)Wv(I).

This does in fact give the action of w in the Kirillov model as above, in the sense that if

v is such that Wv

(
x 0
0 1

)
= ϕv(x) ∈ S(K×) ⊂ K(π, ψ) (S(K×) the Schwartz-Bruhat space

of locally constant compactly supported functions) then

Wv

(
0 x
−1 0

)
=

∫
K×

ω−1π (y)jπ(xy)Wv

(
y 0
0 1

)
d×y.

We have the local γ-factor as before, which we will now write as

γ(s, π, ψ) =
ε(s, π, ψ)L(1− s, π̃)

L(s, π)
.

Unfortunately, Soudry never shows that γ(s, π, ψ) is the Mellin transform of jπ(x), but I
believe this is not difficult. Instead he does something more intriguing – he computes the
Mellin transform of the product of two Bessel functions. In particular, he proves the following
(his Lemma 4.5)

γ(s, π1 × π2, ψ) =

∫
|c|≤ql

ψ−1(c)ω−1(c)|c|2(1−s)
∫
|cx2|≤qj

jπ1(x)jπ2(x)ω−1(x)|x|−s d×x d×c

for l and j sufficiently large and ω = ωπ1ωπ2 . So, the Mellin transform of the product of the
Bessel functions is the Rankin–Selberg convolution γ-factor.

The Rankin-Selberg convolution L-functions or γ-factors are very subtle arithmetic in-
variants and to see the persistence of this basic property of integral transforms, that the
transform of a product is given by a convolution, in this arithmetic context is intriguing. It
is a property we expect to persist in other situations, but it is only in the GL2 situation that
we know of proofs. The archimedean version of this relation is essentially what is calculated
in Section 6.3 of [18].
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5. Bessel functions for G(K) with K a local field

The paradigm of writing local γ-factors as Mellin transforms of appropriate Bessel func-
tions for groups G other than GL2 has been used with remarkable success recently. However,
there are differences.

Once the group G is of higher rank, we find that Bessel functions aren’t just attached
to representations π but rather to pairs consisting of π and a Weyl group element w that
supports a Bessel function. Not all Weyl group elements support Bessel functions; to do so,
they must be able to be written as w = w` ·wM` where w` is the long Weyl element for G itself
and wM` is the long Weyl element for a proper Levi subgroup M of G. The rationale for this
can be found in [10] or [11]. The Bessel function jπ,w associated to π and the Weyl element
w is essentially supported on the Bruhat cell C(w) associated to w. As we move from one
Bruhat cell C(w) to one on its boundary, say C(w′), we expect the Bessel function jπ,w to
approach jπ,w′ asymptotically [1]. In the case of GL2 discussed above, there are a dearth
of Weyl elements and what we have referred to as “the” Bessel function of a representation
is the one attached to the long Weyl element. (The Bessel function attached to the trivial
Weyl element is essentially the central character of the representation.) Bessel functions
associated to relevant cells take various forms depending on one’s starting point. Examples
for K a p-adic field can be found in the work of Baruch for GLn [6], Lapid and Mao for split
groups [19], and in our work [10, 11].

As the rank increases, the relation between Bessel functions and γ-factors also becomes
more complicated. To analyze a given γ-factor, one has to find the appropriate Weyl element
w and often, for analytic reasons, one has to deal with only partial Bessel functions (again,
see [10] and [11]). The γ-factors and Bessel functions discussed above all have their origins in
the theory of integral representations, but there are also γ-factors that arise in the Langlands-
Shahidi method. As it turns out, these can also be written as Mellin transforms of appropriate
(partial) Bessel functions [21].

One of the primary uses of this relation in the p-adic case is to show that γ-factors become
stable under highly ramified twists [10, 12]. Roughly this takes the following form. Suppose
π1 and π2 are generic representations of G(K) with the same central character. Then for all
sufficiently highly ramified characters χ of K× we have

γ(s, π1 × χ, ψ) = γ(s, π2 × χ, ψ).

Relations of this sort are established by writing γ(s, π, ψ) as the Mellin transform of an
appropriate Bessel function and then analyzing the asymptotics of the associated Bessel
function. Such stability results were crucial in establishing functoriality from the classical
groups to GLn via the method of L-functions [8, 13], where they were used to finesse the
lack of the Local Langlands Conjecture for the classical groups. Currently we are using such
stabilities to analyze the exterior and symmetric square ε-factors for GLn(K) [14].

We know of no instances of Bessel functions of representations for G(R) when G is not
GL2. In light of the connections with Kuznetsov and Voronoi mentioned above, such Bessel
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functions would be quite interesting. It seems that this gap may be partially filled in the
forthcoming thesis of Zhi Qi at OSU.
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