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Preface

These are the lecture notes that accompanied my lecture series at the Fields
Institute in the Spring of 2003 as part of the Thematic Program on Automorphic
Forms. The posted description of the course was the following.

“The theory of L-functions of automorphic forms (or modular forms) via in-
tegral representations has its origin in the paper of Riemann on the zeta-function.
However the theory was really developed in the classical context of L-functions
of modular forms for congruence subgroups of SL(2,Z) by Hecke and his school.
Much of our current theory is a direct outgrowth of Hecke’s. L-functions of auto-
morphic representations were first developed by Jacquet and Langlands for GL(2).
Their approach followed Hecke combined with the local-global techniques of Tate’s
thesis. The theory for GL(n) was then developed along the same lines in a long
series of papers by various combinations of Jacquet, Piatetski-Shapiro, and Shalika.
In addition to associating an L-function to an automorphic form, Hecke also gave a
criterion for a Dirichlet series to come from a modular form, the so called Converse
Theorem of Hecke. In the context of automorphic representations, the Converse
Theorem for GL(2) was developed by Jacquet and Langlands, extended and sig-
nificantly strengthened to GL(3) by Jacquet, Piatetski-Shapiro, and Shalika, and
then extended to GL(n).”

“In these lectures we hope to present a synopsis of this work and in doing so
present the paradigm for the analysis of general automorphic L-functions via inte-
gral representations. We will begin with the classical theory of Hecke and then a
description of its translation into automorphic representations of GL(2) by Jacquet
and Langlands. We will then turn to the theory of automorphic representations
of GL(n), particularly cuspidal representations. We will first develop the Fourier
expansion of a cusp form and present results on Whittaker models since these are
essential for defining Eulerian integrals. We will then develop integral represen-
tations for L-functions for GL(n) × GL(m) which have nice analytic properties
(meromorphic continuation, boundedness in vertical strips, functional equations)
and have Eulerian factorization into products of local integrals.”

“We next turn to the local theory of L-functions for GL(n), in both the
archimedean and non-archimedean local contexts, which comes out of the Euler
factors of the global integrals. We finally combine the global Eulerian integrals with
the definition and analysis of the local L-functions to define the global L-function
of an automorphic representation and derive their major analytic properties.”
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2 Preface

“We will then turn to the various Converse Theorems for GL(n). We will begin
with the simple inversion of the integral representation. Then we will show how
to proceed from this to the proof of the basic Converse Theorems, those requiring
twists by cuspidal representations of GL(m) with m at most n − 1. We will then
discuss how one can reduce the twisting to m at most n−2. Finally we will consider
what is conjecturally true about the amount of twisting necesssary for a Converse
Theorem.”

“We will end with a description of the applications of these Converse Theorems
to new cases of Langlands Functoriality. We will discuss both the basic paradigm
for using the Converse Theorem to establish liftings to GL(n) and the specifics of
the lifts from the split classical groups SO(2n + 1), SO(2n), and Sp(2n) to the
appropriate GL(N).”

I have chosen to keep the informal format of the actual lectures; what follows are
the texed versions of the notes that I lectured from. Other than making corrections
they remain as they were when posted weekly on the web to accompany the recorded
lectures. In particular, I have left each lecture with its individual references, but
there are no citations within the body of the notes. For full details of the proofs,
many of which are only sketched in the notes and many others omitted, the reader
should consult the references for that section.

Of course, there will be some overlap with other surveys I have written on this
subject, particularly my PCMI Lecture notes L-functions and Converse Theorems
for GLn. However there are several lectures, particularly among the early ones and
later ones, that appear in survey form, at least by me, for the first time. I hope this
more informal presentation of the material, in conjunction with the accompanying
Lectures of Henry Kim and Ram Murty, add value to this contribution.

I would like to thank the staff of the Fields Institute, and particularly the
program managers for our special program – Allison Conway and Sonia Houle – for
taking such good care of us during the Thematic Program on Automorphic Forms.



LECTURE 1

Modular Forms and Their L-functions

I want to begin by describing the classical theory of holomorphic modular forms
and their L-functions more or less in the terms in which it was developed by Hecke.

Let H = {z = x+ iy | y > 0} denote the upper half plane. The group PSL2(R)
or PGL+

2 (R) acts on H by linear fractional transformations
(
a b
c d

)
· z =

az + b

cz + d
.

We will be interested in certain discrete groups of motions Γ which have finite
volume quotients Γ\H. We will consider two main examples.

1. The full modular group SL2(Z). This group is generated by the two trans-

formations T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
. It has the usual (closed) fundamental

domain given by

F = {z = x+ iy | −1
2 ≤ x ≤

1
2 , |z| ≥ 1}.

Then the quotient Γ\H ≃ P1 − {∞} is a once punctured sphere.

2. The Hecke congruence groups Γ0(N). These are defined by

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod N)

}
.

These groups preserve not only H but also the rational points on the real line:
Q∪{∞}. So if we let H∗ = H∪Q∪{∞} then Γ acts on H∗ and Γ\H∗ is a compact
Riemann surface.

The cusps of Γ are the (Γ–equivalence classes of) points of Q ∪ {∞}. These
are finite in number. If a ∈ Q then there is an element σa ∈ SL2(Q) such that
σa · a =∞. Thus locally all cusps look like the cusp at infinity.

Modular forms for Γ are a special class of function on H.

Definition 1.1 A (holomorphic) modular form of (integral) weight k ≥ 0 for
Γ is a function f : H→ C satisfying

(i) [modularity] for each γ =

(
a b
c d

)
∈ Γ we have the modular transformation

law f(γz) = (cz + d)kf(z);
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4 1. Modular Forms and Their L-functions

(ii) [regularity] f is holomorphic on H;
(iii) [growth condition] f extends holomorphically to every cusp of Γ.

Let us explain the condition (iii) for the cusp at infinity. The element T =(
1 1
0 1

)
∈ Γ and T generates the stabilizer Γ∞ of the point ∞ in Γ. On modular

forms T act as

f(Tz) = f(z + 1) = f(z)

so any modular form is periodic in z 7→ z + 1. f(z) then defines a holomorphic
function on Γ∞\H which can be viewed as either a cylinder or a punctured disk
“centered at ∞”. We can take as a local parameter on this disk D the parameter
q = q∞ = e2πiz. Then z 7→ q maps Γ\H→ D× = D − {0}. Since f is holomorphic
on D× we can write it in a Laurent expansion in the variable q:

f(z) =

∞∑

n=−∞

anq
n.

For f to be holomorphic at the cusp ∞ means that an = 0 for all n < 0, i.e.,

f(z) =

∞∑

n=0

anq
n =

∞∑

n=0

ane
2πinz.

This expansion is called the Fourier expansion (or q-expansion) of f(z) at the cusp
∞. There is a similar expansion at any cusp.

A modular form is called a cusp form if in fact f(z) vanishes at each of the
cusps of Γ. In the Fourier expansion of f(z) at the cusp ∞ this takes the form

f(z) =

∞∑

n=1

ane
2πinz.

Traditionally one letsMk(Γ) denote the space of all holomorphic modular forms
of weight k for Γ and Sk(Γ) the subspace of cusp forms. It is a fundamental fact
that the imposed conditions on modular forms are strong enough to give a basic
finiteness result.

Theorem 1.1 dimC Mk(Γ) <∞.

The proof in this context is essentially an application of Riemann–Roch to the
powers of the canonical bundle on the compact Riemann surface Γ\H∗.

1 Examples

Here are some well known examples of classical modular forms. Note the arith-
metic nature of the Fourier coefficients in each case.

1. Eisenstein series. Let k > 2 be an even integer. Then

Gk(z) =
∑

(m,n) 6=(0,0)

(mz + n)−k



2. Growth Estimates on Cusp Forms 5

is a modular form of weight k for SL2(Z). It has a Fourier expansion

Gk(z) = 2ζ(k) + 2
(2π)k

Γ(k)

∞∑

n=1

σk−1(n)e2πinz

where σr(n) =
∑
d|n d

r. The normalized Eisenstein series Ek(z) is defined to have

constant Fourier coefficient equal to 1 so that

Gk(z) = 2ζ(k)Ek(z).

2. The Discriminant function.

∆(z) = e2πiz
∞∏

m=1

(1− e2πimz)24 =
1

1728
(E4(z)

3 − E6(z)
2)

is the unique cusp of weight 12 for SL2(Z). It has the Fourier expansion

∆(z) =

∞∑

n=1

τ(n)e2πinz

where τ(n) is the Ramanujan τ -function.

3.Theta series. Let Q be a positive definite integral quadratic from in 2k
variables. Then

ΘQ(z) =
∑

~m∈Z2k

e2πiQ(~m)z = 1 +

∞∑

n=1

rQ(n)e2πinz

is a modular form of weight k for an appropriate congruence group Γ. Here the
Fourier coefficients are the representation numbers for Q

rQ(n) =
∣∣{~m ∈ Z2k | Q(~m) = n}

∣∣.

2 Growth Estimates on Cusp Forms

As preliminaries to the definition of the L-function we look at two estimates
on cusp forms. So let f(z) ∈ Sk(Γ).

1. From the Fourier expansion

f(z) =
∞∑

n=1

ane
2πinz

we obtain

|f(x+ iy)| ≪ e−2πy

as y → ∞, uniformly in x, with similar estimates at any cusp. So cusp forms are
rapidly decreasing at all cusps.

2. Since yk/2|f(z)| is a bounded function on Γ\H we obtain

|f(x+ iy)| ≪ y−k/2



6 1. Modular Forms and Their L-functions

as y → 0, uniformly in x. Since

ane
−2πiny =

∫ 1

0

f(x+ iy)e−2πinx dx

then combining this with the above estimate and setting y = 1
n we obtain Hecke’s

estimate on the Fourier coefficients of a cups form

|an| ≪ nk/2.

3 The L-function of a Cusp Form

Hecke associated to the cusp form

f(z) =
∞∑

n=1

ane
2πinz

the Dirichlet series, or L-function, formed out of its Fourier coefficients

L(s, f) =

∞∑

n=1

an
ns

which converges absolutely for Re(s) > k
2 + 1 by his estimate on the Fourier coef-

ficients. The L-function is analytically related to f(z) by the Mellin transform

Λ(s, f) = (2π)−sΓ(s)L(s, f) =

∫ ∞

0

f(iy)ys d×y

giving an integral representation for the completed L-function Λ(s, f). Through this
integral representation Hecke was able to derive the analytic properties of Λ(s, f)
from those of of f(z).

If we take Γ = SL2(Z), then S =

(
0 −1
1 0

)
∈ Γ and we have that

f(Sz) = f(−1/z) = zkf(z) or f(i/y) = ikykf(iy).

Using this transformation law in the integral representation gives

Λ(s, f) =

∫ ∞

1

f(iy)ys d×y +

∫ 1

0

f(iy)ys d×y

=

∫ ∞

1

f(iy)ys d×y +

∫ ∞

1

f(i/y)y−s d×y

=

∫ ∞

1

f(iy)ys d×y + ik
∫ ∞

1

f(iy)yk−s d×y

= ikΛ(k − s, f).

Note that from the rapidly decrease of cusp forms, the integrals from 1 to ∞ are
all absolutely convergent for all s and bounded in vertical strips.

Theorem 1.2 The completed L-function Λ(s, f) is nice i.e., it converges ab-
solutely in a half-plane and

(i) extends to an entire function of s,
(ii) is bounded in vertical strips,
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(iii) satisfies the functional equation Λ(s, f) = ikΛ(k − s, f)

Moreover, Hecke was able to invert the integral representation (via the Mellin
inversion formula) and prove a Converse to this Theorem.

Theorem 1.3 Suppose D(s) =

∞∑

n=1

an
ns

is absolutely convergent for Re(s)≫ 0

and, setting

Λ(s) = (2π)−sΓ(s)D(s),

that Λ(s) is nice, i.e., satisfies (i)–(iii) in Theorem 1.2. Then

f(z) =

∞∑

n=1

ane
2πinz

is a cusp form of weight k for SL2(Z).

Proof: The convergence of the Dirichlet series gives an estimate on the coefficients
of the form |an| ≪ nc which in turn gives the convergence and holomorphy of f(z)
as a function on H. Recall that SL2(Z) is generated by the two transformations

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

By construction we have f(Tz) = f(z+1) = f(z) so we need to prove the transfor-
mation law for f(z) under S. Since we already know f(z) is holomorphic it suffices
to show f(S · iy) = f(i/y) = (iy)kf(iy). But by using the Mellin inversion formula
and the functional equation for Λ(s) we have

f(iy) =

∞∑

n=1

ane
−2πny =

1

2πi

∫

Re(s)=
k
2

Λ(s)y−s ds

=
ik

2πi

∫

Re(s)=
k
2

Λ(k − s)y−s ds =
ik

2πi

∫

Re(s)=
k
2

Λ(s)ys−k ds

=
iky−k

2πi

∫

Re(s)=
k
2

Λ(s)ys ds =

(
i

y

)k
1

2πi

∫

Re(s)=
k
2

Λ(s)

(
1

y

)−s

ds

=

(
i

y

)k
f

(
i

y

)
.

Note then that f(z) is cuspidal from its Fourier expansion.

For Γ = Γ0(N) the situation is more complicated. The functional equation for
Λ(s, f) now comes from the action of

SN =

(
0 −1
N 0

)

which only normalizes Γ0(N). However if f(z) ∈ Sk(Γ0(N)) then one can show
that the function g(z) obtained from the action of SN on f(z), namely

g(z) = N−k/2z−kf

(
−1

Nz

)
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is also in Sk(Γ0(N)) and the Mellin transform now leads to a functional equation
of the form

Λ(s, f) = ikN
k
2−sΛ(k − s, g)

and that this function extends to an entire function of s which is bounded in vertical
strips, i.e., is nice.

The converse to this result is due to Weil. One variant of Weil’s statement is
the following.

Theorem 1.4 Let D1(s) =

∞∑

n=1

an
ns

and D2(s) =

∞∑

n=1

bn
ns

be absolutely conver-

gent in some right half-plane Re(s) ≫ 0. For any primitive Dirichlet character χ
set

D1(s, χ) =

∞∑

n−1

χ(n)an
ns

and D2(s, χ) =

∞∑

n−1

χ(n)bn
ns

and set
Λi(s, χ) = (2π)−sΓ(s)Di(s, χ).

Suppose that there exists an N such that for all primitive characters χ of conductor
q prime to N we have

(i) the Λi(s, χ) extend to entire functions of s,
(ii) the Λi(s, χ) are bounded in vertical strips,
(iii) we have the functional equation

Λ1(s, χ) = ikǫ(χ)N
k
2−sΛ2(k − s, χ),

with ǫ(χ) = τ(χ)2

q χ(N).

Then both

f(z) =
∞∑

n=1

ane
2πinz and g(z) =

∞∑

n=1

bne
2πinz

are cusp forms of weight k for Γ0(N) and are related by

g(z) = N−k/2z−kf

(
−1

Nz

)
.

4 The Euler Product

One of Hecke’s crowning achievements was to give conditions on a modular
form f(z) that would guarantee that its L-function would have an Euler product
factorization. He did this via what are now known as the Hecke operators Tn for
n ∈ N. In essence Tn acts on a modular form by averaging it over integer matrices
of determinant n.

To make this precise, introduce a weight k action of GL+
2 (R) on holomorphic

functions on H by

f |kg(z) =
det(g)k/2

(cz + d)k
f(gz) for g =

(
a b
c d

)
∈ GL+

2 (R).
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(This is the action of SN that we spoke of without defining in the previous section.)
Then the condition of modularity of weight k for f(z) with respect to Γ becomes
simply f |kγ = f for all γ ∈ Γ.

If we let

Ln =

{(
a b
c d

)
∈M2(Z)

∣∣ ad− bc = n

}

and

∆n =

{(
a b
0 d

)
∈ Ln

∣∣ ad = n and 0 ≤ b < d

}

then

Ln =
∐

δ∈∆n

SL2(Z)δ.

We can then define the Hecke operator (or averaging operator) Tn on Mk(SL2(Z))
by

Tnf(z) = n
k
2−1

∑

δ∈∆n

f |kδ(z) = nk−1
∑

δ∈∆n

d−kf

(
az + b

d

)
.

Here are some basic facts about these Hecke operators for Γ = SL2(Z).

(i) Tn : Mk(Γ)→Mk(Γ) and preserves Sk(Γ).

(ii) Tn · Tm =
∑

d|(m,n)

dk−1Tnm

d2
= Tm · Tn.

In particular

(iii) If (n,m) = 1 then Tn · Tm = Tnm.
(iv) If p is a prime then Tp · Tpr = Tpr+1 + pk−1Tpr−1 .

Let H denote the Z-algebra generated by the Tn. This is the Hecke algebra. It
is commutative and generated by the Tp for p prime.

One can easily compute the action of the Hecke operators on modular forms in
terms of their Fourier expansions. If we write

f(z) =

∞∑

n=0

ane
2πinz and Tmf(z) =

∞∑

n=0

bne
2πinz

then we find

bn =
∑

d|(m,n)

dk−1anm

d2

and in particular

b0 = σk−1(m)a0 and b1 = am

thus showing that the Tn preserve the space of cusp forms as claimed.



10 1. Modular Forms and Their L-functions

Suppose now that

f(z) =

∞∑

n=1

ane
2πinz

is a cusp form of weight k for SL2(Z) which is a simultaneous eigen-function for
all the Hecke operators. If we set Tnf = λ(n)f then we find that the Fourier
coefficients are related to the Hecke eigenvalues by

λ(n)a1 = an

coming from the computation of the first Fourier coefficient of Tnf above. So if
we normalize f(z) by requiring a1 = 1 then we have λ(n) = an so that the Hecke
eigen-values carry the same arithmetic information that the Fourier coefficients do.
In addition, from the relations among the Hecke operators, and thus the Hecke
eigen-values, we obtain the following recursions on the Fourier coefficients of f .

(i) If (n,m) = 1 then anam = anm.
(ii) If p is a prime then apapr = apr+1 + pk−1apr−1 or

apr+1 − apapr + pk−1apr−1 = 0.

If we see what these imply about the L-function associated to f we find

L(s, f) =

∞∑

n=1

an
ns

=
∏

p

(
∞∑

r=0

apr

prs

)

=
∏

p

(
1− app

−s + pk−1p−2s
)−1

.

Theorem 1.5 Let f(z) ∈ Sk(SL2(Z)) have a1 = 1. Then f is an eigen-
function for all the Hecke operators iff

L(s, f) =
∏

p

(
1− app

−s + pk−1p−2s
)−1

or

Λ(s, f) = (2π)−sΓ(s)
∏

p

(
1− app

−s + pk−1p−2s
)−1

.
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LECTURE 2

Automorphic Forms

In this lecture I want to begin the passage from classical modular forms f to
automorphic forms ϕ and finally to automorphic representations π. This will entail
a change of tools from the theory of one complex variable to the use of non-abelian
harmonic analysis, that is, representation theory.

1 Automorphic Forms on GL2

We begin with a classical modular form f ∈ Mm(Γ) for Γ = SL2(Z). So
f : H→ C. The upper half plane H is a symmetric space forGL+

2 (R) acting by linear
fractional transformations. If we take i ∈ H as a base point then H = GL+

2 (R) · i.

The stabilizer of i in GL+
2 (R) is Z · K+

∞ where Z =

{(
z 0
0 z

)}
is the center of

GL+
2 (R) and K+

∞ = SO(2) is the maximal compact subgroup of GL+
2 (R). We can

lift f to a function F on GL+
2 (R) by

GL+
2 (R)

F

##GG
GG

GG
GG

G

��
H

f // C

.

Then F is defined by F (g) = f(g · i) for g ∈ GL+
2 (R) and it satisfies

F (zgk) = F (g) for z ∈ Z, k ∈ K+
∞.

F still has a modular transformation law under Γ = SL2(Z) = GL+
2 (Z). We would

like to work with Γ-invariant functions. To this end, set

j(g; z) = det(g)−1/2(cz + d) for g =

(
a b
c d

)
∈ GL+

2 (R), z ∈ H.

Then modularity for f(z) becomes f(γz) = j(γ; z)mf(z) for all γ ∈ Γ. If we set

ϕ(g) = j(g; i)−mF (g) = j(g; i)−mf(g · i)

then one easily checks that ϕ(g) satisfies

(i) ϕ(γg) = ϕ(g) for all γ ∈ Γ and g ∈ GL+
2 (R)

(ii) ϕ(zg) = ϕ(g) for all z ∈ Z

(iii) ϕ(gkθ) = eπimθϕ(g) for kθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ K+

∞

13



14 2. Automorphic Forms

We have interchanged the properties of Γ-modularity and K+
∞-invariance for Γ-

invariance and a K+
∞-transformation law.

Now let g denote the complexified Lie algebra of GL2(R). Let U(g) denote the
universal enveloping algebra of g and Z = Z(g) the center of U(g). Z is the space
of invariant differential operators on GL2(R). Then the holomorphy of f(z) can be
expressed in terms of these operators as

(iv) ϕ(g) is an eigen-function for Z.

Finally, one can express the growth condition of f(z) being holomorphic at
infinity as

(v) ϕ(g) is of moderate growth on GL+
2 (R), i.e., for any norm ‖ ‖ on GL+

2 (R)
there exists a positive integer r such that

|ϕ(g)| ≤ C‖g‖r.

For the norm we can take ‖g‖ = (tr(gtg) + tr((g−1)tg−1))1/2.

Note that we could do the same passage for a holomorphic modular form for
some Γ0(N) or for a Maass form.

Functions on GL+
2 (R) that satisfy (i) – (v) are examples of automorphic forms.

For our purposes it will be more convenient to work with automorphic forms on
GL2(A) where A is a ring of adeles. Recall that Q has several completions, namely
R = Q∞ and the various Qp for primes p. The ring of adeles A of Q is then the
restricted product of these completions

A = R×
∏′

p

Qp =
∏′

v

Qv ⊂
∏

v

Qv

with respect to the compact open subrings Zp ⊂ Qp. More precisely if we let Sf
run over all finite sets of primes then A is the union, or inductive limit,

A = lim
−→
Sf


R×

∏

p∈Sf

Qp ×
∏

p/∈Sf

Zp


 .

Each R×
∏
p∈Sf

Qp×
∏
p/∈Sf

Zp receives the product topology and A the inductive

limit topology. Then Q →֒ A diagonally as a canonical discrete subgroup and the
quotient Q\A is compact. Note that Z = Q ∩ (R×

∏
Zp).

Accordingly, one has

GL2(A) = GL2(R)×
∏′

p

GL2(Qp) =
∏′

v

GL2(Qv)

= lim
−→
Sf


GL2(R)×

∏

p∈Sf

GL2(Qp)×
∏

p/∈Sf

GL2(Zp)



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a restricted product with respect to the maximal open compact subgroupsGL2(Zp).
Once again GL2(Q) →֒ GL2(A) diagonally as a canonical discrete subgroup having
finite co-volume modulo the center.

Let us now set G = GL2 and let

G∞ = G(R) ⊃ K = O(2)

Gf =
∏′

p

G(Qp) ⊃ Kf =
∏

p

Zp

K = K∞Kf ⊂ G∞Gf = G(A).

The groups K∞, Kf and K are all maximal compact subgroups and Kf is open in
Gf . Then Strong Approximation for SL2 combined with the fact that Q has class
number one lets us write

G(A) = G(Q) ·G+(R)Kf

and since

Γ = GL+
2 (Z) = GL2(Q) ∩ (G+(R)Kf )

we have

Γ\GL+
2 (R) = G(Q)\G(A)/Kf

and

Z(R)Γ\GL+
2 (R) = Z(A)G(Q)\G(A)/Kf .

To carry out this process for Γ = Γ0(N) we would replace Kf by an appropriate
open compact subgroup L ⊂ Kf which would no longer be maximal.

If we return to our automorphic form ϕ on Z(R)Γ\GL+
2 (R) we can further lift

it to a function, still denoted by ϕ, on G(Q)\G(A) by

G(Q)\G(A)

��
ϕ

&&LLLLLLLLLLLLLLLLLLLLLLLLLLLL

Z(A)G(Q)\G(A)/Kf

Z(R)Γ\GL+
2 (R)

ϕ // C

The function ϕ(g) on G(A) which we construct in this way will be a smooth
function in the following sense. If we write g ∈ G(A) = G∞ · Gf as g = (g∞, gf )
then ϕ(g) = ϕ(g∞, gf ) will be C∞ in the archimedean g∞ variable and locally
constant in the non-archimedean gf variables. Moreover it will satisfy:

(i) [automorphy] ϕ(γg) = ϕ(g) for all γ ∈ G(Q);
(ii) [K-finite] ϕ(gkθkf ) = eimθϕ(g) for kθ ∈ K+

∞ and kf ∈ Kf , or, more gener-
ally, the space 〈ϕ(gk) | k ∈ K〉 is finite dimensional;

(iii) [Z-finite] there exists an ideal J ⊂ Z of finite co-dimension such that J ·ϕ =
0, or equivalently, the space 〈Xϕ(g) | X ∈ Z〉 is finite dimensional;
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(iv) [moderate growth] for any norm ‖ ‖ on G(A) there exists a positive integer
r such that

|ϕ(g)| ≤ C‖g‖r.

For an adelic norm on G(A) we can take

‖g‖ =
∏

v

(
max
i,j
{|gi,j|v, |(g

−1)i,j |v}

)
.

Definition 2.1 A smooth function ϕ : GL2(A) → C satisfying conditions (i)
– (iv) is called a (K-finite) automorphic form on GL2(A).

We let A = A(GL2(Q)\GL2(A)) denote the space of automorphic forms on
GL2. If we wish to specify a behavior under the center Z(A) then for any continuous
character ω : k×\A× → C× we let

A(ω) = {ϕ ∈ A | ϕ(zg) = ω(z)ϕ(g) for z ∈ Z(A)}.

With this generality in the conditions (i)–(iv), the space A will contain the lifts of
all holomorphic modular forms and all Maass forms for all Γ0(N) as well.

2 Automorphic Forms on GLn

It should be clear how to define automorphic forms on GLn(k)\GLn(A) for A

the ring of adeles for any global field k. For our purposes, we will stick to A being
the ring of adeles of a number field k. Let O denote the ring of integers of k.

The ring A is then the restricted product of the completions kv of k with respect
to the maximal compact subrings Ov ⊂ kv for non-archimedean places v <∞.

A =
∏′

v

kv = lim
−→
S

(∏

v∈S

kv ×
∏

v/∈S

Ov

)

where now we have taken S to run through all finite sets of places of k such that
S contains V∞ = {v | v|∞}, the set of archimedean places of k. Then we can write
A = k∞Af where

k∞ =
∏

v|∞

kv and Af =
∏′

v<∞

kv.

If k has r1 real embeddings and r2 pairs of complex embeddings, then k∞ = Rr1 ×
Cr2 .

Then

GLn(A) =
∏′

v

GLn(kv) = lim
−→
S

(∏

v∈S

GLn(kv)×
∏

v/∈S

GLn(Ov)

)

is the restricted product with respect to the maximal open compact subgroups
Kv = GLn(Ov) ⊂ GLn(kv) for the non-archimedean places. If we agree to now let
G = GLn then as before we have

G(A) = G∞ ·Gf ⊃ K = K∞ ·Kf
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where

G∞ = GLn(R)r1 ×GLn(C)r2 ⊃ K∞ = O(n)r1 × U(n)r2

Gf = GLn(Af ) =
∏′

v<∞

GLn(kv) ⊃ Kf =
∏

v<∞

GLn(Ov).

Again, G(k) →֒ G(A) diagonally as a canonical discrete subgroup with finite co-
volume modulo the center Z(A).

Let Z = Z(g) denote the center of the universal enveloping algebra U(g) of the
complexified Lie algebra g of G∞.

Definition 2.2 A smooth function ϕ : GLn(A) → C is called a (K-finite)
automorphic form if it satisfies:

(i) [automorphy] ϕ(γg) = ϕ(g) for all γ ∈ G(Q);
(ii) [K-finite] the space 〈ϕ(gk) | k ∈ K〉 is finite dimensional;
(iii) [Z-finite] the space 〈Xϕ(g) | X ∈ Z〉 is finite dimensional;
(iv) [moderate growth] for any norm ‖ ‖ on G(A) there exists a positive integer

r such that

|ϕ(g)| ≤ C‖g‖r.

We again denote this space by A = A(GLn(k)\GLn(A)).

As in the classical case, the conditions defining automorphic forms imply strong
finiteness results.

Theorem 2.1 (Harish-Chandra) If we fix δ be a finite dimensional repre-
sentation of K∞, L ⊂ Kf a compact open subgroup, J ⊂ Z an ideal of finite
co-dimension, and ω : k×\A× → C× a central character and let A(δ, L,J , ω) de-
note the set of ϕ ∈ A(ω) such that

(i) ϕ transforms by δ under K∞,
(ii) ϕ(gℓ) = ϕ(g) for all ℓ ∈ L,
(iii) J · ϕ = 0.

then dimCA(δ, L,J , ω) <∞.

3 Smooth Automorphic Forms

One would hope to be able to analyze A as a representation of GLn(A) acting
by right translation. Unfortunately, this is not possible since condition (ii) in the
definition of automorphic forms is not preserved under right translation. More
specifically, it is being K∞-finite that is not preserved under right translation by
G∞.

[To make this more precise, consider ϕ(g) ∈ A and set

ϕ′(g) = R(g′)ϕ(g) = ϕ(gg′).
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Then ϕ(g) is right K-finite and ϕ′(g) is naturally right K ′-finite where K ′ =
g′K(g′)−1 is a conjugate of K. Now, at the finite places, since Kf and K ′

f are

both compact and open, the intersection Kf ∩ K ′
f is of finite index in both. So

there is no difference between Kf -finiteness and K ′
f -finiteness. On the other hand

at the archimedean places there is no reason for K∞ and K ′
∞ to have anything

more in common than the identity. This is quite apparent when considering GL2

or SL2 where the maximal compacts are one dimensional. So while the notion of
being Kf -finite is really independent of the choice of maximal compact, the notion
of K∞-finiteness is dependent on the choice of K∞.]

There are two ways to remedy this: (i) settle for representations of something
smaller – namely the Hecke algebra H; or (ii) enlarge the space of automorphic
forms. We will address the Hecke algebra in the next lecture. The most natural
enlargement is the space of smooth automorphic forms, in which the condition of
K∞-finiteness is weakened to a condition of uniform moderate growth.

Definition 2.3 A smooth function ϕ : GLn(A) → C is called a smooth auto-
morphic form if it satisfies:

(i) [automorphy] ϕ(γg) = ϕ(g) for all γ ∈ G(Q);
(ii) [Kf -finite] there is a compact open subgroup L ⊂ Kf such that ϕ(gℓ) = ϕ(g)

for all ℓ ∈ L;
(iii) [Z-finite] there exists an ideal J ⊂ Z of finite co-dimension such that Jϕ =

0;
(iv) [uniform moderate growth] there exists a positive integer r such that for all

differential operators X ∈ U(g)

|Xϕ(g)| ≤ CX‖g‖
r.

We will denote the space of smooth automorphic forms by

A∞ = A∞(GLn(k)\GLn(A)).

Now GLn(A) does act on A∞ by right translation. Moreover A∞ will carry a limit
Fréchet topology coming from the uniform moderate growth semi-norms. A∞ is
not that far removed from A. By a theorem of Harish-Chandra we know that K∞-
finiteness implies uniform moderate growth, so that A ⊂ A∞ and A is precisely
the space of ϕ ∈ A∞ that are K-finite, and that in fact A is dense in A∞ in this
natural topology.

4 L2-automorphic Forms

Another natural class of automorphic forms are the L2-automorphic forms. To
define these we must fix a unitary central character ω : k×\A× → C1. Then

L2(ω) = L2(GLn(k)\GLn(A);ω)

is the space of all measurable ϕ : GLn(k)\GLn(A)→ C such that ϕ(zg) = ω(z)ϕ(g)
for z ∈ Z(A) and ∫

Z(A)GLn(k)\GLn(A)

|ϕ(g)|2 dg <∞.
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This is a Hilbert space and the group GLn(A) acts by right translation on this space
preserving the norm; hence L2(ω) affords a unitary representation of GLn(A).

5 Cusp Forms

As in the classical case, the cusp forms will play a special role for us. Recall
that if f(z) is a classical modular form for Γ = SL2(Z) then f is a cusp form if

0 = a0 =

∫ 1

0

f(x+ iy) dx =

∫ 1

0

f

((
1 x
0 1

)
· iy

)
dx.

If ϕ(g) is an automorphic form on GL2, then the group of translations is

N2 =

{
n =

(
1 x
0 1

)}
⊂ GL2.

The analogous integral would be overN2(k)\N2(A) ≃ k\A, which is compact. Thus
we have the following definition.

Definition 2.4 An automorphic form ϕ(g) on GL2(A) is a cusp form iff
∫

N2(k)\N2(A)

ϕ(ng) dn =

∫

k\A

ϕ

((
1 x
0 1

)
g

)
dx = 0.

This is the same no matter whether ϕ ∈ A, A∞, or L2.

For GLn there are many translation subgroups. They are given by the unipo-
tent radicals of (rational) parabolic subgroups. For GLn the parabolic subgroups
are parameterized (up to conjugation) by partitions n = n1 + · · · + nr of n. The
associated parabolic is

P =








g1 ∗ · · · ∗
0 g2 · · · ∗
...

. . .
...

0 · · · · · · gr



∣∣gi ∈ GLni





= M · U

where M ≃ GLn1 × · · · ×GLnr
is the Levi subgroup and

U =








In1 ∗ · · · ∗
0 In2 · · · ∗
...

. . .
...

0 · · · · · · Inr








is the unipotent radical of P . P is called proper if the partition is non-trivial. As
for GL2 for any of these unipotent radicals, U(k)\U(A) is compact.

Definition 2.5 An automorphic form ϕ(g) on GLn(A) is a cusp form iff
∫

U(k)\U(A)

ϕ(ug) du = 0

for all unipotent radicals of all proper parabolic subgroups of GLn.
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Since all parabolics are (rationally) conjugate to a standard (upper triangular)
one, it suffices to only consider integrals over the standard unipotent radicals. (This
is often referred to by saying that when one works adelically GLn has only one
cusp.) In fact, it suffices to consider only unipotent radicals of maximal parabolic
subgroups, i.e., those associated to partitions with only two terms n = n1 + n2, so

P =

{(
g1 X

g2

)}
⊃ U =

{(
In1 X

In2

)}
≃Mn1×n2 ,

since at least one of these unipotent groups will occur as a normal subgroup in any
other standard unipotent radical.

As in the classical case we have that cusp forms are rapidly decreasing.

Theorem 2.2 (Gelfand and Piatetski-Shapiro) If ϕ(g) is a cusp form,
then it is rapidly decreasing modulo the center on a fundamental domain F for
GLn(k)\GLn(A), that is, for some integer r

|g(zg)| ≤ C|z|r‖g‖−N for all N ∈ N

where we restrict g to lie in F ∩ SLn(A).

We should note that exact fundamental domains for GLn(A) are rather un-
wieldy and instead one usually replaces F with a slightly bigger set S, called a
Siegel set, which is easier to construct.

We will denote the subspaces of cusp forms by A0, A
∞
0 , and L2

0. Note that if
we fix a unitary central character ω then one consequence of this rapid decay is the
containment A0(ω) ⊂ A∞

0 (ω) ⊂ L2
0(ω).
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LECTURE 3

Automorphic Representations

We have defined our spaces of automorphic forms. Now we turn to our tools.
We will analyze A, A∞, or L2(ω) as representation spaces for certain algebras or
groups. Throughout we will let G = GLn, although the results remain true for any
reductive algebraic group G, let k be a number field, and retain all notations from
before.

1 (K-finite) automorphic representations

As we have noted the space A of (K-finite) automorphic forms does not give
a representation of G(A). It will be a representation space for the global Hecke
algebra H.

1.0.1 The Hecke algebra. The global Hecke algebraH will be a restricted tensor
product of local Hecke algebras: H = ⊗′Hv. H and each Hv will be idempotented
algebras under convolution. So there will be a directed family of fundamental
idempotents {ξi} such that

H = lim
−→
i

ξi ∗ H ∗ ξi =
⋃

i

ξi ∗ H ∗ ξi

and
Hv = lim

−→
i

ξi,v ∗ Hv ∗ ξi,v =
⋃

i

ξi,v ∗ H ∗ ξi,v.

Neither H nor any Hv will have an identity, but for each ξi the subalgebra ξi ∗H∗ξi
will have ξi as an identity.

(i) If v < ∞ is an non-archimedean place of k then Hv = C∞
c (G(kv)) is the

algebra of smooth (locally compact) compactly supported functions on Gv = G(kv).
It is naturally an algebra under convolution. For each compact open subgroup
Lv ⊂ Gv there is a fundamental idempotent

ξLv
=

1

V ol(Lv)
XLv

where XLv
is the characteristic function of Lv. Then ξLv

∗ Hv ∗ ξLv
= H(Gv//Lv)

is the algebra of Lv-bi-invariant compactly supported functions on Gv. In any
representation of Hv the idempotent ξLv

will act as a projection onto the Lv-
fixed vectors. We will let ξ◦v denote the fundamental idempotent associated to the
maximal compact subgroup Kv. Note that if k = Q, G = GL2, and Lp = Kp =
GL2(Zp) then ξ◦p ∗Hp ∗ ξ

◦
p = H(GL2(Qp)//GL2(Zp)) is isomorphic to the complex

algebra spanned by the classical Hecke operators 〈Tpr 〉.

21
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(ii) If v|∞ is an archimedean place of k then Hv is the convolution algebra of
bi-Kv-finite distributions on Gv with support in Kv. Then Hv contains both

U(g) : distributions supported at the identity

and

A(Kv) : finite measures on Kv

and in fact

Hv = U(gv)⊗U(kv) A(Kv).

For each finite dimensional representation δv of Kv we have a fundamental idem-
potent

ξδv
=

1

deg(δv)
Θδv

dkv

where deg(δv) is the degree and Θδv
is the character of δv and dkv is the normalized

Haar measure on Kv . In any representation δv should act as the projection onto
the δv-isotypic component.

(iii) The global Hecke algebra H is then the restricted tensor product of the
local algebras Hv with respect to the idempotents {ξ◦v} at the non-archimedean
places., i.e.,

H = ⊗′
vHv = lim

−→
S

((⊗v∈SHv)⊗ (⊗v/∈Sξ
◦
v ))

as S runs over finite sets of places of k which contain all archimedean places V∞.
Let us write H = H∞ ⊗Hf where, as usual,

H∞ = ⊗v|∞Hv and Hf = ⊗′
v<∞Hv.

Then the fundamental idempotents in H are of the form ξ = ξ∞ ⊗ ξf where

ξ∞ = ξδ = ⊗v|∞ξδv
∈ H∞

is associated to a finite dimensional representation δ = ⊗δv of K∞ and

ξf = ξL = ⊗v<∞ξLv
∈ Hf

is associated to a compact open subgroup L =
∏
Lv of Gf (so for almost all places

Lv = Kv and ξLv
= ξ◦v).

1.0.2 The representation on automorphic forms. The space A of K-finite au-
tomorphic forms is naturally an H-module by right convolution. For ξ ∈ H and
ϕ ∈ A set

R(ξ)ϕ(g) = ϕ ∗ ξ̌(g) =

∫

G(A)

ϕ(gh)ξ(h) dh

where ξ̌(g) = ξ(g−1). Note that with this action the K-finiteness condition on
ϕ ∈ A can now be stated as: there exists a fundamental idempotent ξ = ξ∞⊗ ξf =
ξδ ⊗ ξL such that R(ξ)ϕ = ϕ.

The representations that we will be most interested in will be admissible rep-
resentations of H.

Definition 3.1 A representation (πv, Vv) of a local Hecke algebra Hv is ad-
missible if for every fundamental idempotent ξv we have

dimC(πv(ξv)Vv) <∞.
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Similarly a representation (π, V ) of the global Hecke algebra H is admissible if for
every global fundamental idempotent ξ ∈ H the subspace π(ξ)V is finite dimen-
sional.

One consequence of admissibility, which we state in the global case, is that as a
representation of K the space V decomposes into a direct sum of irreducibles with
finite multiplicities:

V =
⊕

τ∈K̂

m(τ, V )Vτ .

The reason for our interest in admissible representations is the following fun-
damental result of Harish-Chandra (probably first due to Jacquet and Langlands
for GL2).

Theorem 3.1 Suppose ϕ ∈ A. Then the H-module generated by ϕ, namely

Vϕ = R(H)ϕ = ϕ ∗ H ⊂ A,

is an admissible H-module.

This makes the following definition reasonable.

Definition 3.2 An automorphic representation (π, V ) of H is an irreducible
(hence admissible) sub-quotient of A(G(k)\G(A)).

There is a canonical way to construct admissible representations ofH abstractly
using the restricted tensor product structure H = ⊗′Hv. Suppose we have a col-
lection {(πv, Vv)} of admissible representations of the local Hecke algebras Hv such
that for almost all finite places the representation Vv contains a (fixed) Kv-invariant
vector, say u◦v. Then we can define the restricted tensor product of these represen-
tations with respect to the {u◦v} in the (by now) usual manner:

V = ⊗′
vVv = lim−→

S

((⊗v∈SVv)⊗ (⊗v/∈Su
◦
v)) .

Note that since u◦v isKv-fixed, then πv(ξ
◦
v )u

◦
v = u◦v so this space does carry a natural

representation ofH, coming from its restricted tensor product decomposition, which
we will denote by π = ⊗′πv. We leave it as an exercise to verify that if each of the
(πv, Vv) is admissible then so is (π, V ) and if each (πv, Vv) is irreducible, then so is
(π, V ).

An important fact for us, which is a purely algebraic fact about H-modules, is
the converse to this construction.

Theorem 3.2 (Decomposition Theorem) If (π, V ) is an irreducible ad-
missible representation of H then for each place v of k there exists an irreducible
admissible representation (πv, Vv) of Hv, having a Kv-fixed vector for almost all v,
such that π = ⊗′πv.

Therefore in the context of automorphic representations of H we have the
following corollary.
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Corollary 3.2.1 If (π, V ) is an automorphic representation, then π decom-
poses into a restricted tensor product of local irreducible admissible representations:
π = ⊗′πv.

Note that the decomposition given in this corollary is an abstract decompo-
sition. It does not give a factorization of automorphic forms into a product of
functions on the local groups G(kv).

2 Smooth automorphic representations

Now things are more straight forward on the one hand, since G(A) acts in
A∞(G(k)\G(A)) by right translation. However the representation theory is now a
bit more complicated. More precisely, for every compact open subgroup L ⊂ Kf

the space of L-invariant functions (A∞)L in A∞, namely

(A∞)L = {ϕ ∈ A∞ | ϕ(gℓ) = ϕ(g) for ℓ ∈ L},

is a representation for G∞. The spaces (A∞)L all carry compatible limits of smooth
Fréchet topologies coming from the uniform moderate growth semi-norms on A∞

and the representation of G∞ on these spaces are limits of smooth Fréchet repre-
sentation of moderate growth. More precisely, if we let

A∞
r = {ϕ ∈ A∞ | sup

g∈G(A)

(‖g‖−r|Xϕ(g)|) <∞ for all X ∈ U(g)}

then for any open compact subgroup L ⊂ Kf the space of L-fixed vectors (A∞
r )L

in A∞
r is a smooth Frechet representation of moderate growth for G∞ defined by

the natural seminorms

qX,r(ϕ) = sup
g

(‖g‖−r|Xϕ(g)|) for X ∈ U(g).

Then as topological representations both

(A∞)L = lim
−→
r

(A∞
r )L and A∞ = lim

−→
L

(A∞)L

carry a limit-Fréchet topology. Without going into details on such representations,
let us state the results we will need analogous to those for representations of H.

Theorem 3.3 (Harish-Chandra; Wallach) If ϕ ∈ A∞ is a smooth auto-
morphic form then the (closed) sub-representation generated by ϕ, namely

Vϕ = R(G(A))ϕ ⊂ A∞,

is admissible in the sense that its (dense) subspace of K-finite vectors (Vϕ)K is
admissible as an H-module.

Then we can make the following definition.

Definition 3.3 A smooth automorphic representation (π, V ) of G(A) is a
(closed) irreducible sub-quotient of A∞(G(k)\G(A)).

Note that the smooth automorphic representations are automatically admis-
sible in the above sense. We still have a version of the Decomposition Theorem,
which we state as follows.
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Theorem 3.4 (Decomposition Theorem) If (π, V ) is a smooth automor-
phic representation of G(A) then there exist irreducible admissible smooth repre-
sentations (πv, Vv) of G(kv), which are smooth Fréchet representations of moderate
growth if v|∞, such that π = π∞ ⊗ πf where

π∞ = ⊗̂v|∞πv

is the topological tensor product of smooth Fréchet representations and

πf = ⊗′
v<∞πv

is the restricted tensor product of smooth representations of the G(kv). Moreover, if
(πK , VK) is the associated irreducible H-module of K-finite vectors in V then in the
decomposition πK = ⊗′(πK)v we have πv = (πK)v for v <∞ while for v|∞ we have

(πv)K = (πK)v and πv = (̂πK)v is the Casselman-Wallach canonical completion of
the Hv-module (πK)v.

Even though the theory of smooth automorphic representations is topological,
according to Wallach it is also quite algebraic. These representations will be alge-
braically irreducible as representations of the global Schwartz algebra S = S(G(A)).
This is a restricted tensor product of the local Schwatrz algebras Sv = S(G(kv)).
For archimedean places v|∞ then Sv is the usual space of smooth (infinitely dif-
ferentiable) rapidly decreasing functions on G(kv). At the non-archmiedean places
rapidly decreasing is interpreted as having compact support, so Sv is the space of
smooth (locally constant) compactly supported supported functions on G(kv), that
is, Sv = Hv. Then S = S∞ ⊗ Sf where now

S∞ = S(G∞) = ⊗̂v|∞Sv and Sf = ⊗′
v<∞Sv = Hf .

3 L2-automorphic representations

If we now fix a unitary central character ω : k×\A× → C× and consider the
associated space of L2-automorphic forms L2(G(k)\G(A);ω) then this space is a
Hilbert space and affords a unitary representation representation of G(A) acting by
right translation. In some sense this is the easiest situation to be in.

Theorem 3.5 (Harish-Chandra) If ϕ ∈ L2(ω) then

Vϕ = R(G(A))ϕ ⊂ L2(ω)

is an admissible sub-representation in the sense that the (dense) sub-space (Vϕ)K
of K-finite vectors is admissible as as H-module.

Definition 3.4 An L2-automorphic representation (π, V ) is an irreducible con-
stituent in the L2-decomposition of some L2(ω).

In the context of L2-automorphic representations, the Decomposition Theorem
predates the algebraic one and is due to Gelfand and Piatetski-Shapiro.

Theorem 3.6 If (π, V ) is an L2-automorphic representation then there ex-

ist irreducible unitary representations (πv, Vv) of G(kv) such that π = ⊗̂
′
πv is a

restricted Hilbert tensor product of local representations.
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4 Cuspidal representations

Since the cuspidality condition is defined by the vanishing of a left unipotent
integration ∫

U(k)\U(A)

ϕ(ug) du = 0,

which is a closed condition, and our actions of H or G(A) on the spaces of auto-
morphic forms are by right convolution or right translations we see that the spaces
of cusp forms A0, A∞

0 , or L2
0(ω) are all (closed) sub-representations of the relevant

spaces of automorphic forms.

A fundamental result of the space of L2-cusp forms is the following result of
Gelfand and Piatetski-Shapiro.

Theorem 3.7 The space L2
0(ω) of L2-cusp forms decomposes into a discrete

Hilbert direct sum with finite multiplicities of irreducible unitary sub-representations

L2
0(ω) = ⊕m(π)Vπ with m(π) <∞.

We can then make the following definition.

Definition 3.5 The irreducible constituents (π, Vπ) of the various L2
0(ω) are

the L2-cuspidal representations.

Recall that for a fixed unitary central character ω we have, as a consequence
of the rapid decrease of cusp forms, the inclusions

A0(ω) ⊂ A∞
0 (ω) ⊂ L2

0(ω)

and in fact upon passing to smooth vectors and then K-finite vectors we have

A∞
0 (ω) = L2

0(ω)∞ and A0(ω) = A∞
0 (ω)K = L2

0(ω)K

so we can deduce the decompositions

A∞
0 (ω) = ⊕m(π)V∞

π and A0(ω) = ⊕m(π)(Vπ)K .

Definition 3.6 The irreducible constituents of A0(ω) are the unitary (K-finite)
cuspidal representations of G(A) and the irreducible constituents of A∞(ω) are the
unitary smooth cuspidal representations of G(A).

Note that if (π, Vπ) is a cuspidal representation (in any context) then the el-
ements of Vπ are indeed cusp forms, that is, Vπ ⊂ A0 as a subspace not a more
general sub-quotient.

In general any irreducible subrepresentation of A0 or A∞
0 will be called a cuspi-

dal representation. Due to the rapid decrease of cusp forms, any cuspidal represen-
tation (π, Vπ) will be an unramified twist of a unitary cuspidal representation, that
is, if we define for any character χ : k×\A× → C× the twisted representation π⊗χ
as the representation by right translation on the space V ⊗ χ = {ϕ(g)χ(det g) |
ϕ ∈ Vπ}, then one can always find an unramified character χ such that π ⊗ χ is
a unitary cuspidal representation as above. Some choose to call the non-unitary
cuspidal representations quasi-cuspidal.
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5 Connections with classical forms

Suppose we return to a classical cusp form f for SL2(Z) of weight m. If we
follow our passage f 7→ ϕ 7→ (πϕ, Vϕ) then (πϕ, Vϕ) is an admissible subspace of
the space of cuspidal automorphic forms. It need not be irreducible. However, if in
addition f is a simultaneous eigen-function for all the classical Hecke operators, then
(πϕ, Vϕ) is irreducible and hence a cuspidal representation. Then the Decomposition
Theorem lets us decompose πϕ as πϕ = π∞ ⊗ (⊗′πp). In this decomposition

(i) π∞ is completely determined by the weight m of f
(ii) πp is completely determined by the Hecke eigen-value λ(p) of Tp acting on

f .

In fact, as we shall see, the Decomposition Theorem for πϕ is equivalent to the
Euler product factorization for the completed L-function Λ(s, f).
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LECTURE 4

Fourier Expansions and Multiplicity One

Theorems

We now start with results which are often GLn specific. So we let G = GLn
(however one should also keep in mind G = GLn ×GLm) and still take k to be a
number field.

1 The Fourier expansion of a cusp form

Let (π, Vπ) be a smooth cuspidal representation, so Vπ ⊂ A∞
0 . Let ϕ ∈ Vπ be

a smooth cusp form.

We begin with G = GL2. Our translation subgroup is

N = N2 =

{
n =

(
1 x
0 1

)}
.

For any g ∈ G(A) the function

x 7→ ϕ

((
1 x
0 1

)
g

)

is a smooth function of x ∈ A which is periodic under k. Since k\A is a compact
abelian group we will have an abelian Fourier expansion of this function.

For each continuous character ψ : k\A → C we define a ψ-Fourier coefficient,
or ψ-Whittaker function, of ϕ by

Wϕ,ψ(g) =

∫

k\A

ϕ

((
1 x
0 1

)
g

)
ψ−1(x) dx.

This function satisfies

Wϕ,ψ

((
1 x
0 1

)
g

)
= ψ(x)Wϕ,ψ(g).

Then by standard abelian Fourier analysis we have

ϕ

((
1 x
0 1

)
g

)
=
∑

ψ∈dk\A

Wϕ,ψ(g)ψ(x)

or

ϕ(g) =
∑

ψ

Wϕ,ψ(g).

29
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By standard duality theory, k̂\A ≃ k and if we fix one non-trivial character ψ then
any other is of the form ψγ(x) = ψ(γx) for γ ∈ k, so

ϕ(g) =
∑

γ∈k

Wϕ,ψγ
(g).

Since ϕ is cuspidal, for γ = 0 we have

Wϕ,ψ0(g) =

∫

k\A

ϕ

((
1 x
0 1

))
dx = 0

and for γ 6= 0 it is an easy change of variables to see that

Wϕ,ψγ
(g) = Wϕ,ψ

((
γ 0
0 1

)
g

)

which gives for our Fourier expansion for GL2

ϕ(g) =
∑

γ∈k×

Wϕ

((
γ 0
0 1

)
g

)

where we have set Wϕ,ψ = Wϕ.

Now consider G = GLn. The role of the translations is played by the full
maximal unipotent subgroup

N = Nn =




n =




1 x1,2 ∗
. . .

. . .

. . . xn−1,n

0 1








which is now non-abelian. If we retain out fixed additive character ψ of k\A from
before, then ψ defines a (continuous) character of N(k)\N(A) by

ψ(n) = ψ







1 x1,2 ∗
. . .

. . .

. . . xn−1,n

0 1







= ψ(x1,2 + · · ·+ xn−1,n).

The associated ψ-Whittaker function of ϕ is now

Wϕ(g) = Wϕ,ψ(g) =

∫

N(k)\N(A)

ϕ(ng)ψ−1(n) dn

which again satisfiesWϕ(ng) = ψ(n)Wϕ(g) for all n ∈ N(A). The Fourier expansion
of ϕ which is useful is

ϕ(g) =
∑

γ∈Nn−1(k)\GLn−1(k)

Wϕ

((
γ 0
0 1

)
g

)
.

This is not hard to prove. It is essentially an induction based on the above
argument, begun by expanding about the last column of N , which is abelian.
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For G = GL3 one would begin with

ϕ






1 x1 x2

1 x3

1


 g


 = ϕ






1 x2

1 x3

1






1 x1

1
1


 g




and expand this as a function of

(
x2

x3

)
∈ (k\A)2. Remember that ((k\A)2)∧ ≃ k2

and that GL2(k) acts on k2 with two orbits: {0} and an open orbit (0, 1) ·GL2(k).
The {0} orbit contributes 0 by cuspidality and the open orbit can be parameterized

by P2(k)\GL2(k) where P2 =

{(
a b
0 1

)}
= Stab((0, 1)). One then expands the

resulting terms as functions of x1 as before.

As I said, the proof is not hard. The difficult thing, if there is one, is in
recognizing that this is what one needs. This was recognized independently by
Piatetski-Shapiro and Shalika.

2 Whittaker models

Consider now the functions W = Wϕ which appear in the Fourier expansion of
our cusp forms ϕ ∈ Vπ . These are smooth functions on G(A) satisfying W (ng) =
ψ(n)W (g) for all n ∈ N(A). Let

W(π, ψ) = {Wϕ | ϕ ∈ Vπ}.

The group G(A) acts in this space by right translation and the map

ϕ 7→Wϕ intertwines Vπ
∼
−→W(π, ψ).

Note that since we can recover ϕ from Wϕ through its Fourier expansion we are
guaranteed that Wϕ 6= 0 for all ϕ 6= 0. The space W(π, ψ) is called the Whittaker
model of π.

The idea of a Whittaker model makes sense over a local field (and even a finite
field). If we let kv be a local field (a completion of our global field k) and let ψv
be a non-trivial (continuous) additive character of kv then as before ψv defines a
character of the local translationsN(kv). LetW(ψv) denote the full space of smooth
functions W : G(kv) → C which satisfy W (ng) = ψv(n)W (g) for all n ∈ N(kv).
This is the space of smooth Whittaker functions on G(kv) and G(kv) acts on it by
right translation.

If (πv, Vπv
) is a smooth irreducible admissible representation of G(kv), then an

intertwining

Vπv
→֒ W(ψv) given by ξv 7→Wξv

gives a Whittaker model W(πv, ψv) of πv.

For a representation (πv, Vπv
) to have a Whittaker model it is necessary and

sufficient for Vπv
to have a non-trivial (continuous) Whittaker functional, that is ,

a continuous functional Λv : Vπv
→ C satisfying

Λv(πv(n)ξv) = ψv(n)Λv(ξv)
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for all n ∈ N(kv) and ξv ∈ Vπv
. A model ξv 7→Wξv

gives a functional by

Λv(ξv) = Wξv
(e)

and a functional Λv gives a model by setting

Wξv
(g) = Λv(πv(g)ξv).

The fundamental result on local Whittaker models is due to Gelfand and Kazh-
dan (v <∞) and Shalika (v|∞).

Theorem 4.1 (Local Uniqueness) Given (πv, Vπv
) an irreducible admissible

smooth representation of G(kv) the space of (continuous) Whittaker functionals is
at most one dimensional, that is, and πv has at most one Whittaker model.

Remarks. (i) One proves this by showing that the space of Whittaker functions
W(ψv) is multiplicity free as a representation ofG(kv). WritingW(ψv) = Ind(ψv)

∞

one shows that the intertwining algebra of Bessel distributions, that is, distributions
B satisfying B(n1gn2) = ψv(n1)B(g)ψv(n2), is commutative by exhibiting an anti-
involution of the algebra that stabilizes the individual distributions.
(ii) When v|∞, if we worked simply with irreducible admissible representations
of the Hecke algebra Hv then the space of (algebraic) Whittaker functionals on
(Vπv

)K would have dimension n!, but only one extends continuously to Vπv
with

its (smooth moderate growth) Fréchet topology.
(iii) Simultaneously, one shows that if πv has a Whittaker model, then so does its
contragredient π̃v and in fact

W(π̃v, ψ
−1
v ) = {W̃ (g) = W (wn

tg−1) |W ∈ W(πv, ψv)}

where wn denotes the long Weyl element wn =




1
. .

.

1


.

Definition 4.1 A representation (πv, Vπv
) having a Whittaker model is called

generic.

Of course, the same definition applies in the global situation. Note that for
G = GLn this notion is independent of the choice of (non-trivial) ψv or ψ.

Now return to our smooth cuspidal representation (π, Vπ), or in fact any ir-
reducible admissible smooth representation of G(A). If we factor π into its local
components

π ≃ ⊗′πv with Vπ ≃ ⊗
′Vπv

then any Whittaker functional Λ on Vπ determines a family of compatible Whittaker
functionals Λv on the Vπv

by

Λv : Vπv
→֒ ⊗′Vπv

∼
−→ Vπ

Λ
−→ C

such that Λ = ⊗Λv. Similarly, any suitable family {Λv} of Whittaker functionals
on the Vπv

, where suitable means Λv(ξ
◦
v ) = 1 for our distinguished Kv-fixed vectors

ξ◦v giving the restricted tensor product, determines a global Whittaker functional
Λ = ⊗Λv on Vπ = ⊗′Vπv

.

The Local Uniqueness Theorem then has the following consequences.
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Corollary 4.1.1 (Global Uniqueness) If π = ⊗′πv is any irreducible ad-
missible smooth representation of G(A) then the space of Whittaker functionals of
Vπ is at most one dimensional, that is, π has a unique Whittaker model.

If (π, Vπ) is our cuspidal representation then we have seen that Vπ has a global
Whittaker functional given by

Λ(ϕ) = Wϕ(e) =

∫

N(k)\N(A)

ϕ(n)ψ−1(n) dn.

Corollary 4.1.2 If (π, Vπ) is cuspidal with π ≃ ⊗′πv then π and each of its
local components πv are generic.

A most important consequence for our purposes is:

Corollary 4.1.3 (Factorization of Whittaker Functions) If (π, Vπ) is a
cuspidal representation with π ≃ ⊗′πv and ϕ ∈ Vπ such that under the isomorphism
Vπ ≃ ⊗

′Vπv
we have ϕ 7→ ⊗ξv (so ϕ is decomposable) then

Wϕ(g) =
∏

v

Wξv
(gv).

The proof is essentially the following simple computation:

Wϕ(g) = Λ(π(g)ϕ) = (⊗Λv)(⊗πv(gv)ξv)

=
∏

v

Λv(πv(gv)ξv) =
∏

v

Wξv
(gv).

Note once again that the cusp form ϕ(g) itself does not factor. The G(k)-
invariance mixes the various places together. Only Wϕ factors for decomposable ϕ.
If f ∈ Sm(SL2(Z)) is a classical Hecke eigen-form of weight m for SL2(Z), with its
usual Fourier expansion f(z) =

∑
ane

2πinz, and f 7→ ϕ is our lifted automorphic
form, then ϕ is decomposable and the Whittaker function Wϕ factors. If we write
Wϕ = W∞Wf then

W∞

(
ny

1

)
= (ny)m/2e−2πny and Wf

(
n

1

)
= an.

3 Multiplicity One for GLn

The uniqueness of the Whittaker model is the key to the following result.

Theorem 4.2 (Multiplicity One) Let (π, Vπ) be a smooth irreducible admis-
sible (unitary) representation of GLn(A). Then its multiplicity m(π) in the space
of cusp forms is at most one.

This result was proven independently by Piatetski-Shapiro and Shalika, based
on the Fourier expansion and the global uniqueness of Whittaker models. Suppose
we have two realizations of π in the space of cusp forms:

Vπ →֒ Vπ,i ⊂ A
∞
0 for i = 1, 2.
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For ξ ∈ Vπ let ϕ1 and ϕ2 be the corresponding cusp forms. Then the maps

ξ 7→ ϕi 7→Wϕi
(e) = Λi(ξ)

give two Whittaker functionals on Vπ . By uniqueness, there exists c 6= 0 such that
Λ1 = cΛ2. Then

Wϕ1(g) = Λ1(π(g)ξ) = cΛ2(π(g)ξ) = cWϕ2(g)

so that

ϕ1(g) =
∑

γ

Wϕ1

((
γ 0
0 1

)
g

)
= c

∑

γ

Wϕ2

((
γ 0
0 1

)
g

)
= cϕ2(g).

But then Vπ,1 ∩ Vπ,2 6= {0}. So by irreducibility Vπ,1 = Vπ,2, that is, m(π) = 1.

4 Strong Multiplicity One for GLn

Strong Multiplicity One was originally due to Piatetski-Shapiro. His proof,
which we will sketch here, is a variant of the proof of Multiplicity One. We will
give a second proof due to Jacquet and Shalika based on L-functions later.

Theorem 4.3 (Strong Multiplicity One) Let (π1, Vπ1) and (π2, Vπ2) be
two cuspidal representations of GLn(A). Decompose them as π1 ≃ ⊗′π1,v and
π1 ≃ ⊗′π2,v. Suppose that there is a finite set of places S such that π1,v ≃ π2,v for
all v /∈ S. Then (π1, Vπ1) = (π2, Vπ2).

In place of the Whittaker model, Piatetski-Shapiro used a variant known as the
Kirillov model. To define this, let

P = Pn =








∗ · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗
0 · · · 0 1








= Stab ((0, . . . , 0, 1))

denote the mirabolic subgroup of GLn. If we let (πv, Vπv
) be an irreducible admis-

sible generic representation of G(kv) with Whittaker model W(πv, ψv) then we can
consider the restrictions Wv(pv) of the functions Wv ∈ W(πv, ψv) to Pv = P (kv).
The first surprising fact is:

Theorem 4.4 The map Wv 7→ Wv|Pv
is injective, that is, if Wv 6= 0 then

Wv(pv) 6≡ 0.

This is due to Bernstein and Zelevinsky if v < ∞ and Jacquet and Shalika if
v|∞.

Definition 4.2 The (local) Kirillov model of a generic (πv, Vπv
) is the space

of functions on Pv defined by

K(πv, ψv) = {Wv(pv) |Wv ∈ W(πv, ψv), pv ∈ Pv}.
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A second surprising fact is that no matter what the generic representation
(πv, Vπv

) we begin with, the Kirillov models all have a common Pv sub-module,
namely

τ(ψv) =





indPv

Nv
(ψv) v <∞

IndPv

Nv
(ψv)

∞ v|∞

.

This is a canonical space of functions on Pv. The result for v <∞ is of course due
to Bernstein and Zelevinsky and for v|∞ it is due to Jacquet and Shalika.

We may now sketch the proof of the Strong Multiplicity One Theorem. Let π1,
π2, and S be as in the statement of the theorem. As before, our goal is to produce
a common non-zero cusp form ϕ ∈ Vπ1 ∩ Vπ2 .

(i) Let P ′ = P ′
n = PnZn be the (n− 1, 1) parabolic subgroup of GLn (here Zn

is still the center of GLn). Then P ′(k)\P ′(A) is dense in GLn(k)\GLn(A). [This
follows from the fact that P ′\GLn ≃ Pn−1 and Pn−1(k) is dense in Pn−1(A).] So
it suffices to find ϕi ∈ Vπi

such that ϕ1(p
′) = ϕ2(p

′) for all p′ ∈ P ′(A).

(ii) Utilizing the Fourier expansion as before, it suffices to find non-zero Wi ∈
W(πi, ψ) such that W1(p

′) = W2(p
′).

(iii) Since ω = ωπ1 = ωπ2 (by weak approximation) it suffices to find non-zero
Wi such that W1(p) = W2(p) for all p ∈ P (A), that is, to find non-zero

W = W1 = W2 ∈ K(π1, ψ) ∩ K(π2, ψ).

(iv) At v /∈ S we have π1,v ≃ π2,v so that

K(π1,v, ψv) = K(π2,v, ψv) for v /∈ S.

At v ∈ S we have

τ(ψv) ⊂ K(π1,v, ψv) ∩ K(π2,v, ψv) for v ∈ S

which is a quite large intersection. So we may simply take any

W ∈
∏

v∈S

τ(ψv)
∏′

v/∈S

K(πi,v, ψv) ⊂ K(π1, ψ) ∩ K(π2, ψ)

which is non-zero.

Now retrace the steps to obtain ϕ ∈ Vπ1 ∩ Vπ2 forcing Vπ1 = Vπ2 as before.

Remark. In Piatetski-Shapiro’s original proof, he had to require that the set S
consisted of finite places, since the result of Jacquet and Shalika was not available
at that time. Once it became available his proof worked for general finite set S as
well.
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LECTURE 5

Eulerian Integral Representations

We now turn to the integral representations for the L-functions for GLn. We
will be interested not only in the integral representations for L(s, π), with π a
cuspidal representation of GLn(A), but also the twisted L-functions L(s, π × π′)
with π′ a cuspidal representation ofGLm(A). We have seen these in Weil’s Converse
Theorem and in the lectures of Ram Murty.

Two points before we begin. (1) The space Vπ of cusp forms of π is an infinite
dimensional space. The integral representations will involve the ϕ ∈ Vπ, but we
eventually will want a single L(s, π). (2) In contrast to Hecke, we will need to see
the Euler factorization already at the individual integral level. This is reasonable
in view of the Decomposition Theorem since our representations are irreducible.
This is very much in the spirit of Tate’s thesis.

We still take k to be a number field. We will take (π, Vπ) to always be a
smooth unitary cuspidal automorphic representation of GLn(A), so Vπ ⊂ A∞

0 (ω)
with unitary central character ω = ωπ. Similarly, (π′, Vπ′) will be a smooth unitary
representation of GLm(A) with unitary central character ω′ = ωπ′ . The condition
of unitarity is not restrictive, but allows for convenient normalizations.

1 GL2 ×GL1

We begin with GL2 where we can follow Hecke’s lead. So (π, Vπ) is a smooth
cuspidal representation of GL2(A). Let χ : k×\A× → C be a unitary idele class
character, that is a (cuspidal) automorphic representation of GL1(A).

Just as Hecke set

L(s, f) =

∫ ∞

0

f(iy)ys d×y =

∫ ∞

0

f

((
y 0
0 1

)
· i

)
ys d×y,

for ϕ ∈ Vπ we set

I(s, ϕ, χ) =

∫

k×\A×

ϕ

(
a 0
0 1

)
χ(a)|a|s−

1
2 d×a.

Utilizing the rapid decrease of cusp forms we quickly arrive at the following
result.

Proposition 5.1 (i) I(s, ϕ, χ) is absolutely convergent for all s ∈ C, hence
entire.
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(ii) I(s, ϕ, χ) is bounded in vertical strips.
(iii) I(s, ϕ, χ) satisfies the functional equation

I(s, ϕ, χ) = I(1− s, ϕ̃, χ−1)

where ϕ̃(g) = ϕ( tg−1).

Statement (i) follows from the rapid decrease of cusp forms and (ii) follows
from (i). The functional equation follows from the change of variable a 7→ a−1 in
the integral. The function ϕ̃ is again a cusp form. If we set π̃(g) = π(tg−1) then
π̃ is the contragredient representation of π and ϕ̃ ∈ Veπ. The map g 7→ gι = tg−1

is the outer automorphism of GLn and will be responsible for all of our functional
equations.

So this family of integrals, as ϕ varies over Vπ , is nice. To see that the integrals
are Eulerian we first replace ϕ by its Fourier expansion.

I(s, ϕ, χ) =

∫

k×\A×

ϕ

(
a 0
0 1

)
χ(a)|a|s−

1
2 d×a

=

∫

k×\A×

∑

γ∈k×

Wϕ

(
γa 0
0 1

)
χ(a)|a|s−

1
2 d×a

=

∫

A×

Wϕ

(
a 0
0 1

)
χ(a)|a|s−

1
2 d×a for Re(s) > 1.

Since π ≃ ⊗′πv, if ϕ ∈ Vπ is decomposable, say ϕ ≃ ⊗ξv ∈ ⊗′Vπv
, then we have

seen from the uniqueness of the Whittaker model that

Wϕ(g) =
∏

v

Wξv
(gv).

Since χ(a) =
∏
χv(av) and |a| =

∏
|av|v we have

I(s, ϕ, χ) =
∏

v

∫

k×v

Wξv

(
av 0
0 1

)
χv(av)|av|

s−
1
2

v d×av

=
∏

v

Ψv(s,Wξv
, χv) for Re(s) > 1.

This gives a factorization of our global integral into a product of local integrals.

2 GLn ×GLm with m < n

Now take ϕ ∈ Vπ ⊂ A∞
0 (GLn) and ϕ′ ∈ Vπ′ ⊂ A∞

0 (GLm). The natural
extension of the above would seemingly be to consider

∫

GLm(k)\GLm(A)

ϕ

(
h 0
0 In−m

)
ϕ′(h)| det h|s−∗ dh.

This family of integrals is indeed nice but will not be Eulerian unless m = n−1. In
the case m = n−1 we can indeed proceed as before. In general, families of Eulerian
integrals are very difficult to find. For GLn×GLm the situation is relatively simple.
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For each pair (n,m) we introduce a “projection” of ϕ to a space of cuspidal
functions on Pm+1, the usual mirabolic subgroup inside GLm+1, by taking a partial
Whittaker transform. Let

Y = Yn,m =

{(
Im+1 ∗

0 x

)
| x ∈ Nn−m−1

}
⊂ N = Nn.

Then Y is the unipotent radical of the parabolic subgroup Q of GLn associated
to the partition (m + 1, 1, . . . , 1) of n. We have our usual additive character ψ :
N(k)\N(A)→ C and we may restrict this to Y . Note that if M ≃ GLm+1×GL1×
· · · ×GL1 is the Levi subgroup of Q then StabM (Y, ψ) = Pm+1 ⊂ GLm+1 ⊂M .

For ϕ ∈ Vπ and p ∈ Pm+1(A) set

Pϕ(p) = | det p|−
n−m−1

2

∫

Y (k)\Y (A)

ϕ

(
y

(
p 0
0 In−m−1

))
ψ−1(y) dy.

The following proposition is then fairly routine.

Proposition 5.2 (i) Pϕ(p) is left invariant under Pm+1(k) and cuspidal on
Pm+1(A) in the sense that all relevant unipotent integrals are zero.

(ii) Setting p =

(
h 0
0 1

)
with h ∈ GLm(A) we have the Fourier expansion

Pϕ

(
h 0
0 1

)
= | deth|−

n−m−1
2

∑

γ∈Nm(k)\GLm(k)

Wϕ

(
γh 0
0 In−m

)
.

We view P as projecting the cusp forms on GLn(A) to cusp forms on Pm+1(A).
If n = m+1, so there is no integration, then P is simply the restriction of functions
from GLn(A) to Pn(A).

We are now in the same situation as we were for GL2×GL1 or GLn×GLn−1.
For ϕ ∈ Vπ and ϕ′ ∈ Vπ′ we set

I(s, ϕ, ϕ′) =

∫

GLm(k)\GLm(A)

Pϕ

(
h 0
0 1

)
ϕ′(h)| deth|s−

1
2 dh.

As before, but with a bit more work, we have:

Proposition 5.3 (i) I(s, ϕ, ϕ′) is absolutely convergent for all s ∈ C, hence
entire.
(ii) I(s, ϕ, ϕ′) is bounded in vertical strips.
(iii) I(s, ϕ, ϕ′) satisfies the functional equation

I(s, ϕ, ϕ′) = Ĩ(1 − s, ϕ̃, ϕ̃′)

where ϕ̃(g) = ϕ( tg−1) = ϕ(gι) ∈ Veπ and ϕ̃′(h) = ϕ′(hι) ∈ Veπ′ as before and the
integral appearing in the right hand side is

Ĩ(s, ϕ, ϕ′) =

∫

GLm(k)\GLm(A)

P̃ϕ

(
h 0
0 1

)
ϕ′(h)| det h|s−

1
2 dh

with P̃ = ι ◦ P ◦ ι.
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So once again our family of integrals is nice. Moreover they are now Eulerian
just as before. We first insert the Fourier expansion of Pϕ to obtain

I(s,ϕ, ϕ′) =

∫

GLm(k)\GLm(A)

Pϕ

(
h 0
0 1

)
ϕ′(h)| deth|s−

1
2 dh

=

∫ ∑

γ∈Nm(k)\GLm(k)

Wϕ

(
γh 0
0 In−m

)
ϕ′(h)| det h|s−

n−m
2 dh

=

∫

Nm(k)\GLm(A)

Wϕ

(
h 0
0 In−m

)
ϕ′(h)| det h|s−

n−m
2 dh

=

∫

Nm(A)\GLm(A)

Wϕ

(
h 0
0 In−m

)
×

×

(∫

Nm(k)\Nm(A)

ϕ′(nh)ψ(n) dn

)
| deth|s−

n−m
2 dh

=

∫

Nm(A)\GLm(A)

Wϕ

(
h 0
0 In−m

)
W ′
ϕ′(h)| deth|s−

n−m
2 dh.

where this is again convergent only for Re(s) > 1 once we unfold the Fourier
expansion. The fact that the boundary of convergence is Re(s) > 1 depends on the
fact that π and π′ are taken to be unitary and the estimates on Whittaker functions
that we will present in future lectures. Note that W ′

ϕ′ ∈ W(π′, ψ−1). If we now

take ϕ and ϕ′ decomposable, say ϕ ≃ ⊗ξv ∈ ⊗′Vπv
and ϕ′ ≃ ⊗ξ′v ∈ ⊗

′Vπ′
v
, then we

again have

Wϕ(g) =
∏

v

Wξv
(gv) and W ′

ϕ′(h) =
∏

v

W ′
ξ′v

(hv)

from the uniqueness of the Whittaker model and the integral now factors as

I(s, ϕ, ϕ′) =
∏

v

Ψv(s,Wξv
,W ′

ξ′v
) for Re(s) > 1

with the local integrals given by

Ψv(s,Wv,W
′
v) =

=

∫

Nm(kv)\GLm(kv)

Wv

(
hv 0
0 In−m

)
W ′
v(hv)| dethv|

s−n−m
2

v dhv.

Hence our family is once again Eulerian.

For this family of integrals the two sides of the functional equation involve
slightly different integrals. With a little (?) more work, one shows that the integrals
occurring in the right hand side of the functional equation are also Eulerian, with

Ĩ(1 − s, ϕ̃, ϕ̃′) =
∏

v

Ψ̃v(1 − s,R(wn,m)W̃ξv
, W̃ ′

ξ′v
) for Re(s) < 0

where R is simply right translation,

wn,m =

(
Im

wn−m

)

where as always wn−m is the long Weyl element, with ones along the skew diagonal,

in GLn−m, W̃v(g) = Wv(wng
ι) ∈ W(π̃v, ψ

−1
v ), W̃ ′

v(h) = W ′
v(wmh

ι) ∈ W(π̃′
v, ψv),
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and finally

Ψ̃v(s,Wv,W
′
v) =

=

∫∫
Wv



hv
xv In−m−1

1


 dxvW

′
v(hv)| dethv|

s− n−m
2 dhv

where the inner xv integration is over the matrix spaceMn−m−1,m(kv) and the outer
hv integration is over Nm(kv)\GLm(kv) as usual. The lower unipotent integration

over Mn−m−1,m(kv) is the remnant of P̃.

3 GLn ×GLn

In the m = n case the paradigm comes not from Hecke but from the classical
work of Rankin and Selberg, again with a bit of Tate’s thesis mixed in. One might
be first tempted to try ∫

GLn(k)\GLn(A)

ϕ(g)ϕ′(g)| det g|s dg

for ϕ ∈ Vπ ⊂ A∞
0 (GLn) and ϕ′ ∈ Vπ′ ⊂ A∞

0 (GLn), but this, convergence issues
aside, would give an invariant pairing and would be zero unless π̃ ≃ π′⊗| det |s. (In
fact, such integrals will arise as residues of poles of our family of Eulerian integrals.)
Instead, we will consider integrals of the form∫

ϕ(g)ϕ′(g)E(g, s) dg

where E(g, s) is an appropriate Eisenstein series. Murty wrote down the classical
version of this in his lectures.

To construct our Eisenstein series we begin with a Schwartz-Bruhat function
Φ ∈ S(An). Recall that S(An) is a restricted tensor product (topological at the
archimedean places), S(An) = ⊗′S(knv ), where for v|∞ we have S(knv ) = S(Rn)
or S(Cn) is the usual Schwartz space of infinitely differentiable rapidly decreasing
functions and for v < ∞ we have S(knv ) = C∞

c (knv ) is Bruhat’s space of smooth
(i.e., locally constant) compactly supported functions.

For each Φ ∈ S(An) we may form a Θ-series

ΘΦ(a, g) =
∑

ξ∈kn

Φ(aξg) with a ∈ A×, g ∈ GLn(A).

Our Eisenstein series is essentially the Mellin transform of Θ. More precisely, for
η ∈ (k×\A×)∧ a unitary idele class character, set

E(g, s) = E(g, s; Φ, η) = | det g|s
∫

k×\A×

Θ′
Φ(a, g)η(a)|a|ns d×a

where Θ′
Φ(a, g) = ΘΦ(a, g)−Φ(0). This converges for Re(s) > 1. The basic analytic

properties of this Eisenstein series are the following.

Proposition 5.4 (i) E(g, s) ∈ A∞(η−1), that is, E(g, s) is a smooth automor-
phic form on GLn(A) transforming by η−1 under the center.
(ii) E(g, s) extends to a meromorphic function of s and away from its poles is
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bounded in vertical strips. The extension still satisfies (i).
(iii) E(g, s) has possible simple poles at s = iσ and s = 1+ iσ with σ ∈ R such that
η(a) = |a|−inσ and no others.
(iv) E(g, s) satisfies a functional equation

E(g, s; Φ, η) = E(gι, 1− s; Φ̂, η−1),

where Φ̂ is the Fourier transform on S(An).

The proof of this result follows Hecke’s proof of the analytic continuation of
L-functions of classical modular forms, utilizing the Poisson summation formula for
the Θ-series.

There is a second construction of E(g, s) which will be essential for us. Using
the same data as in E(g, s), set

F (g, s) = F (g, s; Φ, η) = | det g|s
∫

A×

Φ(aeng)η(a)|a|
ns d×a

where en = (0, . . . , 0, 1) ∈ kn. This is convergent for Re(s) > 1
n . Recall that the

mirabolic subgroup Pn is the stabilizer of en. If P ′
n = ZnPn is the full (n − 1, 1)

parabolic subgroup of GLn then

F (g, s) ∈ Ind
GLn(A)
P ′

n(A)

(
δ
s− 1

2

P ′ η−1
)
,

that is,

F

((
h y
0 d

)
g, s

)
= | deth|s|d|−(n−1)sη−1(d)F (g, s)

for h ∈ GLn−1(A) and d ∈ A×. Here δP ′ is the modulus character for the parabolic
P ′
n. Then we may also write

E(g, s) =
∑

γ∈P ′
n(k)\GLn(k)

F (γg, s)

which is the general form of an Eisenstein series from the representation theoretic
point of view. This again converges for Re(s) > 1.

We now return to our family of Eulerian integrals. For ϕ ∈ Vπ , ϕ′ ∈ Vπ′ , and
Φ ∈ S(An) we set

I(s, ϕ, ϕ′,Φ) =

∫

Zn(A)GLn(k)\GLn(A)

ϕ(g)ϕ′(g)E(g, s; Φ, ωω′) dg

where ω = ωπ and ω′ = ωπ′ are the central characters. As the cusp forms ϕ and
ϕ′ are rapidly decreasing on Zn(A)GLn(k)\GLn(A), from our first expression for
E(g, s) we find that the integrals are (relatively) nice.

Proposition 5.5 (i) I(s, ϕ, ϕ′,Φ) is a meromorphic function of s ∈ C with at
most simple poles at s = iσ and s = 1 + iσ for σ ∈ R such that π̃ ≃ π′ ⊗ | det |iσ.
(ii)I(s, ϕ, ϕ′,Φ) is bounded in vertical strips away from its poles.
(iii) I(s, ϕ, ϕ′,Φ) satisfies the functional equation

I(s, ϕ, ϕ′,Φ) = I(1− s, ϕ̃, ϕ̃′, Φ̂).
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On the other hand, if we replace E(g, s) by its second expression E(g, s) =∑
F (γg, s) and unfold this sum, replace ϕ by its Fourier expansion in the resulting

expression, and proceed as before we find that our integrals are Eulerian. If ϕ,
ϕ′, and Φ are all decomposable, say ϕ ≃ ⊗ξv ∈ ⊗′Vπv

, ϕ′ ≃ ⊗ξ′v ∈ ⊗
′Vπ′

v
, and

Φ ≃ ⊗Φv ∈ ⊗′S(knv ) then

I(s, ϕ, ϕ′Φ) =
∏

v

Ψv(s,Wξv
,W ′

ξ′v
,Φv) for Re(s) > 1

where the local integrals are given by

Ψv(s,Wv,W
′
v,Φv) =

∫

Nn(kv)\GLn(kv)

Wv(gv)W
′
v(gv)Φ(engv)| det gv|

s
v dgv

with Wv ∈ W(πv, ψv), W
′
v ∈ W(π′

v, ψ
−1
v ) and en = (0, . . . , 0, 1) ∈ kn.

4 Summary

For each pair of cuspidal representations π ≃ ⊗′πv and π′ ≃ ⊗′π′
v we have

associated:

1. A family of global Eulerian integrals

{I(s, ϕ, ϕ′)} or {I(s, ϕ, ϕ′,Φ)}

for ϕ ∈ Vπ, ϕ′ ∈ Vπ′ , and if necessary Φ ∈ S(An).

2. For each place v of k a family of local integrals

{Ψv(s,Wv,W
′
v)} or {Ψv(s,Wv,W

′
v,Φv)}

with Wv ∈ W(πv, ψv), W
′
v ∈ W(π′

v, ψ
−1
v ), and if necessary Φv ∈ S(knv ).

Next we will first sift the local L-functions L(s, πv×π′
v) from our families of local

integrals. We then put these together to form the global L-function L(s, π × π′).
Then we relate this global L-function back to the family of global integrals and
deduce its analytic properties from theirs. We will do this over the next 4 lectures.
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LECTURE 6

Local L-functions: the Non-Archimedean Case

For this lecture and the next k will be a non-archimedean local field, O its ring
of integers, p its maximal ideal. We will let ̟ denote a uniformizer, so p = (̟).
We normalize the absolute value by

|̟|−1 = |O/p| = q.

ψ will denote a non-trivial additive character of k.

Let (π, Vπ) be an irreducible admissible smooth unitary generic representation
of GLn(k) and (π′, Vπ′) a representation of GLm(k) satisfying the same hypotheses.

[Note: Even if π and π′ are not generic, they are Langlands quotients of induced
representations Ξ and Ξ′ which do have full Whittaker models. In what follows, for
non-generic π and/or π′ one usesW(Ξ, ψ) andW(Ξ′, ψ−1) in place ofW(π, ψ) and
W(π′, ψ−1) to obtain a theory of local L-functions for non-generic representations.]

From the factorization of our global integrals we have defined families of local
integrals

{Ψ(s,W,W ′)} or {Ψ(s,W,W ′,Φ)}

for W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1), and Φ ∈ S(kn). For convenience we will
concentrate on the case m < n. The m = n theory is analogous.

For each j with 0 ≤ j ≤ n−m−1 and W and W ′ as above we will also consider
briefly the family of integrals

Ψj(s,W,W
′) =

∫∫
W



h
x Ij

In−m−j


 dx W ′(h)| det h|s−

n−m
2 dh

where the inner x integration is over the matrix space Mj,m(k) and the outer h
integration is over Nm(k)\GLm(k) as usual. In these terms, the integrals appearing

in our Euler factorizations are Ψ(s,W,W ′) = Ψ0(s,W,W
′) and Ψ̃(s,W,W ′) =

Ψn−m−1(s,W,W
′). As j varies these families interpolate between those two.

1 Whittaker functions

To analyze any of these integrals we need to know some basic facts about
smooth Whittaker functions W . Recall that they satisfy

(i) W (ng) = ψ(n)W (g) for n ∈ N(k) and g ∈ GLn(k).
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(ii) W (gk′) = W (g) for k′ ∈ K ′ for some K ′ ⊂ GLn(O) = K.

So they are essentially controlled by their behavior on

A = An =




a =




a1

a2

. . .

an



∣∣∣ ai ∈ k×




.

For a ∈ A let αi(a) = ai/ai+1 be the simple roots, 1 ≤ i ≤ n−1. The basic analytic
properties of the Whittaker functions are given in the following proposition.

Proposition 6.1 There is a finite set of A-finite functions on A, say X(π) =
{χi}, depending only on π, such that for every W ∈ W(π, ψ) there exist Schwartz-
Bruhat functions φi ∈ S(kn−1) such that for a ∈ A with an = 1 we have

W




a1

. . .

an−1

1


 =

∑

X(π)

χi(a)φi(α1(a), . . . , αn−1(a)).

Remarks: 1. We can determine the behavior in an by using the central charac-
ter.
2. Since the φi are compactly supported on kn−1, this says that W (a) vanishes as
the αi(a) → ∞. [This fact is quite easy to see. If for example we take G = GL2

and π unramified and let W be the GL2(O)-invariant Whittaker function, then for
x ∈ O we have

W

(
a1 0
0 1

)
= W

((
a1 0
0 1

)(
1 x
0 1

))
= ψ(a1x)W

(
a1 0
0 1

)

so that

0 = (1 − ψ(a1x))W

(
a1 0
0 1

)
.

Hence if ψ is also unramified this gives

W

(
a1 0
0 1

)
= 0 if |a1| > 1.

A similar argument works in general.]
3. The collection of A-finite functions X(π) comes from the Jacquet module of π.
If we let Vπ,N denote the largest quotient of Vπ on which N acts trivially, so

Vπ,N = Vπ/〈v − π(n)v | v ∈ Vπ , n ∈ N〉

=W(π, ψ)/〈W − π(n)W 〉

≃ {W (a)}/〈W (a)− ψ(ana−1)W (a)〉

then Vπ,N is a finite dimensional representation of A. It may not be completely
reducible – there may be Jordan blocks. The functions occurring in these blocks
are essentially characters of A or characters times powers of the ord function (the
non-archimedean log). These functions make up X(π). As the last form for Vπ,N
given above indicates, they determine the asymptotics of W (a) as the simple roots
αi(a)→ 0. They depend only on π and not the choice of W .
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2 The local L-function (m < n)

If we take these properties of the Whittaker functions and utilize them in our
family of local integrals, we quickly arrive at the following basic result.

Proposition 6.2 (i) Each local integral Ψj(s,W,W
′) converges for Re(s) ≥ 1.

(ii) Each Ψj(s,W,W
′) ∈ C(q−s) is a rational function of q−s and hence extends

meromorphically to all of C.
(iii) Each Ψj(s,W,W

′) can be written with a common denominator determined by
X(π) and X(π′). Hence the family has “bounded denominators”.

To prove this proposition, we reduce the integrals to finite sums of integrals
over A. Then part (i) follows from the fact that π and π′ were taken to be unitary
and what that implies about the functions occurring in X(π) and X(π′). Part (ii)
and (iii) follow from the fact that the W (a) vanish as the αi(a) → ∞ and have
common summable asymptotics as the αi(a)→ 0 (essentially geometric series).

Now let us set

Ij(π × π
′) = 〈Ψj(s,W,W

′) |W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1)〉.

This is a subspace of C(q−s) having bounded denominators. Since in addition we
have

Ψj

(
s, π

(
h

In−m

)
W,π′(h)W ′

)
= | deth|−s−j+

n−m
2 Φj(s,W,W

′)

with | deth| = qr for any r ∈ Z we see that each Ij(π × π′) is in fact a fractional
ideal in C(q−s). A rather involved manipulation of the integrals guarantees that
Ij(π × π′) = Ij+1(π × π′) for each j and hence

I(π × π′) = Ij(π × π
′) is independent of j.

Moreover, W occurs in the integral as W

(
h

In−m

)
and this lies in K(π, ψ), the

Kirillov model of π. Since K(π, ψ) ⊃ τ(ψ) = indPN (ψ) we can show that in fact
1 ∈ I(π × π′). Putting this together we have the following.

Theorem 6.1 The family of local integrals I(π × π′) = 〈Ψ(s,W,W ′)〉 is a
C[qs, q−s]–fractional ideal of C(q−s) containing the constant 1.

Since the ring C[qs, q−s] is a principal ideal domain, the fractional ideal I(π×π′)
has a generator. Since 1 ∈ I(π × π′) we can take a generator having numerator 1
and normalized (up to units) to be of the form P (q−s)−1 with P (X) ∈ C[X ] having
P (0) = 1.

Definition 6.1 The local L-function L(s, π×π′) = P (q−s)−1 is the normalized
generator of the fractional ideal I(π × π′) spanned by the local integrals. We set
L(s, π) = L(s, π × χ0) where χ0 is the trivial character of GL1(k).

Another useful way of viewing the local L-function is the following. L(s, π×π′)
is the minimal inverse polynomial P (q−s)−1 such that the ratios

e(s,W,W ′) =
Ψ(s,W,W ′)

L(s, π × π′)
∈ C[qs, q−s]
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are polynomials in qs and q−s and so are entire for all choices W ∈ W(π, ψ) and
W ′ ∈ W(π′, ψ−1).

Since L(s, π × π′) is the generator of a fractional ideal, we find:

Proposition 6.3 There exist finite collections {Wi} and {W ′
i} such that

L(s, π × π′) =
∑

i

Ψ(s,Wi,W
′
i ).

For the same family we have 1 =
∑

i e(s,Wi,W
′
i ). From this and the definition

of the e(s,W,W ′) we have the following corollary.

Corollary 6.3.1 The ratios e(s,W,W ′) are entire, bounded in vertical strips,
and for each s0 ∈ C there is a choice of W and W ′ such that e(s0,W,W

′) 6= 0.

3 The local functional equation

From the functional equation of the global integrals we would expect a re-

lation between Ψ(s,W,W ′) and Ψ̃(1 − s,R(wn,m)W̃ , W̃ ′). This will follow from
interpreting these integrals as giving quasi-invariant functionals on Vπ × Vπ′ or
W(π, ψ)×W(π′, ψ−1) and then invoking a uniqueness principle.

As for the quasi-invariance, note that the integrals Ψ(s,W,W ′) naturally satisfy

Ψ

(
s, π

(
h

In−m

)
W,π′(h)W ′

)
= | deth|−s+

n−m
2 Ψ(s,W,W ′)

for all h ∈ GLm(k) and

Ψ(s, π(y)W,W ′) = ψ(y)Ψ(s,W,W ′)

for all y ∈ Yn,m(k) =

{(
Im+1 ∗

0 x

) ∣∣x ∈ Nn−m−1(k)

}
. One can check (some-

what painfully) that (W,W ′)→ Ψ̃(1 − s,R(wn,m)W̃ , W̃ ′) satisfies the same quasi-
invariance properties. Then one invokes the following uniqueness principle.

Proposition 6.4 Except for a finite number of exceptional values of q−s, there
is a unique (up to scalars) bilinear form Bs on W(π, ψ)×W(π′, ψ−1) satisfying

(i) Bs

(
π

(
h

In−m

)
W,π′(h)W ′

)
= | deth|−s+

n−m
2 Bs(W,W

′)

(ii) Bs(π(y)W,W ′) = ψ(y)Bs(W,W
′)

for all h ∈ GLm(k) and y ∈ Yn,m(k).

The proof of this uniqueness principle takes place in the Kirillov models and
involves the representation theory of the mirabolic subgroup P and Bruhat theory.
As a result we obtain our local functional equation.

Theorem 6.2 (Local Functional Equation) There exists a rational function
γ(s, π × π′, ψ) ∈ C(q−s) such that

Ψ̃(1− s,R(wn,m)W̃ , W̃ ′) = ωπ′(−1)n−1γ(s, π × π′, ψ)Ψ(s,W,W ′)
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for all W ∈ W(π, ψ) and W ′ ∈ W(π′, ψ−1).

This defines the local γ–factor γ(s, π×π′, ψ). An equally important local factor
is the local ε-factor

ε(s, π × π′, ψ) =
γ(s, π × π′, ψ)L(s, π × π′)

L(1− s, π̃ × π̃′)

with which the local functional equation becomes

Ψ̃(1− s,R(wn,m)W̃ , W̃ ′)

L(1− s, π̃ × π̃′)
= ωπ′(−1)n−1ε(s, π × π′, ψ)

Ψ(s,W,W ′)

L(s, π × π′)
or

ẽ(1− s,R(wn,m)W̃ , W̃ ′) = ωπ′(−1)n−1ε(s, π × π′, ψ)e(s,W,W ′).

Recall that we have finite collections {Wi} and {W ′
i} such that

1 =
∑

i

e(s,Wi,W
′
i ) =

∑

i

Ψ(s,Wi,W
′
i )

L(s, π × π′)
.

If we combine this with the local functional equation we find

ε(s, π × π′, ψ) = ωπ′(−1)n−1
∑

i

ẽ(1 − s,R(wn,m)W̃i.W̃
′
i ) ∈ C[qs, q−s].

Applying the local functional equation twice then gives

ε(s, π × π, ψ)ε(1 − s, π̃ × π̃′, ψ−1) = 1

so ε(s, π × π′, ψ) is a unit in C[qs, q−s]. Thus:

Proposition 6.5 The local ε–factor is a monomial function of the form

ε(s, π × π′, ψ) = cq−fs.

4 The conductor of π

Let me explain a bit about the information contained in the ε–factor. Take
π′ = χ0 the trivial character of GL1(k) and write ε(s, π, ψ) = ε(s, π × χ0, ψ).
Furthermore assume ψ is unramified, that is, ψ is trivial on O but ψ(̟−1) 6= 1.
Let us write

ε(s, π, ψ) = ε(1
2 , π, ψ)q−f(π)(s−1/2).

Then |ε(1
2 , π, ψ)| = 1. The “sign” ε(1

2 , π, ψ) is the so called “local root number” of π
and can contain subtle information. On the other hand, the integer f(π) occurring
in the exponent contains the following basic information.

Theorem 6.3 (i) f(π) ≥ 0.
(ii) f(π) = 0 iff π is unramified, that is, Vπ has a non-zero vector fixed by K =
GLn(O).
(iii) Let

K1(p
t) =




k ∈ GLn(O)

∣∣k ≡




∗ · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗
0 · · · 0 1


 (mod pt)




.
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Then if 0 ≤ t < f(π) then Vπ has no non-zero K1(p
t) fixed vectors. If t = f(π)

then the space of K1(p
f(π))–fixed vectors has dimension one.

The integer f(π) or the ideal pf(π) is the conductor of π. The one dimensional
space of K1(p

f(π))-fixed vectors is the space of “local new vectors” or “local new
forms”.

5 Multiplicativity and Stability of γ-factors

I would like to end with two facts about the local γ-factors. Their proofs would
take us too far afield, but we will need them for later applications to liftings.

Suppose that π is an induced representation. Then there is a maximal para-
bolic subgroup Q = MN of GLn with M ≃ GLr1 × GLr2 and smooth irreducible
admissible generic representations π1 and π2 such that

π ≃ Ind
GLn(k)
Q(k) (π1 ⊗ π2).

Then there is a relation between W(π, ψ) and the spaces W(π1, ψ) and W(π2, ψ)
that can be exploited to show:

Proposition 6.6 (Multiplicativity of γ) In the above situation

γ(s, π × π′, ψ) = γ(s, π1 × π
′, ψ)γ(s, π2 × π

′, ψ).

In this case, one also has a divisibility among the L-functions

L(s, π × π′)−1
∣∣ [L(s, π1 × π

′)L(s, π2 × π
′)]−1.

There is also a similar multiplicativity and divisibility in the second variable, that
is, for π′ induced.

Our second result is an instance of a common phenomenon: if one twists a
situation by a highly ramified character then things become “standard”, that is,
one twists away all interesting information.

Proposition 6.7 (Stability of γ) Let π1 and π2 be two irreducible admissible
smooth generic representations of GLn(k) having the same central character. Then
for every sufficiently highly ramified character η of k× we have

γ(s, π1 × η, ψ) = γ(s, π2 × η, ψ).

In this situation, one also has that the L-functions stabilize

L(s, π1 × η) = L(s, π2 × η) ≡ 1

so that the ε(s, πi × η, ψ) stabilize as well. More generally, we also have

γ(s, (π1 ⊗ η)× π
′, ψ) = γ(s, (π2 ⊗ η)× π

′, ψ)

and

L(s, (π1 ⊗ η)× π
′) = L(s, (π2 ⊗ η)× π

′) ≡ 1

for all sufficiently highly ramified characters η.
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Note that if we combine multiplicativity and stability we can actually compute
the stable form of γ or ε. This is useful for comparing these local factors on different
groups.

For example, let π be an irreducible admissible generic representation with
central character ω. Let µ1, . . . , µn be characters of GL1(k) such that µ1 · · ·µn = ω.
Then taking π1 = π and π2 = Ind(µ1⊗· · ·⊗µn) we find that for sufficiently highly
ramified η we have

γ(s, π × η, ψ) = γ(s, Ind(µ1 ⊗ · · · ⊗ µn)× η, ψ)

=
n∏

i=1

γ(s, µiη, ψ) =
n∏

i=1

ε(s, µiη, ψ)

expressing γ(s, π × η, ψ) as a product of standard abelian ε-factors.
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LECTURE 7

The Unramified Calculation

In this lecture I would like to calculate L(s, π × π′) when both π and π′ are
unramified, that is, they both have vectors fixed under their respective maximal
compact subgroups GLn(O) and GLm(O). We will do this by explicitly computing
the local integral Ψ(s,W ◦,W ′◦) for W ◦ and W ′◦ the normalized K-fixed Whittaker
functions. This calculation is similar to and motivated by the calculation of the
p-Euler factor for L(s, f) for f a classical cusp form. Recall that in the classical
case of f ∈ Sk(SL2(Z)) to be able to compute the p-Euler factor for L(s, f) we
needed to know two things:

(i) that f was an eigen-function for all Hecke operators Tp or Tn;
(ii) the recursion among the Tpr for a fixed p.

Now again let k be a non-archimedean local field of characteristic 0 with ring
of integers O, maximal ideal p and uniformizer ̟. Let

HK = H(GLn(k)//K) = C∞
c (GLn(k)//GL2(O))

be the spherical Hecke algebra for GLn(k) consisting of compactly supported func-
tions on GLn(k) which are bi-K-invariant, as in Lecture 3. This plays the role of
the classical Hecke algebra in this context. It is a convolution algebra as before.
For each i, 0 ≤ i ≤ n, let Φi be the characteristic function

Φi = Char

(
GLn(O)

(
̟Ii

In−i

)
GLn(O)

)

so that ̟ occurs in the first i diagonal entries. (For G = GL2 and k = Qp, Φ1 is
the avatar of the classical Hecke operator Tp.) Then a standard fact is:

Proposition 7.1 The spherical Hecke algebra HK is a commutative algebra
and is generated by the Φi for 1 ≤ i ≤ n.

For any smooth representation (π, Vπ) of GLn(k) we have an action of H or
HK on Vπ as a convolution algebra via

π(Φ)v =

∫

GLn(k)

Φ(g)π(g)v dg.

Note that since π is smooth and Φ has compact support, this is really a finite sum.
In the transition from classical modular forms to automorphic representations and
back, this corresponds to the action of the classical Hecke operators on modular
forms.

53
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1 Unramified representations

Now let (π, Vπ) be an irreducible admissible smooth generic representation of
GLn(k) which is unramified. Then it is known that

π = Ind
GLn(k)
B(k) (µ1 ⊗ · · · ⊗ µn)

is a full induced representation from the Borel subgroup B(k) of unramified charac-
ters µi of k×. Here unramified means that each µi is invariant under the maximal
compact subgroup O× ⊂ k×. Since k× =

∐
̟jO×, each character µi is completely

determined by its value µi(̟) ∈ C×. Thus in turn π will be completely determined
by the n complex numbers

{µ1(̟), . . . , µn(̟)}

which can be encoded in a diagonal matrix

Aπ =



µ1(̟)

. . .

µn(̟)


 ∈ GLn(C).

These parameters, whether viewed as n non-zero complex numbers, the matrix
Aπ ∈ GLn(C) or the conjugacy class [Aπ ] ⊂ GLn(C) are the Satake parameters of
the unramified representation π.

Since (π, Vπ) is unramified, then there is a unique (up to scalar multiples) non-
zero K-fixed vector v◦ ∈ Vπ. If Φ ∈ HK , the spherical Hecke algebra, then π(Φ)v◦

will again be K-fixed. Thus we obtain

π(Φ)v◦ = Λπ(Φ)v◦

with Λπ : HK → C a character of HK as a convolution algebra. Thus v◦ is our
local Hecke eigen-function.

For π = Ind(µ1⊗· · ·⊗µn) it is easy to compute this character on the generators
Φi of HK . As in the classical case, we will need to know how to decompose the
associated double coset into single cosets.

For each J ∈ Zn, say J = (j1, . . . , jn), let

̟J =



̟j1

. . .

̟jn


 ∈ GLn(k).

So if we set ηi = (1, . . . , 1, 0, . . . , 0) ∈ Zn with the first i entries of 1 and the others
0, then Φi is the characteristic function of K̟ηiK. To decompose this double coset
into single ones, let us set

Ii =
{
ǫ = (ǫ1, . . . , ǫn) ∈ Zn | ǫj ∈ {0, 1},

∑
ǫj = i

}

and for each ǫ ∈ Ii let

N(O, ǫ) = N(O) ∩̟ǫK̟−ǫ.
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Lemma 7.1

K̟ηiK =
∐

ǫ∈Ii

∐

n∈N(O)/N(O,ǫ)

n̟ǫK.

Now let f◦ be the K-fixed vector in Ind(µ1 ⊗ · · · ⊗ µn) normalized so that
f◦(e) = 1. Then we have

(π(Φi)f
◦)(e) = Λ(Φi)f

◦(e) = Λπ(Φi).

On the other hand, we can do the explicit computation in the induced model. By
definition

f◦(nak) = δ
1/2
Bn

(a)

n∏

i=1

µi(ai)f
◦(e) = δ

1/2
Bn

(a)

n∏

i=1

µi(ai)

for n ∈ Nn(k), a =



a1

. . .

an


 ∈ An(k), and k ∈ Kn. Then we can compute

(π(Φi)f
◦)(e) =

∫

GLn(k)

Φi(g)f
◦(g) dg =

∫

K̟ηiK

f◦(g) dg

=
∑

ǫ∈Ii

∑

n∈N(O)/N(O,ǫ)

f(n̟ǫ)

=
∑

ǫ∈Ii

|N(O)/N(O, ǫ)|δ
1/2
Bn

(̟ǫ)

n∏

j=1

µj(̟)ǫj .

An elementary computation then gives

|N(O)/N(O, ǫ)|δ
1/2
Bn

(̟ǫ) = qi(n−i)/2

so that

(π(Φi)f
◦)(e) = qi(n−i)/2

∑

ǫ∈Ii

n∏

j=1

µj(̟)ǫj

= qi(n−i)/2σi(µ1(̟), . . . , µn(̟))

where σi is the ith elementary symmetric polynomial in the µj(̟).

Comparing our two expressions for (π(Φi)f
◦)(e) we obtain

Proposition 7.2 For π = Ind(µ1 ⊗ · · · ⊗ µn) unramified

Λπ(Φi) = qi(n−i)/2σi(µ1(̟), . . . , µn(̟)).

This computes the Hecke eigen-values in terms of the Satake parameters of π.

2 Unramified Whittaker functions

The analogue of the classical recursion relation for the Hecke operators Tpr

can now be employed to compute a formula for the unramified Whittaker function
W ◦ that occurs in our integrals. For GLn this was first done by Shintani, who we
follow.
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Take ψ : k → C our additive character to also be unramified and non-trivial, so
ψ(O) = 1 but ψ(̟−1) 6= 1. Let W ◦ ∈ W(π, ψ) be the K-fixed Whittaker function
in W(π, ψ). By the Iwasawa decomposition, any g ∈ GLn(k) can be written

g = nak ∈ NAK with a = ̟J ∈ A

for some J ∈ Zn. Then

W ◦(g) = W ◦(n̟Jk) = ψ(n)W ◦(̟J ).

So it suffices to compute the values W ◦(̟J ). The same calculation that gave the
“rapid decrease” of W on A in the GL2(k) case now gives

W ◦(̟J ) = 0 unless j1 ≥ j2 ≥ · · · ≥ jn.

We next do an explicit calculation of the action of each Φi ∈ HK in the Whit-
taker model. We still have that

(π(Φi)W
◦)(̟J ) = Λπ(Φi)W

◦(̟J )

for all J , with an explicit formula for Λ(Φi). Computing in the Whittaker model
we have

(π(Φi)W
◦)(̟J ) =

∫

K̟ηiK

W ◦(̟Jg) dg

=
∑

ǫ∈Ii

∑

n∈N(O)/N(O,ǫ)

W ◦(̟Jn̟ǫ)

=
∑

ǫ∈Ii

∑

n∈N(O)/N(O,ǫ)

ψ(̟Jn̟−J)W ◦(̟J+ǫ).

Since j1 ≥ · · · ≥ jn, we have that ̟Jn̟−J ∈ N(O) so that the value of ψ on this
element is 1. Hence

(π(Φi)W
◦)(̟J ) =

∑

ǫ∈Ii

|N(O)/N(O, ǫ)|W ◦(̟J+ǫ)

=
∑

ǫ∈Ii

δ
−1/2
Bn

(̟ǫ)qi(n−i)/2W ◦(̟J+ǫ).

If we then combine our two expressions for (π(Φi)W
◦)(̟J ) we obtain our recursion.

Proposition 7.3 For the unramified Whittaker function in W(π, ψ) we have
the recursion

Λπ(Φi)W
◦(̟J ) = qi(n−i)/2

∑

ǫ∈Ii

δ
−1/2
Bn

(̟ǫ)W ◦(̟J+ǫ).

The solution to this recursion is quite interesting. It involves the characters
of finite dimensional representations of GLn(C). The n-tuples J = (j1, . . . , jn)
with j1 ≥ · · · ≥ jn are the possible highest weights for the finite dimensional
representations of GLn(C). Let ρ

J
denote the finite dimensional representation of

highest weight J and let χ
J

= Tr(ρ
J
) be its character. Then many things are known

about these characters, for example, from the formula for the decomposition of the
tensor product of two finite dimensional representations we also obtain a recursion

χ
ηi
χ

J
=
∑

ǫ∈Ii

χ
J+ǫ
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similar to the recursion for W ◦(̟J ). Since the χ
J

are class functions on GLn(C),
it makes sense to evaluate them on our Satake class Aπ for π. For example, since
ρηi

is the ith exterior power of the standard representation of GLn we find that

χ
ηi

(Aπ) = σi(µ1(̟), . . . , µn(̟)) = q−i(n−i)/2Λπ(Φi).

Utilizing these facts from finite dimensional representation theory it is then a
simple matter to solve the recursion for the W ◦(̟J ) in terms of the χ

J
(Aπ) and

obtain Shintani’s formula.

Proposition 7.4 W ◦(̟J) = δ
1/2
Bn

(̟J)χ
J
(Aπ).

3 Calculating the integral

We now return to our local integral. We consider the case m < n and π, π′,
and ψ all unramified. Let W ◦ ∈ W(π, ψ) and W ′◦ ∈ W(π′, ψ−1) be the normalized
K-fixed Whittaker functions computed above. We have

Ψ(s,W ◦,W ′◦) =

∫

Nm(k)\GLm(k)

W ◦

(
h

In−m

)
W ′◦(h)| det(h)|s−

n−m
2 dh.

Use the Iwasawa decomposition to write GLm = NmAmKm so that h = n̟Jk and
dh = dn δ−1

Bm
(̟J ) dk. Then

Ψ(s,W ◦,W ′◦)

=
∑

J∈Zm

W ◦

(
̟J

In−m

)
W ′◦(̟J)| det(̟J)|s−

n−m
2 β−1

Bm
(̟J ).

Now W ′◦(̟J ) = 0 unless j1 ≥ · · · ≥ jm and W ◦

(
̟J

In−m

)
= 0 unless j1 ≥

· · · ≥ jm ≥ 0. Moreover, | det(̟J )| = q−|J| where |J | = j1 + · · · + jm. So our
integral becomes

Ψ(s,W ◦,W ′◦)

=
∑

j1≥···≥jm≥0

W ◦

(
̟J

In−m

)
W ′◦(̟J )q−|J|(s−n−m

2 )β−1
Bm

(̟J ).

We next insert the formula from Proposition 7.4 and use the elementary fact that

δ
1/2
Bn

(
̟J

In−m

)
δ
−1/2
Bm

(̟J) = q−|J|n−m
2

to obtain

Ψ(s,W ◦,W ′◦) =
∑

j1≥···≥jm≥0

χ
(J,0)

(Aπ)χ
J
(Aπ′)q−|J|s

where (J, 0) = (j1, . . . , jm, 0, . . . , 0) represents J filled out to be a vector in Zn.

We next use some fairly standard facts from the finite dimensional representa-
tion theory of GLn(C), namely

χ
(J,0)

(Dn)χ
J
(Dm) = Tr(ρ

(J,0)
(Dn)⊗ ρJ

(Dm)),
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∑

j1≥···≥jm≥0

|J|=r

Tr(ρ
(J,0)

(Dn)⊗ ρ
J
(Dm)) = Tr(Sr(Dn ⊗Dm)),

and
∞∑

r=0

Tr(Sr(D))Xr = det(1 −XD)−1,

where Sr(D) is the rth symmetric power of D. Applying these with Dn = Aπ and
Dm = Aπ′ finishes our calculation of the local integral.

Proposition 7.5 If π, π′, and ψ are all unramified, then

Ψ(s,W ◦,W ′◦) = det(I − q−sAπ ⊗Aπ′)−1 =
∏

i,j

(1− µi(̟)µ′
j(̟)q−s)−1.

Since L(s, π × π′) is the minimal inverse polynomial in q−s killing all poles of
the family of local integrals this implies

det(I − q−sAπ ⊗Aπ′)|L(s, π × π′)−1.

Then comparing the poles of this factor with the potential poles coming from the
asymptotics of W ◦ and W ′◦ as the simple roots go to zero from Lecture 6 gives us
our result.

Theorem 7.1 If π, π′, and ψ are all unramified, then

L(s, π × π′) = det(I − q−sAπ ⊗Aπ′)−1 = Ψ(s,W ◦,W ′◦).

Note that the degree of this Euler factor is mn. Moreover,

L(s, π) = det(I − q−sAπ)
−1 =

∏
(1− µi(̟)q−s)−1

is an Euler factor of degree n. The same result holds for GLn×GLn. One then takes
for the Schwartz function Φ ∈ S(kn) the characteristic function Φ◦ of On ⊂ kn.

Since the factor ε(s, π × π′, ψ) satisfies the local functional equation

Ψ̃(1− s,R(wn,m)W̃ ◦, W̃ ′◦)

L(1− s, π̃ × π̃′)
= ωπ′(−1)n−1ε(s, π × π′, ψ)

Ψ(s,W ◦,W ′◦)

L(s, π × π′)

we can conclude the following corollary.

Corollary 7.1.1 If π, π′, and ψ are all unramified, then

ε(s, π × π′, ψ) ≡ 1.

In particular, taking π′ to be the trivial character of GL1 we see that if π is unram-
ified then its conductor f(π) = 0.

Finally, as a second corollary we obtain the Jacquet-Shalika bounds on the
Satake parameters.

Corollary 7.1.2 Suppose that π is a irreducible unitary generic unramified
representation of GLn(k), π ≃ Ind(µ1 ⊗ · · · ⊗ µn). Then the Satake parameters
µi(̟) satisfy

q−1/2 < |µi(̟)| < q1/2.
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To see this, we apply the GLn ×GLn unramified calculation to π and π′ = π,
the complex conjugate representation. Then Aπ′ = Aπ = Aπ and

det(I − q−sAπ ⊗Aπ)Ψ(s,W ◦,W ′◦,Φ◦) = 1.

The local integral is absolutely convergent for Re(s) ≥ 1 since π is unitary. Then

det(I − q−sAπ ⊗Aπ) 6= 0 for Re(s) ≥ 1.

This determinant has as a factor (1 − |µi(̟)|2q−s), so this also cannot vanish for
Re(s) ≥ 1. Hence

|µi(̟)| < q1/2.

Applying the same argument to π̃ gives

|µi(̟)|−1 < q1/2

since Aeπ = A−1
π . Thus we have the result.
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LECTURE 8

Local L-functions: the Archimedean Case

When k = R or C we still have our family of local integrals

{Ψ(s,W,W ′)} or {Ψj(s,W,W
′)} or {Ψ(s,W,W ′,Φ)}

for W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1), and Φ ∈ S(kn), now for π and π′ irreducible
admissible generic representations of GLn(k) or GLm(k) which are smooth and of
moderate growth. In the current state of affairs the local L-functions L(s, π × π′)
are not defined intrinsically through the integrals, but rather extrinsically through
the arithmetic Langlands classification and then related to the integrals.

1 The arithmetic Langlands classification

Both k = R and k = C have attached to them Weil groups Wk which play
a role in their local class field theory similar to that of the richer Gal(k/k) for
non-archimedean k.

When k = C, WC = C× is simply the multiplicative group of C. The only
irreducible representations of WC are thus characters.

When k = R then WR can be defined as WR = C× ∪ jC× where jzj−1 = z and
j2 = −1 ∈ C×. This is an extension of Gal(C/R) by C× = WC.

1 −−−−→ C× −−−−→ WR −−−−→ Gal(C/R) −−−−→ 1

Now WR has both one and two dimensional irreducible representations. Note that
W ab

R
≃ R×.

In rough terms, the arithmetic Langlands classification says there are natural
bijections between

An(k) = { irreducible admissible H−modules for GLn(k)}

and

Gn(k) = {n− dimensional, semisimple representations of Wk}.

On the other hand, if

A∞
n (k) = { irreducible admissible smooth moderate growth

representations of GLn(k)}

then the work of Casselman and Wallach gives a bijection between An(k) and
A∞
n (k). Combining these, we can view the arithmetic Langlands classification as
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giving a natural bijection

A∞
n (k)

∼
←→ An(k)

∼
←→ Gn(k)

π −→ τ = τ(π)
π = π(τ) ←− τ

.

For example:

• If dim(τ) = 1, then π(τ) is a character of GL1(k).

• If k = R and τ is irreducible, unitary, and dim(τ) = 2, then π(τ) is a unitary
discrete series representation of GL2(R).

• If τ =
r⊕

i=1

τi with each τi irreducible, then π(τ) is the Langlands quotient of

IndGLn

Q (π(τ1)⊗ · · · ⊗ π(τr)).

• If in addition π is generic, then

π = π(τ) = IndGLn

Q (π(τ1)⊗ · · · ⊗ π(τr))

is a full irreducible induced representation from characters of GL1(k) and possible
discrete series representations of GL2(k) if k = R. (This result is due to Vogan and
is not part of the classification per se.)

2 The L-functions

Set

Γk(s) =

{
π−s/2Γ

(
s
2

)
k = R

2(2π)−sΓ(s) k = C
.

Then Weil attached to each semi-simple representation τ of Wk an L-function:
L(s, τ). For example:

• If τ is an unramified character of W ab
k = k×, say τ(x) = |x|rk, then L(s, τ) =

Γk(s+ r).

• If dim(τ) = 2 and π(τ) is the holomorphic discrete series of weight k for
GL2(R), then L(s, τ) = ΓC

(
s+ k−1

2

)
.

• If τ =

r⊕

i=1

τi with each τi irreducible, then L(s, τ) =

r∏

i=1

L(s, τi).

He also attached local ε-factors. For example, if τ is the character τ(x) =
x−N |x|tk and ψ is the standard additive character of k, then ε(s, τ, ψ) = iN .

There are natural “twisted” L-functions and ε-factors in this context, for if τ
is an n-dimensional representation of Wk and τ ′ in a m-dimensional representation
of Wk then the tensor product τ ⊗ τ ′ is an mn-dimensional representation and we
have thus defined L(s, τ ⊗ τ ′) and ε(s, τ ⊗ τ ′, ψ) as well.
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Now return to our representations π of GLn(k) and π′ of GLm(k). Suppose
that under the arithmetic Langlands classification we have π = π(τ) and π′ = π(τ ′)
with τ an n-dimensional and τ ′ an m−dimensional representation of Wk. Then we
define the L-function for π and π′ through the classification:

L(s, π × π′) = L(s, τ ⊗ τ ′)

ε(s, π × π′, ψ) = ε(s, τ ⊗ τ ′, ψ)

and we set

γ(s, π × π′, ψ) =
ε(s, π × π′, ψ)L(1− s, π̃ × π̃′)

L(s, π × π′)

=
ε(s, τ ⊗ τ ′, ψ)L(1− s, τ̃ ⊗ τ̃ ′)

L(s, τ ⊗ τ ′)
.

Note that L(s, π × π′) is always an archimedean Euler factor of degree nm.

3 The integrals (m < n)

We now have to prove that this definition of the L-function behaves well with
respect to our integrals. To analyze the integrals, we begin again with the properties
of the Whittaker functions.

Proposition 8.1 Let π be an irreducible admissible generic representation
of GLn(k) which is smooth of moderate growth. Then there is a finite set of A-
finite functions on A, say X(π) = {χi}, depending only on π, such that for every
W ∈ W(π, ψ) there exist Schwartz functions φi ∈ S(kn−1 ×K) such that for a ∈ A
with an = 1 and k ∈ K we have

W







a1

. . .

an−1

1


 k


 =

∑

X(π)

χi(a)φi(α1(a), . . . , αn−1(a); k).

As in the non-archimedean case, the A-finite functions in X(π) are related to
the archimedean Jacquet module of π and then through the classification to the
associated representation τ of Wk. This then gives the same convergence estimates
as before.

Proposition 8.2 Each local integral Ψj(s,W,W
′) converges absolutely for

Re(s)≫ 0, and if π and π′ are both unitary they converge absolutely for Re(s) ≥ 1.

The non-archimedean statements on rationality and “bounded denominators”
are replaces by the following analysis.

Let M(π × π′) = M(τ ⊗ τ ′) be the space of all meromorphic functions φ(s)
satisfying:

• If P (s) ∈ C[s] is a polynomial such that P (s)L(s, π × π′) is holomorphic in
the vertical strip S[a, b] = {s | a ≤ Re(s) ≤ b}, then P (s)φ(s) is holomorphic and
bounded in S[a, b].
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As an exercise, one can show that φ ∈ M(π × π′) implies that the ratio
φ(s)

L(s, π × π′)
is entire.

Theorem 8.1 The integrals Ψj(s,W,W
′) extend to meromorphic functions of

s and as such Ψj(s,W,W
′) ∈ M(π × π′). In particular, the ratios ej(s,W,W

′) =
Ψj(s,W,W

′)

L(s, π × π′)
are entire.

This is more than just “bounded denominators” since it specifies L(s, π × π′)
as a common denominator.

The same formal manipulations as in the non-archimedean show that if we set

Ij(π × π
′) = 〈Ψj(s,W,W

′) |W ∈ W(π, ψ),W ′ ∈ W(π′, ψ−1)〉

then Ij(π × π
′) = Ij+1(π× π

′) and hence I(π × π′) = Ij(π × π
′) is independent of

j. Our theorem then becomes

I(π × π′) ⊂M(π × π′).

There is also a local functional equation, but unlike the non-archimedean case, the
“factor of proportionality” γ(s, π × π′, ψ) is specified a priori.

Theorem 8.2 We have the local functional equation

Ψ̃(1− s,R(wn,m)W̃ , W̃ ′) = ωπ′(−1)n−1γ(s, π × π′, ψ)Ψ(s,W,W ′)

with γ(s, π × π′, ψ) = γ(s, τ ⊗ τ ′, ψ).

The proofs of Theorems 8.1 and 8.2 are due to Jacquet and Shalika. Their
strategy is roughly as follows:

(i) Very interestingly, they essentially show that Theorem 8.2 (the local func-
tional equation) implies Theorem 8.1 (that the L-functions is essentially the correct
denominator). This takes place in the spaceM(π × π′).

(ii) If m = 1, so π′ is a character, they reduce Theorem 8.2 to previous results
of Godement and Jacquet on standard L-functions for GLn, which in turn reduced
to the cases of GL2 ×GL1 and GL1 ×GL1 in that context.

(iii) If m = 2 and π′ is a discrete series representation of GL2(R), then they
embed π′ ⊂ Ind(µ1 ⊗ µ2) and then reduce to (ii).

(iv) If m > 2 and π′ = Ind(π′
1 ⊗ · · · ⊗ π

′
r) with each π′

i either a character or
discrete series representation then they use a “multiplicativity” argument to again
reduce to (ii) or (iii).

4 Is the L-factor correct?

We know that I(π×π′) ⊂M(π×π′), so that L(s, π×π′) = L(s, τ⊗τ ′) contains
all poles of our local integrals. We are left with the following two related questions.



4. Is the L-factor correct? 65

1. Is L(s, π × π′) the minimal such factor?

2. Can we write

L(s, π × π′) =

r∑

i=1

Ψ(s,Wi,W
′
i )

as a finite linear combination of local integrals?

To investigate these questions, Jacquet and Shalika had to first enlarge the
family of local integrals. If Λ and Λ′ are continuous Whittaker functionals on Vπ
and Vπ′ then their tensor product Λ̂ = Λ ⊗ Λ′ is a continuous linear functional
on the algebraic tensor product Vπ ⊗ Vπ′ which extends continuously to the topo-
logical tensor product Vπ⊗̂π′ = Vπ⊗̂Vπ′ . (Note that this completion is in fact the
Casselman-Wallach canonical completion of the algebraic tensor product. So to
remain categorical, this is natural.) Then for ξ ∈ Vπ⊗̂Vπ′ we can define

Wξ(g, h) = Λ̂(π(g)⊗ π′(h)ξ),

so that Wξ ∈ W(π⊗̂π′) =W(π, ψ)⊗̂W(π′, ψ−1), and then

Ψ(s,W ) =

∫

Nm(k)\GLm(k)

Wξ

((
h

In−m

)
, h

)
| det(h)|s−

n−m
2 dh.

Essentially the same arguments as before give Theorems 8.1 and 8.2 for these
extended integrals. If we set

I(π⊗̂π′) = 〈Ψ(s,W ) |W ∈ W(π⊗̂π′)〉

then again we have I(π⊗̂π′) ⊂M(π × π′). But now they are able to show that in
fact these spaces are equal.

Theorem 8.3 I(π⊗̂π′) =M(π × π′).

So L(s, π × π′) is the correct denominator for the extended family I(π⊗̂π′).
This partially answers our first question. We also obtain a partial answer to our
second question.

Corollary 8.3.1 There exists W ∈ I(π⊗̂π′) such that Ψ(s,W ) = L(s, π×π′).

In order to investigate our questions for our original family, with Piatetski-
Shapiro we showed the following continuity result.

Proposition 8.3 The functional

W 7→ e(s,W ) =
Ψ(s,W )

L(s, π × π′)

is continuous on W(π⊗̂π′), uniformly for s in compact subsets.

Since the algebraic tensor product W(π, ψ)⊗W(π′, ψ−1) is dense in W(π⊗̂π′)
and by the above corollary there exists W ∈ W(π⊗̂π′) with e(s,W ) ≡ 1 we then
obtain the following result.



66 8. Local L-functions: the Archimedean Case

Corollary 8.3.2 For each s0 ∈ C there exist Whittaker functions W ∈ W(π, ψ)
and W ′ ∈ W(π′, ψ−1) such that

e(s0,W,W
′) =

Ψ(s,W,W ′)

L(s, π × π′)
6= 0.

Moreover, one can take W and W ′ to be K-finite Whittaker functions.

So L(s, π × π′) is precisely the archimedean Euler factor of degree nm deter-
mined by the poles of original family of integrals I(π × π′). This finally answers
question 1.

As for question 2, the answer is more ambiguous. There are definitive results
only in the cases of m = n and m = n − 1. In the case where π and π′ are both
unramified, Stade has done the archimedean unramified calculation.

Theorem 8.4 If n = m or n = m− 1 and both π and π′ are unramified then

L(s, π × π′) =

{
Ψ(s,W ◦,W ′◦,Φ◦) m = n

Ψ(s,W ◦,W ′◦) m = n− 1

where W ◦, W ′◦, and Φ◦ are all normalized and unramified.

This has been generalized by Jacquet and Shalika, utilizing the last corollary.

Theorem 8.5 If m = n or m = n − 1 then there are finite collections of
K-finite Whittaker functions Wi ∈ W(π, ψ) and W ′

i ∈ W(π′, ψ−1) and possibly
Φi ∈ S(kn) such that

L(s, π × π′) =





∑
iΨ(s,Wi,W

′
i ,Φi) m = n

∑
iΨ(s,Wi,W

′
i ) m = n− 1

.

It is somewhat widely believed that this last result will not extend to m ≤ n−2,
even if one relaxes the K-finiteness condition.
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LECTURE 9

Global L-functions

We return now to the global setting. So once again k is a number field and A

its ring of adeles. Let Σ denote the set of all places of k. Take ψ : k\A → C× a
non-trivial continuous additive character.

Let (π, Vπ) be a unitary smooth cuspidal representation of GLn(A), which then
decomposes as π ≃ ⊗′πv. Similarly, (π′, Vπ′) will be a unitary smooth cuspidal
representation of GLm(A) with π′ ≃ ⊗′π′

v. We will mainly concentrate on the case
of m < n. The case of m = n can then be worked out as an exercise.

For each place v ∈ Σ we have defined local L- and ε-factors

L(s, πv × π
′
v) and ε(s, πv × π

′
v, ψv).

We then define the global L-function and ε-factor as Euler products.

Definition 9.1 The global L-function and ε-factors for π and π′ are

L(s, π × π′) =
∏

v∈Σ

L(s, πv × π
′
v)

and

ε(s, π × π′) =
∏

v∈Σ

ε(s, πv × π
′
v, ψv).

Implicit in this definition is the convergence of the products in a half plane
Re(s) >> 0 and the independence of the ε-factor from the choice of ψ. We will
address this below. Then we will turn to showing these L-functions are nice. Our
scheme will be to relate these Euler products to our global integrals and deduce the
global properties of the L-functions from those of our global integrals.

Throughout, we will take S ⊂ Σ to be a finite set of places, containing the
archimedean places, such that for all v /∈ S we have that πv, π

′
v, and ψv are all

unramified and ψv normalized. The set S can vary, but it should always have these
properties.

1 Convergence

Choose cusp forms ϕ ∈ Vπ and ϕ′ ∈ Vπ′ such that under the decomposition
Vπ ≃ ⊗′Vπv

we have ϕ ≃ ⊗ξv and similarly ϕ′ ≃ ⊗ξ′v. Choose S as above such that
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for all v /∈ S, ξv = ξ◦v is the Kv-fixed vector in Vπv
and similarly ξ′v = ξ

′◦
v . Then we

know from Lecture 5 that

I(s, ϕ, ϕ′) = Ψ(s,Wϕ,W
′
ϕ′) =

∏

v∈Σ

Ψ(s,Wξv
,W ′

ξ′v
)

and this converges absolutely for Re(s) > 1. By our unramified calculation of
Lecture 7 we know that for v /∈ S we have

Ψ(s,Wξ◦v ,W
′
ξ′◦v

) = L(s, πv × π
′
v).

Hence

I(s, ϕ, ϕ′) =

(∏

v∈S

Ψ(s,Wξv
,W ′

ξ′v
)

)
LS(s, π × π′)

where LS(s, π × π′) is the partial L-function

LS(s, π × π′) =
∏

v/∈S

L(s, πv × π
′
v).

Thus the Euler product for LS(s, π × π′) converges for Re(s) >> 0 and hence

• L(s, π × π′) converges for Re(s) >> 0.

Thus our global L-function is well defined.

We could have also deduced the convergence of the infinite product from the
Jacquet-Shalika bounds on the Satake parameters for unramified representations.
As was pointed out, this would give convergence for Re(s) > 3

2 . In fact, with a bit
more work than I have done here, Jacquet and Shalika show absolute convergence
(and hence non-vanishing) for Re(s) > 1.

As for the ε-factor, again from our unramified calculation of Lecture 7 we know
that ε(s, πv × π′

v, ψv) ≡ 1 for v /∈ S. So

ε(s, π × π′) =
∏

v∈S

ε(s, πv × π
′
v, ψv)

is only a finite product. From the shape of the local ε-factors from Lectures 6 and
8, we know that it has the form

ε(s, π × π′) = WN
1
2
−s

with N a positive integer.

The independence of ε(s, π × π′) from the choice of ψ can be seen either by
investigating how the local ε-factors vary as we vary ψ, which can be done through
the local integrals, or as a consequence of the global functional equation below.
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2 Meromorphic continuation

We continuation analyzing the relation between L(s, π × π′) and our global
integrals from above. We have

I(s, ϕ, ϕ′) =

(∏

v∈S

Ψ(s,Wξv
,W ′

ξ′v
)

)
LS(s, π × π′)

=

(∏

v∈S

Ψ(s,Wξv
,W ′

ξ′v
)

L(s, πv × π′
v)

)
L(s, π × π′)

=

(∏

v∈S

e(s,Wξv
,W ′

ξ′v
)

)
L(s, π × π′)

From our analysis of the global integrals, we know that I(s, ϕ, ϕ′) is entire (or
I(s, ϕ, ϕ′,Φ) is meromorphic if m = n). For each v ∈ S we have seen that the local
ratios e(s,Wξv

,W ′
ξ′v

) are entire. Since S is a finite set, we can conclude

• L(s, π × π′) extends to a meromorphic function of s.

3 Poles of L-functions

In our analysis of the local L-functions in Lectures 6 and 8 we have shown
not only that the local ratios e(s,Wξv

,W ′
ξ′v

) are entire, but in fact that for every

s0 ∈ C there is a choice of local Whittaker functions Wv and W ′
v such that the

ratio e(s0,Wv,W
′
v) 6= 0. So as we vary Wv ∈ W(πv, ψv) and W ′

v ∈ W(π′
v, ψ

−1
v ) we

obtain that the poles of the global L-function L(s, π × π′) are precisely those that
occur for the families of global integrals

{I(s, ϕ, ϕ′)} or {I(s, ϕ, ϕ′Φ)}.

Hence

• If m < n then L(s, π × π′) is entire.

• If m = n then L(s, π × π′) has simple poles precisely at those s = iσ and
s = 1 + iσ with σ ∈ R such that π̃ ≃ π′ ⊗ | det |iσ.

In particular,

• L(s, π × π̃) has simple poles at s = 0, 1

• L(s, π × π̃′) has a pole at s = 1 iff π ≃ π′.

4 The global functional equation

We know that our global integrals satisfy a functional equation

I(s, ϕ, ϕ′) = Ĩ(1− s, ϕ̃, ϕ̃′).
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Furthermore, as above, we have decompositions

I(s, ϕ, ϕ′) =

(∏

v∈S

e(s,Wξv
,W ′

ξ′v
)

)
L(s, π × π′)

and

Ĩ(1− s, ϕ̃, ϕ̃′) =

(∏

v∈S

ẽ(1− s,R(wn,m)W̃ξv
, W̃ ′

ξ′v
)

)
L(1− s, π̃ × π̃′).

By the local functional equations, for each v ∈ S we have

ẽ(1 − s,R(wn,m)W̃ξv
, W̃ ′

ξ′v
) = ωπ′

v
(−1)n−1ε(s, πv × π

′
v, ψv)e(s,Wξv

,W ′
ξ′v

).

We now take the product of both sides over those v ∈ S. Note that since everything
is unramified for v /∈ S, we have

∏

v∈S

ωπ′
v
(−1)n−1 =

∏

v∈Σ

ωπ′
v
(−1)n−1 = ωπ′(−1) = 1

and as we have seen above
∏

v∈S

ε(s, πv × π
′
v, ψv) =

∏

v∈Σ

ε(s, πv × π
′
v, ψv) = ε(s, π × π′).

Thus when we take this product we find
∏

v∈S

ẽ(1− s,R(wn,m)W̃ξv
, W̃ ′

ξ′v
) = ε(s, π × π′)

∏

v∈S

e(s,Wξv
,W ′

ξ′v
)

so that

Ĩ(1− s, ϕ̃, ϕ̃′) =

(∏

v∈S

e(s,Wξv
,W ′

ξ′v
)

)
ε(s, π × π′)L(1− s, π̃ × π̃′).

If we combine this with our functional equation for the global integrals, we find
our global functional equation

• L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

Note that this equality implies that ε(s, π × π′) is independent of ψ.

5 Boundedness in vertical strips

This is not as simple as it should be. Here is the paradigm. We include the
case of m = n.

For v /∈ S we have

L(s, πv × π
′
v) =

{
Ψ(s,W ◦

v ,W
′◦
v ,Φ

◦
v) m = n

Ψ(s,W ◦
v ,W

′◦
v ) m < n

.
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For non-archimedean v ∈ S there are finite collections {Wv,i}, {W ′
v,i}, and

{Φv,i} if necessary such that

L(s, πv × π
′
v) =

{∑
iΨ(s,Wv,i,W

′
v,i,Φv,i) m = n∑

iΨ(s,Wv,i,W
′
v,i) m < n

.

For archimedean places v only if m = n or m = n − 1 do we know that there
are finite families of either smooth or even Kv-finite Whittaker functions {Wv,i}
and {W ′

v,i}, and if necessary Schwartz functions {Φv,i} such that

L(s, πv × π
′
v) =

{∑
i Ψ(s,Wv,i,W

′
v,iy,Φv,i) m = n∑

i Ψ(s,Wv,i,W
′
v,i) m = n− 1

.

Hence if m = n or m = n − 1 the there are finite collections of cusp forms
{ϕi} ⊂ Vπ and {ϕ′

i} ⊂ Vπ′ and if necessary Schwartz functions {Φi} ⊂ S(An) such
that

L(s, π × π′) =

{∑
i I(s, ϕi, ϕ

′
i,Φi) m = n∑

i I(s, ϕi, ϕ
′
i) m = n− 1.

Now boundedness in vertical strips of the L-function L(s, π× π′) follows from that
of the global integrals.

If m < n − 1 then at the archimedean places we must pass to the topological
product Vπv

⊗̂Vπ′
v

in order to obtain L(s, πv × π′
v), that is,

L(s, πv × π
′
v) = Ψ(s,W ) for W ∈ W(πv⊗̂π

′
v, ψv).

To make our paradigm work we should re-develop the analysis of our global integrals
for cusp forms ϕ(g, h) ∈ Vπ⊗̂Vπ′ , which is a smooth cuspidal representation of the
product GLn(A)×GLm(A). Then we would obtain an equality

L(s, π × π′) = I(s, ϕ) with ϕ ∈ Vπ⊗̂Vπ′

and would then have boundedness in vertical strips as before. There seems to be
no obstruction to carrying this out and we hope to soon write up the details. This
then gives boundedness in vertical strips in general.

If this makes you nervous, Gelbart and Shahidi have proven boundedness in ver-
tical strips for a wide class of L-functions, including ours, via the Langlands-Shahidi
method of analyzing L-functions through the Fourier coefficients of Eisenstein se-
ries.

So, no matter how you cut it,

• L(s, π × π′) is bounded in vertical strips of finite width.

6 Summary

If we combine these results, we obtain a statement of the basic analytic prop-
erties of out L-functions.
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Theorem 9.1 If π is a unitary cuspidal representation of GLn(A) and π′ is a
unitary cuspidal representation of GLm(A) with m < n then L(s, π × π′) is nice,
i.e.,

(i) L(s, π × π′) converges for Re(s) >> 0 and extends to an entire function of
s;

(ii) this extension is bounded in vertical strips of finite width;
(iii) it satisfies the functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

In the case of m = n we have a similar result.

Theorem 9.2 If π and π′ are two unitary cuspidal representation of GLn(A)
then

(i) L(s, π×π′) converges for Re(s) >> 0 and extends to a meromorphic function
of s with simple poles at those s = iσ and s = 1 + iσ such that π̃ ≃ π′ ⊗
| det |iσ; if there are no such iσ then L(s, π × π′) is entire;

(ii) this extension is bounded in vertical strips of finite width (away from its
poles);

(iii) it satisfies the functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

7 Strong Multiplicity One revisited

We will now present the analytic proof of the Strong Multiplicity One Theorem
due to Jacquet and Shalika. It is based on the analytic properties of L-functions.
First, recall the statement.

Theorem 9.3 (Strong Multiplicity One) Let (π1, Vπ1) and (π2, Vπ2) be
two cuspidal representations of GLn(A). Decompose them as π1 ≃ ⊗′π1,v and
π1 ≃ ⊗′π2,v. Suppose that there is a finite set of places S such that π1,v ≃ π2,v for
all v /∈ S. Then (π1, Vπ1) = (π2, Vπ2).

Without loss of generality we may assume π1 and π2 are unitary. We know
from Section 3 of this Lecture or Theorem 9.2 that L(s, π1× π̃2) has a pole at s = 1
iff π1 = π2.

Let us write

L(s, π1 × π̃2) =

(∏

v∈S

L(s, π1,v × π̃2,v)

)
LS(s, π1 × π̃2).

The local L-functions for v ∈ S are all of the form

L(s, π1,v × π̃2,v) =

{
Pv(q

−s
v )−1 v <∞∏

Γv(s+ ∗) v|∞
.
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So in either case they are never zero. We also know from Lectures 6 and 8 that the
local integrals are absolutely convergent for Re(s) ≥ 1. So the local L-factors can
have no poles in this region either. Hence the finite product

∏

v∈S

L(s, π1,v × π̃2,v)

has no zeros or poles in Re(s) ≥ 1. Thus L(s, π1 × π̃2) has a pole at s = 1 iff
LS(s, π1 × π̃2) does.

Since π1,v ≃ π2,v for all v /∈ S we have

LS(s, π1 × π̃2) = LS(s, π1 × π̃1).

By the same argument as above, LS(s, π1 × π̃1) will have a pole at s = 1 since the
full L-function L(s, π1 × π̃1) does, again by Theorem 9.2.

Thus L(s, π1 × π̃2) does indeed have a pole at s = 1 and so π1 ≃ π2. Then
Multiplicity One for GLn gives that in fact (π1, Vπ1) = (π2, Vπ2).

8 Generalized Strong Multiplicity One

Jacquet and Shalika were able to push this technique further to obtain a version
of the Strong Multiplicity One Theorem for non-cuspidal representations. To state
it, we must first recall a theorem of Langlands.

If π is any irreducible automorphic representation of GLn(A) then there exists
a partition n = n1 + · · ·+ nr of n and cuspidal representations τi of GLni

(A) such
that π is a constituent of the induced representation

Ξ = Ind
GLn(A)
Q(A) (τ1 ⊗ · · · ⊗ τr).

Langlands worked in the context of K-finite automorphic representations, but the
result is valid for smooth automorphic representations as well. It is a consequence of
the theory of Eisenstein series. Similarly, if π′ is another automorphic representation
of GLn(A) then π′ will be a constituent of a similarly induced representation

Ξ′ = Ind
GLn(A)
Q′(A) (τ ′1 ⊗ · · · ⊗ τ

′
r′)

associated to a second partition n = n′
1 + · · ·+ n′

r′ .

Theorem 9.4 (Generalized Strong Multiplicity One) Let π and π′ be two
automorphic representations of GLn(A) as above. Suppose that there is a finite set
of places S such that πv ≃ π′

v for all v /∈ S. Then r = r′ and there is a permutation
σ of {1, . . . , r} such that ni = n′

σ(i) and τi ≃ τσ(i).

Thus the knowledge of the local components of π at almost all places completely
determines the “cuspidal support” of π. In particular, the “cuspidal support” of
π is well defined. As a consequence of this result Jacquet and Shalika showed the
existence of the category of isobaric representations for GLn(A).
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LECTURE 10

Converse Theorems

Once again, we take k to be a global field, which we have taken to be a number
field – but that is irrelevant. Then A is its ring of adeles and we take ψ : k\A −→ C×

a non-trivial continuous additive character.

1 Converse Theorems for GLn

For automorphic representations of GLn(A) the “Converse Theorem”, i.e., the
converse to the theory of global L-functions developed in the last lecture, has a
slightly different flavor from the classical ones. It addresses the following question.

Let us take π ≃ ⊗′πv to be an arbitrary (i.e., not necessarily automorphic)
irreducible admissible smooth representation of GLn(A).

Question: How can we tell if the local pieces πv of π are “coherent enough” that
we have an embedding

Vπ →֒ A
∞
0 (GLn(k)\GLn(A))?

Our Converse Theorems gives an analytic answer to this question in terms of
L-functions. From our local theory of L-functions, to each local component πv we
have attached a local L-factor L(s, πv) and a local ε-factor ε(s, πv, ψv). Thus we
can (at least formally) form the Euler products

L(s, π) =
∏

v

L(s, πv) and ε(s, π, ψ) =
∏

v

ε(s, πv, ψv).

Then L(s, π) is a formal Euler product of degree n and our question can be rephrased
as:

Question: Is the Dirichlet series defined by this formal Euler product modular?

This is closer to the classical Converse Theorems.

To begin we must make some mild coherence and modularity assumptions,
namely that

(i) the Euler product for L(s, π) is absolutely convergent in some right half
plane Re(s) >> 0;

77



78 10. Converse Theorems

(ii) the central character ωπ of π is an automorphic form on GL1(A), that is, an
idele class character of k×\A×.

Note that one can show that (ii) implies that ε(s, π, ψ) = ε(s, π) is independent
of ψ.

Under these conditions, if π′ ≃ ⊗′π′
v is any cuspidal (hence automorphic) rep-

resentation of GLm(A) with 1 ≤ m ≤ n− 1 then we can similarly form

L(s, π × π′) =
∏

v

L(s, πv × π
′
v) and ε(s, π × π′, ψ) =

∏

v

ε(s, πv × π
′
v, ψv)

and still have that

• both the Euler products for L(s, π× π′) and L(s, π̃× π̃′) converge absolutely
for Re(s) >> 0; and that

• ε(s, π × π′, ψ) = ε(s, π × π′) is independent of ψ.

We say that L(s, π×π′) is nice if it behaves as it would if π were cuspidal, i.e.,

(i) L(s, π × π′) and L(s, π̃ × π̃′) extend to entire functions of s;
(ii) these extensions are bounded in vertical strips;
(iii) they satisfy the functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

Our Converse Theorems, like Weil’s, will involve these twists. To that end, for any
m with 1 ≤ m ≤ n− 1 let us set

T (m) =

m∐

d=1

{π′ cuspidal, Vπ′ ⊂ A∞
0 (GLd(k)\GLd(A))}

and for any finite set S of finite places we set

T S(m) = {π′ ∈ T (m) | π′
v is unramified for all v ∈ S}.

The basic Converse Theorem, the analogue of those of Hecke and Weil, is the
following result.

Theorem 10.1 Let π be as above, an irreducible admissible smooth repre-
sentation of GLn(A) having automorphic central character and such that L(s, π)
converges for Re(s) >> 0. Let S be a finite set of finite places. Suppose that
L(s, π × π′) is nice for all π′ ∈ T S(n− 1). Then

(i) if S = ∅ then π is automorphic and cuspidal;
(ii) if S 6= ∅ then π is quasi-automorphic in the sense that there exists an auto-

morphic representation π1 such that π1,v ≃ πv for all v /∈ S.

A stronger result, but somewhat harder to prove, is the following.

Theorem 10.2 Let n ≥ 3 and let π be as above, an irreducible admissible
smooth representation of GLn(A) having automorphic central character and such
that L(s, π) converges for Re(s) >> 0. Let S be a finite set of finite places. Suppose
that L(s, π × π′) is nice for all π′ ∈ T S(n− 2). Then
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(i) if S = ∅ then π is automorphic and cuspidal;
(ii) if S 6= ∅ then π is quasi-automorphic in the sense that there exists an auto-

morphic representation π1 such that π1,v ≃ πv for all v /∈ S.

I would like to sketch the proof of Theorem 10.1. For simplicity let us assume
that in addition (π, Vπ) is generic. (We have discussed how to get around this in
practice.)

2 Inverting the integral representation

Take π ≃ ⊗′πv as in the statement of Theorem 10.1. For this section we assume
that L(s, π × π′) is nice for all π′ ∈ T (n − 1) and see what this leads to when we
invert our integral representation.

We first need to produce some functions on GLn(A). Since we have assumed
(π, Vπ) is generic we can do this via the Whittaker model. If ξ ∈ Vπ is such that
under the decomposition Vπ ≃ ⊗′Vπv

we have ξ ≃ ⊗ξv then to each ξv we have
associated a Whittaker function Wξv

∈ W(πv, ψv) and hence

Wξ(g) =
∏

v

Wξv
(gv) ∈ W(π, ψ)

is a smooth function on Nn(k)\GLn(A).

We could try to embed Vπ into A∞
0 by averaging Wξ over GLn(k), but this

would not converge. However the standard estimates on Whittaker functions do let
us average over the rational points of the mirabolic

P = StabGLn
((0, . . . , 0, 1)) =




p =




∗ · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗
0 · · · 0 1







.

So we form

Uξ(g) =
∑

p∈N(k)\P (k)

Wξ(pg) =
∑

γ∈Nn−1(k)\GLn−1(k)

Wξ

((
γ

1

)
g

)
.

Proposition 10.1 Uξ(g) converges absolutely and uniformly for g in compact
subsets, is left invariant under P (k), and its restriction to GLn−1(k)\GLn−1(A) is
rapidly deceasing (modulo the center).

Note that if ξ = ϕ was indeed a cusp form, this would be its Fourier expansion.

We can make a similar construction for any mirabolic subgroup and to utilize
our functional equation we will need to do this. To this end, let Q be the opposite
mirabolic

Q = StabGLn




0
...
0
1


 =




q =




∗ · · · ∗ 0
...

...
...

∗ · · · ∗ 0
∗ · · · ∗ 1







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and let α =

(
1

In−1

)
, a permutation matrix. Then set

Vξ(g) =
∑

q∈N ′(k)\Q(k)

Wξ(αqg) where N ′ = α−1Nα.

This is again absolutely convergent, uniformly on compact subsets, left invariant
under Q(k), and rapidly decreasing upon restriction to GLn−1(k)\GLn−1(A) (mod
center, of course).

Since P (k) and Q(k) together generate GLn(k), it suffices to show that Uξ(g) =
Vξ(g), for then

ξ 7→ Uξ(g) embeds Vπ →֒ A
∞
0 .

We will obtain this equality from the analytic properties of L(s, π × π′).

Let Vπ′ ⊂ A∞(GLn−1(k)\GLn−1(A)) be any irreducible subspace of the space
of smooth automorphic forms on GLn−1. For example π′ could be cuspidal. We call
such π′ proper automorphic representations. They consist of spaces of automorphic
forms.

If ϕ′ ∈ Vπ′ then we can form

I(s, Uξ, ϕ
′) =

∫

GLn−1(k)\GLn−1(A)

Uξ

(
h

1

)
ϕ′(h)| det h|s−

1
2 dh

and show that this converges for Re(s) >> 0. This will then factor in the usual
manner into

I(s, Uξ, ϕ
′) =

∏

v

Ψ(s,Wξv
,W ′

ϕ′
v
).

Suppose first that π′ is cuspidal. Let T be the finite set of places, containing
the archimedean ones, such that πv, π

′
v, and ψv are all unramified for v /∈ T . Then

as before

I(s, Uξ, ϕ
′) =

(∏

v∈T

Ψ(s,Wξv
,W ′

ϕ′
v
)

)
LT (s, π × π′)

=

(∏

v∈T

e(s,Wξv
,W ′

ϕ′
v
)

)
L(s, π × π′).

From our local theory we know that the factors ev(s) are entire and by assumption
L(s, π × π′) is entire. Hence I(s, Uξ, ϕ

′) extends to an entire function of s.

If π′ is not cuspidal, then by Langlands’ Theorem given last lecture we know
that π′ is a constituent, and in fact a sub-representation, of an induced represen-
tation Ξ = Ind(τ1 ⊗ · · · ⊗ τr) with each τi a cuspidal representation of some GLni

with ni < n−1. So each L(s, π× τi) is nice and we can use these to reach the same
conclusion, namely that I(s, Uξ, ϕ

′) is entire for any ϕ′ ∈ Vπ′ for any proper π′.

Similarly if we form

I(s, Vξ, ϕ
′) =

∫

GLn−1(k)\GLn−1(A)

Vξ

(
h

1

)
ϕ′(h)| det h|s−

1
2 dh
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then this will converge for Re(s) << 0, unfolds to

I(s, Vξ, ϕ
′) =

(∏

v∈T

ẽ(1− s,R(wn,n−1W̃ξv
, W̃ ′

ϕ′
v
)

)
L(1− s, π̃ × π̃′),

and continues to an entire function of s.

If we now apply the assumed global functional equation for either L(s, π × π′)
or the L(s, π × τi) and the local functional equations for v ∈ T we may conclude
that

I(s, Uξ, ϕ
′) = I(s, Vξ, ϕ

′) for all ϕ′ ∈ Vπ′ ⊂ A∞(GLn−1).

Then an application of the Phragmen–Lindelöf principle implies that these functions
are bounded in vertical strips of finite width.

Thus we have∫
Uξ

(
h

1

)
ϕ′(h)| deth|s−

1
2 dh =

∫
Vξ

(
h

1

)
ϕ′(h)| det h|s−

1
2 dh

in the sense of analytic continuation; the integration is over GLn−1(k)\GLn−1(A).
Using the boundedness in vertical strips, we can apply Jacquet-Langlands’ version
of Mellin inversion to obtain∫

Uξ

(
h

1

)
ϕ′(h) dh =

∫
Vξ

(
h

1

)
ϕ′(h) dh

now with the integration over SLn−1(k)\SLn−1(A). Then using the weak form
of Langlands spectral theory for SLn−1(k)\SLn−1(A) we can conclude that the
functions ϕ′ are “complete” and that

Uξ

(
h

1

)
= Vξ

(
h

1

)
for h ∈ SLn−1(A), ξ ∈ Vπ

and in particular

Uξ(In) = Vξ(In) for all ξ ∈ Vπ.

3 Proof of Theorem 10.1 (i)

To conclude the proof of part (i) of Theorem 10.1 we just note that since we
have

Uξ(In) = Vξ(In) for all ξ ∈ Vπ

then for any g ∈ GLn(A) we have

Uξ(g) = Uπ(g)ξ(In) = Vπ(g)ξ(In) = Vξ(g).

So the map ξ 7→ Uξ maps Vπ → A∞. Since Uξ is given by a Fourier expansion

Uξ(g) =
∑

Nn−1(k)\GLn−1(k)

Wξ

((
γ

1

)
g

)

we can compute a non-zero Fourier coefficient to conclude that Uξ 6≡ 0, and hence
the map is injective, and explicitly show that all unipotent periods are zero, and
hence that Uξ is in fact cuspidal. Thus we have Vπ →֒ A∞

0 as desired.



82 10. Converse Theorems

4 Proof of Theorem 10.1 (ii)

In part (ii) of Theorem 10.1 we can no longer directly apply the inversion of
the integral representation since we can no longer control I(s, Uξ, ϕ

′) for ϕ′ ∈ Vπ′

for every proper automorphic representation π′, rather only for those which are
unramified for v ∈ S. Our first idea to get around this is to place local conditions
on our vector ξ at v ∈ S to ensure that this is all you need. For v ∈ S, let ξ◦v ∈ Vπv

be the “new vector”, that is, the essentially unique vector fixed by K1(p
f(πv)) where

f(πv) is the conductor of πv as in Lecture 6. Note that for any t we have

K1(p
t
v) =




kv ∈ GLn(Ov)

∣∣kv ≡




∗ · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗
0 · · · 0 1


 (mod ptv)





⊃

{(
k′v

1

) ∣∣ k′v ∈ GLn−1(Ov)

}
.

Set ξ◦S = ⊗v∈Sξ◦v ∈ VπS
. This is then fixed by

K1(n) =
∏

v∈S

K1

(
p(f(πv)
v

)
⊃ GLn−1(OS).

For any ξS ∈ VπS ≃ ⊗′
v/∈SVπv

we can form ξ = ξ◦S ⊗ ξ
S and for such restricted

ξ ∈ Vπ we form Uξ and Vξ as before. Note that when we restrict these functions to

GLn−1(A) we see that Uξ

(
h

1

)
and Vξ

(
h

1

)
are now unramified for v ∈ S.

So when we form I(s, Uξ, ϕ
′) and I(s, Vξ, ϕ

′) for ϕ′ ∈ Vπ′ a proper automorphic
representation of GLn−1(A) we find that either

• I(s, Uξ, ϕ′) = 0 = I(s, Vξ, ϕ
′) if π′ is not unramified for v ∈ S, or

• I(s, Uξ, ϕ′) = I(s, Vξ, ϕ
′) as before if π′ is unramified for v ∈ S.

Thus, arguing as before, we may now conclude that we have

Uξ(g) = Vξ(g) for all g ∈ K1(n)GS

where GS =
∏
v/∈S GLn(kv).

We now use the weak approximation theorem to get back to GLn(A). Note
that

• Uξ(g) is left invariant under P (n) = P (k) ∩K1(n)GS

• Vξ(g) is left invariant under Q(n) = Q(k) ∩K1(n)GS

• P (n) and Q(n) generate Γ(n) = GLn(k) ∩K1(n)GS .

Thus as we let ξS vary in VπS we obtain that

ξS 7→ ξ = ξ◦S ⊗ ξ
S 7→ Uξ(g) embeds VπS →֒ A∞(Γ(n)\K1(n)GS).
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Now weak approximation gives that GLn(A) = GLn(k)K1(n)GS so that

A∞(Γ(n)\K1(n)GS) = A∞(GLn(k)\GLn(A)).

Then πS determines a sub-representation of the space of automorphic forms on
GLn(A) and for our π1 we may take any irreducible constituent of this. Fortunately
we still retain that π1,v ≃ πv for v /∈ S. This is the π1 claimed in the Theorem.

5 Theorem 2 and beyond

What can we expect if we only assume that L(s, π× π′) is nice for all π′ in say
T (m) or T S(m)?

If L(s, π× π′) is nice for all π′ ∈ T (m) then we can proceed as above to invert
the integral representation for GLn × GLm. We form Uξ as before, but must use
a Vξ which is adapted to this functional equation. To this end, we let Qm be the
mirabolic subgroup defined as the stabilizer in GLn of the vector tem+1, that is,
the column vector all of whose entries are 0 except for the (m+1)st which is 1. We
take for our permutation matrix the matrix

αm =




1
Im

In−m−1


 .

Then we set

Vξ(g) =
∑

q∈N ′\Qm

Wξ(αmqg) where now N ′ = α−1
m Nαm.

Then if we invert the GLn ×GLm integral representation as before we obtain

PmUξ

(
h

1

)
= PmVξ

(
h

1

)
for h ∈ SLm(A), ξ ∈ Vπ

or

PmUξ(Im+1) = PmVξ(Im+1) for ξ ∈ Vπ.

If we now set m = n−2 as in Theorem 10.2 (i), then this last equation becomes
∫
Uξ

(
In−1 u

1

)
ψ−1(un−1) du =

∫
Vξ

(
In−1 u

1

)
ψ−1(un−1) du

where the integral is over kn−1\An−1. We can rewrite this as
∫

kn−1\An−1

Fξ

(
In−1 u

1

)
ψ−1(un−1) du = 0

with Fξ(g) = Uξ(g) − Vξ(g). Then our desired equality Uξ(In) = Vξ(In) becomes
Fξ(In) = 0.

If we set fξ(u) = Fξ

(
In−1 u

1

)
then fξ is a periodic function on kn−1\An−1

and we wish to know that fξ(0) = Fξ(In) = 0 for all ξ. Instead, what we have from
the above is that a certain Fourier coefficient of fξ vanishes. But we also know that
Fξ(g) is left invariant under P (k) ∩ Qn−2(k). Using this allows us to show that
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many more Fourier coefficients of fξ vanish. Eventually this analysis leads to the
fact that fξ(

t(0, . . . , 0, un−1)) is constant, and moreover this constant is

fξ(
t(0, . . . , 0, 0)) = fξ(0) = Fξ(In).

To conclude, we now take any finite place v1 and working in the local Kirillov model
at the place v1 we are able to place a local condition on the component ξv1 which
guarantees that this common value is 0. Hence we may conclude Uξ(In) = Vξ(In)
for all ξ ∈ Vπ with ξv1 fixed.

Now we more or less proceed as in the proof of Theorem 10.1 (ii). We use
weak approximation to obtain an automorphic representation π1 which agrees with
π except possibly at v1. Then we repeat the argument with a second fixed place v2
to get an automorphic representation π2 which agrees with π except possibly at v2.
Then we use the Generalized Strong Multiplicity One Theorem and what we know
about the entirety of the twisted L-functions to conclude that π1 = π2 = π and π
is cuspidal. This gives Theorem 10.2 (i).

Theorem 10.2 (ii) is then obtained by combining this method with the proof
of Theorem 10.1 (ii). Once can take the place v1 used above to lie in S, and then
once you have used the weak approximation theorem, you are done.

Note that if m < n−2 then the unipotent integration in Pm is now non-abelian
and our abelian Fourier expansion method (thus far) breaks down.

6 A useful variant

For applications, these theorems are used in the following useful variant form.

Useful Variant: Let π be as in Theorems 10.1 and 10.2. Let T be the twisting set
of either theorem. Let η : k×\A× → C× be an fixed idele class character. Suppose
that L(s, π × π′) is nice for every π′ ∈ T ⊗ η. Then we have the same conclusions
for π as in those theorems.

To see this, note that L(s, π×π′) is nice for every π′ ∈ T ⊗η iff L(s, (π⊗η)×π′
0)

is nice for every π′
0 ∈ T . Hence π ⊗ η satisfies the conclusions of either Theorem

10.1 or 10.2. But since η is automorphic, π will as well.

In practice, the set of places S often is taken to be the places where π is ramified
and η is taken to be highly ramified at those place so that stability of γ can be
used.

7 Conjectures

The most widely held belief is the conjecture of Jacquet:

Conjecture 10.1 Let π be as in Theorem 10.1 or Theorem10.2. Suppose that
L(s, π × π′) is nice for all π′ ∈ T S

([
n
2

])
. Then we have the same conclusions as

in those theorems. In particular, if S is empty then π should be cuspidal.
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The most interesting and useful conjecture is due to Piatetski-Shapiro:

Conjecture 10.2 Let π be as in Theorem 10.1 or Theorem10.2. Suppose that
L(s, π⊗χ) is nice for all χ ∈ T (1), that is, for all idele class characters. Then there
exists an automorphic representation π1 such that π1,v ≃ πv at all places where they
are both unramified and

L(s, π ⊗ χ) = L(s, π1 ⊗ χ) for all χ ∈ T (1).

In particular π and π1 have the same L-function, so that the formal Euler product
defining L(s, π) is in fact modular.

One can easily formulate a version of this conjecture for T S(1).
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LECTURE 11

Functoriality

In this lecture we would like to give a brief introduction to functoriality and
how one uses the Converse Theorem to attack the problem of functoriality from
reductive groups G to GLn.

1 The Weil-Deligne group

Local functoriality is mediated by admissible maps of the Weil-Deligne group
into the Langlands dual group or the L-group.

Let k be a local field. We have defined the Weil group Wk when k = R or C.
So we will let k denote a non-achimedean local field (of characteristic 0 as usual).
Let O be the ring of integers of k, p its unique prime ideal, and κ = O/p its residue
field. Let p be the characteristic of κ and q = |κ|. Let k denote the algebraic closure
of k.

Reduction mod p gives a surjective map Gal(k/k) to Gal(κ/κ) and we let I
denote its kernel:

1 −→ I −→ Gal(k/k) −→ Gal(κ/κ) −→ 1.

I is called the inertia group. We know that Gal(κ/κ) is cyclic and generated by the

Frobenius automorphism. Let Φ ∈ Gal(k/k) be any inverse image of the inverse of
Frobenius (a so-called geometric Frobenius).

Since the Galois group Gal(k/k) is a pro-finite compact group, to obtain a
sufficiently rich class of representations to hopefully classify admissible representa-
tion of GLn, we need to relax this topology. So we let Wk denote the subgroup of
Gal(k/k) generated by I and Φ, but we topologize Wk so that I retains its induced
topology from the Galois group, I is open in Wk, and multiplication by Φ is a home-
omorphism. Wk with this topology is the Weil group of k. (It carries the structure
of a group scheme over Q.) Wk has a natural character || || : Wk → qZ ⊂ Q× given
by ||w|| = 1 for w ∈ I and ||Φ|| = q−1.

The topology on Wk, being essentially pro-finite on I, is still too restrictive to
have a sufficiently interesting theory of complex representations. However it has
many interesting Qℓ-representations and these are the ones that arise in arithmetic
geometry. In order to free the representation theory from incompatible topologies,
Deligne introduced the Weil-Deligne group W ′

k. Following Deligne and Tate we
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take W ′
k to be the semi-direct product Wk⋉Ga of the Weil group with the additive

group where Wk acts on Ga by wxw−1 = ||w||x.

What is important about W ′
k is not so much its structure but its representation

theory. A representation ρ′ of W ′
k is a pair ρ′ = (ρ,N) consisting of

(i) an n-dimensional vector space V and a group homomorphism ρ : Wk →
GL(V ) whose kernel contains an open subgroup of I (so it is continuous
with respect to the discrete topology on V );

(ii) a nilpotent endomorphism N of V such that ρ(w)Nρ(w)−1 = ||w||N .

The representation ρ′ is called semi-simple if ρ is. This category of representations
is independent of the (characteristic 0) coefficient field.

[Often one sees W ′
k = Wk × SL2. This can be made consistent in terms of

the representation theory via the Jacobson-Morozov Theorem. However it is the
nilpotent endomorphism N that arises naturally as a monodromy operator in the
theory of ℓ-adic Galois representations (Grothendieck) so I have chosen to retain
this formulation.]

When k is R or C, we simply take W ′
k = Wk.

2 The dual group

Now let k be either local or global and let G be a connected reductive algebraic
group over k. For simplicity we will take G split, so things behave as if k were
algebraically closed.

Recall from Kim’s lectures that over an algebraically closed field G is deter-
mined by its root data. If T is a maximal split torus in G then the root data for G
is Ψ = (X∗(T ),Φ, X∗(T ),Φ∨) where:

X∗(T ) is the set of rational characters of T
Φ ⊂ X∗(T ) is the root system Φ(G, T )
X∗(T ) is the set of rational co-characters of T (one parameter subgroups)
Φ∨ ⊂ X∗(T ) is the co-root system.

If we dualize this to obtain Ψ∨ = (X∗(T ),Φ∨, X∗(T ),Φ) then this dual data
determines a complex group LG◦ = LG which is the Langlands dual group or the
(connected component of the) L-group of G.

3 The local Langlands conjecture

Let k be a local field and let G be a reductive algebraic group over k, as-
sumed split as before. The local Langlands conjecture essentially says that the
irreducible admissible representations of G(k) are parameterized by admissible ho-
momorphisms of the Weil-Deligne groupW ′

k to the L-group LG. To be more precise,
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for this lecture let us set A(G) denote the equivalence classes of irreducible admissi-
ble (complex) representations of G(k) and let Φ(G) denote the set of all admissible
homomorphisms φ : W ′

k →
LG (module inner automorphisms). We won’t worry

about the precise definition of admissible, but just note that for G = GLn an
admissible homomorphism is simply a semi-simple representation as above.

Local Langlands Conjecture: There is a surjective map A(G) −→ Φ(G) with
finite fibres which partitions A(G) into finite sets Aφ(G), called L-packets, satisfying
certain naturality conditions.

This is known in the following cases which will be of relevance to us. (This list
is not exhaustive.)

1. If k = R or C this was completely established by Langlands. His naturality
conditions were representation theoretic in nature.

2. If k is non-archimedean (recalling that G is split) then one knows how
to parameterize the unramified representations of G(k) by unramified admissible
homomorphisms. This is the Satake classification.

3. If k is non-archimedean and G = GLn this is known and due to Harris-
Taylor and then Henniart (remember we have taken k of characteristic 0) and in
fact the map is a bijection. In these works the naturality conditions were phrased
in terms of matching twisted L- and ε-factors for the Weil-Deligne representations
with those we presented here for GLn.

Note that there is at present no similar formulation of a global Langlands
conjecture for global fields of characteristic 0. To obtain one, one would need to
replace the local Weil-Deligne group by the conjectural Langlands group Lk that
Jim Arthur talked about in the Shimura Variety Workshop. With Lk in hand it
would be relatively easy to formulate a conjecture like the one above.

4 Local Functoriality

We still take k to be a local field. Let G be a split reductive algebraic group
over k. Let r : LG → GLn(C) be a complex analytic representation. Since
LGLn = GLn(C), the map r is an example of what Langlands referred to as an
L-homomorphism. Langlands’ Principle of Functoriality can then be roughly stated
as saying:

Principle of Functoriality: Associated to the L-homomorphism r : LG→ LGLn
there should be associated a natural lift or transfer of admissible representations
from A(G) to A(GLn).

If we assume the local Langlands conjecture for G, this is easy to formulate.
We begin with π ∈ A(G). Associated to π we have a parameter φ ∈ Φ(G). Then
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via the diagram

LG
r // LGLn

π � // � // Π.

W ′
k

φ

XX111111111111111

Φ

EE
















we obtain a parameter Φ ∈ Φ(GLn) and hence a representation Π of GLn(k). We
refer to Π as the local functorial lift of π. As part of the formalism we obtain

L(s, π, r) = L(s, r ◦ φ) = L(s,Φ) = L(s,Π)

with similar equalities for ε-factors and twisted versions.

5 Global functoriality

Now let us take k a global field of characteristic 0, that is, a number field and
let G be a connected reductive group defined and split over k. As before, we let
r : LG → GLn(C) = LGLn be an L-homomorphism. Then there is also a global
Principle of Functoriality, namely:

Principle of Functoriality: Associated to the L-homomorphism r : LG→ LGLn
there should be associated a natural lift or transfer of automorphic representations
of G(A) to automorphic representations of GLn(A) .

We can give a precise formulation of this through local Langlands functoriality
and a local-global principle. Let π = ⊗′πv be an irreducible automorphic represen-
tation of G(A). Then there is a finite set S of finite places such that for all v /∈ S we
have that either v is archimedean or πv is unramified. In either case, we understand
the local Langlands conjecture for πv and hence we have a local functorial lift Πv

as a representation of GLn(kv).

Definition 11.1 Let π = ⊗′πv be an automorphic representation of G(A). An
automorphic representation Π = ⊗′Πv of GLn(A) will be called a functorial lift or
transfer of π if there is a finite set of places S such that Πv is the local Langlands
lift of πv for all v /∈ S.

Then Langlands’ Principle of Functoriality predicts that every automorphic
representation π of G(A) does indeed have a functorial lift to GLn(A). Note that
Π being a functorial lift of π entails an equality of partial L-functions LS(s, π, r) =
LS(s,Π) as well as for ε-factors and twisted versions. (A one point we called
this a weak lift. But the terminology of functorial lift (without any prejudicial
adjective) is consistent with the recent formulations of functoriality due to Arthur
and Langlands himself.)
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6 Functoriality and the Converse Theorem

It should be clear how to approach the problem of global functoriality via the
Converse Theorem. We begin with a cuspidal automorphic representation π = ⊗′πv
of G(A). There are three basic steps:

1. Construction of a candidate lift. If we know the local Langlands conjecture
for all πv then we simply take for Πv the local Langlands lift of πv. Note that these
local lifts will satisfy

L(s, πv × π
′
v, r ⊗ ι) = L(s,Πv × π

′
v)

ε(s, πv × π
′
v, r ⊗ ι, ψv) = ε(s,Πv × π

′
v, ψv)

for all irreducible admissible generic representations π′
v of GLr(kv), where the map

ι : GLm(C)→ GLm(C) is the identity map, viewed as an L-homomorphism. Then
we take Π = ⊗′Πv to be our candidate lift. We then have

L(s, π × π′, r ⊗ ι) = L(s,Π× π′)

ε(s, π × π′, r ⊗ ι) = ε(s,Π× π′)

for all cuspidal π′ of GLm(A).

In practice, there will be a finite set of places S where we do not know the local
Langlands conjecture for πv and we will have to deal with this.

2. Analytic properties of L-functions. By the equality of L- and ε-factors above,
to show that L(s,Π × π′) is nice for π′ in a suitable twisting set T it suffices to
know this for L(s, π × π′, r ⊗ ι). But this is what Kim has been lecturing on all
semester.

In practice we do not expect L(s, π×π′) to be entire always, since we do expect
some cuspidal representations π of G(A) to lift to non-cuspidal representations Π
of GLn(A). This will also have to be dealt with.

3. Apply the Converse Theorem. Once we know that L(s,Π× π′) is nice for a
suitable twisting set T , then we can apply the appropriate Converse Theorem to
conclude that a functorial lift exists.

We have left two problems unresolved: (i) the lack of the local Langlands
conjecture at the v ∈ S, and (ii) the fact that some L(s, π×π′) could have poles. We
are able to finesse both of these using an appropriately chosen idele class character
η and the Useful Variant of our Converse Theorems. We will explain these in the
next lecture when we deal with the functoriality for the classical groups.
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LECTURE 12

Functoriality for the Classical Groups

We again take k to be a number field. In this Lecture, this is currently a nec-
essary restriction. We let A denote its ring of adeles and fix a non-trivial character
ψ of k\A.

1 The result

We take G = Gn to be a split classical group of rank n defined over k. More
specifically, we consider the following cases.

(a) Gn = SO2n+1 or SO2n, the special orthogonal group over k with respect
to the symmetric bilinear form represented by

Φm =




1
. .

.

1


 with m = 2n+ 1, 2n.

(b) Gn = Sp2n the symplectic group with respect to the alternating form
represented by

J2n =

(
Φn

−Φn

)
.

In each case, there is a standard embedding r : LG →֒ GLN (C) = LGLN for
an appropriate N as given in the following table.

Gn r :LGn →֒
LGLN GLN

SO2n+1 Sp2n(C) →֒ GL2n(C) GL2n

SO2n SO2n(C) →֒ GL2n(C) GL2n

Sp2n SO2n+1(C) →֒ GL2n+1(C) GL2n+1

Let π = ⊗′πv be a globally generic cuspidal representation of Gn(A). [Recall
that if B = TU is the standard (upper triangular) Borel subgroup of G(A) and we
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extend our additive character to one of U(k)\U(A) in the standard way then π is
globally generic if for ϕ ∈ Vπ we have

∫

U(k)\U(A)

ϕ(ug)ψ−1(u) du 6≡ 0.]

Our result is then the following.

Theorem 12.1 Let π be a globally generic cuspidal representation of Gn(A).
Then π has a functorial lift Π to GLN (A).

Our proof will be by the Converse Theorem. We will follow the three steps
given above.

Let S be a non-empty set of finite places such that πv is unramified for all finite
v /∈ S.

2 Construction of a candidate lift

(i) If v /∈ S, then either v|∞ or v <∞ and πv is unramified. In either case we
have the local Langlands parameterization for πv and hence a local functorial lift
Πv as an irreducible admissible representation of GLN (kv).

LGn
r // LGLn

πv
� // � // Πv.

W ′
kv

φv

YY222222222222222

Φv

EE
















As suggested by the formalism, one can show the following.

Proposition 12.1 Let Πv be the local functorial lift of πv. Let π′
v be an irre-

ducible admissible generic representation of GLd(kv) with 1 ≤ d ≤ N − 1. Then

L(s, πv × π
′
v) = L(s,Πv × π

′
v)

ε(s, πv × π
′
v, ψv) = ε(s,Πv × π

′
v, ψv)

For simplicity, since r is the standard embedding of the L-groups, we have
dropped it from our notation and written

L(s, πv × π
′
v) = L(s, πv × π

′
v, r ⊗ ι),

etc..

(ii) If v ∈ S then we may not have the local Langlands parameterization of πv.
We replace this knowledge with the following two local results.



2. Construction of a candidate lift 95

Proposition 12.2 (Multiplicativity of γ) If πv is an irreducible admissi-
ble generic representation of Gn(kv) and π′

v is an irreducible admissible generic
representation of GLd(kv) of the form

π′
v ≃ Ind

GLd(kv)
Q(kv) (π′

1,v ⊗ π
′
2,v)

then

γ(s, πv × π
′
v, ψv) = γ(s, πv × π

′
1,v, ψv)γ(s, πv × π

′
2,v, ψv).

In this case, one also has a divisibility among the L-functions

L(s, πv × π
′
v)

−1
∣∣ [L(s, πv × π

′
1,v)L(s, πv × π

′
2,v)]

−1.

There is a similar multiplicativity in the first variable, that is, when the repre-
sentation πv of Gn(kv) is induced.

Proposition 12.3 (Stability of γ) Let π1,v and π2,v be two irreducible admis-
sible smooth generic representations of Gn(kv). Then for every sufficiently highly
ramified character ηv of k×v we have

γ(s, π1,v × ηv, ψv) = γ(s, π2,v × ηv, ψv).

In this situation, one also has that the L-functions stabilize

L(s, π1,v × ηv) = L(s, π2,v × ηv) ≡ 1

so that the ε(s, πi,v × ηv, ψv) stabilize as well.

Recall from Lecture 6 that we had analogous statements for GLn(kv). More-
over, as noted there, by using the multiplicativity in the Gn-variable one can com-
pute the stable form of the γ-factor in terms of abelian γ-factors. Comparing these
stable forms for Gn(kv) with those for GLN (kv) one finds:

Proposition 12.4 (Comparison of stable forms) Let πv be an irreducible
admissible generic representation of Gn(kv). Let Πv be an irreducible admissible
representation of GLN (kv) having trivial central character. Then for every suffi-
ciently ramified character ηv of GL1(kv) we have

γ(s, πv × ηv, ψv) = γ(s,Πv × ηv, ψv).

Of course since both L-functions stabilize to 1, this gives the equality of the
stable L- and ε-factors.

So at the places v ∈ S we can now take as the local component Πv of our
candidate lift any irreducible admissible representation of GLN (kv) with ωΠv

≡ 1.
With this choice of Πv we have the following result.

Proposition 12.5 Let π′
v be an irreducible admissible generic representation

of GLd(kv) of the form π′
v = π′

0,v⊗ηv with π′
0,v unramified and ηv chosen as above.

Then we have

L(s, πv × π
′
v) = L(s,Πv × π

′
v)

ε(s, πv × π
′
v, ψv) = ε(s,Πv × π

′
v, ψv)
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To see this on the level of γ-factors, write π′
0,v = Ind(| |s1v ⊗ · · · ⊗ | |

sd
v ). Then

π′
v = Ind(| |s1v ηv ⊗ · · · ⊗ | |

sd
v ηv) and we have

γ(s, πv × π
′
v, ψv) =

d∏

i=1

γ(s+ si, πv × ηv, ψv) (multiplicativity)

=

d∏

i=1

γ(s+ si,Πv × ηv, ψv) (stability)

= γ(s,Πv × π
′
v, ψv) (multiplicativity)

Return to our generic cuspidal representation π = ⊗′πv of Gn(A). For each πv
we have attached a local representation Πv of GLN (kv), which is the local functorial
lift for those v /∈ S. Then Π = ⊗′Πv is an irreducible admissible representation of
GLN (A). This is our candidate lift. Combining our local results, we have:

Proposition 12.6 Let π and Π be as above. Then there exists an idele class
character η : k×\A× → C× such that for all π′ ∈ T S(N − 1)⊗ η we have

L(s, π × π′) = L(s,Π× π′)

ε(s, π × π′) = ε(s,Π× π′)

3 Analytic properties of L-functions

The analytic properties of the L(s, π × π′) are controlled through the Fourier
coefficients of Eisenstein series as in Kim’s lectures. We summarize the results from
there that we need in the following result.

Proposition 12.7 Let π be a globally generic cuspidal representation of Gn(A).
Let S be a non-empty set of finite places and let η : k×\A× → C× be an idele class
character such that at one place v0 ∈ S we have that both ηv0 and η2

v0 are ramified.

Then L(s, π × π′) is nice for all π′ ∈ T S(N − 1)⊗ η, that is,

(i) L(s, π × π′) and L(s, π̃ × π̃′) are entire functions of s;
(ii) these functions are bounded in vertical strips;
(iii) we have the standard functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′).

Recall that η is necessary only to ensure that the L(s, π × π′) are all entire.
This resolves our global problem that the lift Π of π need not be cuspidal so that
L(s, π × π′) might have poles if some restriction is not placed on the π′.

It is in the use of the Eisenstein series to control the L-functions that k is
required to be a number field. In reality this should not matter, but at present
this method of controlling the L-functions is only worked out in characteristic zero,
that is, the number field case.
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4 Apply the Converse Theorem

Take π = ⊗′πv to be our globally generic cuspidal representation of Gn(A).
Let S be a non-empty set of finite places such that πv is unramified for all finite
places v /∈ S. Construct the candidate lift Π = ⊗′Πv as above.

For an appropriate choice if idele class character η : k×\A× → C×, chosen to
satisfy both our local requirements of Proposition 12.6 and our global requirement
of Proposition 12.7, we know that for all π′ ∈ T S(N − 1)⊗ η both

L(s, π × π′) = L(s,Π× π′)

ε(s, π × π′) = ε(s,Π× π′)

and
L(s, π × π′), and hence L(s,Π× π′), is nice.

Now applying the useful variant of our Converse Theorem there exists an au-
tomorphic representation Π′ of GLN(A) such that for all v /∈ S we have

Π′
v ≃ Πv = the local functional lift of πv.

Then Π′ is our functorial lift of π.
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LECTURE 13

Functoriality for the Classical Groups, II

[This are the notes that accompanied my talk at the Workshop on Automorphic
L-functions. It has a slight overlap with Lecture 12.]

We let k be a number field, A its ring of adeles, and ψ : k\A→ C× a non-trivial
additive character.

1 Functoriality

We will be interested in global functoriality from the split classical groups to
GLN . More precisely, let Gn be a split classical group of rank n defined over k as
below:

(a) Gn = SO2n+1 or SO2n with respect to the split symmetric form

Φm =




1
. .

.

1


 with m = 2n+ 1, 2n.

(b) Gn = Sp2n with respect to the alternating form

J2n =

(
Φn

−Φn

)
.

For each group there is a standard embedding r : LG →֒ GLN (C) = LGLN :

Gn r :LGn →֒
LGLN GLN

SO2n+1 Sp2n(C) →֒ GL2n(C) GL2n

SO2n SO2n(C) →֒ GL2n(C) GL2n

Sp2n SO2n+1(C) →֒ GL2n+1(C) GL2n+1

By Langlands principle of functoriality there should be an associated functorial
lift or transfer of automorphic representations π of Gn(A) to automorphic represen-
tations Π of GLN (A). Together with Kim, Piatetski-Shapiro and Shahidi, we have
recently completed this functoriality for globally generic cuspidal representations
π.

99
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Theorem 13.1 (Functoriality) Let π = ⊗′πv be a globally generic represen-
tation of Gn(A). Then π has a functorial lift to an automorphic representation Π
of GLN (A). More precisely, there is a finite set of (finite) places S such that for
all v /∈ S, Πv is the local functorial lift of πv in the sense of the local Langlands
parameterization:

LGn
r // LGLn

πv
� // � // Πv.

W ′
kv

φv

YY222222222222222

Φv

EE
















Philosophically, through functoriality one hopes to pull back structural results
from GLN to the classical groups Gn. In this lecture I would like to outline some
of what we know in these cases.

2 Descent

A bit earlier than our proof of functoriality, Ginzburg, Rallis, and Soudry
were developing a theory of local and global descent from self dual automorphic
representations Π of GLN (A) to cuspidal automorphic representations π of the
classical groups Gn(A). I would like to give some idea of the descent in the case of
GLN = GL2n to Gn = SO2n+1.

Begin with Π a self dual cuspidal representation of GLN (A) having trivial
central character. Let H = SO4n. Then H has a maximal (Siegel) parabolic
subgroup P ≃ MN with Levi subgroup M ≃ GL2n. Hence we can form the
globally induced representation

Ξ(Π) = Ind
H(A)
P (A) (Π⊗ | det |s−1/2).

For any function f ∈ VΞ(Π) we can then form an Eisenstein series E(s, f, h) on
H(A) in the usual manner.

H also has a parabolic subgroup P ′ = M ′N ′ with Levi subgroup M ′ ≃
(GL1)

n−1 × SO2n+2. If one takes an appropriate additive character ψ′ of N ′ then
its stabilizer in M ′ is precisely SO2n+1 = Gn. Ginzburg, Rallis, and Soudry refer
to the corresponding Fourier coefficient

Eψ
′

(s, f, h) =

∫

N ′(k)\N ′(A)

E(s, f, nh)ψ′(n) dn

a Gelfand-Graev coefficient. These naturally restrict to automorphic functions of
g ∈ Gn(A) →֒ H(A). Hence if π is any cuspidal representation of Gn(A) we can
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consider the Petersson inner products of ϕ ∈ Vπ with these coefficients

〈ϕ,Eψ
′

(s, f)〉 =

∫

Gn(k)\Gn(A)

ϕ(g)Eψ
′

(s, f, g) dg.

This will vanish unless π is globally generic and in that case one finds that outside
a finite set of places T we have

〈ϕ,Eψ
′

(s, f)〉 ∼
LT (s, π ×Π)

LT (2s,Π,∧2)
.

The condition for LT (s, π×Π) to have a pole at s = 1 is that Π be a functorial
lift of π. On the other hand, if LT (s, π ×Π) is to have a pole at s = 1 with a non-
zero residue, then the above formula gives that Vπ will have a non-zero Gn-invariant
pairing with the space of residues

πψ′(Π) = 〈Ress=1(E
ψ′

(s, f, g)) | f ∈ VΞ(Π)〉.

On the other hand, if the Gelfand-Graev coefficients Eψ
′

(s, f) is to have a pole at
s = 1 then the full Eisenstein series E(s, f) must as well and this happens iff (from
the constant term calculation) LT (s,Π,∧2) does.

If we run this analysis backwards, we obtain the descent theorem for self dual
cuspidal representations Π of GL2n(A) such that LT (s,Π,∧2) has a pole at s = 1.

Theorem 13.2 (Descent) Let Π be a self dual cuspidal representation of
GL2n(A) with trivial central character and such that LT (s,Π,∧2) has a pole at
s = 1. Let

πψ′(Π) = 〈Ress=1(E
ψ′

(s, f, g)) | f ∈ VΞ(Π)〉.

Then

(i) πψ′(Π) 6= 0,
(ii) πψ′(Π) is cuspidal,
(iii) each summand of πψ′(Π) is globally generic,
(iv) each summand of πψ′(Π) functorially lifts to Π,
(v) πψ′(Π) is multiplicity one,
(vi) if π is a globally generic cuspidal representation which functorially lifts to Π

then π has a non-zero invariant pairing with πψ′(Π).

Of course the conjecture is the following.

Conjecture 13.1 πψ′(Π) is irreducible (and hence cuspidal and the only glob-
ally generic representation of Gn(A) which functorially lifts to Π).

One has precisely the same result for the other classical groups with modifica-
tions as indicated in the following table.
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GLN H Gn LT (s,Π, βGn
) with a pole at s = 1

GL2n SO4n SO2n+1 LT (s,Π,∧2)

GL2n SO4n+1 SO2n LT (s,Π, Sym2)

GL2n+1 S̃p4n+2 Sp2n LT (s,Π, Sym2)

As a consequence of this descent theorem, they obtain the following character-
ization of the image of functoriality.

Theorem 13.3 (Characterization of the image) Let π be a globally generic
representation of Gn(A). Then any functorial lift of π to an automorphic represen-
tation Π of GLN (A) has trivial central character and is of the form

Π = Ind(Π1 ⊗ · · · ⊗Πd) = Π1 ⊞ · · ·⊞ Πd

with Πi 6≃ Πj for i 6= j and such that each Πi is a unitary self dual cuspidal
representation of GLNi

(A) such that LT (s,Πi, βGn
) has a pole at s = 1. Moreover,

any such Π is the functorial lift of some π.

Note that since these functorial lifts are isobaric, then by the Strong Multiplicity
One Theorem for GLN , the functorial image Π is completely determined by the πv
for v /∈ S, i.e, those places where we know the local functorial lifts.

3 Bounds towards Ramanujan

As a first consequence of functoriality, we obtain bounds towards Ramanujan for
globally generic cuspidal representations of Gn by pulling back the known bounds
for GLN .

Theorem 13.4 Let π ≃ ⊗′πv be a globally generic cuspidal representation of
Gn(A). Then at the places v where πv is unramified the Satake parameters for πv
satisfy

q
−( 1

2−
1

N2+1
)

v ≤ |αv| ≤ q
1
2−

1
N2+1

v .

We obtain similar estimates towards temperedness at all places. As far as we
know, these are the first Ramanujan type bounds for classical groups.

4 The local converse theorem

The results in this section are due to Jiang and Soudry. We now restrict
ourselves to the case of Gn = SO2n+1. Also, let v be a non-archimedean place of k,
so kv is a p-adic field. One of the most powerful local results for SO2n+1(kv) to be
pulled back from GL2n is the “local converse theorem” for GL2n, first formulated
by Jacquet, Piatetski-Shapiro, and Shalika but finally proved by Henniart.
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Theorem 13.5 (Local Converse Theorem) Let π1,v and π2,v be two irre-
ducible admissible generic representations of SO2n+1(kv). Suppose that

γ(s, π1,v × π
′
v, ψv) = γ(s, π2,v × π

′
v, ψv)

for all irreducible super-cuspidal π′
v of GLd(kv) for 1 ≤ d ≤ 2n − 1. Then π1,v ≃

π2,v.

To obtain this result, Jiang and Soudry needed to combine global functoriality

from SO2n+1 to GL2n with local descent from GL2n to S̃p2n and then the local

theta correspondence from S̃p2n to SO2n+1 to be able to pull Henniart’s result back
from GL2n to SO2n+1.

One immediate consequence of this is that Conjecture 13.1 is true for Gn =
SO2n+1 and hence the global functoriality from SO2n+1 to GL2n for globally generic
cuspidal representations is injective. This allows them to pull the Strong Multiplic-
ity One Theorem for GL2n(A) back to globally generic cuspidal representations of
SO2n+1(A) to obtain a rigidity theorem.

Theorem 13.6 (Rigidity) Let π1 and π2 be two globally generic cuspidal
representations of SO2n+1(A). Suppose there is a finite set of places S such that
π1,v ≃ π2,v for all v /∈ S. Then π1,v ≃ π2,v for all v, that is. π1 ≃ π2.

More importantly, having this Local Converse Theorem allow one to pull back
local results from GL2n to SO2n+1 through global functoriality. As a first result,
Jiang and Soudry are able to complete the local functoriality from SO2n+1(kv) to
GL2n(kv) for generic representations at those places where it was not previously
known. The first step is the following.

Let Ag0(SO2n+1) denote the set of irreducible generic super-cuspidal represen-
tations of SO2n+1(kv) up to equivalence and let Aℓ(GL2n) denote the set of all Πv

of GL2n(kv) of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗Πd,v)

where each Πi,v is an irreducible super-cuspidal self dual representation of some
GL2ni

(kv) such that L(s,Πi,v,∧2) has a pole at s = 0 and Πi,v 6≃ Πj,v for i 6= j.

Theorem 13.7 (Local functoriality) There exists a unique bijection taking
Ag0(SO2n+1)→ Aℓ(GL2n), denoted πv 7→ Πv = Π(πv) such that

L(s, πv × π
′
v) = L(s,Πv × π

′
v)

ε(s, πv × π
′
v, ψv) = ε(s,Πv × π

′
v, ψv)

for all irreducible super-cuspidal representations of GLd(kv) for all d.

Using the way in which one builds a general generic representation from generic
super-cuspidal ones, they later extended this theorem to all of Ag(SO2n+1), the set
of all irreducible admissible generic representations of SO2n+1(kv).

Through local functoriality they were then able to pull back the local Lang-
lands conjecture (or arithmetic Langlands parameterization) for Ag0(SO2n+1). Let
Φg0(SO2n+1) denote the set of admissible, completely reducible, multiplicity free
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representations ρ : Wkv
→ Sp2n(C) = LSO2n+1 which are symplectic (so each

irreducible constituent must be symplectic).

Theorem 13.8 (Local Langlands conjecture) There exists a unique bijec-
tion Φg0(SO2n+1)→ A

g
0(SO2n+1) denoted ρv 7→ πv = π(ρv) such that

L(s, ρv ⊗ φv) = L(s, π(ρv)× π
′(φv))

ε(s, ρv ⊗ φv, ψv) = L(s, π(ρv)× π
′(φv), ψv)

for all irreducible admissible representations φv : Wkv
→ GLd(kv), that is φv ∈

Φ0(GLd).

In the same subsequent paper, they extended this result to all of Ag(SO2n+1)
as well.

There are other local consequences to be found in their papers, such as the
existence of a unique generic member of each tempered L-packet for SO2n+1, but
we shall end here.

5 Further applications

Independent of the descent theory, Kim has proved several results along the
lines of Jiang and Soudry’s independently. Even though we do not have complete
local descent results in the cases of the other classical groups, we can still apply
Kim’s techniques and explicitly compute the local functorial lifts Πv of πv at the
places v ∈ S. With these local lifts at hand, which were needed for the more
complete Ramanujan results mentioned in Section 10.3, we have been able to prove
several results on the p-adic local representation theory of the split classical groups.
These include a proof of Mœglin dimension relation for generic discrete series repre-
sentations πv, the basic analysis of the conductor f(πv) of a generic representation,
and the holomorphy and non-vanishing of the local intertwining operators in the
region Re(s) ≥ 0 for constituents πv of globally generic cuspidal representations.
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