DUAL GROUPS AND LANGLANDS FUNCTORIALITY

J.W. COGDELL

Langlands never separated the Langlands conjectures for GL, from his general principle
of functoriality [30]. In particular, he formulated a correspondence between certain Galois
representations and admissible or automorphic representations for any connected reductive
algebraic group G. For GL, there was a correspondence between certain n-dimensional
Galois representations, that is, representations into GL,(C), and admissible representations
of GL,, (k) or automorphic representations of GL, (A) [4]. For general G we understand what
to replace the automorphic side with: admissible representations of G(k) or automorphic
representations of G(A). But what replaces the target GL,(C) on the Galois side? Based
on the Satake parameterization of unramified representations [33] and his classification of
representations of algebraic tori [24] Langlands introduced his idea of a dual group, now
known as the Langlands dual group or L-group , XG to play the role of GL,(C). The role of
the n-dimensional Galois representations is taken by certain admissible homomorphisms of
the Galois group into this L-group. For the purposes of functoriality, it is most convenient to
view these local and global correspondences for G' as giving an arithmetic parameterization
of the admissible or automorphic representations of GG in terms of these admissible Galois
homomorphisms to G.

Langlands principle of functoriality states that any L-homomorphism “H — G should
determine a transfer or lifting of admissible or automorphic representations of H to admis-
sible or automorphic representations of G. Once one has a parameterization, then this is
conceptually done by composing the parameterizing homomorphism for the representation
of H with the L-homomorphism to obtain a parameterizing homomorphism for a represen-
tation of G. If one takes H = {1}, then “H is simply the Galois group or a closely related
group and one in essence recovers the local or global Langlands correspondence for G from
this principle of functoriality.

There have been many fundamental examples of functoriality established by trace formula
methods: cyclic base change, cyclic automorphic induction, lifting between inner forms.
Recently however there has been much progress in global functorialities to GL,, obtained
using the converse theorem for GL,,. These include the tensor product lifting from GLy x GLs
to GL, by Ramakrishnan [31] and from GL, x GL3 to GLg by Kim and Shahidi [21], the
symmetric cube and symmetric fourth power lifts from GL; to GL, and GL5 by Kim and
Shahidi [20, 21, 22], and the lifting from split classical groups to GLy with Kim, Piatetski-
Shapiro, and Shahidi [5, 6].

In this paper we first describe the construction of the L-group and the formulation of
the local and global Langlands conjectures for a general reductive group G [2]. We next
outline Langlands’ principle of functoriality and its relation to the local and global Langlands
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correspondences. We then turn to examples. We briefly consider some of the examples of
functoriality mentioned above that were established using the trace formula. We then give
a more detailed description of the new functorialities to GL,, and how one uses the converse
theorem as a means for establishing these liftings.

I would like to thank the referee for helping to clarify certain issues related to this paper.

1. THE DuAL GROUP

Begin with G a connected reductive algebraic group defined over £, k a local or global
field. Let k be a separable algebraic closure of k& and G, = Gal(k/k) the Galois group.
Over k, G becomes split and is classified by its root data [2, 36]. Take in G a Borel
subgroup B and maximal torus 7', both defined and split over k. Let X = X* (T') denote
the set of k-rational characters of T, ® = ®(G,T) C X the root system associated to G
and T, and A C ® the set of simple roots corresponding to B. Dual to the triple (X, ®, A)
we have the triple (XY, ®Y AY) consisting of the lattice XV = X,(T) of co-characters, or
k-rational one-parameter subgroups, the co-root system ®V, and the simple co-roots AV.
The quadruple ¥(G) = (X, ®, XV, ®V) is the root data for G over k and the quadruple
Uy(G) = (X, A, XV, AV) is the based root data for G over k [2, 36]. The basic structure for

connected reductive k-groups is the following [36].

Theorem 1.1. The root data ¥(G) determines G up to k—isomorphism.

For the relative structure theory, there is a split exact sequence
1 —— Int(G) —— Aut(G) —— Aut(Vy(G)) —— 1.
A splitting is given by making a choice of root vector z, for each o € A, which then defines
a splitting (G, B, T, {%4}aca) of G and gives a canonical isomorphism
Aut(Vy(G)) — Aut(G, B, T, {z,}) C Aut(qG).
It G is defined over k, there is an action of Gy on G i giving the k-structure. Hence we have
homomorphisms
So G, determines the two pieces of data consisting of the root data ¥(G), determining the
group over k, and the homomorphism G, — Aut(Vy(G)).

To define G one simply dualizes this structure theory. Let ¥o(G)Y = (XY, AY, X, A) be
the dual based root data. This defines a connected reductive algebraic group 1G° over C.
We can transfer the Galois structure since

Aut(To("GY)) = Aut(To(G)Y) = Aut(To(G))

and a splitting of the exact sequence above for XG" gives a map p : G, — Aut(¥p(:G")) —
Aut(%G") which fixes the corresponding splitting (!G°,ZB°, ZT°, {zqv Yaveav) of 1G° and
hence a G action on the complex reductive group L7° which encodes some of the origi-
nal k-structure of G.
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Definition 1.1. The (Langlands) dual group, or L-group, of G is
L(G/k) = LG = LGO X Qk

Remarks. 1. Sometimes it is convenient use the Weil form of the dual group. Since there

is a natural map Wy, — G, one may form instead G = XG” x W, but there is no essential
difference. One could also use a Weil-Deligne form for certain purposes.
2. If G" is a k-group which is isomorphic to G over k, then G and G’ are inner forms of each
other iff /G is isomorphic to ‘G’ over Gy [2]. So the dual group does not quite distinguish
between k-forms; it distinguishes only up to inner forms. It does completely determine a
quasi-split form.

In practice, this duality preserves the types A, and D, and interchanges the types B,
and C,. In addition it interchanges the adjoint and simply connected forms of the relevant
groups.

G L
GL, GL,(C)
SO2n+1 Sp2n (C)
SPa, 5O2n41(C)
SO2n SOQn((C)
adjoint type simply connected
simply connected adjoint type

The local and global constructions are compatible. So if G is defined over a global field £,
v is a place of k, and we let G, to denote G as a group over k,, then there are natural maps
Iq, —» 1G.

2. LANGLANDS CONJECTURES FOR GG

2.1. Local Langlands Conjecture. Let k be a local field and let W) be the associated
Weil-Deligne group [4]. If k is archimedean, we simply take W, = W}, to be the Weil group.
Following Borel [2] a homomorphism ¢ : W] — 1G is called admissible if

(i) ¢ is a homomorphism over Gy, i.e., the following diagram commutes:
W —2 1q

Lo

G Gk
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(i) ¢ is continuous, ¢(G,) is unipotent in ‘G’ and ¢ maps semisimple elements to
semisimple elements.
iii) If ¢(W}) is contained in a Levi subgroup of a proper parabolic subgroup P of G
k 8 g
then P is relevant.

For all undefined concepts, such as relevant, we refer the reader to Borel [2]. If G = GL,, the

admissible homomorphisms are precisely the Frobenius-semisimple complex representations
of W [4].

Following Borel [2] and Langlands [26] we let ®(G) denote the set of all admissible ho-
momorphisms ¢ : W/ — G modulo inner automorphisms by elements of G° (not to be
confused with the earlier [4] use of ® as a geometric Frobenius). Note that if G and G" are
inner forms of one another, so that /G = G, it need not be true that ®(G) = ®(G") since

the condition (iii) above sees the k structures. If G is the quasi-split form, then one does
have ®(G") C ®(G).

To state the local Langlands conjecture for G there are two supplemental constructions
that are needed, for which we refer the reader to Borel [2]. First, for every ¢ € ®(G) there is

a way to construct a character w, of the center C'(G) of G. Next, if we let C(“G") denote the
center of XG°, then to every o € H(W}; C(1G")) there is associated a character xo of G(k).
If we write ¢ € ®(G) as ¢ = (¢y, ¢s) with ¢ (w) € 1G° and ¢y(w) € Gy then ¢y is a cocycle
on W/ with values in “G” and the map ¢ — ¢, gives an embedding of ®(G) — H*(W];G").
Then H'(W}; C(4G")) acts naturally on H*(W};G") and this action preserves ®(G).

With these constructions, we can state the local Langlands conjecture for G [2]. As before,
let A(G) = A(G(k)) denote the set of equivalence classes of irreducible admissible complex
representations of G/(k).

Local Langlands Conjecture: Let k be a local field. Then there is a surjective map
A(G) = ©(G) with finite fibres which partitions A(G) into disjoint finite sets Ay = Ay(G)
satisfying

(i) If m € Ay then the central character w, of m is equal to wy;

(i) Compatibility with twisting, i.e., if a € HI(W,Q;C(LGO)) and X, 15 the associated
character of G(k) then Aq.g = {mxa|m € Ap};

(iii) One element m € Ay is square integrable modulo C(G) iff all 7 € A, are square
integrable modulo C(G) iff $(W}) does not lie in a proper Levi subgroup of "G

(iv) One element m € Ay is tempered iff all 7 € Ay are tempered iff (W) is bounded;

(v) If H is a reductive connected k-group and n : H(k) — G(k) is a k morphism with
commutative kernel and co-kernel, then there is a required compatibility between de-
compositions for G(k) and H(k). Namely, n induces a natural map 1y : '*G — 'H
and if we set ¢' = o ¢ for p € ®(G) then any m € Ay(G), when viewed as a
H (k) module, decomposes into a direct sum of finitely many irreducible admissible
representations belonging to Ay (H).
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The sets A,(G) for ¢ € ®(G) are called L-packets. The version I of the local Langlands
conjecture in [4] was the specialization of this to the group GL,,. In that case, the L-packets
are all singletons and the map from A(G) to ®(G) was a bijection. This conjecture gives an
arithmetic parameterization of the irreducible admissible representations of G(k).

Other than the results for GL,,, the following is known towards this conjecture.

1. If the local field £ is archimedean, i.e., K = R or C, then this was completely established
by Langlands [26].

2. If k is non-archimedean and G is quasi-split over k& and split over a finite Galois
extension then one knows how to parameterize the unramified representations of G(k) via
the unramified admissible homomorphisms [2]. This is a rephrasing in this language of the
Satake classification [33].

3. If k is non-archimedean then Kazhdan and Lusztig have shown how to parameterize
those representations of G(k) having an Iwahori fixed vector in terms of admissible homo-
morphisms of the Weil-Deligne group [19].

4. Recently, in the case of k non-archimedean of characteristic zero and G the split SOg,, 1,
Jiang and Soudry have given the parameterization of generic representations of SOs, 1 (k)
in terms of admissible homomorphisms of the Weil-Deligne group [16, 17]. They obtain this
parameterization as an outgrowth of recent work on global functoriality from split SOg,,1
to GLoy,, to be discussed later, by pulling back the parameterization for GLs, (k).

If one thinks of this version of the local Langlands conjecture as providing an arithmetic
parameterization of the irreducible admissible representations of G(k), then one can use
this parameterization to define local L-functions associated to arbitrary = € A(G). One
needs a second parameter, namely a representation r : “G — GL,(C), by which we mean a
continuous homomorphism whose restriction to L0 is a morphism of complex Lie groups.
Then for any admissible homomorphism ¢ € ®(G) the composition r o ¢ : W/ — GL,(C) is
a continuous complex representation of the Weil-Deligne group as considered in [4] and to it

we can associate an L-factor L(s,r o ¢) and e-factor £(s,7 o ¢, 1) for an additive character
Y of k.

Definition 2.1. If 7 € A, is in the L-packet defined by the admissible homomorphism ¢
then we set

Lis,m,r) = L(s,rod)  and  (s,m,1,0) = (5,7 0 6, 1),

According to this definition, one cannot distinguish between the representations 7 lying in
a given L-packet A, in terms of their L-functions and e-factors, hence the terminology. At
present, these L-functions are well defined only for those 7 for which the parameterization is
known, for example if 7 is unramified.

If one takes this as the definition of the local L-functions attached to an admissible repre-
sentation, then version II of the local Langlands conjecture presented in [4] would be phrased
in terms of matching L- and e-factors defined in an analytic nature, as in [3] for GL,,, with
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those defined here. I have not seen a formulation in these terms for general reductive groups,
however in the work of Jiang and Soudry cited above this is what they achieve. To each
generic representation m of SOg,1(k) they attach an admissible homomorphism ¢, such that
for the standard embedding 7 : Sp,,,(C) < GLs,(C) they have an equality

L(s,m x7') = L(s, 7 x 7',r @ id) = L(s, (1 0 ¢) @ pyr)

with the similar equality of e-factors where 7’ is an irreducible admissible representation of
GL,,(k), pr is the associated representation of W) from the local Langlands conjecture for
GL,,, and L(s,m x 7') is the analytic L-function defined by Shahidi [34].

2.2. Global Langlands Conjecture. Now take k to be a global field and A its ring of
adeles. For G a reductive algebraic group over k, let A(G) = A(G(A)) denote the set of irre-
ducible automorphic representations of G(A). As with GL,,, to formulate a global Langlands
conjecture we would replace the Weil-Deligne group W, by the conjectural Langlands group
L, and consider the set of admissible homomorphisms ¢ : £, — “G. These homomorphisms
should then parameterize irreducible automorphic representations of G(A) in some way. The
exact form this would take is quite speculative at the moment.

Not knowing what this should look like, one still expects to have global-local compatibility.
If one begins an irreducible automorphic representation 7 = ®'m, of G(A) then, assuming
the local Langlands conjecture for each local group G(k,), one can attach to 7 the collection
{#,} of local parameters ¢, = ¢, : W, — G, given by the local components m,. If we
compose these with the natural compatibility maps for the dual groups ¢, : G, — G one
gets a collection {1, o ¢, } of local parameters v, o ¢, : W}, — Iq.

Such a system of maps must come out of a global parameter ¢ : £, — G for the local
and global theories to be consistent. This system of local parameters can often be used as
a substitute for a global parameter ¢. For example, this collection of local data is sufficient
to define the global L-function and e-factor attached to m. If r : “G — GL,(C) then the
composition r, = r o, : 'G, — GL,(C) gives representations of the local dual groups.

Definition 2.2. If 7 = Q'm, is an irreducible automorphic representation of G(A) and
r: G — GL,(C) we set

L(s,m,r) = HL(S,ﬂ'U, ry) = HL(S, 70 Ly O Py)

and

5(87 7r7 /r‘) - H 6(87 7-(—’1]7 rU) wv) - H 6(87 ro L’U o ¢’U7 w’l})
where Y = ®, s an additive character of A trivial on k.

To define the full L-function as above requires the solution of the local Langlands conjec-
ture at all places, something only known for GL,,. However, for any irreducible automorphic
representation 7 there is a finite set of places S = S(7) such that for all v ¢ S the represen-
tation 7, is unramified and hence the local parameterization problem has been solved. Then
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the partial L-function
L% (s,m,1) = H L(s,my, 1)
vgS

is always well defined and Langlands has shown that this Euler product is always absolutely
convergent in a right half plane [25].

3. FUNCTORIALITY

As one can tell from his recent writings [29, 30] Langlands has always viewed the “principle
of functoriality” as central to his view of automorphic representations. It encompasses what
is referred to above as the “local and global Langlands conjectures” as special cases of this
principle.

Let k denote either a local or global field and let H and G be two connected reductive
groups defined over k. We have defined their associated dual groups “H and “G. A homo-
morphism v : “H — G is called an L-homomorphism if (i) it is a homomorphism over Gy,
that is, we have the commutation of the following diagram

LH u;LG

Lo

G Gk

(ii) w is continuous, and (iii) the restriction of u to “H" is a complex analytic homomorphism
w:tH? — G

If in addition G is quasi-split, then for any admissible homomorphism ¢ € ®(H) the
composition u o ¢ is again an admissible homomorphism in ®(G). So the map ¢ — uo ¢
defines a map ®(u) : ®(H) — ®(G). If k is a global field and v a place of k then, since
Gr, can be viewed naturally as a subgroup of Gy, we can view G, as a subgroup of 1G.
Then, upon restriction to “H,, u will induce an L-homomorphism of the local dual groups
u, : “"H, — G, and hence a local map ®(u,) : ®(H,) — ®(G,).

The principle of functoriality can now be roughly formulated as follows [30].

The Principle of Functoriality: If k is a local (respectively global) field, H and G con-
nected reductive k-groups with G quasi-split, then to each L-homomorphism u : "H — G
there is associated a transfer or lifting of admissible (resp. automorphic) representations of
H to admissible (resp. automorphic) representations of G.

If we assume the local and global Langlands conjectures, so that we have an arithmetic
parameterization of A(H) and A(G) then this process of lifting is easy to describe.
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3.1. Local functoriality. First, take k£ to be a local field, v : “H — G a local L-
homomorphism. If we take 7 € A(H) an irreducible admissible representation of H (k)
then this is parameterized by an admissible homomorphism ¢ = ¢, : W, — LH. In
fact, ¢ parameterizes an entire local L-packet Ays(H). If we compose ¢ with u we ob-
tain ¢’ = ®(u)(¢) = uo ¢ € ®(G), an admissible homomorphism of W} to XG. Then ¢'
parameterizes a local L-packet Ay (G) and this L-packet (or sometimes any element IT of it)
is the functorial lift (or transfer, or Langlands lift, or ...) of 7 or of the packet A,(H).

In general, we then “understand” the local functoriality in the cases where we understand
the local parameterization:

1. K = R or C, H any connected reductive k-group and G any quasi-split connected
reductive k-group.

2. k a non-archimedean local field, H = GL,, and G = GL,, (and related examples — see
Section 4).

3. Suppose that k is non-archimedean with ring of integers . Suppose both H and G
are quasi-split and there is a finite extension K of k such that both H and G split over
K and have an O structure so that both H(O) and G(O) are special maximal compact
subgroups. Let 7 be an unramified representation of H (k) with a non-trivial H(Q) vector
and unramified parameter ¢ = ¢, € ®(H). Then for any L-homomorphism u : *H — G
the parameter ¢’ = u o ¢ is unramified and defines an L-packet A, (G) which contains a
(unique) representation II of G(k) which is unramified with respect to G(O) [2]. II is called
the natural unramified lift of 7.

3.2. Global functoriality. If we now consider & a global field, then, in principle, functorial
lifting should work as it does in the local situation in terms of global parameterization. But
now we are again at a disadvantage since we don’t really understand the parameterizing
group Ly. In its stead, we fall back on the desired local-global compatibility. So let H
be a connected reductive k-group, G a quasi-split connected reductive k-group and u :
LH — G an L-homomorphism. For each place v of k& we have the associated local L-
homomorphism u, : “H, — G, described above. Now let 7 € A(G), 7 = ®'m,, be an
irreducible automorphic representation of H(A). If v is archimedean then by the work of
Langlands we know how to parameterize 7, with a local parameter ¢, : W,gv —IH,. Ifvis
a non-archimedean place, then for almost all v the local group H, is quasi-split, split over
a finite extension of k,, and the representation m, is unramified with respect to a special
maximal compact subgroup. So we are in the situation where we have a local parameter
¢y Wi, — LH, for m,. In either of these situations, we can form a local lift II, as a
representation of G(k,) associated to the parameter ¢! = u, o ¢,, that is, a local lift as
defined above.

Definition 3.1. Let H be a connected reductive k-group and let m = ®'m, be an irreducible
automorphic representation of H(A). Let G be a quasi-split connected reductive k-group and
let u: "H — G be an L-homomorphism. Then an automorphic representation I = Q'II,
of G(A) is a (weak) functorial lift of m (with respect to u) if for all archimedean places and
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almost all finite places where m, is unramified we have that 11, is a local functorial lift with
respect to u, as described above. 11 is a (strong) functorial lift of © if I1, is a local functorial

lift of m, for all places of k.

Note that as a consequence of this definition, if 7 is an automorphic representation of
H(A), u : Y'H — G an L-homomorphism, and II a functorial lift of 7 to an automorphic
representations of G(A), then for every representation r : IG — GL,(C) we have an equality
of L-functions and e-factors

L®(s,m,rou) = L°(s,1I,7) e%(s,myrou, ) = &%(s, I, 7, v)

where S is the finite (possibly empty) set of places where we do not know how to locally lift
Ty-

In fact, we need to do this on the level of L-packets. This is easy enough to formulate,
but given the partial state of our knowledge, there seems to be little gained in doing this at
this time. But the ambiguity in the local lifts and hence the global lifts coming from the
phenomenon of local and global L-packets should always be kept in mind.

4. EXAMPLES

We have noted that Langlands views functoriality as encompassing the local and global
Langlands conjectures and their consequences, such as the strong Artin conjecture. One
reason for this is the following example.

Consider the case where H = {1}. Begin with k a local field. Since there is a natural map
from the Weil-Deligne group W/ to G, we may consider the Weil-Deligne form of the L-group:
IG = 1G" x W}. Then “H = W]. If we take for example G = GL,, then u : “H — G is an
admissible homomorphism in ®(G) or a complex representation of the Weil-Deligne group
and functoriality for these groups encompasses the local Langlands conjectures. If one takes
k a global field and leaves G as the Galois form of the L-group, then again taking H = {1}
and G' = GL,, we obtain a global Langlands conjecture for GL,,.

The other examples of functoriality I wish to discuss fall into what [ view as two types:
Galois theoretic and group theoretic. The first include base change, automorphic induction,
and lifting between inner forms. The second are all liftings to GL,, and include the tensor
product liftings, symmetric powers liftings, and liftings from classical groups. I will not touch
on the important class of liftings known as endoscopic, even though some of the example we
discuss can be interpreted as examples of (possibly twisted) endoscopy. Endoscopic liftings
are those in which the L-homomorphism u : “H — G realizes “H % as the fixed points of an
involution in LGO, or a twisted such. The significance of these liftings come primarily from
their necessity in understanding the trace formula, which we are not in a position to discuss.
Instead, we refer the reader to the work of Langlands [28, 30] and of Kottwitz and Shelstad
[23] and the references therein.
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4.1. Galois theoretic examples. In these examples, the L-homomorphisms have their
origins in Galois theory.

1. Base change (or automorphic restriction). Suppose that K is a finite extension of k.
Then on the level of Weil groups we have Wy C Wy so that any representation of Wy gives
a representation of Wy by restriction. The analogous lifting on the level of admissible or
automorphic representations is the following. Let H be connected, reductive and split over
k. Then we may consider H as a group over K as well and if we let G = Ry/,(H) be Weil’s
restriction of scalars from K to k, so G(k) = H(K), then G is the group over k determined
by H,k. There is then a natural embedding

witH =1 % G — ([] "H') % Gx =G,
G \Gr

where G, acts on HLHO via permutations of the index set, which is the diagonal map on
LH® and the identity on Gi. In the case where £ is a local field, then the induced map
®(u) : ®(H) — ®(G) is indeed the restriction map, viewing Wj, as an open subgroup of
W/. Functoriality coming from this L-homomorphism would begin with a representation
7w of H(k) or H(A;) and produce a representation of G(k) = H(K) or H(Ag) called the
base change of m. This program has been carried out when H = GL, and the extension
K /k is solvable, first for n = 2 by Langlands [27] and then general n by Arthur and Clozel
[1]. Their technique was the twisted trace formula. In addition, when H = GLy Jacquet,
Piatetski-Shapiro, and Shalika have obtained a non-normal cubic base change by converse
theorem methods [14].

2. Automorphic induction. We still take K a finite separable extension of &k of degree d, so
that Wy C Wi. If one starts with a representation of Wy then one obtains a representation
of Wy, simply by induction. The analogous lifting on the level of admissible or automorphic
representations is now the following. Take H = Rg/,(GLy) to be GL,(K) viewed as a
k-group as above and let G = GLg4, (k). Now one has an L-homomorphism

w:'H =[] GLa(Q) % Gk = "G = GL4n(C) x Gi
Gk \Gk

by sending “H’ = GL,(C) x---xGL,(C) into Iq° = GL4n(C) as block diagonal matrices and
extending to an L-homomorphism by letting G, act on GLg4,(C) via permutation matrices
from G,4. The local or global functorialities coming from such an L-homomorphism are called
automorphic induction. The map ®(u) on the sets of admissible homomorphisms should be
induction. Again, when the extension K /k is solvable this was analyzed locally and globally
by Arthur and Clozel [1] using the twisted trace formula, preceded by Jacquet and Langlands
for n = 2 [15]. Henniart and Herb, building on earlier work by Kazhdan in the n =1 case
[18], gave the first definition and analysis of local automorphic induction for GL, in terms
of local character identities [13]. This work uses a simpler version of the trace formula than
either [1] or [18] and allows fields of positive characteristic.

3. Inner forms. Let G be connected, reductive, and quasi-split over a local or global &
and let H be an inner form of G. Then “H = G, the identity map v : “H — G is an
L-homomorphism, and we should have a corresponding lifting. Note that if £ is a local field



DUAL GROUPS AND LANGLANDS FUNCTORIALITY 11

we have ®(H) C ®(G), while if £ is a global field we in fact have H, = G, for almost all
places so that ®(H,) = ®(G,). In the case of G = GLy and H = D* the multiplicative group
of a rank 2 division algebra over £ the lifting from representations of D* to representations
of GL, is the so-called Jacquet-Langlands correspondence, established in [15]. If we take
G = GL,, and H = GL,,(D) where D is a central simple division algebra of rank d with
dm = n then the local functoriality has been analysed by Rogawski [32] in the case m =1
and by Deligne, Kazhdan, and Vigneras [10] utilizing the trace formula.

4.2. Group theoretic examples. In this set of examples, the groups H involved are all
split and the target group G is always a general linear group GL,,, so the Galois theory plays
little role. The L-homomorphism is a natural map from group theory. There has been much
progress in this family of functorialities recently based on using the converse theorem for
GL,, as the primary tool for establishing global functorialities to GL,,.

1. Tensor products. Let k be either a local of global field and let H = GL,, x GL,. Then
LH® = GL,,(C) x GL,(C) and “H = LH" x Gy. If we take G = GL,n, then G° = GL,,(C)
and 'G = G” x Gy. The simple tensor product map ® : GLyu(C) X GLy(C) = GLyn(C),
extended by the identity map on G, defines an L-homomorphism ug : “H — G. The
associated functoriality is the tensor product lifting. Note that if k£ is a local field, then
the local lifting is now understood in principle since the local parameterization problem
(local Langlands conjecture) for GL,, has been solved. So the interesting question is the

global functoriality. This has been recently solved in the cases of GLy x GLy to GLy by
Ramakrishnan [31] and GLy x GL3 to GLg by Kim and Shahidi [21].

2. Symmetric powers. Let k be either a local or global field and let H = GLy, so
Ly’ — GLy(C) and 'H = LH® x G,. We take G = GL,,,; for n > 1, so 1G° = GL,.1(C)
and 1G = 1G° x Gr. For each m > 1 there is the natural symmetric n-th power map
sym" : GLo(C) — GLj41(C). If we extend this symmetric power map by the identity map
on the Galois group we obtain an L-homomorphism sym" : “H — 4G. The associated
functoriality is the symmetric power lifting from representations of GLy to representations
of GL,4+1. Once again, if k is a local field the local symmetric powers liftings are understood
in principle thanks to the solution of the local Langlands conjecture for GL,,. So once again
the interesting functoriality is the global one. The global symmetric square lifting, so GLy
to GL3, is an old theorem of Gelbart and Jacquet [11]. Recently, Kim and Shahidi have
shown the existence of the global symmetric cube lifting from GL, to GL4 [21, 22] and
then Kim followed with the global symmetric fourth power lifting from GLy to GLjs [20, 22].
The achievement of symmetric power functoriality for all n would lead to a proof of the
Ramanujan conjecture for GLs.

3. Classical groups. Again, k is either a local or global field. Take H to be a split classical
group over k, more specifically, the split form of either SOs,, 11, Sp,,,, or SOg,. The connected
component of the L-group are then Sp,, (C), SOg,41(C), or SOy, (C) and there are natural
embeddings into an appropriate general linear group.
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H Lpp® u® LY < 10 X G

SOQn+1 Sp2n((C) Sp2n(C) — GLZn (C) GLQn(C) GLZn
SPy, | SO2,41(C) | SO2,41(C) = GL211(C) | GL2y11(C) | GLopys

SO2n | SO2(C) |  S05,(C) = GLyn(C) | GLn(C) | GLay

These homomorphisms extend to L-homomorphisms by extending them with the identity
map on the Galois groups. Associated to each should be a lifting of admissible or automorphic
representations from A(H) to A(G). In collaboration with Kim, Piatetski-Shapiro, and
Shahidi, we established a weak global lift for generic cuspidal representations from SOy, to
GLy, over a number field £ using converse theorem methods [5]. Soon thereafter, Ginzburg,
Rallis, and Soudry showed that our weak lift was indeed a strong lift and characterized the
image [12]. The results of Jiang and Soudry on the local Langlands conjecture for SOy,
over a p-adic field cited above [16, 17] were then obtained as a local consequence of this
global functoriality. Recently we have been able to extend our functoriality results to the
other split classical groups as well [6].

We would like to explain the converse theorem method for obtaining global functorialities
to general linear groups. We begin with a group H defined over a number field k. Take
T = ®m, a cuspidal representation of H(A). For each local place v we apply local functoriality
to construct a local representation II, of G(k,) = GLy(k,) for an appropriate N. If we are in
example 1 or 2 above, we can do this for all v since the local Langlands conjecture is known
for GL,,(k,) [4]. For the cases of the classical groups we can perform this at all archimedean
places v and at the non-archimedean places v where 7, is unramified. The method is simply
composing the local parameter map ¢, for 7, with the L-homomorphism as described above.
In the case of classical groups we must finesse the local liftings at the remaining places v to
construct a local lift IL,. But assume for now that we understand the local lifts at all places.
Then by construction we have an equality of local L-factors

L(SJT‘.'UJT'U) — L(SJTU o ¢’U) - L(SJU’U o ¢’U) - L(SJHUJ L’U)

with a similar equality for local e-factors. Here we may take r = u° viewed as a complex

representation r : “H — GLy(C) and ¢ : G — GLy/(C) is just projection onto the first factor
G, Hence, if we set II = ®'II, as an irreducible admissible representation of GLy(A) then
we globally have

L(s,m,r) = L(s,11,1) and g(s,m,r) =¢(s,11,0).

Additionally, if 7' = ®m is a cuspidal representation of GL,,(A) with m < N — 2 then we
similarly have
L(s,my X 7,7y ® ty) = L(8, 11, X 7, 1y @ 1y)
and hence
L(s,mx7m',r®u) =L(s, I x7',0®1) = L(s,II x 7')
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with similar equalities for local and global e-factors. As outlined in [3], to apply the converse
theorem for GLy we must control the analytic properties of the twisted L-functions L(s, IT x
7') = L(s,[Ix 7', 1®¢) for a sufficient family of cuspidal twists 7’. But from our equality of L-
and e-factors, we have that these are controlled by the analytic properties of the automorphic
L-functions L(s, 7 x 7', r®¢) for the group H(A) with twisting by GL,,(A). So once sufficient
analytic control of these L-functions is known, one simply applies the converse theorem [3]
for GLy and concludes that II is automorphic. In most cases to date, this analytic control
of the L(s, 7 x 7', ® ¢) has been achieved by the Langlands-Shahidi method of analyzing
the L-functions through the Fourier coefficients of Eisenstein series.

Let us now revisit our examples above in light of this sketch.

1. Tensor products. In the case of Ramakrishnan [31], so the functoriality from GLj x GLg
to GL4, m = m ® my with each 7; a cuspidal representation of GLy(A) and II is to be an
automorphic representation of GL4(A). To apply the converse theorem from [9] Ramakrish-
nan needs to control the analytic properties of L(s,II x ') for " cuspidal representations of
GL;(A) and GLy(A), that is , the Rankin triple product L-functions

L(s,m x 7', r®1) = L(s,m X m X 7).

This he was able to do using a combination of the integral representation for this L-function
due to Garrett and then Rallis and Piatetski-Shapiro and the work of Shahidi on the
Langlands-Shahidi method. The case of Kim and Shahidi [21] is similar, now with m a
cuspidal representation of GL3(A). However, since the lifted representation II is to be an au-
tomorphic representation of GLg(A), to apply the converse theorem of [9] they must control
the analytic properties of

L(s,TT x 7') = L(s,m X my X 7')

where now 7' must run over appropriate cuspidal representations of GL,,(A) with m =
1,2,3,4. The control of these triple products is an application of the Langlands-Shahidi
method of analysing L-functions and involves coefficients of Eisenstein series on GLs, Spin, g,
and the simply connected Eg and E;.

2. Symmetric powers. The original symmetric square lifting of Gelbart and Jacquet
indeed used the converse theorem for GL3 [11]. One needs only control twists by characters
(automorphic forms on GL;) and the L-function that one must control is the symmetric
square L-function for GL, since

L(s,11) = L(s, T, sym?).

This they were able to do via an integral representation due to Shimura. For Kim and
Shahidi, the symmetric cube and fourth power liftings were deduced from the functorial
GLs x GLj3 tensor product lift above and the exterior square lift for GL, [20, 21, 22].

3. Classical groups. Here there is a secondary problem. If we begin with a generic cuspidal
representation 7 = ®m, of H(A), then there is a finite set of finite places S at which one
does not know the local parameterization for 7, in terms of admissible homomorphisms,
and hence one does not know what the correct local lift II, should be. In this case, one
is able to take an arbitrary local lift I1, at those places, so long as it has trivial central
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character. To compensate, one applies the form of the converse theorem for GLy in which
one fixes a single highly ramified idele class character 7, the ramification depending on the
original representation 7 of H(A) and the constructed representation II of GLy(A) (and
actually only on the local components at the places v € S), and then twists by all cuspidal
representations 7’ of GL,,(A), m < N — 1, of the form 7" = 7 ® n where 7 is unramified at
all v € S [3, 5]. This highly ramified twist plays two roles. First, it helps to control global
poles of the twisted L-functions L(s,n x 7') for H(A) and secondly it allows one to match
the local L- and e-factors at those v € S through the stability of the local v-factors under
highly ramified twists [3, 8, 5]. So for these limited twists one indeed has

L(s,mx7')=L(s,m x7',r®.) =L(s, I x 7,0 @) = L(s,II x 7')

with similar equalities for € factors. Since we are able to control the analytic properties of
the L(s,m x 7') via the Langlands-Shahidi method for our family of 7’ we may apply the
converse theorem for GLy and conclude the existence of an automorphic representation IT'
of GLy(A) such that IT, = IT/ for all v ¢ S, that is, a weak lift IT" of 7.

Every step in this argument is now valid for general split classical group of the type we
are considering. Originally the local stability of y-factors was known only for SOy, [8, 5].
Now, thanks to recent results of Shahidi expressing his local coefficients as Mellin transforms
of Bessel functions [35], the techniques of [8] can be used to establish the stability of the
local ~-factors for the other split classical groups as well. This then allows us to extend the
functoriality results of [5] to these cases [6].

In the case of SOy,11, once we have the weak lift then the theory of Ginzburg, Rallis, and
Soudry [12] allows one to show that this weak lift is indeed a strong lift in the sense that the
local components II, at those v € S are completely determined — there is in fact no possible
ambiguity. In conjunction with this they are able to completely characterize the image. Once
one knows that these lifts are rigid, then one can begin to define a local lift by setting the
lift of m, to be the II, determined globally. This is the content of the papers of Jiang and
Soudry [16, 17]. In essence they show that this local lift satisfies the relations on L-functions
that one expects from functoriality and then uses this lift to pull back the parameter ¢, of
the local GLy(k,) representation, which we know exists by the local Langlands conjecture,
to obtain a parameter ¢, of the correct type, that is, ¢, : W — LH, and thus deducing
the local Langlands conjecture for H(k,). We refer you to their papers for more detail and
precise statements. We expect similar results will be forthcoming for the other split classical
groups.
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