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Langlands never separated the Langlands 
onje
tures for GL

n

from his general prin
iple

of fun
toriality [30℄. In parti
ular, he formulated a 
orresponden
e between 
ertain Galois

representations and admissible or automorphi
 representations for any 
onne
ted redu
tive

algebrai
 group G. For GL

n

there was a 
orresponden
e between 
ertain n-dimensional

Galois representations, that is, representations into GL

n

(C ), and admissible representations

of GL

n

(k) or automorphi
 representations of GL

n

(A ) [4℄. For general G we understand what

to repla
e the automorphi
 side with: admissible representations of G(k) or automorphi


representations of G(A ). But what repla
es the target GL

n

(C ) on the Galois side? Based

on the Satake parameterization of unrami�ed representations [33℄ and his 
lassi�
ation of

representations of algebrai
 tori [24℄ Langlands introdu
ed his idea of a dual group, now

known as the Langlands dual group or L-group ,

L

G to play the role of GL

n

(C ). The role of

the n-dimensional Galois representations is taken by 
ertain admissible homomorphisms of

the Galois group into this L-group. For the purposes of fun
toriality, it is most 
onvenient to

view these lo
al and global 
orresponden
es for G as giving an arithmeti
 parameterization

of the admissible or automorphi
 representations of G in terms of these admissible Galois

homomorphisms to

L

G.

Langlands prin
iple of fun
toriality states that any L-homomorphism

L

H !

L

G should

determine a transfer or lifting of admissible or automorphi
 representations of H to admis-

sible or automorphi
 representations of G. On
e one has a parameterization, then this is


on
eptually done by 
omposing the parameterizing homomorphism for the representation

of H with the L-homomorphism to obtain a parameterizing homomorphism for a represen-

tation of G. If one takes H = f1g, then

L

H is simply the Galois group or a 
losely related

group and one in essen
e re
overs the lo
al or global Langlands 
orresponden
e for G from

this prin
iple of fun
toriality.

There have been many fundamental examples of fun
toriality established by tra
e formula

methods: 
y
li
 base 
hange, 
y
li
 automorphi
 indu
tion, lifting between inner forms.

Re
ently however there has been mu
h progress in global fun
torialities to GL

n

obtained

using the 
onverse theorem for GL

n

. These in
lude the tensor produ
t lifting from GL

2

�GL

2

to GL

4

by Ramakrishnan [31℄ and from GL

2

� GL

3

to GL

6

by Kim and Shahidi [21℄, the

symmetri
 
ube and symmetri
 fourth power lifts from GL

2

to GL

4

and GL

5

by Kim and

Shahidi [20, 21, 22℄, and the lifting from split 
lassi
al groups to GL

N

with Kim, Piatetski-

Shapiro, and Shahidi [5, 6℄.

In this paper we �rst des
ribe the 
onstru
tion of the L-group and the formulation of

the lo
al and global Langlands 
onje
tures for a general redu
tive group G [2℄. We next

outline Langlands' prin
iple of fun
toriality and its relation to the lo
al and global Langlands
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orresponden
es. We then turn to examples. We brie
y 
onsider some of the examples of

fun
toriality mentioned above that were established using the tra
e formula. We then give

a more detailed des
ription of the new fun
torialities to GL

n

and how one uses the 
onverse

theorem as a means for establishing these liftings.

I would like to thank the referee for helping to 
larify 
ertain issues related to this paper.

1. The Dual Group

Begin with G a 
onne
ted redu
tive algebrai
 group de�ned over k, k a lo
al or global

�eld. Let k be a separable algebrai
 
losure of k and G

k

= Gal(k=k) the Galois group.

Over k, G be
omes split and is 
lassi�ed by its root data [2, 36℄. Take in G

=k

a Borel

subgroup B and maximal torus T , both de�ned and split over k. Let X = X

�

(T ) denote

the set of k-rational 
hara
ters of T , � = �(G; T ) � X the root system asso
iated to G

and T , and � � � the set of simple roots 
orresponding to B. Dual to the triple (X;�;�)

we have the triple (X

_

;�

_

;�

_

) 
onsisting of the latti
e X

_

= X

�

(T ) of 
o-
hara
ters, or

k-rational one-parameter subgroups, the 
o-root system �

_

, and the simple 
o-roots �

_

.

The quadruple 	(G) = (X;�; X

_

;�

_

) is the root data for G over k and the quadruple

	

0

(G) = (X;�; X

_

;�

_

) is the based root data for G over k [2, 36℄. The basi
 stru
ture for


onne
ted redu
tive k-groups is the following [36℄.

Theorem 1.1. The root data 	(G) determines G up to k{isomorphism.

For the relative stru
ture theory, there is a split exa
t sequen
e

1 ���! Int(G) ���! Aut(G) ���! Aut(	

0

(G)) ���! 1:

A splitting is given by making a 
hoi
e of root ve
tor x

�

for ea
h � 2 �, whi
h then de�nes

a splitting (G;B; T; fx

�

g

�2�

) of G and gives a 
anoni
al isomorphism

Aut(	

0

(G))! Aut(G;B; T; fx

�

g) � Aut(G):

If G is de�ned over k, there is an a
tion of G

k

on G

=k

giving the k-stru
ture. Hen
e we have

homomorphisms

G

k

! Aut(G

=k

)! Aut(	

0

(G)):

So G

=k

determines the two pie
es of data 
onsisting of the root data 	(G), determining the

group over k, and the homomorphism G

k

! Aut(	

0

(G)).

To de�ne

L

G one simply dualizes this stru
ture theory. Let 	

0

(G)

_

= (X

_

;�

_

; X;�) be

the dual based root data. This de�nes a 
onne
ted redu
tive algebrai
 group

L

G

0

over C .

We 
an transfer the Galois stru
ture sin
e

Aut(	

0

(

L

G

0

)) = Aut(	

0

(G)

_

) = Aut(	

0

(G))

and a splitting of the exa
t sequen
e above for

L

G

0

gives a map � : G

k

! Aut(	

0

(

L

G

0

)) !

Aut(

L

G

0

) whi
h �xes the 
orresponding splitting (

L

G

0

;

L

B

0

;

L

T

0

; fx

�

_

g

�

_

2�

_

) of

L

G

0

and

hen
e a G

k

a
tion on the 
omplex redu
tive group

L

G

0

whi
h en
odes some of the origi-

nal k-stru
ture of G.
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De�nition 1.1. The (Langlands) dual group, or L-group, of G is

L

(G

=k

) =

L

G =

L

G

0

o G

k

:

Remarks. 1. Sometimes it is 
onvenient use the Weil form of the dual group. Sin
e there

is a natural map W

k

! G

k

one may form instead

L

G =

L

G

0

oW

k

, but there is no essential

di�eren
e. One 
ould also use a Weil-Deligne form for 
ertain purposes.

2. If G

0

is a k-group whi
h is isomorphi
 to G over k, then G and G

0

are inner forms of ea
h

other i�

L

G is isomorphi
 to

L

G

0

over G

k

[2℄. So the dual group does not quite distinguish

between k-forms; it distinguishes only up to inner forms. It does 
ompletely determine a

quasi-split form.

In pra
ti
e, this duality preserves the types A

n

and D

n

and inter
hanges the types B

n

and C

n

. In addition it inter
hanges the adjoint and simply 
onne
ted forms of the relevant

groups.

G

L

G

0

GL

n

GL

n

(C )

SO

2n+1

Sp

2n

(C )

Sp

2n

SO

2n+1

(C )

SO

2n

SO

2n

(C )

adjoint type simply 
onne
ted

simply 
onne
ted adjoint type

The lo
al and global 
onstru
tions are 
ompatible. So if G is de�ned over a global �eld k,

v is a pla
e of k, and we let G

v

to denote G as a group over k

v

, then there are natural maps

L

G

v

!

L

G.

2. Langlands Conje
tures for G

2.1. Lo
al Langlands Conje
ture. Let k be a lo
al �eld and let W

0

k

be the asso
iated

Weil-Deligne group [4℄. If k is ar
himedean, we simply take W

0

k

= W

k

to be the Weil group.

Following Borel [2℄ a homomorphism � : W

0

k

!

L

G is 
alled admissible if

(i) � is a homomorphism over G

k

, i.e., the following diagram 
ommutes:

W

0

k

�

���!

L

G

?

?

y

?

?

y

G

k

G

k
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(ii) � is 
ontinuous, �(G

a

) is unipotent in

L

G

0

, and � maps semisimple elements to

semisimple elements.

(iii) If �(W

0

k

) is 
ontained in a Levi subgroup of a proper paraboli
 subgroup P of

L

G

then P is relevant.

For all unde�ned 
on
epts, su
h as relevant, we refer the reader to Borel [2℄. IfG = GL

n

the

admissible homomorphisms are pre
isely the Frobenius-semisimple 
omplex representations

of W

0

k

[4℄.

Following Borel [2℄ and Langlands [26℄ we let �(G) denote the set of all admissible ho-

momorphisms � : W

0

k

!

L

G modulo inner automorphisms by elements of

L

G

0

(not to be


onfused with the earlier [4℄ use of � as a geometri
 Frobenius). Note that if G and G

0

are

inner forms of one another, so that

L

G =

L

G

0

, it need not be true that �(G) = �(G

0

) sin
e

the 
ondition (iii) above sees the k stru
tures. If G is the quasi-split form, then one does

have �(G

0

) � �(G).

To state the lo
al Langlands 
onje
ture for G there are two supplemental 
onstru
tions

that are needed, for whi
h we refer the reader to Borel [2℄. First, for every � 2 �(G) there is

a way to 
onstru
t a 
hara
ter !

�

of the 
enter C(G) of G. Next, if we let C(

L

G

0

) denote the


enter of

L

G

0

, then to every � 2 H

1

(W

0

k

;C(

L

G

0

)) there is asso
iated a 
hara
ter �

�

of G(k).

If we write � 2 �(G) as � = (�

1

; �

2

) with �

1

(w) 2

L

G

0

and �

2

(w) 2 G

k

then �

1

is a 
o
y
le

on W

0

k

with values in

L

G

0

and the map � 7! �

1

gives an embedding of �(G) ,! H

1

(W

0

k

;

L

G

0

).

Then H

1

(W

0

k

;C(

L

G

0

)) a
ts naturally on H

1

(W

0

k

;

L

G

0

) and this a
tion preserves �(G).

With these 
onstru
tions, we 
an state the lo
al Langlands 
onje
ture for G [2℄. As before,

let A(G) = A(G(k)) denote the set of equivalen
e 
lasses of irredu
ible admissible 
omplex

representations of G(k).

Lo
al Langlands Conje
ture: Let k be a lo
al �eld. Then there is a surje
tive map

A(G)! �(G) with �nite �bres whi
h partitions A(G) into disjoint �nite sets A

�

= A

�

(G)

satisfying

(i) If � 2 A

�

then the 
entral 
hara
ter !

�

of � is equal to !

�

;

(ii) Compatibility with twisting, i.e., if � 2 H

1

(W

0

k

;C(

L

G

0

)) and �

�

is the asso
iated


hara
ter of G(k) then A

���

= f��

�

j� 2 A

�

g;

(iii) One element � 2 A

�

is square integrable modulo C(G) i� all � 2 A

�

are square

integrable modulo C(G) i� �(W

0

k

) does not lie in a proper Levi subgroup of

L

G;

(iv) One element � 2 A

�

is tempered i� all � 2 A

�

are tempered i� �(W

k

) is bounded;

(v) If H is a redu
tive 
onne
ted k-group and � : H(k) ! G(k) is a k morphism with


ommutative kernel and 
o-kernel, then there is a required 
ompatibility between de-


ompositions for G(k) and H(k). Namely, � indu
es a natural map

L

� :

L

G !

L

H

and if we set �

0

=

L

� Æ � for � 2 �(G) then any � 2 A

�

(G), when viewed as a

H(k) module, de
omposes into a dire
t sum of �nitely many irredu
ible admissible

representations belonging to A

�

0

(H).
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The sets A

�

(G) for � 2 �(G) are 
alled L-pa
kets. The version I of the lo
al Langlands


onje
ture in [4℄ was the spe
ialization of this to the group GL

n

. In that 
ase, the L-pa
kets

are all singletons and the map from A(G) to �(G) was a bije
tion. This 
onje
ture gives an

arithmeti
 parameterization of the irredu
ible admissible representations of G(k).

Other than the results for GL

n

, the following is known towards this 
onje
ture.

1. If the lo
al �eld k is ar
himedean, i.e., k = R or C , then this was 
ompletely established

by Langlands [26℄.

2. If k is non-ar
himedean and G is quasi-split over k and split over a �nite Galois

extension then one knows how to parameterize the unrami�ed representations of G(k) via

the unrami�ed admissible homomorphisms [2℄. This is a rephrasing in this language of the

Satake 
lassi�
ation [33℄.

3. If k is non-ar
himedean then Kazhdan and Lusztig have shown how to parameterize

those representations of G(k) having an Iwahori �xed ve
tor in terms of admissible homo-

morphisms of the Weil-Deligne group [19℄.

4. Re
ently, in the 
ase of k non-ar
himedean of 
hara
teristi
 zero and G the split SO

2n+1

,

Jiang and Soudry have given the parameterization of generi
 representations of SO

2n+1

(k)

in terms of admissible homomorphisms of the Weil-Deligne group [16, 17℄. They obtain this

parameterization as an outgrowth of re
ent work on global fun
toriality from split SO

2n+1

to GL

2n

, to be dis
ussed later, by pulling ba
k the parameterization for GL

2n

(k).

If one thinks of this version of the lo
al Langlands 
onje
ture as providing an arithmeti


parameterization of the irredu
ible admissible representations of G(k), then one 
an use

this parameterization to de�ne lo
al L-fun
tions asso
iated to arbitrary � 2 A(G). One

needs a se
ond parameter, namely a representation r :

L

G! GL

n

(C ), by whi
h we mean a


ontinuous homomorphism whose restri
tion to

L

G

0

is a morphism of 
omplex Lie groups.

Then for any admissible homomorphism � 2 �(G) the 
omposition r Æ � : W

0

k

! GL

n

(C ) is

a 
ontinuous 
omplex representation of the Weil-Deligne group as 
onsidered in [4℄ and to it

we 
an asso
iate an L-fa
tor L(s; r Æ �) and "-fa
tor "(s; r Æ �;  ) for an additive 
hara
ter

 of k.

De�nition 2.1. If � 2 A

�

is in the L-pa
ket de�ned by the admissible homomorphism �

then we set

L(s; �; r) = L(s; r Æ �) and "(s; �; r;  ) = "(s; r Æ �;  ):

A

ording to this de�nition, one 
annot distinguish between the representations � lying in

a given L-pa
ket A

�

in terms of their L-fun
tions and "-fa
tors, hen
e the terminology. At

present these L-fun
tions are well de�ned only for those � for whi
h the parameterization is

known, for example if � is unrami�ed.

If one takes this as the de�nition of the lo
al L-fun
tions atta
hed to an admissible repre-

sentation, then version II of the lo
al Langlands 
onje
ture presented in [4℄ would be phrased

in terms of mat
hing L- and "-fa
tors de�ned in an analyti
 nature, as in [3℄ for GL

n

, with
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those de�ned here. I have not seen a formulation in these terms for general redu
tive groups,

however in the work of Jiang and Soudry 
ited above this is what they a
hieve. To ea
h

generi
 representation � of SO

2n+1

(k) they atta
h an admissible homomorphism �

�

su
h that

for the standard embedding r : Sp

2n

(C ) ,! GL

2n

(C ) they have an equality

L(s; � � �

0

) = L(s; � � �

0

; r 
 id) = L(s; (r Æ �

�

)
 �

�

0

)

with the similar equality of "-fa
tors where �

0

is an irredu
ible admissible representation of

GL

m

(k), �

�

0

is the asso
iated representation of W

0

k

from the lo
al Langlands 
onje
ture for

GL

m

, and L(s; � � �

0

) is the analyti
 L-fun
tion de�ned by Shahidi [34℄.

2.2. Global Langlands Conje
ture. Now take k to be a global �eld and A its ring of

adeles. For G a redu
tive algebrai
 group over k, let A(G) = A(G(A )) denote the set of irre-

du
ible automorphi
 representations of G(A ). As with GL

n

, to formulate a global Langlands


onje
ture we would repla
e the Weil-Deligne group W

0

k

by the 
onje
tural Langlands group

L

k

and 
onsider the set of admissible homomorphisms � : L

k

!

L

G. These homomorphisms

should then parameterize irredu
ible automorphi
 representations of G(A ) in some way. The

exa
t form this would take is quite spe
ulative at the moment.

Not knowing what this should look like, one still expe
ts to have global{lo
al 
ompatibility.

If one begins an irredu
ible automorphi
 representation � = 


0

�

v

of G(A ) then, assuming

the lo
al Langlands 
onje
ture for ea
h lo
al group G(k

v

), one 
an atta
h to � the 
olle
tion

f�

v

g of lo
al parameters �

v

= �

�

v

: W

0

k

v

!

L

G

v

given by the lo
al 
omponents �

v

. If we


ompose these with the natural 
ompatibility maps for the dual groups �

v

:

L

G

v

!

L

G one

gets a 
olle
tion f�

v

Æ �

v

g of lo
al parameters �

v

Æ �

v

: W

0

k

v

!

L

G.

Su
h a system of maps must 
ome out of a global parameter � : L

k

!

L

G for the lo
al

and global theories to be 
onsistent. This system of lo
al parameters 
an often be used as

a substitute for a global parameter �. For example, this 
olle
tion of lo
al data is suÆ
ient

to de�ne the global L-fun
tion and "-fa
tor atta
hed to �. If r :

L

G ! GL

n

(C ) then the


omposition r

v

= r Æ �

v

:

L

G

v

! GL

n

(C ) gives representations of the lo
al dual groups.

De�nition 2.2. If � = 


0

�

v

is an irredu
ible automorphi
 representation of G(A ) and

r :

L

G! GL

n

(C ) we set

L(s; �; r) =

Y

v

L(s; �

v

; r

v

) =

Y

v

L(s; r Æ �

v

Æ �

v

)

and

"(s; �; r) =

Y

v

"(s; �

v

; r

v

;  

v

) =

Y

v

"(s; r Æ �

v

Æ �

v

;  

v

)

where  = 
 

v

is an additive 
hara
ter of A trivial on k.

To de�ne the full L-fun
tion as above requires the solution of the lo
al Langlands 
onje
-

ture at all pla
es, something only known for GL

n

. However, for any irredu
ible automorphi


representation � there is a �nite set of pla
es S = S(�) su
h that for all v =2 S the represen-

tation �

v

is unrami�ed and hen
e the lo
al parameterization problem has been solved. Then
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the partial L-fun
tion

L

S

(s; �; r) =

Y

v=2S

L(s; �

v

; r

v

)

is always well de�ned and Langlands has shown that this Euler produ
t is always absolutely


onvergent in a right half plane [25℄.

3. Fun
toriality

As one 
an tell from his re
ent writings [29, 30℄ Langlands has always viewed the \prin
iple

of fun
toriality" as 
entral to his view of automorphi
 representations. It en
ompasses what

is referred to above as the \lo
al and global Langlands 
onje
tures" as spe
ial 
ases of this

prin
iple.

Let k denote either a lo
al or global �eld and let H and G be two 
onne
ted redu
tive

groups de�ned over k. We have de�ned their asso
iated dual groups

L

H and

L

G. A homo-

morphism u :

L

H !

L

G is 
alled an L-homomorphism if (i) it is a homomorphism over G

k

,

that is, we have the 
ommutation of the following diagram

L

H

u

���!

L

G

?

?

y

?

?

y

G

k

G

k

(ii) u is 
ontinuous, and (iii) the restri
tion of u to

L

H

0

is a 
omplex analyti
 homomorphism

u :

L

H

0

!

L

G

0

.

If in addition G is quasi-split, then for any admissible homomorphism � 2 �(H) the


omposition u Æ � is again an admissible homomorphism in �(G). So the map � 7! u Æ �

de�nes a map �(u) : �(H) ! �(G). If k is a global �eld and v a pla
e of k then, sin
e

G

k

v


an be viewed naturally as a subgroup of G

k

, we 
an view

L

G

v

as a subgroup of

L

G.

Then, upon restri
tion to

L

H

v

, u will indu
e an L-homomorphism of the lo
al dual groups

u

v

:

L

H

v

!

L

G

v

and hen
e a lo
al map �(u

v

) : �(H

v

)! �(G

v

).

The prin
iple of fun
toriality 
an now be roughly formulated as follows [30℄.

The Prin
iple of Fun
toriality: If k is a lo
al (respe
tively global) �eld, H and G 
on-

ne
ted redu
tive k-groups with G quasi-split, then to ea
h L-homomorphism u :

L

H !

L

G

there is asso
iated a transfer or lifting of admissible (resp. automorphi
) representations of

H to admissible (resp. automorphi
) representations of G.

If we assume the lo
al and global Langlands 
onje
tures, so that we have an arithmeti


parameterization of A(H) and A(G) then this pro
ess of lifting is easy to des
ribe.
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3.1. Lo
al fun
toriality. First, take k to be a lo
al �eld, u :

L

H !

L

G a lo
al L-

homomorphism. If we take � 2 A(H) an irredu
ible admissible representation of H(k)

then this is parameterized by an admissible homomorphism � = �

�

: W

0

k

!

L

H. In

fa
t, � parameterizes an entire lo
al L-pa
ket A

�

(H). If we 
ompose � with u we ob-

tain �

0

= �(u)(�) = u Æ � 2 �(G), an admissible homomorphism of W

0

k

to

L

G. Then �

0

parameterizes a lo
al L-pa
ket A

�

0

(G) and this L-pa
ket (or sometimes any element � of it)

is the fun
torial lift (or transfer, or Langlands lift, or ...) of � or of the pa
ket A

�

(H).

In general, we then \understand" the lo
al fun
toriality in the 
ases where we understand

the lo
al parameterization:

1. k = R or C , H any 
onne
ted redu
tive k-group and G any quasi-split 
onne
ted

redu
tive k-group.

2. k a non-ar
himedean lo
al �eld, H = GL

m

and G = GL

n

(and related examples { see

Se
tion 4).

3. Suppose that k is non-ar
himedean with ring of integers O. Suppose both H and G

are quasi-split and there is a �nite extension K of k su
h that both H and G split over

K and have an O stru
ture so that both H(O) and G(O) are spe
ial maximal 
ompa
t

subgroups. Let � be an unrami�ed representation of H(k) with a non-trivial H(O) ve
tor

and unrami�ed parameter � = �

�

2 �(H). Then for any L-homomorphism u :

L

H !

L

G

the parameter �

0

= u Æ � is unrami�ed and de�nes an L-pa
ket A

�

0

(G) whi
h 
ontains a

(unique) representation � of G(k) whi
h is unrami�ed with respe
t to G(O) [2℄. � is 
alled

the natural unrami�ed lift of �.

3.2. Global fun
toriality. If we now 
onsider k a global �eld, then, in prin
iple, fun
torial

lifting should work as it does in the lo
al situation in terms of global parameterization. But

now we are again at a disadvantage sin
e we don't really understand the parameterizing

group L

k

. In its stead, we fall ba
k on the desired lo
al-global 
ompatibility. So let H

be a 
onne
ted redu
tive k-group, G a quasi-split 
onne
ted redu
tive k-group and u :

L

H !

L

G an L-homomorphism. For ea
h pla
e v of k we have the asso
iated lo
al L-

homomorphism u

v

:

L

H

v

!

L

G

v

des
ribed above. Now let � 2 A(G), � = 


0

�

v

, be an

irredu
ible automorphi
 representation of H(A ). If v is ar
himedean then by the work of

Langlands we know how to parameterize �

v

with a lo
al parameter �

v

: W

0

k

v

!

L

H

v

. If v is

a non-ar
himedean pla
e, then for almost all v the lo
al group H

v

is quasi-split, split over

a �nite extension of k

v

, and the representation �

v

is unrami�ed with respe
t to a spe
ial

maximal 
ompa
t subgroup. So we are in the situation where we have a lo
al parameter

�

v

: W

0

k

v

!

L

H

v

for �

v

. In either of these situations, we 
an form a lo
al lift �

v

as a

representation of G(k

v

) asso
iated to the parameter �

0

v

= u

v

Æ �

v

, that is, a lo
al lift as

de�ned above.

De�nition 3.1. Let H be a 
onne
ted redu
tive k-group and let � = 


0

�

v

be an irredu
ible

automorphi
 representation of H(A ). Let G be a quasi-split 
onne
ted redu
tive k-group and

let u :

L

H !

L

G be an L-homomorphism. Then an automorphi
 representation � = 


0

�

v

of G(A ) is a (weak) fun
torial lift of � (with respe
t to u) if for all ar
himedean pla
es and
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almost all �nite pla
es where �

v

is unrami�ed we have that �

v

is a lo
al fun
torial lift with

respe
t to u

v

as des
ribed above. � is a (strong) fun
torial lift of � if �

v

is a lo
al fun
torial

lift of �

v

for all pla
es of k.

Note that as a 
onsequen
e of this de�nition, if � is an automorphi
 representation of

H(A ), u :

L

H !

L

G an L-homomorphism, and � a fun
torial lift of � to an automorphi


representations of G(A ), then for every representation r :

L

G! GL

n

(C ) we have an equality

of L-fun
tions and "-fa
tors

L

S

(s; �; r Æ u) = L

S

(s;�; r) "

S

(s; �; r Æ u;  ) = "

S

(s;�; r;  )

where S is the �nite (possibly empty) set of pla
es where we do not know how to lo
ally lift

�

v

.

In fa
t, we need to do this on the level of L-pa
kets. This is easy enough to formulate,

but given the partial state of our knowledge, there seems to be little gained in doing this at

this time. But the ambiguity in the lo
al lifts and hen
e the global lifts 
oming from the

phenomenon of lo
al and global L-pa
kets should always be kept in mind.

4. Examples

We have noted that Langlands views fun
toriality as en
ompassing the lo
al and global

Langlands 
onje
tures and their 
onsequen
es, su
h as the strong Artin 
onje
ture. One

reason for this is the following example.

Consider the 
ase where H = f1g. Begin with k a lo
al �eld. Sin
e there is a natural map

from the Weil-Deligne groupW

0

k

to G

k

we may 
onsider the Weil-Deligne form of the L-group:

L

G =

L

G

0

oW

0

k

. Then

L

H = W

0

k

. If we take for example G = GL

n

then u :

L

H !

L

G is an

admissible homomorphism in �(G) or a 
omplex representation of the Weil-Deligne group

and fun
toriality for these groups en
ompasses the lo
al Langlands 
onje
tures. If one takes

k a global �eld and leaves

L

G as the Galois form of the L-group, then again taking H = f1g

and G = GL

n

we obtain a global Langlands 
onje
ture for GL

n

.

The other examples of fun
toriality I wish to dis
uss fall into what I view as two types:

Galois theoreti
 and group theoreti
. The �rst in
lude base 
hange, automorphi
 indu
tion,

and lifting between inner forms. The se
ond are all liftings to GL

n

and in
lude the tensor

produ
t liftings, symmetri
 powers liftings, and liftings from 
lassi
al groups. I will not tou
h

on the important 
lass of liftings known as endos
opi
, even though some of the example we

dis
uss 
an be interpreted as examples of (possibly twisted) endos
opy. Endos
opi
 liftings

are those in whi
h the L-homomorphism u :

L

H !

L

G realizes

L

H

0

as the �xed points of an

involution in

L

G

0

, or a twisted su
h. The signi�
an
e of these liftings 
ome primarily from

their ne
essity in understanding the tra
e formula, whi
h we are not in a position to dis
uss.

Instead, we refer the reader to the work of Langlands [28, 30℄ and of Kottwitz and Shelstad

[23℄ and the referen
es therein.
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4.1. Galois theoreti
 examples. In these examples, the L-homomorphisms have their

origins in Galois theory.

1. Base 
hange (or automorphi
 restri
tion). Suppose that K is a �nite extension of k.

Then on the level of Weil groups we have W

K

� W

k

so that any representation of W

k

gives

a representation of W

K

by restri
tion. The analogous lifting on the level of admissible or

automorphi
 representations is the following. Let H be 
onne
ted, redu
tive and split over

k. Then we may 
onsider H as a group over K as well and if we let G = R

K=k

(H) be Weil's

restri
tion of s
alars from K to k, so G(k) = H(K), then G is the group over k determined

by H

=K

. There is then a natural embedding

u :

L

H =

L

H

0

� G

k

! (

Y

G

K

nG

k

L

H

0

)o G

k

=

L

G;

where G

k

a
ts on

Q

L

H

0

via permutations of the index set, whi
h is the diagonal map on

L

H

0

and the identity on G

k

. In the 
ase where k is a lo
al �eld, then the indu
ed map

�(u) : �(H) ! �(G) is indeed the restri
tion map, viewing W

0

K

as an open subgroup of

W

0

k

. Fun
toriality 
oming from this L-homomorphism would begin with a representation

� of H(k) or H(A

k

) and produ
e a representation of G(k) = H(K) or H(A

K

) 
alled the

base 
hange of �. This program has been 
arried out when H = GL

n

and the extension

K=k is solvable, �rst for n = 2 by Langlands [27℄ and then general n by Arthur and Clozel

[1℄. Their te
hnique was the twisted tra
e formula. In addition, when H = GL

2

Ja
quet,

Piatetski-Shapiro, and Shalika have obtained a non{normal 
ubi
 base 
hange by 
onverse

theorem methods [14℄.

2. Automorphi
 indu
tion. We still take K a �nite separable extension of k of degree d, so

that W

K

� W

k

. If one starts with a representation of W

K

then one obtains a representation

of W

k

simply by indu
tion. The analogous lifting on the level of admissible or automorphi


representations is now the following. Take H = R

K=k

(GL

n

) to be GL

n

(K) viewed as a

k-group as above and let G = GL

dn

(k). Now one has an L-homomorphism

u :

L

H = (

Y

G

K

nG

k

GL

n

(C )) o G

k

!

L

G = GL

dn

(C ) � G

k

by sending

L

H

0

= GL

n

(C )�� � ��GL

n

(C ) into

L

G

0

= GL

dn

(C ) as blo
k diagonal matri
es and

extending to an L-homomorphism by letting G

k

a
t on GL

dn

(C ) via permutation matri
es

fromS

d

. The lo
al or global fun
torialities 
oming from su
h an L-homomorphism are 
alled

automorphi
 indu
tion. The map �(u) on the sets of admissible homomorphisms should be

indu
tion. Again, when the extension K=k is solvable this was analyzed lo
ally and globally

by Arthur and Clozel [1℄ using the twisted tra
e formula, pre
eded by Ja
quet and Langlands

for n = 2 [15℄. Henniart and Herb, building on earlier work by Kazhdan in the n = 1 
ase

[18℄, gave the �rst de�nition and analysis of lo
al automorphi
 indu
tion for GL

n

in terms

of lo
al 
hara
ter identities [13℄. This work uses a simpler version of the tra
e formula than

either [1℄ or [18℄ and allows �elds of positive 
hara
teristi
.

3. Inner forms. Let G be 
onne
ted, redu
tive, and quasi-split over a lo
al or global k

and let H be an inner form of G. Then

L

H =

L

G, the identity map u :

L

H !

L

G is an

L-homomorphism, and we should have a 
orresponding lifting. Note that if k is a lo
al �eld
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we have �(H) � �(G), while if k is a global �eld we in fa
t have H

v

= G

v

for almost all

pla
es so that �(H

v

) = �(G

v

). In the 
ase of G = GL

2

and H = D

�

the multipli
ative group

of a rank 2 division algebra over k the lifting from representations of D

�

to representations

of GL

2

is the so-
alled Ja
quet-Langlands 
orresponden
e, established in [15℄. If we take

G = GL

n

and H = GL

m

(D) where D is a 
entral simple division algebra of rank d with

dm = n then the lo
al fun
toriality has been analysed by Rogawski [32℄ in the 
ase m = 1

and by Deligne, Kazhdan, and Vigneras [10℄ utilizing the tra
e formula.

4.2. Group theoreti
 examples. In this set of examples, the groups H involved are all

split and the target group G is always a general linear group GL

n

, so the Galois theory plays

little role. The L-homomorphism is a natural map from group theory. There has been mu
h

progress in this family of fun
torialities re
ently based on using the 
onverse theorem for

GL

n

as the primary tool for establishing global fun
torialities to GL

n

.

1. Tensor produ
ts. Let k be either a lo
al of global �eld and let H = GL

m

�GL

n

. Then

L

H

0

= GL

m

(C ) � GL

n

(C ) and

L

H =

L

H

0

� G

k

. If we take G = GL

mn

then

L

G

0

= GL

mn

(C )

and

L

G =

L

G

0

� G

k

. The simple tensor produ
t map 
 : GL

m

(C ) � GL

n

(C ) ! GL

mn

(C ),

extended by the identity map on G

k

, de�nes an L-homomorphism u




:

L

H !

L

G. The

asso
iated fun
toriality is the tensor produ
t lifting. Note that if k is a lo
al �eld, then

the lo
al lifting is now understood in prin
iple sin
e the lo
al parameterization problem

(lo
al Langlands 
onje
ture) for GL

n

has been solved. So the interesting question is the

global fun
toriality. This has been re
ently solved in the 
ases of GL

2

� GL

2

to GL

4

by

Ramakrishnan [31℄ and GL

2

�GL

3

to GL

6

by Kim and Shahidi [21℄.

2. Symmetri
 powers. Let k be either a lo
al or global �eld and let H = GL

2

, so

L

H

0

= GL

2

(C ) and

L

H =

L

H

0

� G

k

. We take G = GL

n+1

for n � 1, so

L

G

0

= GL

n+1

(C )

and

L

G =

L

G

0

� G

k

. For ea
h n � 1 there is the natural symmetri
 n-th power map

sym

n

: GL

2

(C ) ! GL

n+1

(C ). If we extend this symmetri
 power map by the identity map

on the Galois group we obtain an L-homomorphism sym

n

:

L

H !

L

G. The asso
iated

fun
toriality is the symmetri
 power lifting from representations of GL

2

to representations

of GL

n+1

. On
e again, if k is a lo
al �eld the lo
al symmetri
 powers liftings are understood

in prin
iple thanks to the solution of the lo
al Langlands 
onje
ture for GL

n

. So on
e again

the interesting fun
toriality is the global one. The global symmetri
 square lifting, so GL

2

to GL

3

, is an old theorem of Gelbart and Ja
quet [11℄. Re
ently, Kim and Shahidi have

shown the existen
e of the global symmetri
 
ube lifting from GL

2

to GL

4

[21, 22℄ and

then Kim followed with the global symmetri
 fourth power lifting from GL

2

to GL

5

[20, 22℄.

The a
hievement of symmetri
 power fun
toriality for all n would lead to a proof of the

Ramanujan 
onje
ture for GL

2

.

3. Classi
al groups. Again, k is either a lo
al or global �eld. Take H to be a split 
lassi
al

group over k, more spe
i�
ally, the split form of either SO

2n+1

, Sp

2n

, or SO

2n

. The 
onne
ted


omponent of the L-group are then Sp

2n

(C ), SO

2n+1

(C ), or SO

2n

(C ) and there are natural

embeddings into an appropriate general linear group.
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H

L

H

0

u

0

:

L

H

0

,!

L

G

0

L

G

0

G

SO

2n+1

Sp

2n

(C ) Sp

2n

(C ) ,! GL

2n

(C ) GL

2n

(C ) GL

2n

Sp

2n

SO

2n+1

(C ) SO

2n+1

(C ) ,! GL

2n+1

(C ) GL

2n+1

(C ) GL

2n+1

SO

2n

SO

2n

(C ) SO

2n

(C ) ,! GL

2n

(C ) GL

2n

(C ) GL

2n

These homomorphisms extend to L-homomorphisms by extending them with the identity

map on the Galois groups. Asso
iated to ea
h should be a lifting of admissible or automorphi


representations from A(H) to A(G). In 
ollaboration with Kim, Piatetski-Shapiro, and

Shahidi, we established a weak global lift for generi
 
uspidal representations from SO

2n+1

to

GL

2n

over a number �eld k using 
onverse theorem methods [5℄. Soon thereafter, Ginzburg,

Rallis, and Soudry showed that our weak lift was indeed a strong lift and 
hara
terized the

image [12℄. The results of Jiang and Soudry on the lo
al Langlands 
onje
ture for SO

2n+1

over a p-adi
 �eld 
ited above [16, 17℄ were then obtained as a lo
al 
onsequen
e of this

global fun
toriality. Re
ently we have been able to extend our fun
toriality results to the

other split 
lassi
al groups as well [6℄.

We would like to explain the 
onverse theorem method for obtaining global fun
torialities

to general linear groups. We begin with a group H de�ned over a number �eld k. Take

� = 
�

v

a 
uspidal representation ofH(A ). For ea
h lo
al pla
e v we apply lo
al fun
toriality

to 
onstru
t a lo
al representation �

v

of G(k

v

) = GL

N

(k

v

) for an appropriate N . If we are in

example 1 or 2 above, we 
an do this for all v sin
e the lo
al Langlands 
onje
ture is known

for GL

n

(k

v

) [4℄. For the 
ases of the 
lassi
al groups we 
an perform this at all ar
himedean

pla
es v and at the non-ar
himedean pla
es v where �

v

is unrami�ed. The method is simply


omposing the lo
al parameter map �

v

for �

v

with the L-homomorphism as des
ribed above.

In the 
ase of 
lassi
al groups we must �nesse the lo
al liftings at the remaining pla
es v to


onstru
t a lo
al lift �

v

. But assume for now that we understand the lo
al lifts at all pla
es.

Then by 
onstru
tion we have an equality of lo
al L-fa
tors

L(s; �

v

; r

v

) = L(s; r

v

Æ �

v

) = L(s; u

v

Æ �

v

) = L(s;�

v

; �

v

)

with a similar equality for lo
al "-fa
tors. Here we may take r = u

0

viewed as a 
omplex

representation r :

L

H ! GL

N

(C ) and � :

L

G! GL

N

(C ) is just proje
tion onto the �rst fa
tor

L

G

0

. Hen
e, if we set � = 


0

�

v

as an irredu
ible admissible representation of GL

N

(A ) then

we globally have

L(s; �; r) = L(s;�; �) and "(s; �; r) = "(s;�; �):

Additionally, if �

0

= 
�

0

v

is a 
uspidal representation of GL

m

(A ) with m � N � 2 then we

similarly have

L(s; �

v

� �

0

v

; r

v


 �

v

) = L(s;�

v

� �

0

v

; �

v


 �

v

)

and hen
e

L(s; � � �

0

; r 
 �) = L(s;�� �

0

; �
 �) = L(s;�� �

0

)
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with similar equalities for lo
al and global "-fa
tors. As outlined in [3℄, to apply the 
onverse

theorem for GL

N

we must 
ontrol the analyti
 properties of the twisted L-fun
tions L(s;��

�

0

) = L(s;���

0

; �
�) for a suÆ
ient family of 
uspidal twists �

0

. But from our equality of L-

and "-fa
tors, we have that these are 
ontrolled by the analyti
 properties of the automorphi


L-fun
tions L(s; ���

0

; r
�) for the group H(A ) with twisting by GL

m

(A ). So on
e suÆ
ient

analyti
 
ontrol of these L-fun
tions is known, one simply applies the 
onverse theorem [3℄

for GL

N

and 
on
ludes that � is automorphi
. In most 
ases to date, this analyti
 
ontrol

of the L(s; � � �

0

; r 
 �) has been a
hieved by the Langlands-Shahidi method of analyzing

the L-fun
tions through the Fourier 
oeÆ
ients of Eisenstein series.

Let us now revisit our examples above in light of this sket
h.

1. Tensor produ
ts. In the 
ase of Ramakrishnan [31℄, so the fun
toriality from GL

2

�GL

2

to GL

4

, � = �

1


 �

2

with ea
h �

i

a 
uspidal representation of GL

2

(A ) and � is to be an

automorphi
 representation of GL

4

(A ). To apply the 
onverse theorem from [9℄ Ramakrish-

nan needs to 
ontrol the analyti
 properties of L(s;���

0

) for �

0


uspidal representations of

GL

1

(A ) and GL

2

(A ), that is , the Rankin triple produ
t L-fun
tions

L(s; � � �

0

; r 
 �) = L(s; �

1

� �

2

� �

0

):

This he was able to do using a 
ombination of the integral representation for this L-fun
tion

due to Garrett and then Rallis and Piatetski-Shapiro and the work of Shahidi on the

Langlands-Shahidi method. The 
ase of Kim and Shahidi [21℄ is similar, now with �

2

a


uspidal representation of GL

3

(A ). However, sin
e the lifted representation � is to be an au-

tomorphi
 representation of GL

6

(A ), to apply the 
onverse theorem of [9℄ they must 
ontrol

the analyti
 properties of

L(s;�� �

0

) = L(s; �

1

� �

2

� �

0

)

where now �

0

must run over appropriate 
uspidal representations of GL

m

(A ) with m =

1; 2; 3; 4. The 
ontrol of these triple produ
ts is an appli
ation of the Langlands-Shahidi

method of analysing L-fun
tions and involves 
oeÆ
ients of Eisenstein series on GL

5

, Spin

10

,

and the simply 
onne
ted E

6

and E

7

.

2. Symmetri
 powers. The original symmetri
 square lifting of Gelbart and Ja
quet

indeed used the 
onverse theorem for GL

3

[11℄. One needs only 
ontrol twists by 
hara
ters

(automorphi
 forms on GL

1

) and the L-fun
tion that one must 
ontrol is the symmetri


square L-fun
tion for GL

2

sin
e

L(s;�) = L(s; �; sym

2

):

This they were able to do via an integral representation due to Shimura. For Kim and

Shahidi, the symmetri
 
ube and fourth power liftings were dedu
ed from the fun
torial

GL

2

�GL

3

tensor produ
t lift above and the exterior square lift for GL

4

[20, 21, 22℄.

3. Classi
al groups. Here there is a se
ondary problem. If we begin with a generi
 
uspidal

representation � = 
�

v

of H(A ), then there is a �nite set of �nite pla
es S at whi
h one

does not know the lo
al parameterization for �

v

in terms of admissible homomorphisms,

and hen
e one does not know what the 
orre
t lo
al lift �

v

should be. In this 
ase, one

is able to take an arbitrary lo
al lift �

v

at those pla
es, so long as it has trivial 
entral
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hara
ter. To 
ompensate, one applies the form of the 
onverse theorem for GL

N

in whi
h

one �xes a single highly rami�ed idele 
lass 
hara
ter �, the rami�
ation depending on the

original representation � of H(A ) and the 
onstru
ted representation � of GL

N

(A ) (and

a
tually only on the lo
al 
omponents at the pla
es v 2 S), and then twists by all 
uspidal

representations �

0

of GL

m

(A ), m � N � 1, of the form �

0

= � 
 � where � is unrami�ed at

all v 2 S [3, 5℄. This highly rami�ed twist plays two roles. First, it helps to 
ontrol global

poles of the twisted L-fun
tions L(s; � � �

0

) for H(A ) and se
ondly it allows one to mat
h

the lo
al L- and "-fa
tors at those v 2 S through the stability of the lo
al 
-fa
tors under

highly rami�ed twists [3, 8, 5℄. So for these limited twists one indeed has

L(s; � � �

0

) = L(s; � � �

0

; r 
 �) = L(s;�� �

0

; �
 �) = L(s;�� �

0

)

with similar equalities for " fa
tors. Sin
e we are able to 
ontrol the analyti
 properties of

the L(s; � � �

0

) via the Langlands-Shahidi method for our family of �

0

we may apply the


onverse theorem for GL

N

and 
on
lude the existen
e of an automorphi
 representation �

0

of GL

N

(A ) su
h that �

v

= �

0

v

for all v =2 S, that is, a weak lift �

0

of �.

Every step in this argument is now valid for general split 
lassi
al group of the type we

are 
onsidering. Originally the lo
al stability of 
-fa
tors was known only for SO

2n+1

[8, 5℄.

Now, thanks to re
ent results of Shahidi expressing his lo
al 
oeÆ
ients as Mellin transforms

of Bessel fun
tions [35℄, the te
hniques of [8℄ 
an be used to establish the stability of the

lo
al 
-fa
tors for the other split 
lassi
al groups as well. This then allows us to extend the

fun
toriality results of [5℄ to these 
ases [6℄.

In the 
ase of SO

2n+1

, on
e we have the weak lift then the theory of Ginzburg, Rallis, and

Soudry [12℄ allows one to show that this weak lift is indeed a strong lift in the sense that the

lo
al 
omponents �

v

at those v 2 S are 
ompletely determined { there is in fa
t no possible

ambiguity. In 
onjun
tion with this they are able to 
ompletely 
hara
terize the image. On
e

one knows that these lifts are rigid, then one 
an begin to de�ne a lo
al lift by setting the

lift of �

v

to be the �

v

determined globally. This is the 
ontent of the papers of Jiang and

Soudry [16, 17℄. In essen
e they show that this lo
al lift satis�es the relations on L-fun
tions

that one expe
ts from fun
toriality and then uses this lift to pull ba
k the parameter �

�

v

of

the lo
al GL

N

(k

v

) representation, whi
h we know exists by the lo
al Langlands 
onje
ture,

to obtain a parameter �

�

v

of the 
orre
t type, that is, �

�

v

: W

0

k

v

!

L

H

v

and thus dedu
ing

the lo
al Langlands 
onje
ture for H(k

v

). We refer you to their papers for more detail and

pre
ise statements. We expe
t similar results will be forth
oming for the other split 
lassi
al

groups.
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