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INTRODUCTION

Let K denote a field. The group GL, has an amazingly useful subgroup P,, called the
mirabolic subgroup. Geometrically, P, (K) is the subgroup which stabilizes an n — 1 dimen-
sional subspace of K™ and acts trivially on the quotient line. In terms of matrices, if we fix
a standard basis {e,...,e,} of K™ and think of P, as stabilizing the span of the first n — 1
of these vectors, then

P,(K) = {p: (g 1;) | g€ GL, 1(K), u€ Knl}

As a group, P, has the structure of a semidirect product P, = GL,,_; x U,, where U, is the
unipotent radical of P,, i.e.,

Un(K) = {(I"O—l 1{) | u € K"—l} ~ K"

Now let K be a non-archimedean local field. Bernstein and Zelevinsky [2, 3, 12], following
the lead of Gelfand and Kazhdan [7], analyze the structure of admissible representations of
GL,(K) by restricting the representations to P, (K ) and analyzing them using the represen-
tation theory of P,(K). Using the restriction to P,(K), Bernstein and Zelevinsky

(i) analyze the irreducibility of representations of GL,(K) which are induced from su-
percuspidal representations
(ii) classify the quasi-square-integrable representations in terms of supercuspidal repre-
sentations
(iii) classify the generic representations in terms of the quasi-square-integrable represen-
tations.

In the theory of L-functions, Jacquet, Piatetski-Shapiro, and Shalika [9] use the restriction
of admissible representations of GL,(K) to P,(K) to obtain

(iv) the existence of the local functional equation for GL,, x GL,,.
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Moreover, if one wants to prove the rationality of the local Rankin—Selberg integrals for
GL, x GL,, using the method of Bernstein [1] as outlined in Gelbart—Piatetski-Shapiro [6],
then the restriction to P,(K) is used to obtain the uniqueness statement needed for this
method. So we add to our list

(v) the proof of rationality of the local Rankin—Selberg integrals for GL, x GL,, via
Bernstein’s method.

We will come back to this in Section 3 of this paper when we discuss the “rationality in
parameters” of these integrals using Bernstein’s method.

The purpose of this paper is to give a new application of the technique of restriction to
P,, namely

(vi) explicitly compute the GL,, X G L, local L-factor for generic representations in terms
of L-functions for supercuspidal representations.

The expressions we obtain are not new; they can be found in the later sections of [9].
However, we have found that this method seems (at least to us) easier to generalize to other
L-functions for GL,,. In particular, this method will let us compute the local exterior-square
L-function for generic representations of GL,, in the non-archimedean case. We will return
to this in the future. We also expect that this method will be adaptable to the analogous
archimedean calculation.

Let us briefly describe the contents of this paper. Section 1 begins with a review of the
theory of derivatives of Bernstein and Zelevinsky [2, 3, 12]. Then we investigate how these
derivatives manifest themselves in terms of restrictions and asymptotics in the Whittaker
models of generic representations, and more generally, representations of Whittaker type.
In Section 2, we apply these results to the computation of the local L-functions L(s, 7 x o)
for representations m of GL,, and ¢ of GL,, in terms of the (exceptional) L-functions of
their derivatives. This allows us to compute the L-functions in the cases where both 7 and
o are supercuspidal, as in Gelbart-Jacquet [5], and where both are square-integrable in
terms of the L-functions of supercuspidals, as in [9]. These techniques are not sufficient for
computing the L-functions for generic representations. In Section 3, we discuss deformations
of representations. We show that the Rankin—Selberg integrals defining the L-functions
L(s,m, X 0y,) for deformed representations are “rational in parameters” by using Bernstein’s
theorem [1, 6]. We also investigate how the derivatives behave under deformation. In Section
4 we return to the computation of the L-function. By combining the method of Section 2,
the deformations of Section 3, and Hartog’s theorem we are able to prove a weak version of
Theorem 3.1 of [9]: the multiplicativity of v and the divisibility of L. We then follow the
methods of [9] to complete the computation of L(s, 7 x o) for 7 and o generic, and more
generally, irreducible.
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1. DERIVATIVES AND ASYMPTOTICS

Let K be a non-archimedean local field, o its ring of integers, @ a uniformizing element,
and ¢ the order of its residue field. Throughout the paper, we will abuse notation by letting
GL, =GL,(K), P, = P,(K), etc.

1.1. The representation theory of P,. Let us first recall the basic facts about the rep-
resentation theory of P,, following Bernstein and Zelevinsky [2, 3, 12]. We have noted that
P, = GL, | x U, with GL,,_; embedded in P, in the upper left hand block and U, the
unipotent radical. Let Rep(P,) denote the category of smooth (algebraic) representations of
P,, Rep(GL,) the category of smooth representations of G L,, etc.

The representations of P, are analyzed by the use of four functors

ot vt
Rep(P,_1) Rep(P,) Rep(GL,_1).
o v

®* and ¥T are induction functors, while ®~ and ¥~ are localization functors or Jacquet
functors. All are normalized. They are defined as follows:

\I/+

(a) Rep(P,) —— Rep(GL, ).

o

To define ¥~ we consider the space of U, covariants. We let (7,V;) be a smooth repre-
sentation of P, and let

Vo(Up, 1) = (t(u)v —v | v eV, uel,).

Then the space of ¥~ (7) is V;./V;(U,, 1), the largest quotient of V. on which U,, acts trivially.
Since GL,,_; preserves U,, GL,_1 will stabilize V,(U,,1) and we have the natural action of
GL,_, on V./V,.(U,,1). Letting o denote ¥~ (7), then o is the normalized action of GL,_,
on V, /V,(Uy, 1) given by

0(9) (v + Vo(Uy, 1)) = | det(g)|"*(7(9)v + Vo (Up, 1)).

The functor U* is just induction, or in this case, normalized extension by the trivial rep-
resentation. Given a smooth representation (o, V,) of GL,_; we let 7 = U (o) be the repre-
sentation of P, on V, such that U, acts trivially and GL,_; acts by 7(g) = | det(g)|*/%a(g).

<I>+

(b) Rep(Po—1) " Rep(Py).

o=

Here we consider P, 1 — GL,_1 — P,. If we fix a non-trivial additive character 1 of K,
then v defines a character of U,,, which by abuse of notation we again denote by v, defined
by ¥(u) = Y(up—1,). GL,_1 is the stabilizer of U, and the stabilizer of this character in
GL,_, is exactlyP,_1.
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To construct ®~, let (7,V,) be a smooth representation of P,. We form the space of
(U,, 1)-covariants by taking

Vo (Up,¥) = (t(w)v —(u)v |u € Uy, v €V;)

and forming the quotient vector space V,/V,(U,,). This is the largest quotient on which
U, acts by the character ¢». Then 0 = ®~(7) is the normalized representation of P, ; on
V2 /Vi(Un, ) given by

o(p) (v + Vo(Un, ) = [ det(p)| (7 (p)v + Vo (U, ).

O is the functor of normalized compactly supported induction. If (o,V,) is a smooth
representation of P, 1 we extend it to a representation of P, U, by letting U, act by the
character v). Then

7=0%(0) =indp ; (|det|"?o @)

where the induction ind is non-normalized using smooth functions of compact support mod-
ulo P,_1U,.

Using fairly elementary geometry, realizing these representations in sections of sheaves
over U, Bernstein and Zelevinsky establish the following basic properties of these functors:

(1) ®* and ¥* are all exact.

(2) U~ is left adjoint to WT.

(3) ®* is left adjoint to O~ .

(4) T ~id and U~ UT ~ id.

(5) ¥t =0 and U~ Pt =0.

(6) 0 = &t~ —id — ¥TU~ — 0 is exact.

From these basic properties, they derive the following consequences:

(1) @t and Ut carry irreducible representations to irreducible representations.

(2) Any irreducible representation of 7 of P, is of the form 7 ~ (®+)¥=1W*(p) with p
an irreducible representation of GL,_ ;. The index k£ and the representation p are
completely determined by 7.

(3) The derivatives: Let 7 € Rep(P,). For each k = 1,2,...,n there are representations
Ty € Rep(P,—) and 78 € Rep(GL,_y) associated to 7 by

T(k) = (CID’)’“(T) and k) — \If’(@’)k’l(T).
Diagrammatically:
-
/ N\
(1) T
7(2) 7
/
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where all leftward arrows represent an application of &~ and the rightward arrows
an application of ¥~. 7 is called the k** derivative of 7.

(4) The filtration by derivatives: By successive application of the sixth basic property
listed above, any 7 € Rep(P,) has a natural filtration by P, submodules

0C1,C71 1 C- CTCT1 =T

such that 7, = (®1)*=1(®~)k~1(7). The successive quotients are completely deter-
mined by the derivatives of 7 since

Tk/Tk+1 = ((I)+)k_1\1/+(T(k)).

The proofs of these statements can be found in the work of Bernstein and Zelevinsky [2, 3].

1.2. Derivatives for GL,. Let 7 € Rep(GL,). Then the derivatives of 7 can be defined
by using the restriction of 7 to P,. The 0 derivative is 7 itself, i.e., 7® = 7. The higher
derivatives are defined through the restriction of m to P,, which we denote by (o) in keeping
with the previous section. If we set 7 = 7wy = 7|p, then my) = 714 and 7k = 7 for
k=1,...,n.

These derivatives are quite useful in discussing the representation theory of GL,. For
example, the work of Gelfand and Kazhdan [7] can be interpreted as the statement that 7 is
quasi-cuspidal iff 7*) = 0 for 0 < k < n and 7™ # 0, and in this situation 7 is irreducible
iff 7 = 1.

The derivatives for GGL,, also satisfy a type of Leibniz rule. This is easiest stated using
(essentially) the notation introduced by Bernstein and Zelevinsky. If 7 € Rep(GL,) and
o € Rep(GL,,) let pxo denote the induced representation

X0 = Indgf‘:jm(ﬂ ® o)
where @), is the standard parabolic with Levi factor GL,, x GL,,, and the induction is
normalized parabolic induction on the space of smooth functions. Then the derivatives of
this induced representation (7xo)®*) are glued from the 7 xo*=) for 0 < i < k, ie.,
(mx0o)® has a filtration whose successive quotients are the 7 xa*=%) [3].

1.3. Connections with Whittaker models. Let (m,V;) € Rep(GL,). Then one can
explicitly compute the n* derivative 7(™. One finds that 7(™ is a representation of G Ly,
i.e., just a vector space. In fact, the space of 7™ is Vy/V,(N,, 1) where Vi(N,,v) =
(r(n)v—y(n)v | v € Vi, n € Ny,), N, is the maximal unipotent subgroup of upper triangular
unipotent matrices, and for n € N,, we set ¥)(n) = ¢)(n12+---+n,_1,). This is the maximal
quotient of V. on which N,, acts via the non-degenerate character ). Thus the dual linear
space (Vy/Vi(N,,10))* is the space of 1)-Whittaker functionals on 7 and we have dim(7™)
is precisely the number of (independent) Whittaker functionals on 7. If 7 is irreducible then
dim(7™) <1 [2, 7].
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7 is called generic if it is irreducible and dim(7(™) = 1. In this case, let A be a non-trivial
1-Whittaker functional. Then the space of functions

W(m, ) = {Wu(g) = Am(g)v) | v € Va, g € GLn}
with the natural action of GL,, by right translation is called the Whittaker model of «.
The main purpose of this section is to analyze the restriction of 7 to P, and the functors &~
and U~ for a generic representation in terms of its Whittaker model. One of the initial goals
of the Bernstein—Zelevinsky series was to provide a model for 7 in terms of the restriction of

the functions in the Whittaker model W(w, ) to P,. This is the so—called Kirillov model of
7. The result is:

Theorem [3| Let (7, V) be generic. Then the map
v— Wy(p) forveVy and p € P,

is injective, i.e., if W, € W(m, ) then the restriction of W, to P, as a function cannot
vanish identically.

Corollary. The space of functions on P, given by {W,(p) | v € Vi, p € P,} is a model for
the restriction w) of m to P,, the action being by right translation.

Let us make the following simple observation. Let W, € W(w, ) and let p = (g u) =

0 1
I,1 u g 0 .
( 0 1) (0 1> € P, with g € GL,,_1. Then

wa = ("5 4) (5 1)) = vtwnm (§ 7).

Hence we have a model of the restriction of 7 to P, on the space of functions

w, (9 VY vev., geGL,
01
with action given by

Wy (% (f) =W, ((‘% (1)) p) = Y(g'u)W, <gOg (1)) -

We will call this model a Whittaker model of 7o) and denote it by W(m gy, 1).

Let us now consider the functor ®~ in this context. To simplify the notation, let 7
denote the restriction mg) of m to P,. Recall that for (7, V) a smooth representation of P,
&~ (7) is the normalized representation of P,_; on the space V. /V,.(U,,¥) with V (U, 1) =
(T(w)v — Y(u)v | v € U,, v € V;). There is another characterization of the subspace
V. (U,, 1) due to Jacquet and Langlands [2], namely v € V, (U, v) iff there exists a compact
open subgroup Y C U, such that

/Yw‘l(y)T(y)v dy = 0.
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We would now like to give a third characterization of the space V. (U,,1) in terms of the
model of 7 = 7 on the space of functions W(r, ).

Proposition 1.1. V,(U,,v) = {Wy (g (1)) | W, (]0) (1)) =0 forpe Pn_l}.

Proof: Let

_ p 0\ _
A—{W (0 1>|VV <O 1>_0f0rp€Pn_1}.

We first claim that V, (U,, %) C A. To see this, let p’ € P, 1. Then if v' = 7(u)v—1(u)v €
Vo (Un, ) we see that

) (€ ) (i )-om (€ )
~ i) - v (4 9).
But P, is the stabilizer of the character ¢ of U,,. Therefore we see that ¥ (p'u) = ¢(u) and
W, (% ?) = 0. Thus W, € A.
We next claim that A C V.(U,,v). We now use the equivalent characterization of

V. (Uy,, 1) due to Jacquet and Langlands, namely, v € V,.(U,, ) iff there is a compact open
subgroup Y C U, such that
/ P! y)vdy = 0.

In terms of the Whittaker model of 7, this characterization becomes W, € W(r, ) iff there
is a compact open subgroup Y C U, such that

[ Wt @y =o.

Y

Now write p € P, as p = gu with g € GL,,_1 — P, and v € U,,. Then
/W guy)v~(y) dy = W, (gu /wgyg )™ (y) dy.

For Y sufficiently large, [, ¥ (9yg~")¥ "' (y)dy = 0 unless g € Stabg,  (¢) = P,—1. In this
case, setting g = p’ € P,_; we have

/W puy)y™ (y) dy = W, pU/¢

= Y(p'up” W, (% (1)) vol(Y).
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Hence if W, € A we see that this is again identically equal to 0. Therefore A C V. (U,,v).
O

Corollary. If 7 = 7y, then ®~(7) = mq) has as a model the space of functions

Wi {Jaator o (7

with the natural action by right translation.

NS Vw, g < GLn_Q}

If we now proceed by induction, we find natural models for all of the .

Proposition 1.2. The representation m,_1) of Pu_r41 has as a model the space of functions

W1, ) = {| det(g)|~ /2w, (g Ik)

with the natural action by right translation.

Ve VW, g c GLn_k}

We will refer to these models as Whittaker models for the mg_y).

Now turn to the functor ¥~ leading to the derivative. Given 7 = 7w = 7|p,, the
representation W~ (7) is the normalized representation of GL,,_; on the quotient V. /V,(Up,, 1).
As before, we have two characterizations of V,.(U,,1). By definition,

Vo(Up, 1) = (t(u)v —v | u €U, veV;)

whereas the Jacquet-Langlands characterization [2] is that v € V,(U,,1) iff there exists a
compact open subgroup Y C U, such that

/YT(y)U dy = 0.

We now give a third characterization in terms of the Whittaker model for 7 = ) given
above.

Proposition 1.3. Let 7 = () realized in its model on

W(r, ) = {Wv (9 1) v e v,r}.

Then V,(U,,1) consists of those W, for which there exists an N > 0, depending on v, such

that W, (g = 0 whenever the last row of g satisfies the estimate max;{|gn_14} < ¢ V.

1

Proof: As before, let

A= {U € V, | there exists N > 0 such that max{|g, 14/} < ¢V

implies W, <g 1) = O}.
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Let vy € V;(U,,1). Using the characterization of V,(U,,1) as the span (7(u)v — v|v €
V., u € Uy,), we see that if vg = 7(u)v — v where

1 Uy

1 Up—1

1

Wi, (g 1) = (1:[ U(Gn—iiwi) — 1) W, <g 1) :

So, assuming ¢ is normalized, if we take N such that ¢~ < min;{|u;| 7'}, we see that v, € A.
Hence V,(U,,1) C A.

then

On the other hand, using the characterization of V,(U,, 1) by Jacquet and Langlands, if
v € A with associated N > 0 let
w= [ T dy
YN

where

then we see

n—1
W, g = n—i,i¥i) dyi | Wo g ) :
’ ( 1> (11 /{yi|<q—N}¢(g ) y) < !

But, again assuming that 1) is normalized,

0 | Gn—i| > q N
w(gnq,iyz-) dyi = _ v
/{y,»sw} meas({|yi| <q N} gn—il < gV

Hence W,, (g 1) = 0. But the map v — W, (g 1) is injective. Hence vy = 0 and
v € V.(U,,1) by the Jacquet—Langlands criterion. 0

Applying this argument inductively, we obtain a similar result for (®7)*(7|p,) = T_1).

Proposition 1.4. labelpl.4 Let T = m—1y. Then in terms of the Whittaker model of T

VelUn-i1,1) = {| det(g)] "V, (g fk)

v € Vi g€ GL, 1, and there exists

N > 0 such that W, (g I ) = 0 whenever max{|gn—r.i|} < q_N}.
k 7
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Again, let us let 7 = m(g) = 7|p,. Recall that we have the decomposition of 7 via

0—®Td (1) > 7 — ¥"I (1) — 0.
The representation W~ (7) is the normalized representation of GL,,_; on the space of co-
variants V. /V,(U,,1). Both V,(U,,1) and the quotient are naturally P,—modules. In fact,
V./V:(Up, 1) is the maximal quotient on which U, C P, acts trivially. Since ¥*(p) is al-
ways the normalized extension of a GL,_; module to P, by letting U,, act trivially, we see
that T~ (1) = V,/V.(U,, 1) as a P,—module. Hence ®*®~ (1) = V,.(U,,1). The same
argument works for the representations (®7)*~*(7) = m(_1) and we arrive at the following
result.

Proposition 1.5. As P, ;1 modules we have

¢+ww»::{vmugw*“”ﬂwz(g 0

ve Vg€ GL,_, and there exists

N > 0 such that W, (g I ) = 0 whenever max{|gn—r;i|} < q_N}.
k i

1.4. Asymptotics and Derivatives. We have seen that we have a model for the represen-
tation of P, given by m(,_j_1), which we have called the Whittaker model, on the space of
functions

W k1), ¥) = {‘ det(g)|~m*=D/2y <9 / _k> ‘ W eW(m, ), g € GLk}

and that in this model

Voo Ukt1, 1) = {| det(g)|~("=F=D2 (g [n_k) ‘ there exists N > 0 such that
if max{|gri|} <q " then W (g I > = 0}
7 n—=k

Let 7 = m(n—k—1) and V; the space for 7. For each v € V; we have a function F,(g) on
G L;, defined as follows. If v/ € V; which projects onto v then

Fug)ZldEMQN*”*‘””W%'<g L%k>'

The space of functions {F,(g)} is essentially the Whittaker model for 7, which we will denote
again by W(r, ). The functions F, € W(r, ) satisfy the following properties:

(i) Fy(ng) =(n)F,(g) for n € Ny.
(i) Frnla!) = o 0Fa'0) itp = (§ 1) € P

where, in the first condition, ¥ (n) = ¥(n12 + -+ + nk_1x) and in the second condition,
V(g'u) = (g 1w + -+ + Ghpte)-
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To better describe the space V,(Ugi1,1), let us introduce the following definition of a
stable limit. If f(a) is a function on K* we say lim, . f(a) = c iff there exists N > 0
such that f(a) = c for |a| < ¢~. In m variables, if F' is a function on K™ \ {0} we say
lim, .o F(v) = c iff there exists N > 0 such that F(v) = ¢ for max;{|v;|} < ¢~V. Then we
have the characterization

Vo(Uks1, 1) = {F(g) € W(,¢) | lim F(g) = 0}

gk —0

with g, denoting the last row of g € GLy.

If we use the Iwasawa decomposition in GL; and write ¢ = nzak with n € Ny, z =
diag(z,...,2) € Zy, a = diag(ay,...,ax-1,1) € Ag, and k € GLi(0) then |z| is well defined
and gy — 0 if and only if z — 0.

Heuristically, the derivative 7("~% which is the normalized representation of GL; on
V. /V:(Ugi1,1) now becomes the asymptotics along the center in these coordinates. Writing
g = nak and using the center and the simple roots as coordinates on A, the limit is uniform
in the other coordinates, i.e., depends only on the function F,(g). Let us now make this
more precise.

Now let W(()n_k) C 7% be an irreducible subrepresentation of 7 , the normalized
quotient representation on V, n-x = V;/V,(Ugi1,1). Let p: V. — V__x be the normalized
projection map and let V,, = p’l(Vwénfm). Then 7 is a subrepresentation of 7 and V,, D
—k)

n—k)

V:(Ugy1,1). Let wy denote the central character of 7T(()n

Proposition 1.6. lir%wo(a)_l\a|_k/2F(aIk) ezists for F € W(ro, ).

Proof: For each v € V;, = W(1y,v) define a function of one variable f,(a) = F,(alg). This
is a smooth function of a. Let F(79) = {f,(a) | v € V,,} be the space of all such functions
as v runs over the space of 75 and Fo(19) = F(70) N S(K ™) those functions which vanish as
a approaches 0 in the stable sense. The image of V;(Uy41, 1) lies in Fy(7p).

If v € V,,(Ugy1, 1) then there is an N > 0 such that if |a| < ¢ then f,(a) = 0. So

lim wy ' (a)|a| /2 F, (ali) = limwy ™ (a) al ™2 f,(a) = 0

a—0

for v € Vi (Ug41, 1).

Next, suppose that v € V,,, but not in V,(Ugs1,1). Let p(v) be the image of v in V_x).
To
Since the projection p is a G Ly intertwining map, we have

la| 2 p(ro(ali)v) = 7§ (al))p(v) = wo(a)p(v).

Thus 7o(al)v — wo(a)|al*?v € ker(p) = V;(Ups1,1). So, given v € V;, and a € K* there
exists N = Nyq > 0 such that f, (0 wo(@a/ze(A) = 0 for A < ¢, ie., f,(Aa) =
wo(a)lal*’? f,(A) for [A] < g~
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We next consider a general property of the support of f,. Let us assume, without loss of
generality, that 1 is normalized so that 1 is trivial on o but ¢(z™!) # 1. Then we have that
for u € Upqq

Froup(@) = Fryyo(ady) = dlaw) Fy(aly) = ¢(auy) fo(a).
On the other hand, we have, by the smoothness of 7y, a constant M = M, > 0 such that
To(u)v = v if max; [u;| < ¢, ie., u € Yy Hence, for u € Ya,, fo(a) = ¥(aug)f,(a). For
la] > ¢™v there is a choice of u for which this character is non-trivial. Hence f,(a) = 0 for
lal > g™

Claim. There exists N = N, > 0 such that f,(\a) = wo(a)|a|*?f,(\) whenever |A| < ¢V
uniformly for a € o.

Proof: [Proof of the claim] Since both f, and wy are smooth on K* there exists an open
subset u of 0* such that f,(Au) = f,(\) and wy(au) = wp(a) for u € u. Let uy,...,us be a
set of coset representatives for 0™ /u. Set N, = max{Ny -, Ny, Now}-

Let a € 0, a # 0, with |a| < ¢7™ and A\ € K* with |\ < ¢~ . Write a = w’/u;u with
u € uand j > 0. we have

foAa) = f(d@luu) = f,(Aew’w;).

Since j > 0 we have |A@?| < |A] < ¢ so that
foQw?u;) = woluy) fo(Aa?).

Since |[Ae@’| < || for all 0 <4 < j repeatedly using the above argument gives

foOa?u;) = wo(@?ui) | |72 £, (N).
Since w(u) = 1 for u € u we finally arrive at

fo(Aa) = wo(a)la|*2 £, (N)

for all @ € 0, a # 0, as long as |\ < ¢ V. O

Once we have this claim, we see that for any A with || < ¢~ we have
limwg " (a)lal ™2 f,(a) = wy (WA £, (V).
In order to see this, consider |a| < ¢~™. Then we can write a = Aag with ay € o and
Al < ¢ M. Then
wy H(a)lal ™2 f,(a) = wg * (Aao)[Aao| /2 fu(Aao)
= wy ' (Aao) [Aao| 2w ag)|ao*’2 £, (N)
= wy "2, (0).

Hence
lim sy ! (@) al ™72 fu(@) = i A1)
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for any \ with [A] < ¢~ . O

Corollary. If \; and Ay both satisfy |\;| < ¢~ then
w A M2 Fu () = wgt (A) Al T2 £ (Aa).

We continue taking 7 = m(,_;_1) and are working under the assumption that Wé”_k) is

irreducible non-zero with central character wy. We have seen that for every a € K* and
every v € V;, we have mo(al},)v — wo(a)|a|*?v lies in V;(Ugy1,1) since it vanishes under the
normalized projection to Vﬂ(()n_k) =V, /V:(Ugs1,1). Here we view aly, € GLy — Py,1. Hence
there is a positive integer N = N, , such that for ¢ € GL; and

FT()(CLIk)’U*WQ(CLNCL‘k/Z’U(g) = 0 whenever ‘gk| < q_Nv’a

that is
F,(ag) = wo(a)]a|k/2Fv(g) whenever |gx| < g Nve

We now claim that we can choose N = N, uniformly for a € o as before. The argument is
essentially the same as above. From the smoothness of F), and wy there is an open set u C 0*
such that F,(gu) = F,(g) and wo(u) = 1. Let uy,...,u,, be a set of coset representatives
of o*/u and let N, = max{ Ny, .- Nou, Now}. Now let @ € 0N K* and g € GL; with
\gx| < ¢~ v, Write a = w’/u, @ with @ € u with j > 0. Then

Fy(ag) = Fy(w'uig)

= wo(u;) Fy(w?g) since |@’gy| < ¢ N7 < g Mo

= wo(@u)|@’|F/2F,(g) since |w'gy| < ¢V < ¢~ No= for all ¢
(

— wola)lal*2F, (g)

We next show that there exists a v € V,, such that hmw Y(a)|a|™?F,(a) # 0. First,

select vg € Vi, vog ¢ Vi(Ugs1,1), so that p(vy) # 0. Now there is N = N,, such that
F,(ag) = wo(a)|a|*?F,,(g) whenever a € o and |gi| < q’N. Since vy ¢ V;(Ugy1,1) there

/

must be a ¢’ € GL; with |g}| < ¢~ for which F,,(¢') # 0. Then, if we let v = 7y (g 1) Vo

we have

(i) Fuo(lx) = Fy(g') # 0,
(ii) F,(a) = wo(a)|a|*?F,(I},) whenever |a| < 1, a # 0,

and hence

(iff) limwq ! (a)lal ™2 Fy(a) = F, (L) # 0

as desired.
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Proposition 1.7. The linear functional
Aw) = lim g (@)]a| #/2F, (a)

defines a non-trivial Whittaker functional on W(()n_k).

Proof: 1t is easy to see that A is linear. We have seen that A vanishes on V,(Uyy1,1), so that
A factors through to a functional on V,, /V;(Ugy1,1) =V ), and that there exists v € V,

such that A(v) # 0. '

To see that A is a Whittaker functional, we compute for n € Ny that

AT (n)v) = A (TO (" 1) v) = limwy ' (a)|a| *°F (n )U(a)
1

70
= lim wy" (a) a| 2 F, (an) = ¥(n) lim wy ' (a)|a] /2 F,(a)

= Y(n)A(v).
U

Before we end these preliminaries and turn to the Rankin—Selberg integrals, let us note
the following connection between the Whittaker model of Wé"_k) determined by A and the
Whittaker model of 7. If v/ € V - define W), (g) = Ax""®(g)v) for g € GLy. 1f

0
v € V,, which projects to v/ then we have W/ (g) = |det(g)|~*/? lir%wgl(a)\a]’k/sz(ag).
But if |gr| < ¢~ and |a| < 1 we have F,(ag) = w(a)|a|*/?F,(g). So, if |gx| < ¢~V we have

W!,(g) = | det(g)|"/2F,(g). Therefore if we let ®,(x) € S(K*) be the characteristic function
of the lattice (w™*0)* and remember the definition of F, we have

Wé’(!])(Dv(ekg) = | det<g)|71/2Fv<g)q)v<€kg)
= et 0w (1) Y ufers)

where, as usual, e, = (0,...,0,1) € K*. For future reference, we record this as a Corollary
to Proposition 1.7.

Corollary. Let Wénik) be an irreducible submodule of T %) and 1, the corresponding

submodule of m,—r—1) which projects to W(()n_k) under the canonical projection. For every

W, e W(Wén_k),z/}) there is a W € W(1o,%) and ®, € S(K*) with ®,(0) # 0 such that
Wo(g)®o(exg) = | det(g)| "D 2W (g [M) Po(erg).

Moreover, for every W € W(1o,%) and every ®, € S(K*) locally constant and supported in
a sufficiently small neighborhood of 0 there is a W, € W(?T(()n_k), 1Y) such that

W (g In_k> Do (exg) = | det(g)| "MW (g) o (er9).
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1.5. Representations of Whittaker type. The results of Sections 1.3 and 1.4 are valid
for a wider class of representations than just generic representations. In this section we
would like to discuss these extensions.

For our purposes, a representation 7w of GL, will be called of Whittaker type if w is an
induced representation of the form

T=Ind(A; ® - @A)

where each A; is an irreducible quasi-square-integrable representation of GL,, and the
induction is normalized from the standard parabolic @) associated to the partition (nq, ..., n;)
of n. These are included in the representations of Whittaker type of [9] and in fact the only
representations of Whittaker type needed for the applications therein. Such 7m need not be
irreducible, but they have a unique (up to scalars) non-trivial ¢»-Whittaker functional A and
hence a (not necessarily injective) Whittaker model W(m, ) defined by v € V, — W, (g) =
Am(g)v) € W(m, ). The space W(m, 1) is not really a model for 7 but rather for a non-
degenerate quotient of 7. For these representations, it is not known in general whether the
restriction of the functions W, € W(m,¢) to p € P, can vanish identically, that is, whether
a version of the Kirillov model holds for these Whittaker quotients. However, there is a
natural representation of P, for which the analysis of Sections 1.3 and 1.4 hold. Namely, if
in this context we set

W(U)(ﬂ-7d}) = {Wv(p) | veVr, pe Pn}

and let 7 be the representation of P, in this space by right translation, then we may analyze 7
and its derivatives as above. In particular, Propositions 1.1 through 1.7 and their Corollaries
remain valid if we replace the representation (%) of GL,, by the Whittaker quotient W(m, ),
the representation ) of P, by the space of restricted Whittaker functions W) (7, %), and
then define 7*) and (k) through the representation W (m, 1) of P,.

There is one case where the representation 7 is a possibly reducible representation of
Whittaker type and still the Propositions 1.1 through 1.7 and their Corollaries hold without
modification. These are the induced representations of Langlands type. Let v(g) = | det(g)|
denote the unramified determinantal character of any GL,. An induced representation of
Langlands type is a representation of the form

7=Ind(A " ® - @ Aw™)

where each A; is now an irreducible (unitary) square-integrable representation of GL,,, each
u; is real and they are ordered so that u; > uy > - -+ > u;. The induction is normalized from
the standard (upper) parabolic @) associated to the partition (nq,...,n;) of n. Note that
these are representations of Whittaker type.

From the work of Jacquet and Shalika [10] we know that for these induced representations
of Langlands type the map v — W,(g) is actually an isomorphism of = with its Whittaker
model W(m, 1) and moreover the restriction of these functions to P, can never vanish iden-
tically, so the set of functions {W,(p)|v € V,, p € P,} does give a model for the restriction
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(o) of 7 to P,, that is, W) (7, 1) = W(m (), ). Hence, for these induced representations of
Langlands type, the Propositions 1.1 through 1.7 and their Corollaries hold as stated.

2. DERIVATIVES AND LocAL FACTORS

We want to use the theory of derivatives to compute the L-function for a non-archimedean
local field K for the case of GL,, x GL,, with m <n.

2.1. The basic existence theorem. We first recall the basic definitions and the basic
existence theorem from the paper of Jacquet, Piatetski-Shapiro, and Shalika [9].

Let
7=Ind(A; @ @A)

be a representation of Whittaker type on GL,, as in Section 1.5. Let 7* denote the represen-

tation of GL, on the same space V; but with action 7*(g) = w(*g™"!). If 7 is irreducible, then

7w = 7, the contragredient representation. 7* = Ind(A; ® --- ® A;) is again of Whittaker
1

type. Let w, = denote the long Weyl element in GL,,. If W € W(x, 1) then

1
the function W(g) = W(w,'g~") € W(x*, ™).

Now let 7 be a representation of GL, of Whittaker type and o a representation of GL,,
of Whittaker type. We always assume m < n. For each W € W(x,v) and W’ € W(o,¢™1)
we associate an integral

Hs:WW.0) = [ WgW(g)Bleng)| detlo)]* do
Nou\GLn
for each ® € S(K™) in the case m = n, or

g
newwy= [ [ wla W/(g)| det(g)|~ "™ di dg
Nm\GLm Mj,m _[

n—m-—j

for each 0 < j <n—m —1 in the case m < n. In the case m < n, we will let I(s; W, W') =
Iy(s; W, W') when appropriate to ease the notation.

The basic existence theorem of Jacquet, Piatetski-Shapiro, and Shalika [9] is the following.

Theorem. [9] (i) Each of the integrals I(s : W, W' ®), in the case m = n, and the integrals
Ii(s : W, W'), in the case m < n, is absolutely convergent for Re(s) large.

(ii) They are rational functions of ¢~*. More precisely, if m = n the integrals I1(s; W, W', ®)
form a fractional ideal Z(m,0) of the ring Clq®,q~*] of the form L(s,m x o)Clq¢®, q~%]; the
factor L(s,m x &) is of the form P(q *)~' where P(X) € C[X] and P(0) = 1. If m < n,
there is a similar factor L(s,m X o), independent of j, generating the ideal Z(m, o) spanned
by the integrals 1;(s; W, W'). The same results are true of the pair (7*,c").
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(iii) Suppose m = n. Then there is a monomial factor e(m x o0,s,1) of the form aq™®*,
a € 7, such that if

e(s,mx o,9)L(1 — s, 7 X 0*)

L(s,m X o)

V(s x 0,9) =
then
I(1 =5, W, W, @) = wo (=1)" (s, 7 X 0,¢) 1 (s; W, W").
Similarly, if m < n there is a monomial factor e(s,m X 0,1), independent of j, such that if
e(s,m x o,9)L(1 — s, 7 X o*)

L(s,m x 0)

(s, m x 0,1) =

then
Ly i1 (1 —s; ﬂ‘(wn,m)W, W’) = wa(—l)”_ly(s, X o, ) (s; W, W)

I,
wherewmm:(" m w |
m

Proof: [Remarks on the proof] Statements (i) and (ii) are proved by analyzing the asymp-
totics of the Whittaker functions involved on the torus 7;, or T}, as the entries go to 0. The
rationality of the integrals can also be proven using Bernstein’s Theorem, as presented in
Section 3 here. Statement (iii), the local functional equation, is an application of the theory
of derivatives and is quite in keeping with the spirit of this paper. [l

In order to compute L(s, ™ x o) we can use the following elementary characterization of the
polynomial P(¢~*), namely P(¢ ®) is the minimal polynomial (in the sense of divisibility)
in ¢~* such that P(¢~*)I(s; W, W’ ®), in the case m = n, or P(q~*)L;(s; W, W’), in the case
m < n, is an entire function of s for all W € W(m,v), W € W(o,¢!), and ® € S(K")
(if necessary). Once we normalize so that P(0) = 1, this characterizes P(¢*) and hence
L(s,m x o) uniquely.

The cases which are of most interest for us are when 7 and o are either generic or induced
of Langlands type, so that the results of Sections 1.3 and 1.4 hold as stated. These cases
also best illustrate the ideas involved. However, when we deform our representations in
Section 3 we will of necessity leave the realm of generic representations and even of induced
representations of Langlands type, although when the parameters are in “general position”
the representations in question will be generic. So we must work with representations of
Whittaker type. Throughout this section we will use the notation of Sections 1.3 and 1.4.
However, in the case when 7 and o are only of Whittaker type and not the more special
generic or induced of Langlands type, then we invoke the conventions of Section 1.5, that
is, we take 7 to be W(mr, ), o) to be Wipy(m,¢), 0@ to be W(o,1™1), and o to be
Wiy(o,9%1). Since our computations involve the manipulation of integrals of Whittaker
functions, this is most natural. We hope this does not cause too much confusion.

2.2. The case m = n. Let us now begin to analyze the locations of the poles of the rational
functions in Z(7, o), since these poles and their orders will determine P(q~*) = L(s, 7 x o)™’
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Since this ideal is linearly spanned by the I(s; W, W’ ®) it will suffice to understand the poles
of these integrals.

Suppose there is a function in Z(m, o) having a pole of order d at s = sy and that this is
the highest order pole of the family at s = sy. Consider a rational function defined by an
individual integral I(s; W, W’ ®). Then the Laurent, or partial fraction, expansion about
s = s will have the form

B, (W, W' ®)
<qs _ qso)d
The coefficient of the leading term, B(W, W’ ®), will define a non-trivial trilinear form on

W(rm, ) x W(o,¥™1) x S(K™) satisfying the quasi-invariance

By, (n(g)W, a(g)W', p(g)®; s) = | det(g)|* B, (W, W', @)

I(s; W, W' @) = + higher order terms.

where p denotes the representation of GL, on S(K™) by right translation.

The Schwartz functions have a natural GL,—stable filtration S(K") D So(K™) D {0},
where So(K"™) = {® € S(K") | ®(0) = 0}.

Definition. The pole at s = sy of the family Z(mw, o) is called exceptional if the associated
trilinear form Bg, (W, W' ®) vanishes identically on So(K™).

If s¢ is an exceptional pole of [ ( ,0) then the trilinear form By, factors to a non—zero
trilinear form on W(m,¢) x W(o,¢™) x (S(K™)/So(K™)). The quotlent S(K™)/So(K™) is
isomorphic to C via the map ® — <I>( ). Hence if s is an exceptional pole, then the form By,
can be written as B, (W, W', ®) = By (W, W')®(0) with Bg a quasi-invariant bilinear form
on W(m,1h) x W(a, ") satisfying By (m(g)W, o (g)W') = | det(g)|~* Bg, (W, W’). Note that
in the case that m and o are irreducible, which will be true for 7 and ¢ in “general position”,
such a pairing implies an isomorphism between 7 and ov®, where we let v(g) denote the
determinantal character v(g) = |det(g)| for any size GL,, and puts a severe restriction on
the possible exceptional poles sg. In general, we would have to have such an isomorphism
between constituents of 7 and o. Let us emphasize this fact.

Proposition 2.1. If 7 and o are irreducible, then the exceptional poles sy of the family
Z(m, o) can only occur among those s for which ™ = ov®.

If the ideal Z (7, o) has an exceptional pole of order d at s = s, then this pole contributes
a factor of (1 — ¢*0¢~*)¢ to L(s,m x o)~'. For distinct exceptional poles (as elements of

C/ 102&1 Z), these factors will be independent (that is, relatively prime in C[q¢®, ¢~*]).

Definition. Let L., (s, 7 x o)~ denote the product of these factors (1 — ¢*°q=*)¢ as sy runs
over the exceptional poles of I(mw, o), with d the (mazimal) order of the pole.

Then L, (s, 7 x o)~ divides L(s, 7 x o) ~1. We will refer to L, (s, ™ x o) as the exceptional
contribution to L(s, 7 X o).
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Next, consider a pole at s = sq of the family Z(m, o) which is not exceptional. Let d be
the maximal order with which it occurs in Z(m, o). Then each integral I(s; W, W' @) will
still have an expansion

B, (W, W' ®)
<qs _ qso)d

about s = sy and the coefficient of the leading term, By, (W, W', ®@), still defines a non-trivial
trilinear form on W(m,v) x W(o,19!) x S(K™) satisfying the quasi-invariance

(2.1) I(s; W, W' @) = + higher order terms.

By (m(g)W,a(g)W', p(9)®) = | det(g)| ™ By, (W, W', @),

but now this form restricts non—trivially to So(K™). Let ®° € So(K™) for which there exist
W € W(r, o) and W' € W(o,v 1) with By, (W, W', ®°) £ 0.

Let K, = GL,(0) be the maximal compact subgroup of GL,. Then we may decompose
our integral as

I(s; W,W/, ®°) =

- / /N " W (pk)W" (pk)| det(p)|*~ /K wela)wn (0)]a] " (e,ak) d*a dp dk.

Take K; C K, a compact open subgroup which stabilizes W, W’ and ®°. Write K,, =
Uik: K7 and let ®F = p(k;)®°, W; = w(k;)W, and W/ = o(k;)W’. Then each ®2(0) = 0 so
that each ®¢(e,a) has compact support on K*. Let U° be an open compact subgroup of K*
such that each ®§ as well as w, and w, are invariant under U°. Let S = USupp(®P$(e,a))
and write S = Ua;U°. Then, the integral I(s; W, W', ®°) can be decomposed as a finite sum
of the form

I(s; W,W/, °) =
(2.2) =) wrla;)we(a;)as|" B (enay) /N " Wi(p)W; (p)| det(p)|~* dp
i7j n n

with ¢ > 0 a volume term. We still have the expansion (2.1) with B, (W, W’ ®°) # 0 for
some choice of W and W’. Hence, for such a choice of W and W’ we must have that at least
one of the rational functions defined by the integrals

(2.3) /N L W) )

must have a pole of order d at s = s5. Moreover, as is apparent by looking at (2.2), for suitable
choice of ®° each of these integrals will individually occur in Z(m, o) and hence completely
account for the pole at s = sg with its maximal order. Let us denote the integral occurring
in (2.3) by I)(s; W,W’). As is suggested, the integrals only depend on the functions W
and W’ through their restriction to P,, that is, on 7 and o(g. Moreover, the integral over
N, \ P, can be reduced to an integral over N, _1\GL,_1. We summarize this in the following
statement.
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Proposition 2.2. The poles of the family Z(mw, o) which are not exceptional are precisely the
poles of mazimal order of the family of rational functions Lo (m,0) spanned by the integrals

Loy (s; W, W) =/ w <g 1) w (g 1> | det(g)|""" dg
Np_1\GLn_1
with W € W(m,v) and W € W(a,y™1).

Let us now analyze the rational functions Ig)(s; W, W’). We again take a pole s = s
of the family Z)(m, o) and let d be its maximal order in the family. Then each rational
function will have an expansion of the usual shape, which in this case we write

Bio).s0 (W, W)

+ higher order terms
(¢° — g*)*

Loy(s; W, W') =

where now we may view B, as a non-trivial bilinear form on W(m ), %) x W(o (), ¥ ™")
which satisfies Big) s, ((0) ()W, 0(0)(p)W') = | det(p)| 50" By 5o (W, W').

Since we are now dealing with representations of F,, we can use the filtration of 7 and
oy by derivatives. To ease notation, let us denote 7y by 7 for the moment. So 7 has the
filtration 7 =7 D7 D - D 7, D 0 with 7; = (1) H®7)" (1) = () (7m(o1)). We
know that the bilinear form B ), is nontrivial on 7 = 71. It must be trivial on 7, for the
functions W which come from W(r,, 1) are compactly supported on P, modulo N,,. Hence
the integral defining (o) (s; W, W) for such functions will become a finite sum, resulting in a
Laurent polynomial which is entire. So there will be a smallest k such that B ), restricts
trivially on W(7,,_+1,%) but is non-zero on W(7,,_j, ).

Consider now the rational functions defined by the integrals I(g)(s; W, W') with W €
W(T(0)n—k,%). These rational functions account for the pole at s = sy with the maximal
order d. Recall from Section 2 that the Whittaker functions W € W(7(0)n—k, %) are charac-
1 that their support
in the last n — k — 1 rows of g is compact, modulo N,,. Hence, if we use a partial Iwasawa
decomposition to write the g € GL,,_; as

terized by the fact if we view them as functions on GL,,_; by W (g

h

Q41

g= . k  (mod N,,_1)
Ap—1

with h € GLg, k € K,,_1, and each a; € K*, the function W will have compact multiplicative
support in the a;. Then, as in (2.2), for a fixed W and W’ our integral becomes a finite sum

of the form
Wi h wr (h | det(R)[*~ ("R dh.
[nfk ! Infk

Ty (s; W, W') Zcq_ﬂ’s/

Ni\GLy,
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Set

[(n—k—l) (37 W7 W/) =

(2.4) _ / W(h ; )W’ (h ; )|det(h)|s—<n—k> dh.
N \GLy n—=k n—k

Then our pole at s = sy of order d must come from one of the integrals I(,__1)(W, W';s)
with W' € W(7(0),n—k, ). Moreover, since both W and W’ enter into these integrals through
their restriction to G'Ly, they only depend on the images of W and W' in W(7(,—k_1), )
and W(o(,—k—1), ¥~ ") respectively. Moreover, by Lemma 9.2 of [9], it is elementary to see
that each I(,,__1)(s; W, W') actually occurs as a I(g)(s; W,, W/) for appropriate choice of W,
and W/, and hence are elements of Zg)(7,0) C Z(m,0). Hence these integrals can have at

most a pole of order d at s = 55 and hence a pole of order exactly d at s = s, for appropriate
choice of W and W".

Let us denote by Z(,_;_1)(m, o) the span of the rational functions defined by the integrals
In—k—1)(s; W, W'). As we have seen, each non-exceptional pole of the family Z(7, o) occurs
as a pole of the family Z(,,__1)(m, o) for some k and each pole of this family is a pole of the
family Z(m, o).

Now, analyze our non—exceptional pole at s = s in terms of these integrals. Again, look
at the expansion about s = s

Bln—k—1),5 (W, W')
(qs _ qso)d

Ty (s; W, W') = + higher order terms.

Since the integral involves W and W' restricted to GLj, the integral and the bilinear form
Bn—i-1),50(W, W’) depend only on the functions determined by W and W' in W(7(;,——1, ¥)
and W(o(,—k—1),9 ") respectively. Recalling the twists involved in the definitions of the
derivatives, the quasi—invariance becomes

B(n—k—l),so (ﬂ-(n—k—l) (p) W> O(n—k-1) (p)W/) = ’ det(p> |780+1B(n—k—1),50 <W7 W/)

Furthermore, the index & was chosen so that B(,_j_1ys, (W, W’) is non-trivial, but vanishes
for W' corresponding to functions in W(m ) n—k41,%) that is for W € W(m(—k—1),2,%) C
W(T(n—k-1),¥). As a representation of Pyi1, T(n—k—1)/Tn-k-1)2 = Ut (7(=*). Hence
B(n—k-1),s, defines a non-trivial bilinear form on W (7)) ) x W(0(n—k—-1), ") which
is quasi-invariant with respect to the action of Py,;. By Proposition 3.7 of [3], there are no
non-trivial quasi-invariant pairings between ¥ (7("=®) and o(,__1)2 = ®*(0(,_1)). Hence
the pairing defined by B(,_x_1),s, must actually define a non-zero bilinear form on the space
W (r09), ) x W(BH(o0—9), L),

To proceed from this point, we need to make a simplifying assumption. As we shall see in
Section 3, this assumption is satisfied for all 7 and ¢ in “general position”.

Assumption. Assume the all derivatives 7™ % of © and all derivatives o %) of o are
completely reducible.
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Continuing our analysis under this assumption, let us write 7(*~%) = @7@("*’“) and o(" k) =
@a](n_k) with each Wf”_k) and 0§n_k) irreducible. Then the bilinear form B(,_;_1y,s, (W, W’)

determined by our pole sy must restrict non-trivially to some pair

(Wi, Wi) € W (r" ™), 0) x Wit (ol ), 9.

J
Recall from the Corollary to Proposition 1.7 that there exist functions W, € W(ngn_k), V)

and W € W(oﬁ-n_k), ¥1) such that for every Schwartz function ®, € S(K*) which is the

characteristic function of a sufficiently small neighborhood of 0 € K* we have an equalities

W, (h ]n_k) By (exh) = Wo(h)| det(h)| @720, (exh)

h n—
Wi (") @elead) = WL et ()]0,

We may then decompose the integral I(,_x_1y(s; Wi, W}) into two parts
Ty (5; Wi, W) = 10, 1y (s Wi, W) + I,y (5 Wi, W)
where

Iy (53 Wi, W) =
- /Nk\GLk

Loy (55 Wi, W)) =
= W; h we (" (1 — ®,(exh))| det(h)|*="=% dh.
N [nfk: J [nfk
k\GLg

In the integrals ](1n_k_1)(s;Wi,W]{), the (1 — ®,(exh)) term will restrict the support of
the integrand to being compact in the last row of h, modulo Ni. Using a partial Iwasawa
decomposition as above, we can then write this integral as a finite sum of integrals involving
the restrictions of W; and W7 to G Ly, that is, depending only on the images of W; and W7}
in W(m(n—r, V) and W(o(n—k), ). But our bilinear form restricts to zero on these spaces.
Hence the integrals of the form I (1%,%1)(3; Wi, W}) cannot contribute to the order d pole at
s = sg, and play no role in our analysis.

=
—
>
&
=
N
I
—
>

/ ) D, (eph)| det(h)|*=™ dh
n—k

and

We can write ](On_k_l)(s; Wi, W) in terms of W, and W/, namely

190 (s W W) = / Wo ()W (). (exh)| det (h)[* dh.
Ni\G Ly,

These integrals must contribute the pole at of order d at s = s5. However, as integrals on
G Ly, these are the standard Rankin—Selberg integrals I(On_k_l)(s; Wi, WJ) = I(s; Wo, W5, @)

and since ®,(0) = 1 # 0 the pole of order d at s = sq is an exceptional pole of this integral.
Moreover, any integral for Wf”fk) and aj(»"*k) corresponding to an exceptional pole must
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come from a I?n_k_l)(s; Wi, VVJ’) for some choice of W; and W;, again by the Corollary to
Proposition 1.7, and hence give rise to a pole of the family Z(r, o).

Summarizing this analysis, we arrive at the following result.

Proposition 2.3. Under the assumption that all derivatives of m and o are completely
reducible, any non—exceptional pole s = so of order d of the family Z(w, o) will correspond
("7’“),0](-"7’“)) with 0 < k < n,

to an exceptional pole, again of order d, for some family Z(m,
n—k)

(n—k) n—k)

T, an irreducible constituent of 7% and aj(n_k) and irreducible constituent of ol

Furthermore, all exceptional poles of these families occur, with the same order, as poles of
the family Z(m, o).

If me combine this with our analysis of the exceptional poles of the family Z(w, o), we
arrive at the following theorem.

Theorem 2.1. Let m and o be representations of GL,, of Whittaker type such that all deriva-
tives of m and o are completely reducible. Then

L(s,mx o)t = l.C.m.hi,j{Lem(S,ﬂ'i(n_k) X U](-n_k))_l}

where the least common multiple is with respect to divisibility in Clq®, ¢~%] and is taken over
all k with 0 < k < n and for each k all constituents i

g k) of #™%) and all constituents
a§n_k) of o=k,

2.3. The case m < n. Now, take m a representation of Whittaker type of GL, and o a
representation of Whittaker type of GL,, with m < n. Let us analyze the locations of the
poles of the rational functions in Z(m, o), since these poles and their orders will determine
P(q*) and hence L(s, 7 X o).

Suppose there is a function in Z(m, o) having a pole at s = sy of order d and that this is
the highest order with which the pole at s = sy occurs in the family. Since the ideal Z (7, o)
is spanned by the rational functions defined by the integrals I(s; W, W') = Iy(s; W, W), this
pole must occur with order d for some function I(s; W, W’). Consider the rational function
determined by an individual integral I(s; W, W’) with W € W(x,v) and W’ € W(o,v ™).
Then this will have a Laurent (or partial fraction) expansion near s = sq of the form
B, (W. )
(qs _ qso)d
The coefficient By, (W, W’) of the leading term will be a non-trivial bilinear form on W(w, ¢) x
W(o,~1) with the quasi-invariance under GL,, given by

B, (” (g I )an<g>W'> = |det(g)| 2B (W, W),

I(s; W, W') = + higher order terms.

Since the dependence on W € W(w, 1) is through its restriction to GL,,, we see that
the function I(s; W, W’), and hence the form By, (W,W’), only depends on the restric-
tion of W to P, and, in fact, only on the image of W in the representation of P,,,; on
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W(T(n—m-1),%). Thus we see that in fact B, (W,W’) factors to a GL,, quasi-invariant
pairing between W(m(,—n—1), ) and W(o, 1)) satisfying

B,, (%-m-n (g 1) W, o<g>W’) = | det(g)| /2B, (W, W").

Let 7 = m(,—m—1) and consider the filtration of 7 by derivatives
0OCTm1 CTn C---C11 =T.

The bilinear form B,, must be trivial on 7,1, for the functions coming from W(7,,11, )
will be compactly supported on GL,, modulo N,,, hence the integral defining I(s; W, W’)
will reduce to a finite sum, resulting in a Laurent polynomial which is entire. Let k be the
smallest integer such that By, (W, W’) is trivial on W(7Ty 19—k, %) but not on W(7,41-k, 9).

First, consider the case where k = m. In this case, B,, (W, W’) is zero for
W e W(ﬂ-(n—m—l),% 1/1) C W(ﬂ'(n—m—l)a w)

The quotient 7(,—m—1)/T(n-m-1),2 realizes the representation Ut (g(=m)) Hence By, (W, W')
factors to a non-zero bilinear form on W(WU* (7= ) x W(o,™1).

Next, consider the case k < m and consider the rational functions defined by the integrals
I(s; W, W') with W € W(T(n—m—1),m+1-k,¥). These rational functions account for the pole
at s = sp with the maximal order d. Recall from Section 1 that the Whittaker functions
W € W(T(n—m—1),m+1-k, ¥) are characterized by the fact if we view them as functions on

GL,, by W (g I that their support in the last m — k rows of ¢ is compact, modulo
N,,. Hence, if we use a partial Iwasawa decomposition to write the g € GL,, as
h
Af+1
g= o k  (mod N,,)

am

with h € GLy, k € K,,, and each a; € K*, the function W will have compact multiplicative
support in the a;. Then, as in (2.2), for a fixed W and W’ our integral becomes a finite sum
of the form

I(s; W, W) =

Zciq_ﬁis/ W, (h , )VVZ/ <h ; ) |det(h)|s—(m—k)—(n—m)/2 dh.
; Ni\GLj, n—k m—k

Set
Ty (s; W, W') =

(2.5) = / W(h I >W’ (h I )|det(h)|s‘(m‘k)‘("‘m)/2 dh.
N \GLy n—=k m—Fk

Then our pole at s = sy of order d must come from one of the integrals I(;,——1)(s; W, W’)
with W € W(T(n—m—1),m+1-k, ). Moreover, since both W and W’ enter into these integrals
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through their restriction to G Ly, they really only depend on the images of W and W' in
W(T(n—k-1), ) and W(0(m—k—1), ") respectively. Moreover, by Lemma 9.2 of [9], it is ele-
mentary to see that each I(n,_p—1)(s; W, W') actually occurs as a I(s; W,, W) for appropriate
choice of W, and W/, and hence are elements of Z(7,0). Hence these integrals can have at

most a pole of order d at s = sy and hence a pole of order exactly d at s = sy for appropriate
choice of W and W'.

Let us denote by Z,,,—x—1)(7, o) the span of the rational functions defined by the integrals
Im—k—1)(s; W, W'). As we have seen, each pole of the family Z(m, o) occurs as a pole of the
family Z(,,—x—1)(m, o) for some k with 0 < k < m and each pole of this family is a pole of
the family Z (7, o).

Now, analyze our pole at s = sy in terms of these integrals. Again, look at the expansion
about s = sg which we now write as

B(mfk:fl),so (I/Va W/)
(q° — g*)*
Since the integral involves W and W' restricted to GLj, the integral and the bilinear form
B(m—k-1),5o(W, W’) depend only on the functions determined by W and W’ in W(7 1, )

and W(0(m—r-1), ¥ ") respectively. Recalling the twists involved in the definitions of the
derivatives, the quasi—invariance becomes

Bln—t-1),50 (Tn—k—1) (D)W, O (m—r—1y (0)W') = | det(p)| T Bl —1),5 (W, W).

Furthermore, the index k was chosen so that Bn,_i_1,s,(W, W’) is non-trivial, but vanishes
for W' corresponding to functions in W(m(—m—1),m+1-k,¢) that is for functions

W e W(mm-r-1)2,¢) C W(T(n—k-1)¥). As a representation of Pyi1, T(n_k—1)/T(n—k-1),2
= Ut (r("k)). Hence B,_j_1),, defines a non-trivial bilinear form on W(¥™*(r (" ), 1) x
W(0 (m—k—1), ¥~1) which is quas1 invariant with respect to the action of P,.;. By Propo-
sition 3.7 of [3], there are no non-trivial quasi-invariant pairings between ¥*(7("~*)) and
O(m—k—1),2 = @*(a(m,k)). Hence the pairing defined by B(,,_r_1), must actually define a
non-zero bilinear form on the space W(UT (7)) 1)) x W(TF(am=k) =)

Tom—k—1)(s; W, W') = + higher order terms.

To proceed from this point, we need to again make a simplifying assumption. As we shall
see in Section 3, this assumption is satisfied for all 7 and ¢ in “general position”.

Assumption. Assume the all derivatives 7™ %) of © and all derivatives o™ % of o are
completely reducible.

Continuing our analysis under this assumption as before, let us write 7(*=%) = o h

; and

o(m=Fk) = EBa(m_k) with each F(n_k) and a(m_k) irreducible. Let us make the convention that,
in the case k m, we set [_qy(s; W, W’) = I(s; W, W’) and B(_ys,(W,W') = B, (W, W’).

The bilinear form B(,,—k_1),s,(W, W’) determined by our pole sp must restrict non-trivially
to some pair (W;, W) € W(\IJ+( k) 4y x W(¥* (o, (m=k)) 4=1). From the Corollary to
Proposition 1.7 we know there exist functions W, € W( in_k), Y) and W! € W(U§m_k), Y1)
such that for every Schwartz function ®, € S(K*) which is the characteristic function of a
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sufficiently small neighborhood of 0 € K* we have an equalities

W; (h ]n_k) D, (eph) = Wo(h)| det(h)|"F/2d, (e, h)

o (h ) .
W ( [mk) ®o(exh) = W ()| det(h)| k)/QCDO(Gkh).

We may then decompose the integral I(,, 4 1)(W;, W) into two parts
Lm—r—1) (83 Wi, WJ,) = I?mfk71)<5; Wi, WJ/) + ](1m7k71)(35 Wi, WJ/)
where

I?mkl( =

.7
( ) (h ; )@o(ekh)|det(h)|s‘(m‘k)_(”_m)/2 dh
Nk\GLk m—k
and

[gm—k—l)(S;VV“VVj{)

h h s—(m—k)—(n—m
[ (" (M) 0 e aeop e

NA\GLy n m

In the integrals ](1m—k—1)(Wi= W7), the (1 — ®,(exh)) term will restrict the support of the
integrand to being compact in the last row of h, modulo N;. Using a partial Iwasawa
decomposition as above, we can then write this integral as a finite sum of integrals involving
the restrictions of W, and VVJ’ to GLg_1, that is, depending only on the images of W; and VVJ’
in W(m(n—k), ) and W(o(m—p), ~"). But our bilinear form restricts to zero on these spaces.
Hence the 1ntegrals of the form I} (m—k—1) (W, W') cannot contribute to the order d pole at
s = sg, and play no role in our analysis.

We can write I?m_k_l)(I/V,-, W}) in terms of W, and W, namely

10, (s Wi W) = / W (R)W ()4 (exh) | det(h)|* dh.
Ni\GLy

These integrals must contribute the pole at of order d at s = sq. However, as integrals on
G Ly, these are the standard Rankin—Selberg integrals IO pey(Wi, W) = I(s; W, W, ®,)

and since ®,(0) = 1 # 0 the pole of order d at s = sq is an exceptlonal pole of this integral.

Moreover, any integral for W(”_k) and a(m_k) corresponding to an exceptional pole must
come from a [( k1) (s; Wi, W) for some choice of W; and Wj, again by the Corollary to

Proposition 1.7, and hence give rise to a pole of the family Z(, o).

Summarizing this analysis, we arrive at the following result.

Proposition 2.4. Under the assumption that all derivatives of ™ and o are completely

reducible, any pole s = s of order d of the family Z(w,0) will correspond to an exceptional
(n—k) _(m—k) —k)

pole, again of order d, for some family I (m, o; ) with0 < k < m, 7T§n

, 0 an irreducible
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constituent of T F and aj(-mfk) and irreducible constituent of o™ %) . Furthermore, all
exceptional poles of these families occur, with the same order, as poles of the family I(m, o).

If we rewrite this in terms of exceptional L-functions, we arrive at the following result.

Theorem 2.2. Let m and o be representations of GL, and GL,, respectively of Whittaker
type such that all derivatives of m and o are completely reducible. Then

L(s,m x 0)™" = Lemag j{Lea(s, 777 x aj(m_k))_l}

where the least common multiple is with respect to divisibility in Clq®, q~®] and is taken over

all k with 0 < k < m and for each k all constituents =

O'](-m_k) of o(m=k).

") of 7% and all constituents

2.4. The Bernstein—Zelevinsky Classification. Recall that an admissible representation
(p,V,) of GL, is called supercuspidal or simply cuspidal if it is killed by all Jacquet functors
for proper standard parabolic subgroups P = MU of GL,, that is, ry(p) = 0 where ry(p)
is the natural representation of M on V,/V,(U,1) [3]. In this terminology, cuspidals need
not be unitary.

Let v(g) = | det(g)| be the unramified determinantal character of any GL,.

By a segment A we mean a sequence of cuspidal representations of the form

A=lppv,... pv1.
If p is a cuspidal representation of G L, then the segment determines a representation, which
by abuse of notation we will again denote by A, of GL,, by setting A to be the unique
irreducible quotient of Ind(p® pv ® - - - ® pr~1) where the induction is normalized parabolic
induction from the standard parabolic attached to the partition (r,r,...,r) of r¢. (Note:
Bernstein and Zelevinsky take (A) to be the irreducible submodule of this induced and (A)*
to be the irreducible quotient. Since we will not need the irreducible submodule, we will
simply use A for the irreducible quotient. We hope this does not cause too much confusion.)

Theorem. [3, 12] w is an irreducible quasi-square-integrable representation of GL,, if and
only if m = A for some segment A.

Following Bernstein and Zelevinsky we say two segments A; and A, are linked if neither
one is a subsegment of the other, but never the less their union A; U A, is again a segment.

Theorem. [3, 12| 7 is an irreducible generic representation of GL, if and only if there
exist non-linked segments Ay, ..., Ay such that m = Ind(A) ® - -+ ® A;), with the induction
normalized parabolic induction.

Note that in this situation the induced representation is irreducible [3, 12].

2.5. Derivatives. The derivatives of these representations have all been computed by Bern-
stein and Zelevinsky [3, 12]. The results are as follows.
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i) Let p be a cuspidal representation of GL,. Then p(® = p, p*) =0 for 1 <k <r —1,
p p P P
and p) = 1.

(ii) Let # = A with A = [p, pv,..., pr*"!] and p a cuspidal representation of GL,. Then
7*) = 0 if k is not a multiple of r, 7 = A, 77 = [pvk pr*+1 o for 1 <k < (-1,
and 7(") = 1. Note that all non-zero derivatives are irreducible and quasi-square-integrable.

(iii) Let 7 be generic and write 7 = Ind(A; ® --- ® A;). Then 7* is glued from those
representations of the form Ind(Agkl) ® - ® Agkt)) which give representations of GL,,_y.
If A; is an irreducible representation of GL,,, so that n = ny + --- + n;, then we have a
filtration of 7(*) whose subquotients are the representations Ind(Agkl) R ® Agkt)) with k =
ki+---+Fk. In general 7 need not be completely reducible and the Ind(A @ - ® Agkt))
need not be irreducible. However, in the case where the segments are in “general position”,
as in Section 3, then the derivatives 7*) will be completely reducible and the subquotients
Ind(Agkl) ®-® Agkt)) will be generic and irreducible.

2.6. Computation of the L-function.

2.6.1. Cluspidal representations. Let us begin with cuspidal representations. Let 7 be an
irreducible cuspidal representation of GL, and ¢ an irreducible cuspidal representation of
GL,, with n > m. The poles of the family Z(m, o) and hence of the L-function L(s,m X o)
are precisely accounted for by the exceptional poles of the integrals

/N \GL W(g)W'(g)®(exg)| det(g)|" dg

with W € W(r™=0 ), W € W(e™* 1), and ® € S(K*) with support in a neighbor-
hood of 0.

As we have seen, 7 %) = 0 unless £k = 0,n and (™% = 0 unless &k = 0, m. The case
k = 0 gives no poles, so that we have

L(s,m xo)=1ifn > m.

If n = m the computation is given in Gelbart and Jacquet [5]. As we will use this method
of computation in the square-integrable case, we sketch it here. For details, see [5]. The
poles of the family Z (7, o) are again exactly the exceptional poles of the family of integrals

Hs:WW'0) = [ W)W lg)blewg)|detlo)l* dy
Nu\GLn
with W € W(m,¥), W € W(o,v 1), and ® € S(K*) with support in a neighborhood of 0.
Let s = s¢ be an exceptional pole of one of these families of integrals. On the one hand, at
s = so we have the expansion
B (W, W"h®(0
I(s; W, W' ®) = 30(( 2)01( ) + higher order terms
qS — qS
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where d is the highest order to which the pole occurs in the family. Since the 7 and o are
irreducible, by Proposition 2.1 we know that the exceptional poles can only occur at those
So where ™ = gv*,

On the other hand, in each integral we can separate out the integral over the center. To

this end, write g € GL,, as g = nz h 1 k with n € N, z € Z,, the center, h € GL,,_,

and k£ € K, the maximal compact subgroup. Then the integral becomes

Jodan () ()

(/KX wr(2)we (2)@((0,...,0,2)k)[2[" dxz> | det(h)[~" dh dk.

Since the pole is exceptional, it occurs with its highest order for ® with ®(0) # 0. These ¢
are exactly those which contribute the poles of the family of integrals

I(s;wrwy, @) = / wr(2)wy(2)@(0,...,0,2)|2|" d*z.
This family is the Tate family computing the abelian L-function L(ns, w,w,). This L-function
has a simple pole at s = s; if and only if w_ ! = w,v™!. At such a point, the Tate integral
will have the expansion

d(0
I(s;wrws, ®) = c2(0) + higher order terms
qs _ qsl

with ¢ a non-zero constant.

But, since at our exceptional pole sy we have @ = gv®* which implies w ! = w,v™°,

we see that the exceptional poles of our original family occur among the poles of this Tate
family. But for these poles, if we replace the Tate integral by its Laurent, or partial fraction,
expansion, we see that we have

lim (¢° — ¢*)I(s: W, W', &) = c®(0) / W (g)W"(g)| det(g)|* d.
ZnNn\GLn

S—S0

The integral on the right hand side realizes the standard pairing between the Whittaker
models of 7 and ov*° and is absolutely convergent and non-zero [5, 9.

Thus our original expansion must be of the form

B° (W.WHd(0
I(s; W, W' &) = —=2 (qs ’_ qs)o 0) + higher order terms
with
BS (W.W') = ¢ / W (g)W"(g)| det(g)[™ dg
Z,LNn\GLn

and ¢ # 0. Hence the exceptional pole at s = sy exists, is necessarily simple, and has a
non-zero residue if and only if 7 = ov®. Therefore, we have

Lea(s, 7" x o) = T](1 = ag™) ™"

where « runs over all o = ¢ with 7 = gv®.
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Since these are the only possible poles of the L-function, we have the following.

Theorem. [5] Let m be a cuspidal representation of GL,, and o a cuspidal representation of
GL,,. If m <n we have L(s,m X 0) = 1. If m = n we have

L(s,mx0) = H(l —aq )t

with the product over all o = ¢*° such that ™ = ov*.

2.6.2. Quasi-square-integrable representations. Our method lets us compute the L-function
for quasi-square-integrable representations using the same method that Gelbart and Jacquet
did for cuspidal representations. Let us take 7 = A for the segment A = [p, pv, ..., pv*7!]
and o = A/ for the segment A’ = [p/, p'v, ..., p'v"~']. Then the derivatives are all irreducible
and quasi-square-integrable. The poles of the family Z(m, o) are again exactly the exceptional
poles of the family of integrals

HsWW.o)= [ WgW (gt detlo)f dg
Np\G Ly

with W € W(r™=% ), W € W(a™® =1, and ® € S(K*) with support in a neighbor-

hood of 0. In each family of integrals, the derivatives 7("*) and ¢(™=*) are irreducible when

NON-Zero.

Let s = s be an exceptional pole of one of these families of integrals. So both derivatives

are non-zero. On the one hand, at s = sy we have the expansion
B (W, W"h®(0
I(s; W, W' ®) = ol ) d( ) + higher order terms
(¢ —q>)

where d is the highest order to which the pole occurs in the family. Since the derivatives
7=k and ¢™=*) are irreducible, by Proposition 2.1 we know that the exceptional poles can
only occur at those sy where (7))~ = g(m=k)s0,

On the other hand, as in the cuspidal case, in each integral we can pull off the central
integrals. We again get

/Kk /NM\GLMW ((h 1) k) v ((h 1) k)
(/KX Wo i (2)W,ym-i (2)@((0, . .., 0, 2)k)| 2" dxz) | det(h)|*" dh dk.

Since the pole is exceptional, it occurs with its highest order for ® with ®(0) # 0. These ®
are exactly those which contribute the poles of the family of integrals

I(s;Wrtn-ryWyim—r), ) = / Wiy (2)wym-i (2)®(0, ..., 0, 2)| 2" d*z.
KX

This family is the Tate family computing the abelian L-function L(ks,w,(n-rwym-#) ). This
L-function has only simple poles and has a pole at s = s; if and only if w;&k Ky = Wolm—k) vkt
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At such a point, the Tate integral will have the expansion

c®(0
1(S; Wtk Wym—r), P) = —<)1 + higher order terms
qS _ qs
with ¢ a non-zero constant.

But, since at our exceptional pole sy we have (r("*))~ = ¢(m=k)p% which implies w;(}kk) =
W, m-1 0 we see that the exceptional poles of our original family occur among the poles
of this Tate family. But for these poles, if we replace the Tate integral by its Laurent, or
partial fraction, expansion, we see that we have

lmW—WWMWW®=@@/ W (g)W"(g)] det(g)|* dg.
Zi Np\G Ly,

s—80

The integral on the right hand side realizes the standard pairing between the Whittaker
models of 7 and ov* and is absolutely convergent and non-zero [5, 9.

Thus our original expansion must be of the form
By (W, W) 2(0)

I(s; W, W', @)
qs _ qso

+ higher order terms
with
BLWW) =c [ WigW(g)|det(g)|” dg

Zp Nk\GLy,
and ¢ # 0. Hence the exceptional pole at s = sy exists, is necessarily simple, and has a
non-zero residue if and only if (7("=%))~ = g(m=k)y%0  Therefore, we have

Lea(s, 7" x o) = TT(1 — ag™) ™"

where o runs over all a = ¢* with (7("7%)~ = g(m=k)ys0,

Now, we know from Bernstein and Zelevinsky [3, 12] that when the derivatives are non-
zero we have 7% is the quasi-square-integrable representation associated to the segment

[pv?, ..., pv'7Y, (7R~ is the quasi-square-integrable representation associated to the seg-
ment [pr!=¢, ..., v, and o™ Py is the quasi-square-integrable representation associ-
ated to the segment [p/vit0 ... p'v¥+%-1] for appropriate i and j. Hence we see that

(=R~ =2 g(m=k)ps0 if and only if £ —i = ¢/ — j and pr'=¢ = p/v7*%0. This last condition
is exactly the condition that the L-function L(£ — 1+ j + s,rho X p') have a pole at s = s,
and this pole will also be simple. Hence, in this case

Lew(saﬂ-(n_k) X O(m_k)) = L(é -1 +] + S, p X p,)

Since these L-functions account for all poles of L(s,m X o) as j runs over all permissible
values, namely 0 < 7 < ¢ — 1, we arrive at the following result.

Theorem 2.3. Suppose m and o are both quasi-square-integrable representations, m associ-
ated to the segment A = [p, pv,...,pv'" ] and o to the segment N = [o/,p'v, ..., pv" 1.
Then
-1
L(s,m X o) = HL(€—1+j+s,p><p').

J=0
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This recovers the Theorem 8.2 of [9]. Note that if p and p’ are representation of different
sized GL's then m and ¢ will never have non-vanishing derivatives of the same size and
L(s,mxo0)=1.

We also get as a Corollary the following result of [9].

Corollary. If 7 and o are both square-integrable, then L(s, 7 X o) has no poles in Re(s) > 0.

Proof: If 7 is a square-integrable representation, its segment can be written as
A = [por~ D2 poED/2)]

with py a unitary cuspidal representation and similarly the segment for ¢ can be written
A/ fnd I:ploy_(ﬁl_l)/27 . ’pgy(ﬁl_l)/2):|

with pf, unitary cuspidal. Then we have

-1
Lis,mx o) = [ E((€ = )/2+ j + 5,p0 X p}).
5=0
For this to have poles, we must have that py and p{, must be representations of the same
linear group GL,, and then since n > m we must have ¢ > ¢'. Since py and p; are unitary,

the poles of L(s, py X pj) must liec on the line Re(s) = 0. Hence the poles of L(s, 7 x o) will
lic on the lines Re(3(¢ — )+ j+s) =0or Re(s) = —3({ =) —jfor j=0,...,¢'—=1. O

2.6.3. Generic representations. Let us first write 7 = Ind(A; ® - - ® A;) and 0 = Ind(A] ®
-+ ®@ A). In computing L(s, 7 X o) we encounter several difficulties:

(1) The derivatives may not be completely reducible.

2) The individual constituents Ind A(kl) QR A(kt) of the derivatives may not be
1 t y
irreducible.

(3) If the constituents of the derivatives are not quasi-square-integrable, we do not have
a good way of explicitly analyzing the residual integrals as above and concluding whether a
given possible pole actually occurs.

We propose to resolve all these difficulties by use of a deformation argument, which we
present in detail in the next section. Let us introduce auxiliary complex parameters u =
(g, ..., uy) € Ctand w = (wy,...,w,) € C". Then set

Ty = Ind(Aj " @ -+ @ Aw™)
op = Ind(Av"' @ - @ ALy,

For v and w in general position the derivatives 7" and o™ will be completely reducible

and the natural constituents of these derivatives, Ind((A;p*)*) @ ... @ (Awp*)*)) and
Ind((Afp)F) @ - @ (Alp*r)*)) will be irreducible. This will resolve (1) and (2). We
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will resolve (3) by an argument using Hatrog’s Theorem. We will return to the computation
of L(s,m x o) in Section 4 after we discuss deformations.

3. DEFORMATIONS OF REPRESENTATIONS

3.1. Rationality properties of deformations. In this section we wish to investigate cer-
tain rationality properties of deformations of generic representations of GL,,.

Let m be a representation of GL, of Whittaker type. We can write
m=Indg" (A1 @ @A)

where each A; is a quasi-square-integrable representation of GL,,, n = ny + --- + n, and
@ is the standard parabolic subgroup of GL,, associated to the partition (ng,...,n;). Let
M =GL,, x---x GL,, denote the Levi subgroup of Q).

If u= (uy,...,u;) € C' then u defines an unramified character of v* of M via v*(m) =
Vg, -5 gt) = v(g)" -+ v(g)*. Every unramified character of M is of the form v* for
some u and we get an isomorphism %,,(M) = (C/ %Z)t =~ (C*)*, where X, (M) denotes

the group of unramified characters of M. To simplify notation, let D = D, denote the

complex manifold ((C/lfg?fl) Z)t. The map D — (C*)! is of course u — (¢*,...,q"). For

convenience, we will let ¢g* denote (¢**,...,¢").

For each v € D we may define the representation 7, by
Ty = Ind(All/ul K- R Atl/ut).

This is the family of deformations of m = 7wy we are interested in. Note that each represen-
tation m, is of Whittaker type.

This family of representations has the structure of a trivial vector bundle over D which
we would like to describe. Realize each quasi-square-integrable representation A; in its
Whittaker model W(A;, ). Then we may realize the space V. of 7 as the space of smooth
functions

fiGL, = W(ALY) @ @ W(AL ),
which we write as f(g;m) with g € GL,, and m € M, satisfying

f(hgim) = 63 (my,) f(g; mmy,)

for h € Q, h = nmy, with m;, € M and n in the unipotent radical Ng of Q). Let K,, = GL, (o)
denote the maximal compact subgroup of GL,. Since GL, = QK, each function [’ is
determined by its restriction to K, and we have the so-called compact realization of 7 on
the space of smooth functions

f D Ky — W(A1>¢) @ ®W(At7w)>

which we again write as f(k;m). The action of 7(g) is now given by

(m(9) ) (k;m) = 65 (/) f(K'y mm)
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where kg = n'm/k' with n’ € Ng, m’ € M and k' € K,,. Let us denote this space of functions
by F. = F. Then each 7, can also be realized on F with actions being given by

(mu(9) f) (ks m) = v*(m/)og)> () f (ks mm)

where the decomposition of kg is as above. Note that in these realizations, the stabilizer of
the function f € F under the representation m, is independent of u. In the usual model of
Ty as smooth functions on GL,, having a left transformation law, f determines the function
fu defined by f.(g;m) = fu(n'm'k';m) = V“(m’)%/z(m/)f(k/;mm’). We may now form a
bundle of representations over D where the fiber over u € D is the representation (m,, F).
As a vector bundle, this is a trivial bundle D x F, with different actions of GL,, in each fibre.
Note that the variation of the action from fibre to fibre is actually polynomial in ¢=*. (We
will use ¢ as short for (¢*1,..., ¢**).)

For our purposes we need the Whittaker models of these representations. The unipotent
radical Ng has an exhaustive filtration by compact open subgroups {N;}. It is (essentially)
a result of Casselman and Shalika [4] that there is a Weyl element w¢ such that for each
f € F the family of integrals

M) = [ ) )i ) )

stabilizes for ¢ large and defines a Whittaker functional on each m,. The point of stability
depends on f, through its stabilizer, and is independent of u € D. (Casselman and Shalika [4]
work with minimal parabolics, but their method carries over. See also Shahidi [11], Section
3.) For each f € F, let us set

Wf,u(.Q) - )‘u<7ru(g)f)
Then for each value of u € D, Wy, € W(m,,v). For fixed g € GL,,, we have

Wialg) = /N (ma(n9) f) i )~ (n) dn.

with Ny one of the N; past the stability point for f. Since the stabilizer of f in GL, is
independent of u and the integration is compact, this integral will become a finite sum, and
we will have

T

Wral9) = D (mu(nig) f)(wg; €)™ (ni)

i=1
. _ 0/ 11/
and if we decompose each wgn;g = nym;k; we have

r

Wralg) =Y flkmb)og (ml)wv™ (m})y = (n:)

=1

which defines a Laurent polynomial in C[¢**", ..., ¢¥"]. So, for fixed g, W, (g) is polynomial
in g**. Note that in terms of the usual realization of the induced representation, this is the
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standard Whittaker function associated to f,, that is,

Walg) = /N (ma(ng) ) (wg: )~ (n) dn

= [ fulwgng;e)y'(n) dn

=W, (9)-

If, in our bundle of representations, we replace each fibre (m,, F) by its Whittaker model
(7w, W(u, 1)) defined with respect to the Whittaker functional A, above, then the functions
Wy, as functions of u € D, correspond to the flat sections above. Let Wz denote the space
of global sections of the form Wy, for f € F, that is,

Wr={Wrulg) | f € F}.
This space of sections is not stable under the action of GL, by right translation, so let

W = WO denote the representation of G'L,, generated by Wg. Since the stabilizer of
each Wy, is independent of u, this representation is seen to be smooth. Note

WO = (We o5 (9) =W (99) | f €F, ¢ € GLy,).

Being a smooth representation of GL,, we could submit W to a full derivative analysis
as in Section 1. However, we will not need this. Instead, we consider only an associated
representation of P, and the bottom piece of the filtration of this representation by deriva-
tives. To this end, by analogy with what we did in Section 1, let us set W) to be the space
of restrictions to P, of the functions in W, that is, Wy = {W(p) | W € WO p e P,}.
This should be a model for the restriction of W to P, as a representation, but we did not
check this.

If V is any complex vector space, let Sy(P,,V) denote the space of smooth functions
¢ : P, — V which satisfy ¢(np) = ¢(n)e(p) for n € N,, and which are compactly supported
mod N,. In this notation, the bottom piece of the filtration by derivatives of any irreducible
generic representation of GL,, restricted to P, is Sy (P,) = Sy (P, C). Let Py be the vector
subspace of C[¢g*"] consisting of all Laurent polynomials of the form W (I,) for W € W(©,
Then the corresponding result on the bottom piece of the filtration by derivatives for W,
is the following.

Proposition 3.1. Wy contains Sy(P,,P).

Proof: The proof of this proposition is obtained by repeating the proof of Proposition 2
of Gelfand-Kazhdan [7] in our setting. They treat the case of scalar valued functions, but
the method transfers completely. This is also essentially the same argument used to prove
Lemma 9.2 of [9] which we have frequently used.

It suffices to prove that for every Laurent polynomial P € P, and every sufficiently small
compact open subgroup H C P, there is a function Wpy € Wg) such that
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(i) Wpu(l,) =P
(ii) Wpu(ph) = Wpu(p) for pe P, and h € H
(iii) Supp(Wpw) C N H.

For each £ =1,...,n let us set

Win-r) = {W (p I k) | W e W, pGPk}.

Then, as in Section 1, this space is naturally a representation for P, acting by right transla-
tion. When k = n, this agrees with our previous definition of W). For W € W,,_) we will

write W (p) for W <p ) to ease notation.

]n—k

Inductively, we will prove that for each k and every sufficiently small compact open H C P,
there is a function Wp g € W,—p satisfying (i)—(iii) with n replaced by k.

If k =1, then Py is the trivial group {I,} and W,—1) = {W (L) | W € WO} = P;. So
this case is clear.

Assume the statement true for k. Take P € Py and a compact open Hyp, 1 C Piyq1. Let
H;, = Hp.1 N Py. By induction there is a compact open subgroup H' C Hj, and a function
Wpa € Wk satisfying (i)—(iii) relative to H' C P,. Choose W’ € W,_,_1) whose
restriction to P, C GLy C Pyyy is Wp . Let

1

Wip) = meas(H') Jy

W' (ph) dh

and let H” be the stabilizer of W” in P,,;. H” is open compact and contains H'. Let
H=H"N Hiy C Hiyq.

Let 9r11 now denote the standard character on U1, that is, 1,1 (Ik ?) = (ug). Let

oy € S(ﬁk+1) be the characteristic function of the H orbit of ¢y, that is, of Hiyy1 =
{1 (w) = ppr(huh™)} C Upsa. Let oy € S(Up41) denote its Fourier transform. Let

W(p) = ouxW"(p) = /U o (W)W"(pu) du.

Then W € Wi,_—1) and satisfies

Thus
iy w
(i) W
(iit") W

(Ier) = W'(I1) = P
(p) =0 for p & Nyp1 P H
(p) = W"(p) for p € N1 P H.
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But for p = np’'h € N1 P.H we have W’ (p) = pa(n)W"(p') = Y1 (n)Wpm (p'). So if
we take Wp g = W”, this satisfies (i)—(iii) relative to P and H C Hy1. O

The space Sy(P,,Py) should be the bottom piece in the filtration by derivatives of W,
although we did not check this.

3.2. Deformations and local factors. We now want to consider how the local integrals
I(s; W, W' ®) and I(s; W, W’) behave when we deform the Whittaker functions W and W’
in the above manner. If we deform 7 to 7, and deform o to o, and form the corresponding
spaces of functions F;, Wfro), Fo, and W then we will show that both [ (s; W, W' ®) and

I(s; W, W"), for W € W and W' € W, are rational functions in ¢*%, ¢**, and ¢*°.

Our method will be to employ the following theorem of Bernstein. Before the statement,
we need some preliminary definitions. Let V' denote a vector space over C having countable
dimension and let V* = Hom¢(V, C) denote its algebraic dual. A system of equations = for
a functional \* € V* is a collection of pairs = = {(z,,¢,) | r € R} where z, € V| ¢, € C,
and R is an index set. A solution A of the system = is then a functional A € V* such that
A(z,) = ¢, for all r € R. We will need to consider polynomial families of such systems. Let
D be an irreducible algebraic variety over C and suppose that for each d € D we are given
a system of equations =; = {(z,(d), ¢,(d))|r € R} with index set R independent of d € D.
We will say that such a family is a polynomial family of system of equations if, for each
r € R, the functions z,(d) and ¢,(d) vary polynomially in d, i.e., z,(d) € C[D] ®c V and
¢, (d) € C[D]. Let M = C(D) denote the field of fractions of C[D]. Set Vi = M ®@¢ V and
Vi = Hompa (Vag, M).

Theorem. (Bernstein [1]) With the above notation, suppose that V' has countable dimension
over C and suppose that there exists an non-empty subset 2 C D, open in the usual complex
topology of D, such that for each d € ) the system =, has a unique solution A\g. Then the
system Z = {(z,(d),c.(d)) | r € R} viewed as a system over the field M = C(D) has a
unique solution A\(d) € V. Moreover, on some subset D' C D, which is the complement of
a countable number of hyperplanes, \(d) = Ay is the unique solution of =Z4.

We now wish to apply this to our situation.

We take 7 = Ind(A; ® -+ ® A;) as above and deform it as above to the family m, =
Ind(Av" ® - -+ ® Aw"). We realize each of these representations on the common vector

space F = F, and form the representation of GL, on the Whittaker space Wfro).

Let 0 = Ind(A] ® --- ® Al) be a representation of GL,, with each A} representing a
quasi-square-integrable representation of some G'L,.. We may deform o as above by setting

0w = Ind(Av" @ - ® AL*r) where w € (C/lfg’zz))r = D,. We may realize each of these

representations on a common vector space F, and form the representation of GL,, on the

Whittaker space W , of course, with respect to the character ¢~ !.
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Observe that since m and o are admissible representations, the vector spaces F, and F,
are both countable dimensional over C.

The cases n = m and n > m are slightly different, and we will treat them separately.

3.2.1. The case n > m. Consider the local integrals for the case n > m. For W € W and
W € W these integrals are

rwar) = [ w (%, )Wl denta) 0 g
' \GLm n—m

N,

From the work of Jacquet, Piatetski-Shapiro, and Shalika [8, 9] we know that for fixed u
and w these integrals are absolutely convergent for Re(s) large. If we pay closer attention to
their arguments we see that there is in fact a linear form L, (s, u,w) with real coefficients
such that these integrals converge absolutely for Re(L, ,(s,u,w)) > 0.

Proposition 3.2. For W € W and W' € W the integral I(s; W, W') is a rational
function of =%, ¢~ and q°.

Proof: We will need to view these integrals as defining a polynomial system of equations
for a functional on V = F, ® F,. First note that any W & W7(r0) is the Whittaker function
attached to a finite linear combination of translates of elements of F;, that is, W = Wy,

where f, = > m,(¢;)f; with g; € GL,, and f € F,, and similarly for W’ € WY The local

integrals have well known quasi-invariance properties, namely

I <s;7ru (g I )W, aw(g)W> = [ det(g)| 2L (s, W, W)

for each g € GL,, and

I (s;m (fm ”) W, W’> —y (Im ”) (s W, )
n n

for ny an arbitrary m x (n — m) matrix and ny € N,_,.

By Proposition 2.11 of [9], outside of a finite number of hyperplanes in u, w, and s there is
at most a one dimensional space of functionals on F, ® F, having these invariance properties.
In fact, the statement in [9] is for irreducible generic 7 and o rather than families. But outside
of a finite number of hyperplanes in v and w the m, and o, will be irreducible and generic.
Then, upon analysis of their proof, one finds that the condition for the space of quasi-
invariant functionals being of dimension greater than one is a condition of contragredience
between constituents of derivatives 7" and o™ Mv* as representations of GL;. Since
these conditions define a finite number of hyperplanes in u, w, and s, we obtain the extension

of Proposition 2.11 of [9] to families.

Thus, the functional defined by these integrals is determined up to a scalar by the following
system of equations. Let us choose a basis {fi} of F and a basis {fj} of F,. Then the
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invariance conditions give the system =’
(a1, ) i © @)oo - |t ma(a i 0 0u0)1,0)]
9 € GLu, gi € GLy, g; € GLy |
U{mmma(e) @ 0u(9) £ = wln)malg) £ @ ou(9:) 57,0

(E/) n = ([m Zi) - Nn, g; € GLn, g € GLm}
This system is polynomial in ¢**, ¢**, and ¢™*. So if we let D = D, x D, x D,, where
Dy = (C/ 102}%?2)) = C* via the map s — ¢*, then this system is polynomial over D. Moreover,
if we define 2 C D by the conditions that € is the intersection of the complements of the
hyperplanes on which uniqueness fails intersected with the domain Re(L, (s, u,w)) > 0 of
absolute convergence for our integrals, then the functional (s; W, W) is the unique solution
up to scalars. To be able to apply Bernstein’s theorem, we must add one equation to insure
uniqueness on ). This is a normalization equation. To give it, we may first take any [’ € F,
such that W4, (I,,) # 0. Let P’ (¢F*) = W ,(Im) be the corresponding Laurent polynomial

in ¢™™. Let H C GL,, be the stabilizer of this W}’,w‘ Now, by Proposition 3.1, we can find

W e Wfro) such that W(I,) = P(¢**) # 0 and the restriction of W to GL,, C GL, is
stabilized by H and has support in Z,, H. Then we can easily compute that I(s; W, W}/7w>
is convergent for every s and in fact I(s; W, W}, ) = vol(H)P(¢=*)P'(¢*") is independent

of s. Since W € W it is a linear combination of GL, translates of functions in We_ . So
we have

W = Z 7Tu(gi)I/VI”Li,u

for appropriate g; € GL, and h; € F,;. Thus to remove the scalar ambiguity in our system
of equations we add the single normalization equation

() (Z Tu(gi)hi @ f/,VOI(H)P(qiu)P’<q:tw))
This is again a polynomial equation in D.

If = is the system Z' with the equation (N) adjoined, we have a system which satisfies the
hypotheses of Bernstein’s Theorem. Hence we may conclude that each I(s; W, W’) defines a
rational function in C(¢~",¢~",¢~%). O

In the functional equation for the GL,, x GL,, local integrals it is not just the I(s; W, W)
which occur, but also the integrals ;(s; W, W') defined by

g
Li(s; W, W') = / / Wz I W'(g)| det(g)*~"~™"2 dx dg
No\GLy J Mj 1 I

n—m-—j
for 0 < 7 <mn—m—1. For a fixed j these integrals enjoy the same convergence and invariance
properties as the I(s; W, W’). Hence we see that for W € W and W € W these integrals
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satisfy the same invariance system =’ as the I(s; W, W’). To show that they are also rational
in g7, ¢~", and ¢—° we need only a normalization equation for these integrals. This can be
easily found in the same manner as above. Hence we have the following Corollary.

Corollary 1. Let j be an integer between 0 and n — m — 1. Then for W & W and
W e W we have Li(s;W,2W') e Clg™™, ¢ ", q¢%).

If we now look at the local functional equation, it reads
I m1(1—s; Wu(wnvm)W, W) = we, (—1)" (s, Ty X 0, V) Io(s; W, W)

for W € W(ry, ) and W’ € W(oy, v=1). W € W, then W € W, Under deformation,
(mu)t = (7")ue, where if u = (uy,...,u;) then u* = (—uy, ..., —uy). Note that in the Whit-
taker model, W,(r(b)) should be taken with respect to the character 1)~!. Hence for W & W7(T0)
and W’ € W the integrals appearing in the left hand side of the functional equation are
rational functions of ¢7*, ¢, and ¢~° by Corollary 1. Note that w,, (—1) = w,(—1) is
independent of w. Hence ~(s, m, X 0y,1%) must also be rational.

Corollary 2. v(s,m, X 0,,¢) € C(¢7*, ¢ ", q°).

3.2.2. The case n = m. The case when n = m runs along the same lines, but the local
integrals are different. In this case the local integrals involve not just the Whittaker functions
associated to m, and o, but also a Schwartz—Bruhat function on K™. For W € W}TO),
W e WY, and ® € S(K™) the local integral is

HsWW'e) = [ WeW (90| det(g)l do
Na\GLn

Again, from Jacquet,Piatetski-Shapiro, and Shalika [8, 9], there is a linear form L, (s, u, w)

with real coefficients such that the integral is absolutely convergent for Re(L; ,(s, u,w)) > 0.

Proposition 3.3. For every W € W, W e WY and @ € S(K™) we have I(s; W, W' ®)
€ Clg™ a7 q).

Proof: We once again must write down a system of equations which are polynomial in ¢*%,
¢, and ¢ which characterize these functionals. In this case, our underlying vector space
isV =F,®F, @S(K™) and is still countable dimensional over C. The invariance properties
that this functional satisfies are

1(s; mu(g)W, 00 (g)W', p(9)®) = | det(g)[*I(s; W, W', @)

where p denotes the action of GL, on S(K™) by right translation. By modifying the proof
of Proposition 2.10 of Jacquet, Piatetski-Shapiro, and Shalika [9] to the case of families as
before, we know that the space of such functionals is at most one dimensional off of a finite
number of hyperplanes in (s, u,w). Taking the bases of F, and F, as above and a basis @,
of S(K™), our system of equations Z' expressing the invariance of the local integrals is

{(mu(9)mu(9:) i ® 0(9)00w(95) [} @ p(g) Pk — | det(9)|*7u(9:) fi @ 0w(g;) fi @ Py, 0)]
(Z)  9€GLy, gi € GLy, g; € GL,}.
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This system is polynomial over the complex domain D = D, x D, x D,. Moreover, if
we define €2 C D by the conditions that €2 is the intersection of the complements of the
hyperplanes on which uniqueness fails intersected with the domain Re(Lr (s, u,w)) > 0
of absolute convergence for our integrals, then the functional I(s; W, W’ ®) is the unique
solution up to scalars. To be able to apply Bernstein’s theorem, we must add one equation
to insure uniqueness on ). This is again a normalization equation, which is slightly more
complicated in this situation.

Using the Iwasawa decomposition, we see that for any choice of W &€ WT(FO), W' e W,SO),
and ® we can decompose our local integral as

I(s; W,W', @)
- / / W (pk) W (pk) | det (p) | / o (@)wrm ()B(enak)|al™ d*a dp di.
n n\Pn KX

For an arbitrarily small compact open subgroup H C P, we can find functions W and W’
such that their restrictions to P, both are invariant under H, supported on N, H, and such
that W(I,,) = P(¢**) # 0 and W'(I,,) = P'(¢**) # 0. Let K’ be a sufficiently small open
compact congruence subgroup of K, such that K’ N P, C H and K’ stabilizes W and W'.
Now choose ® to be the characteristic function @' of e, K. With these choices the integral
reduces to

W) = [ WEWE)|det) " dp
Ny \Pn
with ¢ > 0 a volume and for H sufficiently small | det(p)| = 1 and we have I(s; W, W' &) =

d P(q*)P'(¢=%) for a positive constant ¢’. Now, as W € W and W’ € WS each can be
expressed as finite linear combinations

W =>"7ulg:)Wh,u and W' =" ouwl(g)Wh w
( J

for appropriate g;, g; € GL,, h; € F, and h; € F,. Thus our normalization equation can
be written

& (S mtan e i o0, crigype=)
(N
This is again a polynomial equation in D.
If = is the system =’ with the equation (N) adjoined, we have a system which satisfies the

hypotheses of Bernstein’s Theorem. Hence we may conclude that each I(s; W, W’ ®) defines
a rational function in C(¢™*, ¢, q~*). O

In the case n = m the local functional equation reads
I(1—s; W, W, ®) = w,, (—1)" (s, 7y X 00, V) (s; W, W', D)
for W € W(m,,¥) and W' € W(0y, 1~ 1). If we take W € W and W' € WS, then the

local integrals involved are again rational functions of ¢7*, ¢=*, and ¢~*, and hence so must
Y(8, Ty X 04, 1) be.
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Corollary. (s, m, X 0,,%) € C(qg™", ¢ "%, ¢ *).

3.3. Deformations and derivatives. Let us now consider how the deformation process
effects the irreducibility and derivatives of .

Take 7 and 7, as in Section 3.1. Suppose that the quasi—square—integrable represen-
tation A; corresponds to the segment [pi,pil/,...,piyeifl] where p; is a cuspidal repre-
sentation of GL,,. Then we have A; is a representation of GL,, where n, = r;{; and
n =Y n; = Yy ril. If wetwist A; with the determinantal character v" then, setting
A, = Ay, we see that A, is again quasi-square-integrable and associated to the seg-
ment [(p;%), (pi“i )y, ..., (p*)vhi—1].

Now consider the reducibility of m,. Since
Ty = Ind(Ay, @ @ Ary,)

is still induced from the quasi-square-integrable representations A; ,,, it will be irreducible
as long as the segments corresponding to the A, ,, are unlinked. Since the p; remain constant
throughout the deformation, it is not hard to see (but tedious to write down) that the A, ,,
will be unlinked except possibly on a finite number of hyperplanes in u. Hence we have the
following.

Proposition 3.4. With the possible exception of a finite number of hyperplanes in u, the
deformed representation m, is irreducible.

Note that even if we begin with a m which is reducible at © = 0, the deformed represen-
tations m, will still be irreducible except on a finite number of hyperplanes in the w.

Now consider the derivatives of 7,. By the results of Bernstein and Zelevinsky, the k"
derivative 74" will be glued from the representations Ind(AE’Ez R ® Agka) for all possible
partitions k = ky + -+ - 4+ k; with 0 < k; < n;. Let us set

Wq(lkl""’kt) = Ind(A(kl) Q- ® A(kt)).

1u1 t,ut

If we consider a particular Al(k;l) then since A;,, is associated to the segment [(p;v"),
ooy (P b1 we see that AEIZ) is zero unless k; = a;r; with 0 < a; < ¢; and AET) is the

quasi-square-integrable representation attached to the segment [(p;v%)v%, ..., (p;v*)vi1.

So we have that 74" = 0 unless (k1 ..., k) = (ayry, ..., ary) with 0 < a; < ¢;. More-

over, as above, each individual representation i) @il be irreducible, except possibly

on a finite number of hyperplanes in the u.

Next, consider a fixed derivative 7 of mu. 10 be non-zero, k must be of the form
k = ayry + - -+ + a;ry with the a; as above. There may be more that one way to write k in
this fashion and we have that 7\ is glued form the 7(™™ ™) with k = > a;r;. Tt is again
easy to see (but tedious to write) that outside of a finite number on hyperplanes in the u the
central characters of the m{™"™*™) will be distinct and hence there can be no non-trivial

extensions among these representations. Thus, off these hyperplanes, 7(%) = @m{®"r)
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where the sum is restricted to those representations where k& = > a;r;. Collecting this
information, we arrive at the following result.

Proposition 3.5. Outside of a finite number of hyperplanes in the u we have that each
non—zero deriative of m, is completely reducible. Moreover, the decomposition is given by

(k) — (a17“1,...,atrt)
o = Prk=arri++ar Ty

with each m(talrl"”’am) irreducible.

For future reference, we will say that any u for which the proposition is true is in general
position. The set of u in general position form a Zariski open subset of D;.

4. DERIVATIVES AND LOCAL FACTORS, 11

Let us now begin with representations 7 = Ind(A; ® --- ® Ay) of GL,, and ¢ = Ind(A] ®
-+ ® Al) with the A; and A’ irreducible quasi-square-integrable. For now, m and o need
not be irreducible. Let us take A; to be associated to the segment [p;, ..., p;" 1] with p;
a cuspidal representation of GL,, and A’ to be associated to the segment [pf, ..., p}l/%_l]
with p; a cuspidal representation of GLT;,.

We deform each representation to families 7, with v € D, and o, with w € D, as in
Section 3.

Let us fix points u and w in general position. For u and w in general position, both
m, and o, are irreducible, their derivatives are completely reducible, and they are given
by Proposition 3.5. Consider the local integrals for m, and oy, namely the I;(s; W,, W,)
if n > m or the I(s;W,, W, ®) if n = m with W, € W(rm,,¥), W, € W(o,,¥™"), and
¢ € S(K™) if necessary, and the fractional ideals Z(m,, 0,,) C C(¢*®) they generate. Then
by the results of Section 2, we know that the poles of these families are precisely the poles
of the exceptional contributions to the L-functions of the form

! !l
aiTi,...,atTt AT ey QT
Zlex(s,ms ) x 01(1}1 bt T))

such that 0 < a; < 6, 0 < af < 03, and n — 3 Jagry = m — 3 ajr;. In fact,
L(S77ru X Jw)_l = l.C.m‘{Lem(S,W£a1r17"'7atrt) X 0‘{5/17’/17--'7‘1;7’;))_1}

where the least common multiple is taken in terms of divisibility in C[g®, ¢—*] and normalized
to be an standard Euler factor.

The exceptional L-function

(41) Lex(sjﬂ,l(lal’l"l,-..,atrt) % 0_1(Ua’1r’1,...,a’rrr))

can have a pole only at those s for which

(W(alm,---,at?“t))” o J(allriv--,a;f'r)ys
u w

or equivalently

! !

(AL @ .. @ ALY = Ind((AL, ) @ - ® (A, )@,

1u1 t,ut Wy
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Since these induced representations are irreducible, the only way that this is possible is
there is a bijection between those indices ¢ for which a;r; # E and those indices j for which

1 # £ and under this bijection we have (A(alm ph) = A (e5r3) vYiv® or equivalently

1

(4.2) (A(““’i ) = Aj (aj75) plitwits

Now, let us see how these conditions vary in u and w. Consider now the local integrals
Ii(s; Wy, W) or I(s; Wy, W, @) with W € WO and W’ € W . Then these integrals define
rational functions of ¢**, ¢™*, and ¢™*. For u and w in the Zariski open subset of general
position, these rational functions can have poles coming from the exceptional contributions
to the L-functions from (4.1). Each such L-function can have poles which lie along the locus
defined by the equations (4.2), which define a finite number of hyperplanes, where there is
one equation for every pair of indices such that a;r; # ¢; and ajr} # ;. If there is more than
one pair of such indices then this locus will be defined by 2 or more independent equations
and hence will be of codimension greater than or equal to 2. Viewing the local integrals as
meromorphic functions of u, w, and s, we know that these integrals can have no isolated
singularities of codimension greater than or equal to 2 by Hartog’s Theorem. Hence every
singularity of our integrals must be accounted for by an exceptional contribution of the
form (4.1) where there is exactly one pair of indices a;r; and ajr} with a;r; # €, alr # U,

n; — a;r; = mj — ajyr’, and satisfying (4.2). Hence we have, for u and w in general position

L(S,?TuXO'w) _lCm{Lex u; + w; + s, Aam (ar 1}

Now, still for © and w in general position, the exceptional contrlbutlons to the L-functions
for different A; and A’ will be relatively prime, and collecting the contributions for the
derivatives of a fixed A; and A, will give precisely L(u;+w;+s, A; x AY) by the computations
of Section 2.6.2. Hence we have the following result.

Proposition 4.1. For u and w wn general position we have
L(s,my, X 04) = HL(UI +w; + 5, 4; X Aj).

0,

We would like to specialize this result to v and w not in general position. Knowing that
the L- function is given by the above product, which is the inverse of a Laurent polynomial

in C[¢*%, ¢, ¢**], we know that, for W, € WY and W, e W the rational functions
1 (s; W, W3,) o I(s; Wy, Wy, @)
r
HL(UZ—I—’UJJ—FS,AZXA;) HL(UZ+MJ+S,AZXA;)

have no poles on the Zariski open set of v and w in general position. The removed hyperplanes
defining general position are hyperplanes in © and w only and are independent of s. However,
we know that for each fixed v and w the local integrals I;(s; Wy, W),) or I(s; W,, W, @)
converge absolutely in a half plane Re(Ly,(u,w,s)) > 0. Hence no polar locus can lie
entirely in these removed hyperplanes. Hence the ratios

Ii(s; Wy, W,,) I(s; W, W/, ®)

or
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have no poles and hence define an entire rational function of the ¢~*, ¢~*, and ¢—° and hence
lies in Clg™¥, ¢**, ¢**]. If we now specialize to u = 0 and w = 0, or any other point for that
matter, we find that
I(s; W, W) I(s; W, W', ®)
[1L(s, Ay x A) [TL(s, Ay x A%)

have no poles for all W € W(r, ¢) and W' € W(o, ¥ ~!). From this we cannot conclude that
the denominator of these ratios is indeed the local L-function, but only the following.

Proposition 4.2. L(s, 7 x o) € [], ; L(s,A; x A})C[g*, ¢7°].

This reproduces a weak version of the second statement of Theorem 3.1 of [9].

To proceed further, we must use the functional equation to recover a weak version of the
first part of Theorem 3.1 of [9]. Let us consider again the behavior of the gamma factor
for these representations under deformations. We know that (s, m, X 0y,%) is a rational
function of g7, ¢, and ¢~*. The local e-factor satisfies

e(8, Ty X 0w, W)L(1 — s, (m,)" X (04)")
L(s,my X 0y) '

7<3>7Tu X O'w>¢) =

For fixed u and w we know, by applying the functional equation twice, that (s, m, X 0y, 1)
is of the form Aq=P%, that is, it is a unit in C[g®, ¢~*] [9].

For u and w in general position, we know that L(s, m, X 0u,) = [[; ; L(ui + w;+ s, A; x Aj)
and L(1 — s, (m,)" X (0)") = [L;; L(1 — s —u; — wy, A; x A;). Moreover, all the ratios

I(s; W, W,,) nd nemoa (= s (w0 ) W, W)
HL(UZ‘f‘w]"‘S,AzXA;) HL(l—S—UZ—wJ,AZXA;)
or o
I(s; W, W/, ®) and I(1— s; W, W! @)
[T L(uwi +wj + s, A; x Al) HL(l—s—ui—wj,AiXA"j)

are Laurent polynomials in Clg*%, ¢*%, ¢**]. If we now define a variant of the e—factor by
£%(8, Ty X 0, V) [T L(1 — 5 — uy — wy, Ay % A;)
HLS + u; + Wy, (Az X A;)

then £°(s, m, X0y, ) € C(¢™", ¢, ¢~°) and for v and w in general position €°(s, m, X 0y, V) =
(s, Ty X 0y, ). If we apply the functional equation twice as in the usual argument [9] then
we find that for v and w in general position

(8, Ty X 0, ¥)°(1 — 5, (m,)" X (0), 071 = 1.

Since both sides of this equality are rational functions in ¢~*%, ¢~*, and ¢~° and agree on
the Zariski open subset of © and w in general position, we have that they agree for all u, w,
and s. Hence £°(s, 7, X 04,%) must be a unit in C[g™*, ¢=*, ¢**], that is, a monomial of the
form &°(s, 7, X 04, V) = aqg Plq "¢ % where a = (v, ..., q;) € Z! with au = > ayu; and
similarly for v and yw.

7(877Tu X O'wyw) =

s
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If we return to our consideration of the behavior of (s, m, X 0,,%), we now have
€98,y X 0w, V) [T L(1 — 5 — us — wy, Ay x A;)
P)/(S:ﬂ-u X Uunw) =
HL(S + u; + ’U)j), Az X A;)

but we also have

8(8, Az X Ag,@D)L(l - S — u; — wy, Az X A;)

Y(s +ui +wj, Ay x Al ) =
and together these imply

Y8, Ty X O, ) = {

€%(8, Ty X O, V)
[Te(s +ui +w;, Ay x A9
Proposition 4.3. v(s, 7, X 0y, ¥) and [Tv(s +u; +wj, Ay X Al ) are equal up to a unit
n C[q:tu7 q:i:w7 q:i:s]_

)}Hv(s%—uﬁ—wj,Ai X A;,@b).

Hence, under deformation, ~ is multiplicative up to a monomial factor. If we now specialize
to u = 0 and w = 0 and introduce the notation for two rational functions P(¢~°) and Q(q¢~*)
that P ~ () denotes that the ratio is a unit in C[¢®, ¢~*], that is, a monomial factor, then
we have the following Corollary.

Corollary. v(s, 7 x 0,1) ~ [[(s, A x AL ).
This is our version of the first statement in Theorem 3.1 of [9].

From this point on, to compute the L-function L(s,7 x o), we have very little to add to
the argument of Section 9 of [9]. For completeness, we will sketch the argument here.

We first need the following Proposition, which occurs as Lemma 9.3 of [9].

Proposition 4.4. (i) Suppose m = Ind(m; ® o) with each m; a representation of Whittaker
type and the induction normalized parabolic induction from a standard (upper) mazimal
parabolic. Then L(s, 7 x o)™t divides L(s, 7 x o)™, that is, L(s,ma x0) = Q(q¢*)L(s, 7™ X 0)
with Q(X) € C[X].

(ii) Suppose o = Ind(oy ® o9) with each o; a representation of Whittaker type and the
induction normalized parabolic induction from a standard (upper) mazimal parabolic. Then
L(s, 7 X 09)7" divides L(s,m x o), that is, L(s, 7 X 09) = Q(¢~*)L(s,7m x o) with Q(X) €
C[X].

Proof: In Proposition 9.1 of [9] they establish that if 7 = Ind(m; ® ), with 7y a representa-
tion of GL,,, then for every Wy € W(my,¢) and ® € S(K"?) there is a W € W(w, 1) such
that

W (g / ) = Wa(9)@(en,g)| det(g)| "2/
n—mnso

and similarly for o and 0.

In [9], (i) is established in the case of m < n by using this result to show that in fact every
integral occurring in Z(my, o) is actually an integral in Z (7, o), that is, Z(ms,0) C Z(m,0).
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From this the divisibility of the L-functions follows. In the case that n = m, (i) is subsumed
under (ii) since the statement is symmetric in 7 and o.

Jacquet, Piatetski-Shapiro, and Shalika [9] establish (ii) as a consequence of (i) using their
Theorem 3.1. Our version of this theorem is not suitable for this purpose, but we can prove
this along the lines of their proof of (i). In particular, from either formula (2.4) or (2.5)
(which agree in the case m = n) and the discussion around them, we know that the ideal
Z(m, o) contains each of the integrals

](m—mz—l) (87 Wv W,) =

:/ W <h , )W/ (h , > |det(h)|s—(m—m2)—(n—m)/2 dh
Ny \GLm, n—me meme

with W € W(r,¢) and W’ € W(o, ¥~ 1). If we let W) € W(0o9,7™1) and take W’ to be an

associated element of W(o,1~!), we see that this integral becomes

/ w (h I ) Wé(h)®(en2h)‘ det(h)‘sf(”*mﬂ/? dh
Ny \GLm, n—ms

and so, for appropriate choice of ®, becomes

I(s; W, W}3) = / W (h I ) Wy (R)| det(h)|*~™=m2)/2 qp,
2\GLm2 n—ms2

Nm

Thus, once again, Z(m,09) C Z(m, o) and we obtain the stated divisibility result in (ii). O

To proceed, as in [9], we take both 7 and o as induced representation of Langlands type.
We write 7 = Ind(A 1" @ - - @ Aw™) and 0 = Ind(A1v" @ - - - ® AL v*r) with each A; and
A; a square-integrable representation, the w; and w; real and ordered so that u; > --- > u
and wy, > --- > w,. Every generic representation can be written this way by the Langlands
classification, and in fact every irreducible admissible representation occurs as the unique
quotient of such.

Theorem 4.1. Let m and o be as above, that is, induced of Langlands type. Then
L(s,m x o) = [] L(s, A; x A)).

Z‘?j

Proof: By our deformation argument, we know that in general

L(r x o) = P(q") [ [ Ls + wi + w;, (A x AY)
12
and . . .
L(1 s, x0")=P(g*) [ L0 = s — u; — w;, A; x AY)
i,j

and

(s, x o) ~ [T (s 4w+ wj, Ay x A, ).

12

Replacing the y-factors by their definitions then gives P(q~*) ~ P(¢~*).
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Next, consider the case when r = 1, that is, ¢ a quasi-square-integrable representation. We
proceed by induction on ¢. If ¢ = 1 then 7 is also quasi-square-integrable and it is elementary
that L(s,m x o) = L(s 4+ u; +wy, Ay x A}). For t > 1, we use transitivity of induction to
write 7 = Ind(A; " ® my) where m = Ind(Ar* ® - -- @ Aw®) and 7 = Ind(A; "™ @ (7))
where (7')y = Ind(A,_ v "1 @ - @ Ajp™).

By induction we have

t
L(s,m X 0) = HL(S +u; +wy, Ay x A)).

i=2
By the previous Proposition, there is a polynomial ) such that
L(s,mg x 0) = Q(q °)L(s,m X 0)

and by the deformation argument there is a polynomial P such that

¢
L(s,mx o) = P(q*) H L(s + u; +wi, A; x AY).
i=1
Combined, these imply that P(¢*) divides L(s+wu; +w1, Ay x A})~! and hence has its zeros
in the half plane Re(s) < —u; — w; by the Corollary to Theorem 2.3.

By the same argument applied to 7, we find that if P is defined by
L(1—s,7 xo') = P(qg”®) HLl — 5 —u; —wy, (A; x A)

then P(q_s) divides L(1 — s — u; — wy, A, x Al)_l and hence has its zeros in the half plane
1 —u —w; < Re(s).

But we know that in general P(q~*) ~ P(q~*), and so they must have the same zero set.
But u; > u;. Therefore the halfplanes Re(s) < —u; —w; and 1 —u;, —w; < Re(s) are disjoint.
Hence P = P = 1, since they both have no zeros but are of the form of [[(1 — a;q~*).

This establishes the result in the case r = 1 and ¢ arbitrary. The same argument establishes
the case t = 1 and r arbitrary.

To establish the general case, we proceed by a double induction. We may assume that
both r > 1 and ¢ > 1. We assume we have established the Theorem for the pairs (¢,7 — 1)
and (¢t — 1,7), and prove the result for the pair (¢,7). We decompose 7 and 7* as above and
also decompose o and ¢*. So write 0 = Ind(A]v*"' ®09) where 09 = Ind(ALr? ®@- - - QAL ")
and o* = Ind(A’v~="" @ (0*)3) where (6*); = Ind(A/_ v~ 1 @ --- @ Al p=w1).

By induction we have

t—1 r

(4.3) L(1—s,(m)y x o') = [TT] L1 = s — wi — wy, Ay x A))

i=1 j=1
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t T

(4.4) L(s,m x o) = [ [ ] L(s + wi + wy, Ay x A)).

i=1 j=2

By the previous Proposition, there are polynomials @, and Qs such that

(4.5) L(1—s, (1Y) x 0*) = Q1(¢"*)L(1 — 5,7 x ¢)
and
(4.6) L(s,m x 03) = Q2(q™°)L(s, 7 X o).

By the deformation argument there are polynomials P and P such that

t T
(4.7) L(s,mx o) = P(q¢®) HHL(S +u; +wj, Ay x A))
i=1 j=1
and
(4.8) L(1—s,m xc')=P(qg?) HHL(l — 5 —u; —wj, &; x A).
i=1 j=1

Now, from (4.4), (4.6), and (4.7), we see that the product P(q~*)Q2(q~*) divides [[, L(s+

u;i+wy, A x A7) ~h Similarly, from (4.3), (4.5), and (4.8), P(¢~*)Q1(¢~*) divides the product
Hj L(1 —s—u —wj, Ay X A;)*l. In general, from the functional equation, we know that

P(q*®) ~ P(q*) so that these polynomials must have the same zero set. If there is a common
zero, then there must be a pair of indices i and j such that L(s+u;+wy, A;x Ay)~tand L(1—
s — Uy —wj, A; x Aj)*l have a common zero. However, the function L(s+u; +wy, A; x Ay)~!
has its zeros in the halfplane Re(s) < —u; —w; while the function L(1—s—u;—wy, A, x Aj)_l
has its zeros in 1 —u;, —w; < Re(s). Since u; > u; and wy > w;, we see that these half planes
have no intersection. Hence P(¢®) can have no zeros and, as above, P = 1.

This completes the proof of the Theorem. O
Corollary. Suppose that m = Ind(A; ® --- ® A;) is a generic representation of GL,, so

each A; is quasi-square—integrable, and o = Ind(A] ® --- ® Al) is a generic representation
of GLy,, so each A is quasi-square—integrable. Then

L(s,m x0)= HL(S,Ai x A)).

0,
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Proof: Since m and ¢ are generic, they are irreducible, and the quasi-square-integrable rep-
resentations can be rearranged to be in Langlands order without changing 7 or . Then the
result is just a restatement of the above Theorem. 0

If 7 and o are not generic, then their L-function L(s,m x o) is defined by taking the
Langlands induced representations Il = Ind(Ajv*" ® - - - @ Ay™) and ¥ = Ind(Ajv"' @ -+ - ®
Alv*r) such that 7 is the unique irreducible quotient of Il and o is the unique irreducible
quotient of 3 and setting L(s, 7 x o) = L(s,II x X). This later L-function we have computed
above. Hence, we have computed L(s,m x o) for all irreducible admissible representations
of GL, and GL,,.
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