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Abstract. The theory of Poincaré series has played a central role in the the-
ory of automorphic forms and their applications. For the analysis of Fourier
coefficients for example one deals with a Poincaré series formed with functions
that have a broad spectral “footprint”. For the converse theorem one would
like to make a similar construction but beginning with a function having a
small spectral footprint. For such functions one cannot form a full Poincaré
series, but only what we call a partial Poincaré series. In this note we recall the
partial Poincaré series on GLn(A) that play a role in the converse theorem and
show that they are rapidly decreasing automorphic functions on the embed-
ded GLn−1(A). It is then the purpose of the converse theorem to determine
when these partial Poincaré series are actually cuspidal automorphic forms on
GLn(A).

1. Introduction

The theory of Poincaré series has played a central role in the theory of automor-
phic forms and their applications. For the analysis of Fourier coefficients, one deals
with a Poincaré series of the following type. Let us work with the group G = GLn
over a number field k. Let A denote the adele ring of k and let ψ be a non-trivial
additive character of A which is trivial on k. Let N = Nn denote the standard max-
imal unipotent subgroup of GLn realized as upper triangular unipotent matrices.
Extend ψ to a non-degenerate character of Nn(A) through its abelianization

Nn(A) → Nn(A)/[Nn(A),Nn(A)] ' An−1 ψ−−−−→ C×.
In coordinates, if u = (ui,j) ∈ Nn then ψ(u) = ψ(u1,2 + · · ·+ un−1,n). Consider the
space S(N\G;ψ) consisting of all smooth functions on G(A) that satisfy f(ug) =
ψ(u)f(g). Note that the functions in this spaces are left invariant under the rational
points of N , i.e., under N(k). Given a function f ∈ S(N\G;ψ) one forms an
associated Poincaré series Pf (g) by

Pf (g) =
∑

γ∈N(k)\G(k)

f(γg)
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when this converges. In practice, for example in [1], [2], [5], and [8], the functions
f(g) take a specific form dictated by the application in mind and the convergence
argument essentially follows that for Eisenstein series. In these applications it is
important that the Poincaré series, and hence the input functions f(g), have a
broad spectral “footprint”.

For the converse theorem [3, 4] one would like to make a similar construction
but beginning with a function having a small spectral footprint. One begins with an
irreducible admissible representation Π ' ⊗′Πv of GLn(A) satisfying certain mild
coherence conditions: its central character should be automorphic and its formally
defined L-function L(s,Π) should be absolutely convergent in a right half plane.
We also assume that Π is generic. (In the case that Π is not generic, we realize it
as a quotient of an induced representation of Whittaker type Ξ and in what follows
we use Ξ in place of Π.) Then Π has a Whittaker model W(Π, ψ) consisting of
functions W = Wξ for ξ ∈ VΠ that also satisfy

W (ug) = ψ(u)W (g)

and hence define functions on N(k)\G(A). In some sense the goal of the converse
theorem is to intertwine these functions into the space of smooth automorphic
forms much like the Poincaré series does for those f ∈ S(N\G;ψ) in the classical
applications.

It is easy to see that we cannot use a Poincaré series to intertwine these func-
tions, for if we began with a cuspidal automorphic representation Π then each vector
ϕ ∈ VΠ has a Fourier expansion of the form

ϕ(g) =
∑

γ∈Nn−1(k)\GLn−1(k)

Wϕ

((
γ

1

)
g

)
.

Since ϕ is a cusp form, we see that after averaging Wϕ over Nn−1(k)\GLn−1(k) the
result is already invariant under all of GLn(k) and further averaging would thus
diverge.

So, returning to our general Π, for the converse theorem we are forced to
investigate what we choose to call a partial Poincaré series which, forW ∈ W(Π, ψ),
we define by

U(g) =
∑

γ∈Nn−1(k)\GLn−1(k)

W

((
γ

1

)
g

)
.

This can be reformulated in terms of the mirabolic subgroup

Pn = StabGLn((0, . . . , 0, 1))

as
U(g) =

∑
p∈Nn(k)\Pn(k)

W (pg).

Convergence is guaranteed by Propositions 12.2 and 12.3 of [6] (quoted as Lemma
6.1 in [3]).

The purpose of this note is to prove the following regularity property of these
partial Poincaré series U(g). We assume further that W ∈ W0(Π, ψ), the subspace
of Whittaker functions that are K∞–finite at the archimedean places, and that U
is the partial Poincaré series attached to such a W . Note that such Whittaker
functions are dense in W(Π, ψ).
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Theorem 1.1. Let W ∈ W0(Π, ψ), the subspace of Whittaker functions that are
K∞–finite at the archimedean places, and let U(g) be the partial Poincaré series

attached to W . Let h ∈ GLn−1(A) and consider the function U

(
h

1

)
. Then

U

(
h

1

)
is a rapidly decreasing automorphic function on GLn−1(A).

The careful reader will note that this statement is part of the statement of
Lemma 6.2 of [3]. In the spring of 2002 we were contacted by Wee-Tek Gan, who
pointed out that the proof of this statement in [3] in the number field case considered
here was in fact “content free”. We corrected the proof not long thereafter, but
have never published the correction. We would like to take this opportunity to do
so and at the same time place this result in the broader context of Poincaré series
where it seems most natural.

Acknowledgments. We first thank Wee-Tek Gan for bringing to our attention
the error in [3]. We thank S. Rallis and F. Shahidi for both moral and mathematical
support in addressing this error. Most importantly we thank H. Jacquet for his help
with details in this argument and for providing us with the working title for the
paper (“My Remorse”). We thank Dinakar Ramakrishnan for taking interest in the
new proof and encouraging us to finally publish this result in this volume dedicated
to Steve Gelbart. Finally, we thank the referee for a careful checking of the details
of our argument and for helping us improve the exposition is several key places.

2. Reduction theory and the notion of rapid decrease

As a reference for this (fairly) standard material we follow Section I.2 of [7].
Embed R×+ in A× in the standard way: to t ∈ R×+ we associate the idele (tv)

such that tv = t if v is archimedean and tv = 1 for v non-archimedean. If we let
A1 = {a ∈ A | |a| = 1} then we can decompose A× = R×+ × A1.

Let Bn be the standard upper-triangular Borel subgroup of GLn. Its unipotent
radical is the group Nn of the introduction. Let Tn denote the diagonal torus
and Zn the center. If we write an element a of Tn as a diagonal matrix a =
diag(a1, . . . , an) then the simple roots associated to Bn are ∆ = {α1, . . . , αn−1}
where αi(a) = ai/ai+1.

Tn(A) ' (A×)n through its matrix entries. Let A+
n ⊂ Tn(A) be the con-

nected subgroup A+
n ' (R×+)n ⊂ (A×)n. The group of rational characters of Tn is

isomorphic to Zn. Viewing Tn as the diagonal torus these characters are given by

χm(diag(a1, . . . , an)) =
∏

ami
i

for m = (m1, . . . ,mn) ∈ Zn, which we will denote by a 7→ am. Every rational
character then defines a homomorphism χm : Tn(A) → A×. Let

T1
n(A) =

⋂
Zn

ker|χm|.

We have a homomorphism ν : Tn(A) → A+
n defined by

ν(diag(a1, . . . , an)) = diag(|a1|, . . . , |an|)

whose kernel is precisely T1
n(A). Thus we can decompose Tn(A) = A+

nT1
n(A).

Let Xn denote the group of complex characters of Tn(A) which are trivial on
T1
n(A). These are characters of A+

n . Let X◦
n denote the subgroup of Xn which
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are trivial on the center Zn(A) of GLn(A). Finally let Yn denote the characters
of GLn(A) which are trivial on GL1

n(A) = {g ∈ GLn(A) | |det(g)| = 1}, that is ,
characters of the form g 7→ |det(g)|s for s ∈ C. The real valued characters on A+

n

then split as
ReXn = ReYn ⊕ ReX◦

n.

The characters in ReYn are the real powers of the determinant, i.e., g 7→ |det(g)|r
for r ∈ R. The compliment, so the real characters of Tn(A)/T1

n(A) which are trivial
on the center Zn(A) are the products of real powers of the simple roots, i.e., are of
the form

a 7→
n−1∏
i=1

|αi(a)|ri

for (r1, . . . , rn−1) ∈ Rn−1. Let us denote this character by

|α(a)|r =
n−1∏
i=1

|αi(a)|ri

with r = (r1, . . . , rn−1).
Fix a maximal compact subgroup Kv ⊂ GLn(kv) at each place, where for the

finite places we take Kv = GLn(ov). Let Kn =
∏
v Kv. We have the Iwasawa

decomposition

GLn(A) = Bn(A)Kn = Nn(A)Tn(A)Kn = Nn(A)A+
nKn.

Accordingly, if g ∈ GLn(A) we can write it as g = uak with u ∈ Nn(A), a ∈
Tn(A) and k ∈ Kn. Write a = a(g). This is not unique, but its image ν(a(g)) in
Tn(A)/T1

n(A) ' A+
n is. Denote this by ν(a(g)) = |a(g)|. If we compose this with

the character a 7→ ar for r ∈ Rn we will denote this by |a(g)|r. If we compose
this with the character |α(·)|r′ for r′ ∈ Rn−1 defined above, we will denote this by
|α(g)|r′ .

The group GLn(A) carries a natural norm defined by

‖g‖ =
∏
v

sup
i,j
{|gi,j |v, |(g−1)i,j |v}.

This is related to the functions |a(g)|r and |α(g)|r in the following way:
(i) given r ∈ Rn there exist c > 0 and r0 > 0 such that

|a(g)|r ≤ c‖g‖r0

for all g ∈ GLn(A);
(ii) there exists r ∈ Rn−1 and c > 0 such that

‖g‖ ≤ c|α(g)|r

for all g ∈ GL1
n(A).

For any positive real number t0 let

A+
n (t0) = {a ∈ A+

n | αi(a) > t0 i = 1, . . . , n− 1}.
By a Siegel set Sn ⊂ GLn(A) is meant a set of the form Sn = ωA+

n (t0)K where
ω is a compact subset of Nn(A). By reduction theory for GLn if we take ω large
enough and t0 small enough then

GLn(k)Sn = GLn(A)

and {γ ∈ GLn(k) | γSn ∩Sn 6= ∅} is finite. We fix such a Siegel set.
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Let Z+
n = Zn(A) ∩ A+

n ' R×+. A function ϕ : Sn → C is said to be rapidly
decreasing on the Siegel set Sn if there exists r0 > 0 and for each r ∈ Rn there
exists c = cr such that

|ϕ(zg)| ≤ c‖z‖r0 |a(g)|r

for all z ∈ Z+
n and g ∈ GL1

n(A)∩Sn. A function ϕ : GLn(k)\GLn(A) → C is called
rapidly decreasing if its restriction to the Siegel set Sn is rapidly decreasing in the
previous sense.

We should view a 7→ |a(g)|r as an element of ReXn. For the condition of rapid
decrease, when we restrict to GL1

n(A)∩Sn we have |det(g)| = 1 and hence we need
only consider characters in ReX◦

n, so of the form a 7→ |α(a)|r′ for r′ ∈ Rn−1. So
we may rewrite the condition of rapid decay on GLn(k)\GLn(A) in the following
form.

ϕ is rapidly decreasing on GLn(k)\GLn(A) if there exists r0 > 0 and for each
r ∈ Rn−1 there exists c = cr such that

|ϕ(zg)| ≤ c‖z‖r0 |α(g)|−r

for all z ∈ Z+
n and g ∈ GL1

n(A) ∩Sn.
Note that we have chosen to reformulate this with a negative exponent. Since

the functions |α(g)| are positive and bounded from below on the Siegel set, it suffices
to establish such estimates for r >> 0 in the sense that all of its coordinates are
large and positive. This is the form in which we shall use it in what follows.

3. Gauges

The standard reference for gauges and gauge estimates is the paper [6]. Gauge
estimates were instrumental in proving Propositions 12.2 and 12.3 of [6] which give
the convergence of our partial Poincaré series. As our proof of the rapid decay of
our partial Poincaré series will grow out of these propositions, we recall here the
results on gauges we will need.

A gauge on GLn(A) is a non-negative function which is left invariant under
the maximal unipotent subgroup Nn(A) and right invariant under the maximal
compact K = Kn, hence completely determined by its values on the maximal torus
Tn(A), and there it is of the form

ξ(diag(a1, . . . , an)) =

∣∣∣∣∣
n−1∏
i=1

ai/ai+1

∣∣∣∣∣
−t0

φ(a1/a2, . . . , an−1/an)

where φ(x1, . . . , xn−1) ∈ S(An−1) is a non-negative Schwartz-Bruhat function (φ ≥
0) and t0 ∈ R×+. In terms of the simple roots, if a ∈ Tn(A) then

ξ(a) =

∣∣∣∣∣
n−1∏
i=1

αi(a)

∣∣∣∣∣
−t0

φ(α1(a), . . . , αn−1(a))(3.1)

= |α(a)|−t0φ(α1(a), . . . , αn−1(a))(3.2)

with constant power −t0. Note that this notion makes sense over a local field, as
in Section 2 of [6], but we will primarily use the global version as in Section 12 of
[6].

We will use the following two properties of gauges, proved in Lemma 12.1.5 of
[6].
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1. If Ω ⊂ GLn(A) is compact then there is a second gauge ξ1 such that ξ(gx) ≤
ξ1(g) for all g ∈ GLn(A) and x ∈ Ω.

2. If Ω ⊂ GLn(A) is compact then there is a second gauge ξ2 such that ξ(g) ≤
ξ2(gx) for all g ∈ GLn(A) and x ∈ Ω.

We will also have occasion to use a third property of gauges, which is Lemma
12.1.3 of [6].

3. Suppose ξ is a gauge defined as above and that t′0 > t0 is given. Then
there is a non-negative φ′ ∈ S(An−1) such that the gauge ξ′ defined by t′0 and φ′

majorizes ξ.

4. Proof of the Theorem

Let us now turn to the proof of our theorem. In many respects it is a refinement
of the arguments given in Section 12 of [6] and we will try to indicate the points of
contact as the argument proceeds.

We begin with Π, an irreducible admissible generic representation of GLn(A).
Take W ∈ W0(Π, ψ) and form the partial Poincaré series

U(g) =
∑

γ∈Nn−1(k)\GLn−1(k)

W

((
γ 0
0 1

)
g

)
which upon restriction to GLn−1(A) gives

U

(
h 0
0 1

)
=

∑
γ∈Nn−1(k)\GLn−1(k)

W

(
γh 0
0 1

)
.

Let us use diag(h, 1) for h ∈ GLn−1(A) to denote the matrix
(
h 0
0 1

)
∈ GLn(A). By

applying Proposition 2.3.6 and Lemma 8.3.3 of [6] we know that when we restrict
the Whittaker function W to GLn−1(A) the resulting function is majorized by a
gauge ξ on GLn(A), so that taking absolute values on each term we obtain the
majorization

|U(diag(h, 1))| ≤
∑

γ∈Nn−1(k)\GLn−1(k)

ξ(diag(γh, 1))

where ξ is a gauge on GLn(A). Note that ξ being a gauge on GLn(A) will give
control of all simple roots of GLn−1 as well as the center of GLn−1.

Now consider the behavior of U(diag(h, 1)) for h ∈ Sn−1 a Siegel set in
GLn−1(A). Write Sn−1 = ω1A

+
n−1(t0)Kn−1 with ω1 compact in Nn−1(A). To in-

vestigate rapid decay on GLn−1(k)\GLn−1(A) we claim that it suffices to consider
A+
n−1(1), diagonal matrices a = (a1, . . . , an−1) ∈ A+

n−1 with ai/ai+1 ≥ 1. we write
ω1aKn−1 = a(a−1ω1aKn−1) then for all a ∈ A+

n−1(1) we have a−1ω1aKn−1 ⊂ Ω for
a fixed compact subset Ω ⊂ GLn(A) since the action of A+

n−1(1) is non-expanding
on ω1. Using our first property of gauges from Section 3, this lets us write, for
h = x1ak ∈ Sn−1,

|U(diag(h, 1)| ≤
∑

γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1)).

This proves the claim and reduces us to estimating on A+
n−1(1).
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Let A+,1
n−1 = A+

n−1 ∩ GL1
n−1(A) and A+,1

n−1(1) = A+
n−1(1) ∩ GL1

n−1(A). Then
A+
n−1 = Z+

n−1A
+,1
n−1. For rapid decrease, we will have different estimates on Z+

n−1

and A+,1
n−1(1). Let us first take care of the center. Write our gauge ξ1 on GLn(A)

as

ξ1(diag(a1, . . . , an) =
n−1∏
i=1

|ai/ai+1|−t1φ1(a1/a2, . . . , an−1/an).

Then writing a = z+a1 for a ∈ A+,1
n−1(1) we have

diag(γz+a1, 1) = diag(z+, 1)diag(γa1, 1).

Note that ξ1(diag(z, 1)) = |z|−t1φ1(1, . . . , 1, z) ≤ c|z|−t1 and in a similar manner

ξ1(diag(γz+a1, 1)) ≤ c|z|−t1ξ1(diag(γa1, 1)).

Since for z ∈ Z+ we have |z| = ‖z‖ we see that this estimate is that which we need
on the center for showing that U(diag(h, 1)) is of rapid decrease. So now it suffices
to estimate for a ∈ A+,1

n−1(1).
Let us set

V (a) =
∑

γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1))

and show that this is rapidly decreasing on A+,1
n−1(1).

As in the proof of Proposition 12.2 in [6], take a compact neighborhood of
a in Sn−1 ∩ GL1

n−1(A) of the form ωa = ω1aω3Kn−1 with ω1 as above and ω3 a
compact neighborhood of 1 in A+,1

n−1(1). As before, a−1ωa ⊂ Ω′ with Ω′ independent
of a ∈ A+

n−1(1). Note that the volume of ωa, denoted V ol(ωa), is a constant times
a power of the modulus function δ(a) and is hence polynomial in |α(a)|.

Take r = (r1, . . . , rn−2) ∈ Rn−2
+ a multi-index and recall that for a ∈ An−1 we

have defined |α(a)|r =
∏n−2
i=1 |αi(a)|ri which is

∏
(ai/ai+1)ri if a ∈ A+

n−1. Consider

|α(a)|rV ol(ωa)V (a) =
∑

γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1))|α(a)|rV ol(ωa).

On the right hand side we can re-write this as∑
γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1))|α(a)|r
∫
ωa

dx

=
∫
ωa

∑
γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1))|α(a)|rdx.

Using our second property of gauges from Section 3 and that a−1ωa ⊂ Ω′ we
may write ξ1(diag(γa, 1)) ≤ ξ2(diag(γx, 1)) for all x ∈ ωa. Also, let us extend
the function |α(a)|r to a function on GL1

n−1(A) by making it left invariant under
Nn−1(A) and right invariant under Kn−1 using the Iwasawa decomposition, i.e., to
the function |α(h)|r from Section 2. Then we may estimate the above as∫

ωa

∑
γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1))|α(a)|rdx

≤
∫
ωa

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))|α(x)|rdx.
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As in the proof of Proposition 12.5 of [6] (see page 229) we may replace the integral
over ωa with one over GL1

n−1(k)\GL1
n−1(A) at the cost of a positive constant∫

ωa

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))|α(x)|rdx

≤ c

∫
GL1

n−1(k)\GL1
n−1(A)

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))|α(x)|rdx.

Now replace |α(x)|r by the Eisenstein series E(x, r) =
∑
|α(γx)|r on GL1

n−1(A).
As long as r >> 0 this converges. Assuming r >> 0, and recalling that ξ2 is non-
negative, we estimate the single term |α(x)|r from above by the complete sum (of
positive terms) E(x, r) to obtain∫

GL1
n−1(k)\GL1

n−1(A)

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))|α(x)|rdx

≤
∫

GL1
n−1(k)\GL1

n−1(A)

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))E(x, r)dx.

Noting that GL1
n−1(k) = GLn−1(k), we next unfold the sum to∫

GL1
n−1(k)\GL1

n−1(A)

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))E(x, r)dx

=
∫

Nn−1(k)\GL1
n−1(A)

ξ2(diag(x, 1))E(x, r)dx

and perform the integration over Nn−1(k)\Nn−1(A) which replaces E(x, r) by its
constant term

ENn−1(x, r) =
∑

w∈Wn−1

c(w, r)|α(x)|wr.

Using the Iwasawa decomposition this reduces to∫
Nn−1(k)\GL1

n−1(A)

ξ2(diag(x, 1))E(x, r)dx

=
∑
w

c(w, r)
∫
A1

n−1(A)

ξ2(diag(a, 1))|α(a)|wrda.

Consider now any term on the right. Let r′ = wr. Write

ξ2(a′) = |
n−1∏
i=1

αi(a′)|−tϕ(α1(a′), . . . , αn−1(a′)),

for a′ ∈ A+
n using that A+

n−1(A) ⊂ A+
n (A), with ϕ a Schwartz-Bruhat function and

αi(a) = ai/ai+1. Recall

|α(a)|r
′
=
n−2∏
i=1

αi(a)r
′
i .

Then

ξ2(diag(a, 1))|α(a)|r
′
=
n−2∏
i=1

|αi(a)|−t+r
′
i |an−1|−tϕ(α1(a), . . . , αn−2(a), an−1).
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Now ϕ(α1(a′), . . . , αn−1(a′)) is rapidly decreasing as the αi(a′) →∞ and is bounded
as αi(a′) → 0. Therefore by taking t′ = maxi(t − r′i) with r′n−1 = 0 we see that
ξ2(diag(a, 1))|α(a)|r′ < ξ3(diag(a, 1)) where

ξ3(a′) =

∣∣∣∣∣
n−1∏
i=1

αi(a′)

∣∣∣∣∣
−t′

ϕ′(α1(a′), . . . , αn−1(a′))

is another gauge on GLn(A). This follows from the third property of gauges given
in Section 3.

If ξ is any gauge on GLn(A) we know that∫
An−1(A)

ξ(diag(a, 1))|det(a)|sda

is convergent for Re(s) >> 0. This follows from factoring the integral as a product∏
v

∫
An−1(kv)

ξv(diag(av, 1))|det(av)|svdav

and using the expression for the determinant in terms of roots. Next decompose
An−1(A) = A+ × A1

n−1(A) where A+ ⊂ An−1(R) with A+ ' R×+. Then taking
s = σ to be real and sufficiently large to guarantee absolute convergence, we have∫

An−1(A)

ξ(diag(a, 1))|det(a)|σda

=
∫
A+

(∫
A1

n−1(A)

ξ(diag(a+a1, 1))da1

)
(a+)σda+.

So by Fubini the inner integral is finite for every a+ and in particular∫
A1

n−1(A)

ξ(diag(a1, 1))da1 <∞.

Tracing our way back, this last step implies that each∫
A+,1

n−1(A)

ξ2(diag(a, 1))|α(a)|wrda

is finite, and hence∫
GL1

n−1(k)\GL1
n−1(A)

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))E(x, r)dx

is finite. Thus∫
GL1

n−1(k)\GL1
n−1(A)

∑
γ∈Nn−1(k)\GLn−1(k)

ξ2(diag(γx, 1))|α(x)|rdx

is finite and ∑
γ∈Nn−1(k)\GLn−1(k)

∫
ωa

ξ1(diag(γa, 1))|α(a)|rdx

is finite. This finally implies that for each r >> 0

|α(a)|rV ol(ωa)V (a)
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is finite and so

V (a) =
∑

γ∈Nn−1(k)\GLn−1(k)

ξ1(diag(γa, 1)) ≤ c|α(a)|−rV ol(ωa)−1 ≤ c′|α(a)|−r
′

for every r′ >> 0.
As a consequence we obtain, for every r′ >> 0,

|U(diag(zh, 1))| ≤ c‖z‖−t1 |α(h)|−r
′

for h ∈ GL1
n−1(A) ∩ S. But this is rapid decrease of the partial Poincaré series

U(diag(h, 1)) on GLn−1(k)\GLn−1(A) as desired. �

5. The Converse Theorem

To get an intertwining into the space of smooth automorphic forms, as we did
in the case of Poincaré series, we need more arithmetic input. This is the content
of the converse theorems for GLn. For completeness, let us paraphrase the basic
converse theorem from [3] in terms of our partial Poincaré series.

Theorem 5.1. Let Π ' ⊗′Πv be an irreducible admissible (generic) representa-
tion of GLn(A) whose central character is automorphic and whose formally defined
L-function

L(s,Π) =
∏
v

L(s,Πv)

is absolutely convergent in some right half plane. Suppose in addition that for
every m with 1 ≤ m ≤ n − 1 and for every cuspidal automorphic representation τ
of GLm(A) the twisted L-functions L(s,Π× τ) are nice, i.e.,

(1) both L(s,Π× τ) and L(1− s, Π̃× τ̃) extend to entire functions of s;
(2) these extensions are bounded in vertical strips of finite width;
(3) they satisfy the basic functional equation

L(s,Π× τ) = ε(s,Π× τ)L(1− s, Π̃× τ̃).

Then the partial Poincaré series

U(g) =
∑

γ∈Nn−1(k)\GLn−1(k)

W

((
γ 0
0 1

)
g

)
for W ∈ W0(Π, ψ) defines a smooth cusp form on GLn(A), and so, in particular,
is left invariant under GLn(k).

For stronger versions of this result see Theorem 2 and Theorem 3 of [3] and
Theorem 1 and Theorem 2 of [4], which allow more restricted twisting sets, both
in terms of rank of the groups and in terms of ramification of the twisting repre-
sentations. However, the proofs of all of these results begin with this same basic
partial Poincaré series.
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Acta Math. 167 (1991), 229–285.

[2] J.W. Cogdell and I.I. Piatetski-Shapiro, The Arithmetic and Spectral Analysis of Poincaré
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