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Converse Theorems, Functoriality, and Applications

J.W. Cogdell

Converse Theorems traditionally have provided a way to characterize Dirichlet
series associated to modular forms in terms of their analytic properties. The
prototypical Converse Theorem was due to Hamburger who characterized the
Riemann zeta function in terms of its analytic properties [23]. More familiar
may be the Converse Theorems of Hecke and Weil. Hecke first proved that
Dirichlet series associated to modular forms enjoyed “nice” analytic properties
and then proved “Conversely” that these analytic properties in fact characterized
modular Dirichlet series [26]. Weil extended this Converse Theorem to Dirichlet
series associated to modular forms with level [62]. In their modern formulation,
Converse Theorems are stated in terms of automorphic representations instead of
modular forms. This was first done by Jacquet and Langlands for GL2 [31]. For
GLn, Jacquet, Piatetski-Shapiro, and Shalika have proved that the L-functions
associated to automorphic representations have nice analytic properties similar to
those of Hecke [32] (see also [15, 9]). The relevant “nice” properties are: analytic
continuation, boundedness in vertical strips, and functional equation. Converse
Theorems in this context invert this process and give a criterion for automorphy,
or modularity, in terms of these L-functions being “nice” [31, 32, 13, 9].

The first application of a Converse Theorem that might come to mind is
to the question of modularity of arithmetic or geometric objects. To use the
Converse Theorem in this context one must first be able to prove that the L-
functions of these arithmetic/geometric objects are “nice”. However, essentially
the only way to show that an L-function is nice is to have it associated to an
automorphic form already! So, on second thought, as a direct tool for establishing
modularity the Converse Theorem seems a bit lacking. Instead, the most natural
direct application of the Converse Theorem is to Functoriality, in this case the
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transfer of automorphic representations from some group G to GLn. Recently this
approach to Functoriality via the Converse Theorem has proved successful and
many new cases of Functoriality have been established (see Section 2.4 below).

Further applications of the Converse Theorem come about through applica-
tions of these cases of Functoriality. As a meta-application, Functoriality itself is
a manifestation of Langlands’ vision of a non-abelian class field theory, so that
proving explicit cases of Functoriality gives direct evidence of this vision. On the
other hand, one must not lose sight of the fact that automorphic forms, like clas-
sical modular forms, can be formidable tools in analytic number theory. As an
application of some of these recent cases of Functoriality, Kim and Shahidi have
established the best known general bounds towards the Ramanujan conjecture
for GL2 (see Section 3.1 below). Applying these bounds in the case of GL2 over
a totally real field was an ingredient that we used (with Piatetski-Shapiro and
Sarnak) in proving a subconvexity result for twisted Hilbert modular L-functions,
which in turn was the crucial estimate in our confirmation of the last remaining
case of Hilbert’s eleventh problem (see Section 3.2 below). Of course, one should
never lose sight of the question of modularity and one can reasonably ask if the
Converse theorem played any role in the recent spectacular cases of modularity:
modularity of elliptic curves over Q by Wiles, et.al., and the modularity of global
Galois representations in the function field setting by Lafforgue. The answer is
(luckily) yes, and we will discuss this briefly at the end.

This article is based on the Whittemore Lectures that I gave at Yale in the
Fall of 2001. In those lectures I presented an overview of this circle of ideas. In
the first lecture I discussed the classical results of Hecke and Weil, the problems
they were interested in at the time, and then the modern formulations of the
Converse Theorem. The second lecture I devoted to the “what” and “why” of
Functoriality as well as the use of the Converse Theorem in establishing new cases
of Functoriality. In the final lecture I turned to applications of these results to
various questions in number theory including their relation to Hilbert’s eleventh
problem and to general questions of “modularity”. As the Whittemore Lectures
were to present an introduction of this material to a general mathematical au-
dience, they were somewhat colloquial in tone and purposefully avoided many
technical details. Since I hope that this article can fulfill a similar purpose, I
have retained the tone of the lectures. This account is by no means encyclopedic
or even complete and I apologize in advance to all those who have contributed
but whose contributions I have failed to give complete coverage. More details can
be found in the research papers listed in the bibliography.

It is an honor to be able to present my Whittemore Lectures in this volume
dedicated to Borel. I was quite lucky to be a graduate student at Yale when Borel
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spent the Fall of 1978 there. That year Borel gave the Whittemore Lectures,
probably the first series that I attended, as well as a graduate course on “Some
Topics in the Analytic theory of Automorphic Forms”. To this day, the notes
that I took in Borel’s course are my primary reference for the analytic theory
of automorphic forms, including the analytic continuation of rank 1 Eisenstein
series and the associated spectral decomposition of L2. It was a truly formative
experience in my career, both in terms of the actual mathematics learned and
possibly more importantly in terms of the conveying a sense of respect for the
mathematics.

1 Converse Theorems

As always, we begin with Hecke and the theory of classical modular forms [28].
If we let Γ = SL2(Z) and H = {z = x+ iy | y > 0} then a modular form of weight
k ≥ 2 for Γ is a holomorphic function f : H → C such that

1. f

(

az + b

cz + d

)

= (cz + d)kf(z) for all

(

a b
c d

)

∈ Γ;

2. f is “holomorphic at ∞”.

For this last condition, note that Γ\H ≃ P1(C) − {∞}. Let Mk(Γ) denote the
(finite dimensional) space of all such forms of weight k.

These functions have often played a key role in arithmetic questions, so much
so that Eichler purportedly stated that there are five fundamental operations in
arithmetic: addition, subtraction, multiplication, division, and modular forms.

Since T =

(

1 1
0 1

)

∈ Γ, we see f(z + 1) = f(z) and so we have a Fourier

expansion

f(z) =
∞
∑

n=0

ane2πinz

beginning with n = 0 since f(z) is holomorphic at ∞. f(z) is a cusp form if

f(z) =

∞
∑

n=1

ane2πinz,

i.e., if f vanishes at the cusp at ∞. The space of cusp forms of weight k is denoted
Sk(Γ).
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Hecke associated to f(z) an L-function

L(s, f) =
∞
∑

n=1

an

ns
Re(s) >

k

2
+ 1

and introduced an algebra of operators (the original Hecke algebra) H = 〈Tp〉,
generated by the Hecke operators Tp indexed by primes, such that L(s, f) has an
Euler product expansion iff f is an eigenfunction of all Hecke operators, and then

L(s, f) =
∏

p

(1 − app
−s + pk−1p−2s)−1.

If f ∈ Sk(Γ) then Hecke showed that these L-functions were nice. If we set

Λ(s, f) = (2π)−2Γ(s)L(s, f)

then

(i) Λ(s, f) extends to an entire function of s;

(ii) Λ(s, f) is bounded in vertical strips;

(iii) Λ(s, f) satisfies the functional equation

Λ(s, f) = ikΛ(k − s, f).

These nice properties of Λ(s, f) followed from the modularity of f via the
Mellin transform

Λ(s, f) =

∫ ∞

0
f(iy)ys d×y.

In particular, the functional equation is equivalent to the transformation law

f(Sz) = f(−1/z) = zkf(z) for S =

(

0−1
1 0

)

∈ Γ.

Moreover, Hecke realized that he could establish a converse to this since the
Mellin transform is invertible [26, 27]. Namely, if the Dirichlet series

D(s) =
∞
∑

n=1

an

ns
Re(s) >> 0

is nice, i.e.,

Λ(s) = (2π)−sΓ(s)D(s)
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extends to an entire function, is bounded in vertical strips, and satisfies

Λ(s) = ikΛ(k − s)

then

f(z) =

∞
∑

n=1

ane2πinz ∈ Sk(Γ).

Once again,

f(iy) =
∞
∑

n=1

ane−2πny =

∫

Re(s)=c
Λ(s)y−s ds

and the modular transformation for f(z) under S comes from the functional
equation for Λ(s).

Weil proved a similar converse theorem for modular forms f ∈ Sk(Γ) for

Γ = Γ0(N) [62]. Note that now S =

(

0−1
1 0

)

is no longer an element of Γ. Instead

of requiring that only Λ(s) = (2π)−sΓ(s)D(s) be nice for D(s) =
∑

ann−s he
had to require that the twisted L-function

Λ(s, χ) = (2π)−sΓ(s)
∞
∑

n=1

χ(n)an

ns

is appropriately nice for (essentially) all Dirichlet characters χ of conductor prime
to N to conclude that f(z) =

∑

ane2πinz ∈ Sk(Γ) and that D(s) = L(s, f).

What questions were Hecke and Weil interested in?

Hecke [26, 27]: Hamburger (1921-22) had proved that the Riemann zeta
function ζ(s) was completely characterized by its analytic properties, particularly
the functional equation [23]. Hecke was interested in such results for other fields
K. The idea was to attach to the Dedekind zeta function ζK(s) a modular form
and then use the modular structure (finite dimensionality, Hecke operators, etc.)
to obtain the characterization. This he could do for quadratic imaginary K.

Weil [62]: Weil was looking at something more conjectural. If we let E :
y2 = x3 + ax + b be an elliptic curve over Q, then E has associated to it an
L-function built as an Euler product

L(E, s) =





∏

p|2∆

· · ·





∏

p∤2∆

(1 − app
−s + p1−2s)−1 Re(s) >

3

2

where ap = p−|E(Fp)|+1 is related to the number of points on E, the reduction
of E mod p. It had been conjectured by Taniyama and Shimura that E should be



106 J.W. Cogdell

modular, i.e., associated to a cusp form of weight 2. Since L(E, s) and the twisted
L-functions L(E, s, χ) were expected to be nice then Weil’s Converse Theorem
would give an explicit connection with modular forms.

So both Hecke and Weil were interested in questions of modularity – attaching
modular forms to arithmetic objects – mediated by L-functions.

Note 1: Of course, we now know that all elliptic curves over Q are modular:
Wiles, Taylor, Breuil, Conrad, Diamond [63, 6].

Note 2: As an example of why these L-functions of arithmetic objects are in-
teresting, recall the Birch and Swinnerton-Dyer Conjecture [64] for elliptic curves:
L(E, s) is built out of purely local information yet extends to all C and has a
functional equation relating L(E, s) and L(E, 2 − s). The central point is s = 1
and according to Birch and Swinnerton-Dyer this central point carries very inter-
esting global information, the easiest example being that the order of vanishing
of L(E, s) at s = 1 should equal the rank of the group of rational points E(Q).

The modern formulation of the Converse Theorem are connected with the
modern formulation of modular forms: automorphic representations. For more
details and references for the theory of automorphic representations and L-functions
for GLn, we refer the reader to [9].

Take k a number field, say k = Q (a global function field would work just as
well). The adele ring A = Ak is the restricted product of all completions of k:
Ak =

∏′kv;

AQ = R ×
∏

p

′
Qp = lim−→

S



R ×
∏

p∈S

Qp ×
∏

p/∈S

Zp



 .

Then k embeds diagonally in A as a canonical discrete sub-ring and k\A is com-
pact. Similarly, for GLn one can consider GLn(A) =

∏

v
′GLn(kv) and GLn(k)

embeds diagonally in GLn(A) as a canonical discrete subgroup with finite co-
volume (modulo the center). The space of L2-automorphic forms on GLn(A),
with a fixed behavior (by a unitary character ω) under the center is simply
L2(GLn(k)\GLn(A); ω) and this affords a representation of GLn(A) by right
translation. The space of cusp forms, denoted L2

0(GLn(k)\GLn(A); ω), is a sta-
ble subspace. These are the automorphic forms which “vanish at all cusps” or
whose “constant Fourier coefficients” are 0. A result of Gelfand and Piatetski-
Shapiro [22] tells us that the space of cusp forms decomposes discretely with finite
multiplicities

L2
0(GLn(k)\GLn(A); ω) = ⊕mπVπ

with mπ < ∞ (and in fact equal to 1 if non-zero). The components (π, Vπ) are
the cuspidal automorphic representations.
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Note: If f(z) is a classical modular form which is an eigenfunction for all the
Hecke operators, then f completely determines one of these components (π, Vπ)
for n = 2, i.e, determines and is determined by a cuspidal automorphic represen-
tation of GL2(A).

Just as we have the decomposition GLn(A) =
∏

v
′GLn(kv) the irreducible

cuspidal representations also factor π ≃ ⊗′
vπv into a restricted tensor product of

irreducible admissible unitary representations πv of GLn(kv).

In the 1970–80’s, Jacquet, Piatetski-Shapiro and Shalika, following Jacquet
and Langlands, extended the work of Hecke to give a theory of L-functions for
cuspidal automorphic representations of GLn(A) via integral representations. For
each (π, Vπ) with π ≃ ⊗′

vπv they associated

1. πv 7→ L(s, πv) a local Euler factor at v; L(s, πv) = Pv(q
−s
v )−1 for Pv a

polynomial of degree n with Pv(0) = 1 at almost all finite places v and for
v|∞ L(s, πv) is an appropriate product of shifted Γ-functions of “degree n”.

2. π 7→ L(s, π) =
∏

v L(s, πv); an Euler product, convergent for Re(s) >> 0.

Similarly, by analogy with Weil, for π′ ≃ ⊗′π′
v a cuspidal representation of

GLm(A), m ≤ n, they defined twisted L-functions

L(s, π × π′) =
∏

v

L(s, πv × π′
v)

which are Euler products of degree n · m (the analogue of Λ(s, f, χ) before) and
they proved that these were nice:

(i) extend to entire functions of s (as long as m < n);

(ii) are bounded in vertical strips of finite width;

(iii) satisfy a functional equation

L(s, π × π′) = ε(s, π × π′)L(1 − s, π̃ × π̃′)

with the ε-factor a monomial and π̃ representing the contragredient (or
dual) representation.

(To be honest, the method of integral representations currently can show bound-
edness in vertical strips only if m = n or m = n − 1 [15]. In the other cases we
must rely on the work of Gelbart and Shahidi [21].) Again, as in the classical
case, automorphic L-functions are nice.
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What shape does a Converse Theorem now take? One could begin with an
arbitrary L-function as defined by an Euler product, but this does not exhibit
enough structure. (If L(s) is degree n over Q is it to come from an automorphic
form for GLn over Q or from GL1 over a field K with (K : Q) = n, or somewhere
in between.) Instead we are a bit more specific. We begin with Π = ⊗′

vΠv

an irreducible admissible representation of GLn(A) thought of as a collection of
local data that need not be coherent. (We do add one coherence condition: the
central character ωΠ should be automorphic.) Then the local theory of Jacquet,
Piatetski-Shapiro and Shalika [34] at least lets us formally define an L-function

L(s, Π) =
∏

v

L(s, Πv).

So Π encodes an L-function as an Euler product of degree n, but with some
added structure. Moreover for π′ now a cuspidal automorphic representation of
GLm(A) we can similarly form a twisted L-function

L(s, Π × π′) =
∏

v

L(s, Πv × π′
v)

just as Weil did.

Converse Theorem I. [13] Suppose L(s, Π) converges for Re(s) >> 0 and
L(s, Π × π′) is nice for all cuspidal π′ for GLm(A) with 1 ≤ m ≤ n − 1. Then Π
is a cuspidal automorphic representation of GLn(A).

This is the analogue of Weil’s result. Improving upon Weil we have:

Converse Theorem II. [14] Suppose n ≥ 3 and L(s, Π × π′) is nice for all
cuspidal π′ for GLm(A) with 1 ≤ m ≤ n − 2. Then Π is a cuspidal automorphic
representation of GLn(A).

Note: There are also more useful variants (as with Weil) which allow various
types of restriction on the ramification of the twisting representations, but in
exchange one loses control of the local components of Π at a finite number of
places.

The most one could hope for is the following.

Conjecture. [13] Suppose L(s, Π × ω) is nice for all idele class characters ω.
Then there exists an automorphic representation Π′ of GLn(A) such that L(s, Π×
ω) = L(s, Π′ × ω) for all ω.

In other words, the L-function you started with was automorphic, you had
just parameterized it in the wrong way. This conjecture would be quite powerful:
see Taylor’s address in the 2002 ICM [57, 58].
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Who cares? The first thought is to Weil and his modularity. He didn’t
actually prove that L(E, s) was modular, but he said that if you expect a degree
2 L-function to be nice then it must be modular.

Degree n L-functions also arise in arithmetic and geometry. One rich family
come from either complex or ℓ-adic Galois representations

ρ : Gal(k/k) → GLn(C) or ρ : Gal(k/k) → GLn(Qℓ).

These have L-functions
L(s, ρ) =

∏

Lv(s, ρ)

defined as Euler products convergent for Re(s) >> 0. For most places v (unram-
ified for ρ) we have

Lv(s, ρ) = det(1 − ρ(Frobv)q
−s
v )−1

is a degree n Euler factor. Since these and almost all other arithmetic or geometric
L-functions are expected to be nice then these Galois representations should be
modular. This is the meta-application of the Converse Theorems and we will
discuss it more below.

But what about a real application?

2 Functoriality

2.1 Langlands Conjectures

(For more details and references, we refer the reader to [5] and to Chapter 10
of [8].) We begin with a specific case of modularity. One of the primary goals
of number theory is to understand the group GQ = Gal(Q/Q) or more generally
Gk = Gal(k/k) since this group governs the arithmetic of k. One way to try to
understand Gk is through understanding its finite dimensional representations

ρ : Gk → GLn(C).

It was Artin who in 1930 attached to these representations an analytic invariant,
now called the Artin L-function,

L(s, ρ) =
∏

Lv(s, ρ)

defined as Euler products convergent for Re(s) >> 0 [1]. For most places v
(unramified for ρ) we have

Lv(s, ρ) = det(1 − ρ(Frobv)q
−s
v )−1
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is a degree n Euler factor. For n = 1, these L(s, ρ) figured prominently in Artin’s
analytic proof of class field theory, so they are quite useful invariants! Much is
known about these global invariants (see Chapter 4 of [8]):

1. They have a meromorphic continuation to the complex plane and satisfy
an appropriate functional equation (Brauer, 1947);

2. they are bounded in vertical strips;

3. They are conjectured to be entire if ρ does not contain the trivial represen-
tation (the Artin Conjecture).

In other words, for irreducible, non-trivial representations ρ these invariants
should be nice and hence the representations should be modular. (Note that
the twisting of the L-function on the modular side corresponds to taking tensor
product of Galois representations.) Thus we are naturally lead to:

Global Langlands Conjecture (naive version). There exist natural bijections
between (a) the set of irreducible n-dimensional representations ρ of Gk and (b)
the set of cuspidal automorphic representations π of GLn(A). (Of course, one of
the qualities inherent in natural is an equality of the invariants L(s, ρ) = L(s, π),
along with twisted versions, etc.....)

One thing possible with the modern formulation of the theory of automorphic
representations is that one can easily formulate a version of local modularity:

Local Langlands Conjecture (naive version). For a local field kv, there exist
natural bijections between (a) the set of semi-simple n-dimensional representa-
tions ρv of Gkv

and (b) the set of irreducible admissible representations πv of
GLn(kv), again requiring an equality of the local invariants L(s, ρv) = L(s, πv),
along with twisted versions, etc.....

Note: One can view these bijections in two ways

1. passing information from Automorphic (analytic) −→ Galois (arithmetic);
this is a non-abelian class field theory.

2. passing information from Galois −→ Automorphic; this is an arithmetic
parameterization of local or automorphic representations.

I have used the word naive in these formulations. This is naive because of
several issues:
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1. The difference in the topologies of GQ and GLn(C) is such that one doesn’t
pick up enough information about the Galois group from complex repre-
sentations. One needs to use ℓ-adic representations:

ρ : Gal(k/k) → GLn(Qℓ) or ρ : Gal(kv/kv) → GLn(Qℓ).

with ℓ a prime.

2. There are “more” automorphic or admissible representations of GLn than
there are n-dimensional Galois representations.

Weil dealt with the second issue for n = 1 by introducing the local and global
Weil groups WQ or WQv

to substitute for GQ, etc. [61].

Deligne dealt with the first issue and second issue locally for n ≥ 2 by intro-
ducing the local Weil-Deligne group W ′

Qv
to replace WQv

[18]. So

GQv
−→ WQv

−→ W ′
Qv

locally

GQ −→ WQ −→ ??? globally.

Which leaves us only with:

Local Langlands Conjecture. For a local field kv, there exist natural bijections
between (a) the set of (suitable) semi-simple n-dimensional (complex) represen-
tations ρv of W ′

kv
and (b) the set of irreducible admissible representations πv of

GLn(kv), again requiring an equality of the local invariants L(s, ρv) = L(s, πv),
along with twisted versions, ε-factors, etc.....

This local modularity is in fact a Theorem due to

– Langlands in the case kv = R, C [44];

– Laumon-Rapoport-Stuhler in the case char(kv) = p > 0 [45];

– Harris-Taylor, Henniart in the case char(kv) = 0 [25, 29].

Globally, at least over a number field, there is not a nice analogue of the
Weil-Deligne group. (The global Weil-Deligne group W ′

k would essentially be the
conjectural Langlands group Lk. In finite characteristic, one can use the global
Galois group Gk for many purposes – see Lafforgue for example [42].) So, at least
in characteristic 0 one has difficulties formulating a Global Langlands Conjecture.
However, as a practical matter, one can circumvent this difficulty by appealing
to a philosophical Hasse principle or local–global compatibility.
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Let us now ask, as Langlands did, how would we formulate these conjectures
for other types of Galois representations or other groups H? We will primarily be
interested in the split classical groups H = SO2n+1, SO2n, Sp2n. To think about
this problem, Langlands introduced dual groups LH, essentially the complex
analytic groups obtained by dualizing the root data:

H LH

GLn GLn(C)
SO2n+1 Sp2n(C)
Sp2n SO2n+1(C)
SO2n SO2n(C)

Then the Local Langlands Conjecture for H, as an arithmetic parameteriza-
tion problem, takes the following form.

Local Langlands Conjecture for H: There exists a surjective map

{πv : irreducible admissible representations of H(Qv)} → {φv : W ′
Qv

→L H(C), admissible}

with finite fibres such that L(s, πv) = L(s, φv) (among other things).

This would partition the admissible representations of H(Qv) into L-packets,
i.e., finite subsets all having the same L-functions.

Known cases:

– kv = R, C, all H (Langlands [44]);

– kv non-archimedean, and πv unramified (Satake [49]);

– H = GLn, kv arbitrary (as above).

Again, a Global Langlands Conjecture for H must be thought of in terms of
local-global compatibility.

2.2 Functoriality

(For more details and references we refer the reader to [5] and to Chapter 11 of
[8].) We finally come to Functoriality. It is a manifestation of thinking about
either a Local Langlands Conjecture or Global Langlands Conjecture as giving an
arithmetic parameterization of modular data. To explain in the cases of interest,
we begin with
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– a split reductive group H over k as above;

– its dual group LH;

– a complex analytic homomorphism (L-homomorphism) u : LH → GLN (C),
which we will take as the natural embedding.

One can view the L-homomorphism simply as a vehicle for transferring the arith-
metic parameters for the representations.

Local Functoriality: If πv is an irreducible admissible representation of
H(kv) then we can obtain an irreducible admissible representation Πv of GLN (kv)
by following the diagram

LH
u

// LGLN

πv
�

//
�

// Πv.

W ′
kv

φv

XX222222222222222

Φv

DD																

and this should satisfy

L(s, πv) = L(s, φv) = L(s, Φv) = L(s, Πv)

along with similar equalities for twisted versions and for ε-factors.

Πv is the local Langlands lift of πv to GLN (kv) (associated to the L-homomorphism
u).

In the case of Global Functoriality, since we do not have a global version of
the Weil-Deligne group, and so no such global diagram, we rely on local/global
compatibility, but with a fixed L-homomorphism acting as our “global glue” for
the local parameters.

Global Functoriality Conjecture: If π = ⊗′πv is a cuspidal automorphic
representation of H(A) then the representation Π = ⊗′Πv of GLN (A) we obtain
by following the diagram

LH
u

// LGLN

π = ⊗′πv πv
�

//
�

// Πv Π = ⊗′Πv.

W ′
kv

φv

XX2222222222222222

Φv

DD
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should be automorphic and moreover should satisfy

L(s, π) =
∏

v

L(s, πv) =
∏

v

L(s, Πv) = L(s, Π)

along with similar equalities for twisted versions and for ε-factors.

The global lifting π → Π, which relates L-functions, is a purely automorphic
manifestation of the presumed modularity of global Galois representations!

2.3 Converse Theorem

Let us return to thinking about how the Converse Theorem is related to ques-
tions of modularity and thereby Functoriality. It is made to order for Global
Functoriality. Here is the idea.

Take a global field k and a split reductive algebraic group H over k. Let
u : LH → GLN (C) be the L-homomorphism as before and π = ⊗′

vπv a cuspidal
automorphic representations of H(A).

Step 1: We apply the Local Langlands Conjecture to each πv as above to produce
a local representation Πv of GLN (kv) and then put them together to form a
candidate lift Π = ⊗′

vΠv as an irreducible admissible representation of GLN (A).

Step 2. Since the Local Langlands Conjecture entails the matching of analytic
invariants, then for all cuspidal π′ of GLm(A), 1 ≤ m ≤ N − 2 we expect that

L(s, Π × π′) = L(s, π × π′)

etc... Now the L-functions on the right hand side are automorphic associated to
H(A) × GLm(A) and so should be verifiably nice!

Step 3. We now apply the Converse Theorem to conclude that Π is automorphic,
i.e., establishing Global Functoriality from H to GLN .

There are two immediate problems that come to mind:

1. the lack of the Local Langlands Conjecture for H at all places v;

2. the actual analytic control of the L-functions L(s, π × π′) for H.

When have we been able to either solve or circumvent these problems?
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2.4 Examples of established Global Functorialities

We let k be a number field, π a globally generic cuspidal representation of H(A).
Then the above method, or a variant of it, has been used to establish a version
of global functoriality in the following cases:

H LH u :L H →L G LG G

GL2 ×GL2 GL2(C) × GL2(C) ⊗ GL4(C) GL4 [47]

SO2n+1 Sp2n(C) →֒ GL2n(C) GL2n [11, 12]

SO2n SO2n(C) →֒ GL2n(C) GL2n [12]

Sp2n SO2n+1(C) →֒ GL2n+1(C) GL2n+1 [12]

GL2 ×GL3 GL2(C) × GL3(C) ⊗ GL6(C) GL6 [39]

GL4 GL4(C) ∧2 GL6(C) GL6 [37]

GL2/E Asai GL4 [41, 48]

Un,n Base Change GL2n/E [38]

GSpin2n+1 GSp2n(C) →֒ GL2n(C) GL2n [2]

GSpin2n GSO2n(C) →֒ GL2n(C) GL2n [2]

Remarks. The major difficulty in establishing these results has been the con-
trol of the twisted L-functions L(s, π × π′) for H × GLm. In almost all cases
here, these L-functions were controlled by the Langlands–Shahidi method which
involves realizing the L-functions in the constant and non-constant Fourier coeffi-
cients of Eisenstein series (see [50] and the references therein). Recently Shahidi
with crucial collaboration of Kim have shown that the L(s, π × π′) are nice in
the above situations. This method accounts for the restriction to globally generic
representations (so that we have suitable Fourier coefficients), the restriction to
number fields (a historical restriction, not an essential restriction of the method)
and the finiteness of the table (an honest restriction of the method).

In actuality, in having to circumvent the lack of the Local Langlands Conjec-
ture and some remaining global problems, one loses control of Π at a finite set of
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finite places. The true conclusion is: there exists an automorphic representation
Π = ⊗′

vΠv such that Πv is the local Langlands lift of πv at all but finitely many
places. After this, one has to do further work to remove this ambiguity, deal with
cuspidality, characterize the image, etc.. But these questions no longer involve
the Converse Theorem in an essential way.

Question. Other than indirect evidence for the Global Langlands Conjecture and
hence the global modularity of Galois representations, are these results applicable
to any “practical” problems of number theory? So we ask again: who cares?

3 Applications

As Arthur noted in his Whittemore Lectures, establishing liftings from classical
groups to GLn can yield facts for the classical groups by pulling back facts from
GLn. Two examples of these types of results that resulted from these liftings
(plus a lot of work) were

– estimates towards the Ramanujan conjecture for generic cuspidal represen-
tations of split classical groups [12, 51];

– the Local Langlands Conjecture for generic representations of SO2n+1(kv)
for a p-adic local field by Jiang and Soudry [35, 36].

But here I want to primarily address applications to two questions of “classical”
number theory.

3.1 The Ramanujan Conjecture [24]

Ramanujan was originally interested in the behavior of an arithmetical function
τ(n) defined as the coefficient of xn in the product

x

(

∞
∏

n=1

(1 − xn)

)24

=
∞
∑

n=1

τ(n)xn.

Presumably based on numerical calculations he conjectured in 1916 that for prime
p

τ(p) ≤ 2p11/2.
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If we replace x by q = e2πiz we obtain the Jacobi product expansion of the unique
cusp form of weight 12 for SL2(Z)

e2πiz

(

∞
∏

n=1

(1 − e2πinz)

)24

=
∞
∑

n=1

τ(n)e2πinz = ∆(z)

the discriminant function from the theory of elliptic modular forms. Since the
dimension of the space of cusp forms of weight 12 for SL2(Z) is one, ∆(z) must
be a Hecke eigenform and

L(s, ∆) =
∞
∑

n=1

τ(n)

ns
=
∏

p

(1 − τ(p)p−s + p11p−2s)−1.

Over time this conjecture was generalized by Petersson to other normalized
Hecke eigenforms. If we have

f(z) =
∞
∑

n=1

ane2πinz ∈ Sk(Γ)

a Hecke eigenform normalized so that a1 = 1 with

L(s, f) =
∞
∑

n=1

an

ns
=
∏

p

(1 − app
−s + pk−1p−2s)−1

then the Ramanujan-Petersson conjecture is that

|ap| ≤ 2p
k−1

2 .

Of course, there is also a version for Maaß forms.

– For classical holomorphic modular forms (over Q) this is now a Theorem
due to Shimura (k = 2), Deligne (k ≥ 2), and Deligne-Serre (k = 1)
[53, 17, 19, 20].

– For Maaß forms this is still open.

– For forms over number fields this is open as far as I know (with the exception
of some results for holomorphic Hilbert modular forms [7, 4]).

In the modern formulation, if the Hecke eigenform f(z) of weight k is associ-
ated to the cuspidal automorphic representation π = ⊗′πv of GL2(A), then

Λ(s + k−1
2 , f) = L(s, π)
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and for primes not dividing the level of f(z) (all primes for Γ = SL2(Z)) we have

(

1 − ap

p(k−1)/2
p−s + p−2s

)−1

= L(s, πp).

Now let us return to the Local Langlands Conjecture for GL2(Qp). If πp is
unramified (so p not dividing the level of f and πp having a GL2(Zp) fixed vector)
then the corresponding parameter

πp 7→
[

φp : W ′
Qp

→ GL2(C)
]

is also unramified (so trivial on the inertia subgroup) and is determined by the
image of the Frobenius at p, φp(Frobp), which is a semi-simple element (actually
conjugacy class) of GL2(C)

φp(Frobp) =

(

αp 0
0 βp

)

= Aπp ∈ GL2(C),

the Hecke–Satake parameters of πp, and

L(s, πp) = det(1 − φp(Frobp)p
−s)−1 = [(1 − αpp

−s)(1 − βpp
−s)]−1.

Comparing the two expressions for L(s, πp) we find

tr(Aπp) = αp + βp =
ap

p(k−1)/2
and det(Aπp) = αpβp = 1.

Thus the Ramanujan–Petersson conjecture translates into

|αp + βp| = |αp + α−1
p | ≤ 2 or |αp| = |βp| = 1.

This has an immediate generalization to any global field.

Generalized Ramanujan Conjecture for GL2: If π is a cuspidal automorphic
representation of GL2(Ak), π = ⊗′πv, and v is a finite place for which πv is
unramified, then the Hecke–Satake parameters at v satisfy |αv| = 1.

Similarly, if π = ⊗′πv is a cuspidal automorphic representation of GLn(A)
then as before if πv is unramified then

πv 7→
[

φv : W ′
kv

→ GLn(C)
]

and φv(Frobv) =







α1,v

. . .

αn,v







and the Generalized Ramanujan Conjecture for GLn, in its most elementary
form, says |αi,v| = 1 for all i and all unramified places v.
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Remark: From the local theory of integral representation, Jacquet and Shalika
were able to establish at least a uniform estimate for all GLn [9], namely if at
the unramified place v we have kv ⊃ ov ⊃ pv with |ov/pv| = qv then

q−1/2
v < |αi,v| < q1/2

v .

How does this relate to our lifts? First, a bit more Functoriality. From the
lifts

H LH u :L H →L G LG G

GL2 ×GL3 GL2(C) × GL3(C) ⊗ GL6(C) GL6

GL4 GL4(C) ∧2 GL6(C) GL6

described earlier using the Converse Theorem, Kim and Shahidi [39, 37] were able
to deduce the lifts

H LH u :L H →L G LG G

GL2 GL2(C) Sym3 GL4(C) GL4

GL2 GL2(C) Sym4 GL5(C) GL5

On the level of parameters, this corresponds to the diagrams

GL2(C)
Symn

// GLn+1(C)

πv
�

//
�

// Πv.

W ′
kv

φv

[[6666666666666666

Φv

BB�����������������

for n = 3, 4. So if π ≃ ⊗′πv is a cuspidal representation of GL2(A) then at the
unramified places v the Hecke–Satake parameters are related as follows: if

φv(Frobv) = Aπv =

(

α1,v

α2,v

)
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then

Φv(Frobv) = AΠv
=















αn
1,v

αn−1
1,v α2,v

. . .

α1,vα
n−1
2,v

αn
2,v















.

So if we simply apply the Jacquet–Shalika bounds to the lift Πv we obtain

q−1/2
v < |αn

i,v| < q1/2
v or q−1/2n

v < |αi,v| < q1/2n
v .

So, as Langlands pointed out: the symmetric power functorialities for all n implies
the full Ramanujan conjecture for GL2.

The Sym4 functoriality of Kim and Shahidi gives a non-trivial bound towards
Ramanujan for GL2 of

q−1/8
v < |αi,v| < q1/8

v .

(In fact, by analyzing the behavior of the symmetric power L-functions L(s, π, Symn)
for n ≤ 9, Kim and Shahidi [40] manage to deduce the improved bound

q−1/9
v < |αi,v| < q1/9

v

even over a number field!)

Note 1: This gives estimates for Fourier coefficients of classical Maaß forms or
general modular forms for GL2 over number fields [40, 51].

Note 2: At the archimedean places there are similar results which for Maaß
forms give lower bounds for the first eigenvalue of the Laplacian (i.e. Selberg’s
Conjecture) of λ1 ≥ 77

324 [40, 52].

We will return to this story in a minute, but now we turn to our second
application.

3.2 Hilbert’s Eleventh Problem [30]

This is the problem of understanding integral quadratic forms over number fields.

Example: Let K be a totally real number field, o its ring of integers, and α ∈ o.
When can we write

α = x2
1 + x2

2 + x2
3 with xi ∈ o

and how often? More generally, if

q(~x) =
3
∑

i,j=1

ai,jxixj with ai,j ∈ o
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is a positive definite integral ternary quadratic form, when can we write α = q(~x)
with ~x ∈ o3?

This is seemingly unrelated to what we have been discussing. But as anyone
who has studied Siegel knows, if (K : Q) = d and we take τ ∈ Hd and form the
generating function

ϑq(τ) =
∑

~x∈o3

e2πi tr(q(~x)τ) = 1 +
∑

α∈o

rq(α)e2πi tr(ατ)

then this is a Hilbert modular form of weight 3/2 for a congruence subgroup
Γ ⊂ SL2(o) [56]. Thus the representation numbers

rq(α) = |{~x ∈ o3 | α = q(~x)}|

are the Fourier coefficients of a modular form. (As Eichler said, .....).

Note: This is another type of modularity: integral quadratic forms q(~x) corre-
spond to theta series ϑq(τ), which Siegel called analytic class invariants.

Thanks to the work of Waldspurger (K = Q) and Shimura and Baruch-Mao
(K totally real) [60, 54, 3] the square free Fourier coefficients, call them a(α) of a
3/2 weight cusp form f̃ are controlled by the L-function of a weight 2 companion
cusp form ϕ (related by the Shimura correspondence). Through this relation,
controlling the rq(α) comes down to controlling the special values L(1

2 , ϕ, χα) as
α varies, where χα is the quadratic character of K associated to the extension
K(

√
α)/K by class field theory and ϕ ∈ S2(Γ

′).

It is usually easy to get a weak estimate on L-functions, called the convexity
bound (due to its relation with the Phragmen-Lindelöf convexity principle), which
in this case is

|L(1
2 , ϕ, χα)| << N(α)

1
2+ǫ

and as a general principle, breaking convexity can have substantial consequences.
Recently with Piatetski-Shapiro and Sarnak we broke convexity here to obtain

|L(1
2 , ϕ, χα)| << N(α)

1
2−

7
130+ǫ

for a weight two Hilbert modular cusp form ϕ. The proof of this would take us
too far afield. However, what is important for us here, is that the number 7

130 by
which we break convexity relies on the use of the 1

9 bounds towards Ramanujan–
Petersson for Hilbert modular Maaß form of Kim and Shahidi discussed above in
a crucial way, i.e, an application of Functoriality. This (and in fact any) breaking
of convexity then yields:
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Theorem [10, 16] Let K be a totally real field, q a positive definite integral
ternary quadratic form. The there exists an (ineffective) constant C such that
for all α ∈ o, square free, totally positive and such that N(α) > C we can solve

α = q(~x) with ~x ∈ o3

iff

α = q( ~xp) with ~xp ∈ o3
p locally for all p.

The question of local representability was solved definitively and quantita-
tively by Siegel in the 1930’s [55]. This case of positive definite ternary forms
over a totally real field was the last remaining case of Hilbert’s eleventh problem
from the 1900 ICM [30].

3.3 A return to modularity

There have been two spectacular cases of modularity established recently:

1. Every elliptic curve over Q is modular, due to Wiles, Taylor, Breuil, Conrad
and Diamond, as discussed above [63, 6].

2. The Global Langlands Conjecture for GLn over a function field over a finite
field, so the modularity of global ℓ-adic Galois representations, by Lafforgue
[42].

It is a fair question to ask whether the Converse Theorems played any role in
these results. The answer is that in each case the Converse Theorems did play a
supporting role.

In Wiles’ work to establish modularity in general, he roughly need to know
one specific case of modularity to feed in to his deformation theory. He obtained
what he needed from the work of Langlands and Tunnell on the modularity of
tetrahedral and octahedral Galois representations [43, 59]. Each of these results
were an application of base change for GL2, but again they needed something to
be modular to give them a starting point. For Langlands this was the modularity
of three dimensional dihedral Galois representations which had been established
by Jacquet, Piatetski-Shapiro and Shalika with the Converse Theorem for GL3

[32]. Then Tunnell began with the result of Langlands and then needed in addi-
tion the existence of non-normal cubic base change, again a consequence of the
Converse Theorem for GL3 [33]. I believe that at this point in time, both of these
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results can be established by alternate methods, but at the time the Converse
Theorem was the only known way of obtaining these results.

In the work of Lafforgue the primary technical tool was the Arthur-Selberg
trace formula. However, one aspect of his proof was inductive. The key to this
induction is what Lafforgue refers to as the “principe de récurrence de Deligne”
(sometimes credited to Deligne and Piatetski-Shapiro) which had as one key
ingredient the Converse Theorem for GLn for function fields as in Piatetski-
Shapiro’s early preprint [46]. The Converse Theorems that we have discussed
above were formulated in the analytic language that is most appropriate for
questions over number fields. For function fields, it is best to have a formulation
in the language of rational functions. The best reference for such a formulation
is in fact Appendice B of Lafforgue’s paper [42].

So indeed the Converse Theorem played a small supporting role in both these
questions of modularity.
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361–412.

[8] D. Bump, et al. An Introduction to the Langlands Program (J. Bernstein
and S. Gelbart, editors). Birkhäuser, Boston-Basel-Berlin, 2003.
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