Changes to the third printing
Measure, Topology, and Fractal Geometry

May 18, 2013
by Gerald A. Edgar

Page 34 Line 9. After summer program. add Exercise 1.6.3 and 1.6.4 are stated as "either/or". It is possible that both alternatives occur: there is some number with more than one expansion, while there is another number with no expansion. For example, modify the Eisenstein number system (Exercise 1.6.10) by using base $b=-2$, but using only 3 of the digits, say $D=\{0,1, \omega\}$. (Thanks to Peter Hinow for this example.)
Page 43 Line 6. Replace open set U by open set T
Page 43 Line 7. Replace $U=\bigcup_{A \in \mathcal{A}} A$ by $T=\bigcup_{U \in \mathcal{A}} U$
Page 84 Line 7. After 3.1.1. add Let W and F be as on p. 83.
Page 96 Line 5. Replace no cover of \mathbb{R}^{2} by bounded open sets with order 1.
by no cover with order 1 of \mathbb{R}^{2} by open sets with bounded diameter.
Page 97 Line 9. Replace $F \cup \bigcup_{i=2}^{n} B_{i}$ by $F_{1} \cup \bigcup_{i=2}^{n+2} B_{i}$
Page 97 Line 10. Replace $\bigcup_{i=2}^{n+2} B_{i}$ by $\bigcup_{i=3}^{n+2} B_{i}$
Page 97 Line 15. Replace $F_{2} \subseteq B_{1}$ by $F_{1} \subseteq B_{1}$
Page 97 Line -14. Replace Theorem 3.4.2 by Theorem 3.4.3
Page 100 Line 12. Replace Exercise by
By Theorems (3.4.4) and (3.4.5), we may conclude that Cov $\mathbb{R}=1$ since ind $\mathbb{R}=1$. Instead, compute Cov \mathbb{R} directly from the definition of covering dimension.
Page 114 Line 10. After Mauldin-Williams graph
add For technical reasons we assume each vertex has at least one edge leaving it.
Page 115 Line -8. Replace complete metric by nonempty complete metric
Page 129 Line -18. Replace two paragraphs beginning Now we take by
Now we take the case $\mathcal{L}(A)=\infty$. All of the sets $A \cap[-n, n]$ are measurable, so there exist open sets $U_{n} \supseteq A \cap[-n, n]$ and compact sets $F_{n} \subseteq A \cap[-n, n]$ with $\mathcal{L}\left(U_{n} \backslash F_{n}\right)<\varepsilon / 2^{n+2}$. Define $U_{n}^{\prime}=U_{n} \cap\left(\left(-\infty,-n+1+\varepsilon / 2^{n+2}\right) \cup\left(n-1-\varepsilon / 2^{n+2}, \infty\right)\right)$ and $F_{n}^{\prime}=F_{n} \cap([-n,-n+$ $1] \cup[n-1, n])$, so that U_{n}^{\prime} is open, F_{n}^{\prime} is compact, $U_{n}^{\prime} \supseteq A \cap([-n,-n+1] \cup[n-1, n]) \supseteq F_{n}^{\prime}$ and $\mathcal{L}\left(U_{n}^{\prime} \backslash F_{n}^{\prime}\right)<3 \varepsilon / 2^{n+2}<\varepsilon / 2^{n}$. Now $U=\bigcup U_{n}^{\prime}$ is open, and $F=\bigcup F_{n}^{\prime}$ is closed (Exercise 2.1.42). We have $U \supseteq A \supseteq F$, and $U \backslash F \subseteq \bigcup_{n \in \mathbb{N}}\left(U_{n}^{\prime} \backslash F_{n}^{\prime}\right)$, so that $\mathcal{L}(U \backslash F) \leq$ $\sum \mathcal{L}\left(U_{n}^{\prime} \backslash F_{n}^{\prime}\right)<\varepsilon$.

Conversely, suppose sets U and F exist. By Theorem (5.1.12) they are measurable. First assume $\overline{\mathcal{L}}(A)<\infty$. Then $\mathcal{L}(F)<\infty$, and $\mathcal{L}(U) \leq \mathcal{L}(U \backslash F)+\mathcal{L}(F)<\varepsilon+\mathcal{L}(F)<\infty$. Now $\overline{\mathcal{L}}(A) \leq \overline{\mathcal{L}}(U)=\mathcal{L}(U)<\mathcal{L}(F)+\varepsilon=\underline{\mathcal{L}}(F)+\varepsilon \leq \underline{\mathcal{L}}(A)+\varepsilon$. This is true for any $\varepsilon>0$, so $\overline{\mathcal{L}}(A)=\mathcal{L}(A)$, so A is measurable.
Page 134 Line 10. Add (Recall that $\inf \varnothing=\infty$, so if there is no countable cover at all of B by sets of \mathcal{A}, then $\overline{\mathcal{M}}(B)=\infty$.)
Page 154 Line 16. Replace $h(a)$ by $h(f(a))$ and replace $h(b)$ by $h(f(b))$
Page 160 Line 18. After system add on a complete metric space
Page 161 Line 16. After (6.3.11) add Let f_{i} and K be as in Theorem (4.1.3)
Page 190 Line -10. Replace let by Let
Page 208 Line 7. Replace Let by For $\sigma \in E^{(\omega)}$, let
Page 213 Line 20. Replace $-\log a / \log 5$ where $a \approx 0.3992$ is a solution of $a^{4}-a^{3}-a^{2}+$ $3 a-1=0$. The dimension is approximately 0.57058 ;
by $\log ((\sqrt{5}+3) / 2) / \log 5 \approx 0.59799$;

Changes: from second printing to third printing

Page 68 Line 10. Replace The points of F by The points of F_{1} Page 83 Line 8. After $\left\{U_{1}, U_{2}, \cdots\right\}$.
add (If \mathcal{B} is finite, repeat the basic sets over and over.)
Page 109 Line 4. Replace complex number by complex number, $|b|>1$
Page 145, after line 3. Add
An example of a set in the line not measurable for Lebesgue measure may be found in many texts. For example: [6, pp. 36-37], [9, Theorem 1.4.7], [29, (10.28)], or [48, Chapter 3, Section 4].
Page $\mathbf{1 8 7}$ Line -14. Replace Theorem 6.5.2 by Theorem 6.2.5

Changes: from first printing to second printing March 28, 1992
Measure, Topology, and Fractal Geometry by Gerald A. Edgar

Page ix Line 14. Delete and
Page ix Line 15. Add and Kenneth Dreyhaupt
Page 4 Line 23. Replace 1.6 .7 by 1.6 .2
Page 17 Line 8. Replace 24 by 2.4
Page 29 last display.

$$
\text { Replace }(2 \pi / 3) \text { by } \frac{2 \pi}{3}
$$

Page 29-30. Replace a and b by u and v
Page 31 Figure 1.6.8. Missing label L_{4}.
Page 32 Line -9. Replace is has come by it has come
Page 33 Line 2.
Replace called by Mandelbrot "Sierpiński's carpet"
by called Sierpiński's carpet (dywan Sierpinskiego)
Page 49 Line - 10 .
Replace $\left\{y \in \mathbb{R}^{d}: \rho(x, y)=r\right\}$ by $\{y \in S: \rho(x, y)=r\}$
Page 57 Line 4. Replace $\rightarrow z_{1}$ by $=z_{1}$
Page 57 Line 7. Replace $\rightarrow z_{2}$ by $=z_{2}$
Page 57 Line 9. Replace $\rightarrow z_{j}$ by $=z_{j}$
Page 65 Line 5. Replace 2.3 .15 by 2.3.16
Page 66 Line 19. Replace first paragraph of proof by
Proof. First, clearly $D(A, B) \geq 0$ and $D(A, B)=D(B, A)$. Since A and B are compact, they are bounded, so $D(A, B)<\infty$.
Page 66 Line -3. Add and let A be a nonempty compact subset of S

Page 67-68. Replace (2.4.4) by

(2.4.4) Theorem. Suppose S is a complete metric space. Then the space $\mathcal{K}(S)$ is complete.

Proof. Suppose $\left(A_{n}\right)$ is a Cauchy sequence in $\mathcal{K}(S)$. I must show that A_{n} converges. Let

$$
A=\left\{x: \text { there is a sequence }\left(x_{k}\right) \text { with } x_{k} \in A_{k} \text { and } x_{k} \rightarrow x\right\} .
$$

I must show that $D\left(A_{n}, A\right) \rightarrow 0$ and A is nonempty and compact.
Let $\varepsilon>0$ be given. Then there is $N \in \mathbb{N}$ so that $n, m \geq N$ implies $D\left(A_{n}, A_{m}\right)<\varepsilon / 2$. Let $n \geq N$. I claim that $D\left(A_{n}, A\right) \leq \varepsilon$.

If $x \in A$, then there is a sequence $\left(x_{k}\right)$ with $x_{k} \in A_{k}$ and $x_{k} \rightarrow x$. So, for large enough k, we have $\rho\left(x_{k}, x\right)<\varepsilon / 2$. Thus, if $k \geq N$, then (since $D\left(A_{k}, A_{n}\right)<\varepsilon / 2$) there is $y \in A_{n}$ with $\rho\left(x_{k}, y\right)<\varepsilon / 2$, and we have $\rho(y, x) \leq \rho\left(y, x_{k}\right)+\rho\left(x_{k}, x\right)<\varepsilon$. This shows that $A \subseteq N_{\varepsilon}\left(A_{n}\right)$.

Now suppose $y \in A_{n}$. Choose integers $k_{1}<k_{2}<\cdots$ so that $k_{1}=n$ and $D\left(A_{k_{j}}, A_{m}\right)<$ $2^{-j} \varepsilon$ for all $m \geq k_{j}$. Then define a sequence $\left(y_{k}\right)$ with $y_{k} \in A_{k}$ as follows: For $k<n$, choose $y_{k} \in A_{k}$ arbitrarily. Choose $y_{n}=y$. If $y_{k_{j}}$ has been chosen, and $k_{j}<k \leq k_{j+1}$, choose $y_{k} \in A_{k}$ with $\rho\left(y_{k_{j}}, y_{k}\right)<2^{-j} \varepsilon$. Then y_{k} is a Cauchy sequence, so it converges. Let x be its limit. So $x \in A$. We have $\rho(y, x)=\lim _{k} \rho\left(y, y_{k}\right)<\varepsilon$. So $y \in N_{\varepsilon}(A)$. This shows that $A_{n} \subseteq N_{\varepsilon}(A)$. Note that, taking $\varepsilon=1$ in this argument, I have also proved that $A \neq \varnothing$.

So we have $D\left(A, A_{n}\right) \leq \varepsilon$. This concludes the proof that $\left(A_{n}\right)$ converges to A.
Next I show that A is "totally bounded": that is, for every $\varepsilon>0$, there is a finite ε-net in A. Choose n so that $D\left(A_{n}, A\right)<\varepsilon / 3$. By (2.2.5), there is a finite $(\varepsilon / 3)$-net for A_{n}, say $\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$. Now for each y_{i}, there is $x_{i} \in A$ with $\rho\left(x_{i}, y_{i}\right)<\varepsilon / 3$. The finite set $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ is an ε-net for A.

Now I will show that A is a closed subset of S. Let x belong to the closure \bar{A} of A. Then there exists a sequence $\left(y_{n}\right)$ in A with $\rho\left(x, y_{n}\right)<2^{-n}$. For each n there is a point $z_{n} \in A_{n}$ with $\rho\left(z_{n}, y_{n}\right)<D\left(A_{n}, A\right)+2^{-n}$. Now

$$
\rho\left(z_{n}, x\right) \leq \rho\left(z_{n}, y_{n}\right)+\rho\left(y_{n}, x\right)<D\left(A_{n}, A\right)+2^{-n}+2^{-n} .
$$

This converges to 0 , so $z_{n} \rightarrow x$. Thus $x \in A$. This shows that A is closed.
Finally, to show that A is compact, I will show that it is countably compact. Let F be an infinite subset of A. There is a finite (1/2)-net B for A, so each element of F is within distance $1 / 2$ of some element of B. Now F is infinite and B is finite, so there is an element of B within distance $1 / 2$ of infinitely many elements of F. Let $F_{1} \subseteq F$ be that infinite subset. The points of F_{1} are all within distance 1 of each other; that is, diam $F_{1} \leq 1$. In the same way, there is an infinite set $F_{2} \subseteq F_{1}$ with diam $F_{2} \leq 1 / 2$; and so on. There are infinite sets F_{j} with diam $F_{j} \leq 2^{-j}$ and $F_{j+1} \subseteq F_{j}$ for all j. Now if x_{j} is chosen from F_{j}, we have $\rho\left(x_{j}, x_{k}\right) \leq 2^{-j}$ if $j<k$, so $\left(x_{j}\right)$ is a Cauchy sequence. Since S is complete, $\left(x_{j}\right)$ converges, say $x_{j} \rightarrow x$. Since A is closed, $x \in A$. But then x is a cluster point of the set F. Therefore A is compact.

Page 74 headline. Replace 25.12 by 2.5.12
Page 76 Line -6.
Replace Then apply 2.2 .18
by But A is closed, so any point with distance 0 from A belongs to A.
Page $\mathbf{8 6}$ Line -15. After empty set. add
Note that a space S has ind $S \leq k$ if and only if a point $\{x\}$ and a closed set B not containing x can be separated by a set L with ind $L \leq k-1$. Indeed, there is a basic open set U with $x \in U \subseteq S \backslash B$ and $L=\partial U$ separates $\{x\}$ and B.
Page 92 Line -1. Replace $(a y+b x)$ by $(a y-b x)$
Page 93 Line -10. Delete comma
Page 94 Line -12. Replace $g_{1}(x) \geq x_{2} \geq-1$ by $g_{1}(x) \geq x_{1} \geq-1$
Page 98 Line -3. Replace finite paths by of finite paths
Page 102 Line -4. Replace $(i=1,2, \cdots, m)$ by $(i=1,2, \cdots, n)$
Page 103 Line -16. Replace Exersise 3.1.7 by Exercise 3.1.8
Page 108 Line -7. Replace a cluster of by a cluster point of
Page 109 Line 5. Replace $\cdots d_{k}$ by \cdots, d_{k}
Page 113 Line 7. After similarities. add (See Plate 8.)
Page 113 Line -1. After made. add
The transformations map the large square and rectangle shown at the top into the same square and rectangle shown at the bottom.
Page 114 Line 9. Replace $r: V \rightarrow(0, \infty)$ by $r: E \rightarrow(0, \infty)$
Page 117 Line 5. Replace paragraph by
Under the new metrics, what happens to the maps f_{e} ? If $e \in E_{u v}$, then

$$
\begin{aligned}
\rho_{u}^{\prime}\left(f_{e}(x), f_{e}(y)\right) & =a_{u} \rho_{u}\left(f_{e}(x), f_{e}(y)\right) \\
& =a_{u} r(e) \rho_{v}(x, y) \\
& =\frac{a_{u} r(e)}{a_{v}} \rho_{v}^{\prime}(x, y)
\end{aligned}
$$

Thus, with the new metrics, the maps f_{e} realize a Mauldin-Williams graph (V, E, i, t, r^{\prime}), where

$$
r^{\prime}(e)=\frac{a_{u}}{a_{v}} r(e) \quad \text { for } e \in E_{u v}
$$

The Mauldin-Williams graph $\left(V, E, i, t, r^{\prime}\right)$ is called a rescaling of the graph (V, E, i, t, r). A Mauldin-Williams graph (V, E, i, t, r) will be called contracting iff it is a rescaling of a strictly contracting graph.
Page 126 Line 5. Replace 1.5 .2 by 5.1.2
Page 127 Line 11.
Replace and let $A \subseteq \bigcup_{j \in \mathbb{N}}\left[a_{j}, b_{j}\right)$ by and let $A \cup B \subseteq \bigcup_{j \in \mathbb{N}}\left[a_{j}, b_{j}\right)$

Page 129. Replace statement of Theorem (5.1.12) by
Compact subsets, closed subsets, and open subsets of \mathbb{R} are Lebesgue measurable.
Page 129 Line 4. Replace the first paragraph of the proof by
Proof. Let $K \subseteq \mathbb{R}$ be compact. It is bounded, so $K \subseteq[-n, n]$ for some n, and therefore $\overline{\mathcal{L}}(K)<\infty$. The compact set K is a subset of K, so $\mathcal{L}(K) \geq \overline{\mathcal{L}}(K)$.

Let $F \subseteq \mathbb{R}$ be a closed set. Then for each $n \in \mathbb{N}$, the intersection $F \cap[-n, n]$ is compact, and therefore measurable. Thus F is measurable.

Page 131 Line 15. Replace $\overline{\mathcal{L}}(f[U] \backslash f[F])<r \varepsilon$ by $\overline{\mathcal{L}}(f[U] \backslash f[F])=\overline{\mathcal{L}}(f[U \backslash F])<r \varepsilon$ Page 135 Line 12.
(wrong font) Replace $\overline{\mathcal{M}}$-measurable by $\overline{\mathcal{M}}$-measurable
Page 135 Line -3. Replace period by comma
Page 140 Line 13. Replace let $\left(f_{1}, f_{2}, \cdots f_{n}\right)$ is a by let $\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ be a
Page 154 Line 2. Replace $\varepsilon / 2$ by ε
Page 154 Line 10.
Replace $0 \leq y_{1}<z_{1} \leq y_{2}<z_{2} \leq \cdots \leq y_{n}<z_{n} \leq 1$
by $0 \leq y_{1} \leq z_{1} \leq y_{2} \leq z_{2} \leq \cdots \leq y_{n} \leq z_{n} \leq 1$
Page 154 Line 19.
Replace $\rho(u, v)$, so we have by $\rho(u, v)$, so h has bounded increase, and we have
Page 154 Line -6. Replace then the sets $f\left[\left[x_{i-1}, x_{i}\right)\right]$ are measurable and disjoint by then the set $f\left[\left[x_{i-1}, x_{i}\right)\right]=f\left[\left[x_{i-1}, x_{i}\right]\right] \backslash\left\{f\left(x_{i}\right)\right\}$ is the difference of two compact sets, hence measurable. The sets $f\left[\left[x_{i-1}, x_{i}\right)\right]$ are disjoint
Page 155 Line 3. On Hausdorff dimension vs. topological dimension add a footnote:
*Optional material. (It depends on Section 3.4.)
Page 156 Line 20. After system. add Of course, K is a measurable set, since it is compact.
Page 163 Line 9. Replace conditon by condition
Page 180. Refer to Tricot as well as Taylor.
Page 186 Line 4. Replace A. N. Besicovitch by A. S. Besicovitch
Page 191 Line -2.
Replace inside of the fudgeflake by filled-in fudgeflake
Page 192 Line 12. Replace Exercise 4.3.12 by Figure 4.3.12
Page 224 Line -18. Replace Kurt by Curt
Page 228. Replace Maltese cross xii by Maltese cross xiii
Page 228.
Replace number systems $28,34,59,83,34,109,131,165,178,204$
by number systems $28,34,59,83,109,131,165,177,204$
Page 228. Space between overlap and packing dimension

