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Abstract

The system of functional differential equations (1) has a continuously
differentiable solution for every value of the parameter a. The boundary
values and a are related with d(2− a) = c(2 + a). When a ∈ S where

S =
˘
22n+1 : n = 1, 2, 3, . . .

¯
,

the system (1) has infinitely many solutions with boundary values c = 0
and d = 0. For all other values of a, the system (1) has a unique solution.8>><>>:

F ′(x) = aF (2x) if 0 ≤ x ≤ 1

2

F ′(x) = aF (2− 2x) if
1

2
≤ x ≤ 1

F (0) = c, F (1) = d.

(1)

1 Introduction.

A function f : [a, b] → R is self-differential if [a, b] can be subdivided into a
finite number of sub-intervals, and on each sub-interval the derivative of f is
equal to f by the graph transformed by an affine map. The case to be studied

here is (1), where [0, 1] is decomposed into
[
0,

1
2

]
and

[
1
2
, 1
]

, and the affine

transformed images of F are aF (2x) and aF (2− 2x).
In [4] Fabius showed that the distribution function F2 of the random vari-

able U =
∑∞

n=1 2−nUn, where U1, U2, . . . are independent random variables
uniformly distributed on [0, 1], is the solution of (1) for a value of the param-
eter a = 2 and boundary values c = 0 and d = 1. The function F2 is infinitely
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differentiable and nowhere analytic on [0, 1]. The derivatives of F2 of order
2n are also solutions of (1) for a = 22n+1 and c = d = 0. In Theorem 2.1 (i),
we show that (1) has a unique solution for all other values of a. We prove the
existence of the solution using a modification of the method of the successive

approximations on a sub-interval
[
0,

1
4n

]
and extend it to [0, 1] with formulas

(4.3). This method is used by Kato and McLeod [5] for the solution of the
initial value functional differential equation y(x) = αy′(λx)+βy(x), y(0) = 1.
Similar initial value functional differential equations have been studied by De
Bruijn [1]. A distinctive feature of the solution F of (1) is that if it is known
on any sub-interval, then it can be extended to [0, 1] using only polynomials.
This property of the solutions of boundary value self-differential equations is
analogous to the notion of self-similarity for fractals (p. 135, Edgar [3]).

Definition 1.1. A differentiable function f is polynomially divided on the
interval [0, 1] if for every N ≥ 0 there exists an integer n ≥ N and poly-

nomials {pn,i(x)}n−1
i=1 such that either f

(
i

n
+ x

)
= f

(
i

n
− x

)
+ pn,i(x) or

f

(
i

n
+ x

)
= f

(
i− 1

n
+ x

)
+ pn,i(x) for i = 1, 2, . . . , n− 1 and x ∈

[
0,

1
n

]
.

This definition means that if [0, 1] is partitioned to n sub-intervals of equal
length, the values of f on two neighboring intervals differ only by a polynomial.
The solutions of (1) are polynomially divided by Lemma 3.1. In Section 2 we
find a relation between the boundary values which allows us to decompose
equations (1) to the simpler functional differential equations (∗) and (∗∗).
The decomposition of the solutions is different, depending on whether or not a
belongs to the set S =

{
2n+1 : n = 1, 2, 3, . . .

}
. The main motivation to study

self-differential equations is to generalize the exponential functions which have
derivatives constant multiples of themselves. It is an interesting question to
find self-differential equations which have practical applications.

This work is part of the Ph.D. thesis of the first author, written under the
direction of the second author.

2 Basic Properties.

When a = 0, equations (1) have a solution F (x) = c with boundary values
c = d. For boundary conditions c = d = 0, equations (1) have a solution
F (x) = 0 for all values of the parameter a. The Fabius function dF2(x) is a
solution of (1) for a = 2, c = 0 and every value of F (1) = d. Other solutions
are obtained from the derivatives of F2(x) of even order.
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Lemma 2.1. The function F
(2n)
2 is a solution of (1) with a = 22n+1 and

boundary values c = d = 0, for all n = 1, 2, . . .

Proof. The Fabius function F2 satisfies
F ′

2(x) = 2F2(2x) if 0 ≤ x ≤ 1
2
,

F ′
2(x) = 2F2(2− 2x) if

1
2
≤ x ≤ 1.

By differentiating 2n times these equations, we obtain
F

(2n+1)
2 (x) = 22n+1F

(2n)
2 (2x) if 0 ≤ x ≤ 1

2
,

F
(2n+1)
2 (x) = 22n+1F

(2n)
2 (2− 2x) if

1
2
≤ x ≤ 1.

From the first formula and x = 0 we obtain

F
(2n+1)
2 (0) = F

(2n)
2 (0) = · · · = F ′

2(0) = F2(0) = 0,

and by the second formula and x = 1 we have that

F
(2n+1)
2 (1) = 22n+1F

(2n)
2 (0) = 0.

Therefore F
(2n)
2 satisfies (1) with parameter a = 22n+1 and boundary values

c = d = 0.

The graphs of the solutions of (1) for a = 2, 8 and 32 are given in Fig. 1.
Every constant multiple function of F

(2n)
2 (x) is also a solution of (1). Therefore

(1) has infinitely many solutions for every a ∈ S. In Section 3 we show that
equations (1) have a unique solution for all other values of a /∈ S. Now we
want to find a relation between the boundary values and the parameter a.
Suppose that the function F (x) is a solution of the system of equations (1).

Proposition 2.1. The solution F of (1) satisfies

F

(
1
2

+ x

)
+ F

(
1
2
− x

)
= c + d (2.1)
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Fig. 1: The solutions 4F2, F
′′
2 and F

(4)
2 of (1) for a = 2, 8 and a = 32

Proof.

Let G(x) = F

(
1
2

+ x

)
+ F

(
1
2
− x

)
for 0 ≤ x ≤ 1

2
.

Then G′(x) = F ′
(

1
2

+ x

)
+ F ′

(
1
2
− x

)
G′(x) = aF

(
2− 2

(
1
2

+ x

))
+ aF

(
2
(

1
2
− x

))
G′(x) = aF (1− 2x)− aF (1− 2x) = 0.

Therefore,

G(x) = G

(
1
2

)
= F (0) + F (1) = c + d.

From (2.1) and x =
1
2
, we obtain F

(
1
2

)
=

c + d

2
.

Lemma 2.2. The boundary values of equations (1) satisfy d(2−a) = c(2+a).

Proof. We evaluate
∫ 1

0

F (x) dx in two ways:

∫ 1

0

F (x) dx =
∫ 1

2

0

F (x) dx +
∫ 1

1
2

F (x) dx =
∫ 1

2

0

F (x) dx +
∫ 1

2

0

F (1− u) du
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and ∫ 1

0

F (x) dx =
∫ 1

2

0

[F (u) + F (1− u)] du.

By Proposition 2.1 we have that F (u) + F (1− u) = c + d. Then∫ 1

0

F (x) dx =
∫ 1

2

0

[c + d] dx =
c + d

2
. (2.2)

Let x = 2y.∫ 1

0

F (x) dx = 2
∫ 1

2

0

F (2y) dy =
2
a

∫ 1
2

0

F ′(y) dy

=
2
a

(
F

(
1
2

)
− F (0)

)
=

2
a

(
c + d

2
− c

)
=

d− c

a

(2.3)

By (2.2) and (2.3) we obtain
d− c

a
=

c + d

2
. Therefore, c(a+2) = d(2−a).

In Lemma 2.2 we showed that if equations (1) have a solution, then the
boundary values satisfy c(a+2) = d(2− a). In this way we have the following
four possibilities for the values of the parameters c and d depending on the
values of a:

• a 6= ±2. The value of d is determined from c with d =
(a + 2)c
2− a

.

• a = 2. Then c = 0 and d is an arbitrary real number.

• a = −2. Then d = 0 and c is an arbitrary real number. These relations of
the boundary values lead to the following system of functional differential
equations. 

f ′(x) = af(2x) if 0 ≤ x ≤ 1
2

f ′(x) = af(2− 2x) if
1
2
≤ x ≤ 1

f(0) = 2− a, f(1) = 2 + a.

(∗)

In Theorem 2.1 we show that (∗) has a unique solution when a /∈ S.

• c = d = 0 and a is an arbitrary real number. With these values of the
parameters equations (1) become



6 Yuri Dimitrov and G. A. Edgar


f ′(x) = af(2x) if 0 ≤ x ≤ 1

2
f ′(x) = af(2− 2x) if

1
2
≤ x ≤ 1

f(0) = 0, f(1) = 0.

(∗∗)

In Lemma 2.2 we have already found infinitely many nonzero solutions of (∗∗)
for every a ∈ S. The solution of (1) is either a constant multiple of a solution
of (∗) or it is a solution of (∗∗) if c = d = 0. These results are summarized in
Theorem 2.1 and Corollary 2.1.

Theorem 2.1. (i) Equations (∗) have a unique C1 solution for all a /∈ S and
have no solution if a ∈ S.
(ii) Equations (∗∗) have infinitely many C1 solutions

{
rF

(2n)
2 |r ∈ R

}
for ev-

ery a = 22n+1 ∈ S and have no nonzero solutions if a /∈ S.

The proof of Theorem 2.1 is divided into lemmas. In Section 3 we show that a
necessary condition for a solution of equations (∗) is that a /∈ S and we prove
that all solutions of (∗∗) with parameter a = 22n+1 are constant multiples of
F

(2n)
2 . In Section 4 we construct the solution of (∗) using a modification of

the method of the successive approximations. The solution of equations (1) is
derived from the solution of (∗) in the following way.

Corollary 2.1. Let a /∈ S and f(x) be the unique solution of equations (∗). If
d(2− a) = c(a + 2), then equations (1) have a unique C1 solution F (x) where

F (x) =
cf(x)
2− a

if a 6= 2. When a = 2 and c = 0 the solution is F (x) =
d

4
f(x).

3 Necessary Conditions.

In Section 2 we found infinitely many solutions of (∗∗) for every a ∈ S. In this
Section we prove that these are the only solutions of (∗∗) and that (∗) has no

solution if a ∈ S. Let f(x) be a solution of (∗) or (∗∗) and denote bk = f

(
1
2k

)
.

In Proposition 2.1 we showed that f

(
1
2

+ x

)
+ f

(
1
2
− x

)
= c + d. Now we

show that similar property holds at each point
1
2n

.

Lemma 3.1. The function f satisfies

f

(
1
2n

+ x

)
+ (−1)n+1f

(
1
2n

− x

)
= pn(x) (3.1)
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for 0 ≤ x ≤ 1
2n

. The polynomials pn are defined recursively by{
p′2l−1(x) = ap2l−2(2x)
p2l−1(0) = 2b2l−1

(3.2)

and {
p′2l(x) = ap2l−1(2x)
p2l(0) = 0 (3.3)

where

p1(x) =
{

4 if f is a solution of (∗)
0 if f is a solution of (∗∗).

Proof. We prove Lemma 3.1 by induction on n. When n = 1 equation (3.1)
is satisfied by Proposition 2.1. Suppose that

f

(
1
2n

+ x

)
+ (−1)n+1f

(
1
2n

− x

)
= pn(x).

Put x = 2t to obtain

f

(
1
2n

+ 2t

)
+ (−1)n+1f

(
1
2n

− 2t

)
= pn(2t).

From the second equations of (∗) and (∗∗) with x =
1
2n

+ 2t and x =
1
2n

− 2t

we have that

f

(
1
2n

− 2t

)
=

1
a
f ′
(

1
2n+1

− t

)
and

f

(
1
2n

+ 2t

)
=

1
a
f ′
(

1
2n+1

+ t

)
.

Then

f ′
(

1
2n+1

+ t

)
+ (−1)n+1f ′

(
1

2n+1
− t

)
= apn(2t).

By integrating the above equation from 0 to x we obtain∫ x

0

[
f ′
(

1
2n+1

+ t

)
+ (−1)n+1f ′

(
1

2n+1
− t

)]
dt =

∫ x

0

apn(2t) dt[
f

(
1

2n+1
+ t

)
+ (−1)n+2f

(
1

2n+1
− t

)]x

0

= a

∫ x

0

pn(2t) dt

f

(
1

2n+1
+ x

)
+ (−1)n+2f

(
1

2n+1
− x

)
− γf

(
1

2n+1

)
= a

∫ x

0

pn(2t) dt
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where γ = 1 + (−1)n+2.

Case1 n is even. Then γ = 0, and when n = 2l, we have that

f

(
1

22l+1
+ x

)
+ f

(
1

22l+1
− x

)
− 2f

(
1

22l+1

)
= a

∫ x

0

p2l(2t) dt

f

(
1

22l+1
+ x

)
+ f

(
1

22l+1
− x

)
= 2b2l+1 + a

∫ x

0

p2l(2t) dt.

Therefore, f satisfies (3.1) with n = 2l + 1 and

p2l+1(x) = 2b2l+1 + a

∫ x

0

p2l(2t) dt. (3.4)

Case 2 n is odd. Then γ = 0, and when n = 2l − 1 we have that

f

(
1

22l
+ x

)
− f

(
1

22l
− x

)
= a

∫ x

0

p2l−1(2t) dt

p2l(x) = a

∫ x

0

p2l−1(2t) dt.

(3.5)

We obtain equations (3.2) and (3.3) from (3.4) and (3.5) by differentiation
with respect to x.

The solution f of (1) is polynomially divided because it satisfies (3.1). If

f is known on the interval
[
0,

1
2m

]
, then we can extend it to

[
0,

1
2m−1

]
with

formula (3.1) and n = m. By using the same procedure m − 1 times with
n = m− 1,m− 2, . . . , 1 we can reconstruct f on the interval [0, 1]. Even more,
if the function f is known on an arbitrary sub-interval (a, b) of [0, 1] where

a <
s

2m
<

s + 1
2m

< b, for some integers s and m, then using the reverse

procedure we can find the values of f on
[
0,

1
2m

]
and then extend f to the

interval [0, 1] . In this way, we can reconstruct the solution of (1) from any sub-
interval of [0, 1] using only the polynomials pn. Now we express the coefficients

of p2n(x) with b1, b3, . . . , b2n−1. From (3.1) and x =
1
2n

we can find the values

of pn and x =
1
2n

.
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Corollary 3.1. Suppose that f is a solution of (∗). Then

p2n

(
1

22n

)
= b2n−1 − 2 + a and p2n+1

(
1

22n+1

)
= b2n + 2− a.

Corollary 3.2. Suppose that f is a solution of (∗∗). Then

pn

(
1
2n

)
= bn−1.

In the next lemma we find a formula for the polynomials p2n.

Lemma 3.2. The polynomials pn with even index are given by

p2n(x) =
n∑

k=1

a2k−122k2−3k+2b2n−2k+1x
2k−1

(2k − 1)!
. (3.6)

Proof. By Lemma 3.1, p2n is a polynomial of degree 2n−1. The coefficients
may be computed by Taylor’s formula. Compute successive derivatives using
Lemma 3.1:

p′2n(x) = ap2n−1(2x)

p′′2n(x) = 2ap′2n−1(2x) = 2a2p2n−2(4x)

p′′′2n(x) = 8a2p′2n−2(4x) = 222a3p2n−3(8x) = 23a3p2n−3(8x)

p
(4)
2n (x) = 64a3p′2n−3(8x) = 22223a4p2n−4(16x) = 26a4p2n−4(16x),

and in general, by induction

p
(l)
2n(x) = 21+2+3+···+(l−1)alp2n−l(2lx) = 2

l(l−1)
2 alp2n−l(2lx).

But p2n−2k(0) = 0 and p2n−2k+1(0) = 2b2n−2k+1; so

p2n(x) =
2n−1∑
k=1

p
(l)
2n(0)xl

l!
=

n∑
k=1

a2k−122k2−3k+2b2n−2k+1x
2k−1

(2k − 1)!
.

In Lemma 2.1, we found infinitely many solutions

f(x) = rF
(2n)
2 (x)

of equations (∗∗) for a = 22n+1 ∈ S and r ∈ R. In the next corollary, we show
that a ∈ S is a necessary condition for a solution of (∗∗).
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Corollary 3.3. Let f be a nonzero solution of (∗∗) such that
b1 = · · · = b2n−1 = 0 and b2n+1 6= 0. Then a = 22n+1.

Proof. By Lemma 3.2,

p2n+2(x) =
n+1∑
k=1

a2k−122k2−3k+2b2n−2k+3x
2k−1

(2k − 1)!
= 2ab2n+1x.

Then

f

(
1

22n+2
+ x

)
− f

(
1

22n+2
− x

)
= 2ab2n+1x.

Put x =
1

22n+2
to obtain

f

(
1

22n+1

)
− f(0) =

ab2n+1

22n+1
and b2n+1 =

ab2n+1

22n+1
.

Therefore, a = 22n+1 as required.

Now we use Lemma 3.2 to find a formula which relates the numbers
b1, b3, . . . , b2n−1.

Lemma 3.3. The numbers {b2n−1}∞n=0 satisfy

b2n−1

(
22n−1 − a

)
= 22n−1

(
2− a +

n∑
k=2

a2k−122k2−3k+2−2n(2k−1)b2n−2k+1

(2k − 1)!

)
.

(3.7)

Proof. By Corollary 3.1,

p2n

(
1

22n

)
= b2n−1 − 2 + a.

From (3.6) and x =
1

22n
we have that

p2n

(
1

22n

)
=

n∑
k=1

a2k−122k2−3k+2−2n(2k−1)b2n−2k+1

(2k − 1)!
.

Then

b2n−1

(
1− a

22n−1

)
= 2− a +

n∑
k=2

a2k−122k2−3k+2−2n(2k−1)b2n−2k+1

(2k − 1)!
.
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So far we have found formulas to compute the polynomials p2n(x) and the
numbers b2n−1.

Corollary 3.4. Let f be a solution of (∗) or (∗∗). The numbers b2n and the
coefficients of p2n+1 are obtained from {b2k−1}n

k=1 by

p2n+1(x) =
n∑

k=0

a2k22k2−k+1b2n−2k+1x
2k

(2k)!

and

b2n =


∑n

k=0

a2k22k2−k+1−2k(2n+1)b2n−2k+1

(2k)!
+ a− 2 if f satisfies (*)∑n

k=0

a2k22k2−k+1−2k(2n+1)b2n−2k+1

(2k)!
if f satisfies (**)

(3.8)

Proof. We have that

p2n+1(x) = 2b2n+1 + a

∫ x

0

p2n(2t) dt.

From (3.6) and x = 2t,

p2n(2t) =
n∑

k=1

a2k−122k2−k+1b2n−2k+1t
2k−1

(2k − 1)!
.

Then

p2n+1(x) = 2b2n+1 + a
n∑

k=1

∫ x

0

a2k−122k2−k+1b2n−2k+1t
2k−1

(2k − 1)!
dt

=
n∑

k=0

a2k22k2−k+1b2n−2k+1x
2k

(2k)!
.

If f is a solution of (∗), then p2n+1

(
1

22n+1

)
= b2n + 2− a and

b2n =
n∑

k=0

a2k22k2−k+1−2k(2n+1)b2n−2k+1

(2k)!
+ a− 2.
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If f is a solution of (∗∗), then p2n+1

(
1

22n+1

)
= b2n and

b2n =
n∑

k=0

a2k22k2−k+1−2k(2n+1)b2n−2k+1

(2k)!
.

Remark 3.1. If a /∈ S and f is a solution of (∗), then the values bn = f

(
1
2n

)
are computed with formulas (3.7) and (3.8). The values of f on the set

D =
{

k

2n
|k = 1, . . . , 2n, n ∈ N

}

are computed from {bn} with formula (3.1). The set D is dense in [0, 1] and
the values of f are determined for every x ∈ [0, 1] from the values of f on D
with f(x) = lim

n→∞
f(dn) where dn ∈ D and lim

n→∞
dn = x. Therefore, (∗) has at

most one solution for every a /∈ S. We show that (∗) has a unique solution for
all a /∈ S in Section 4.

Remark 3.2. If a = 22n+1 and f is a solution of (∗∗), then b1 = 0 and
b3, . . . , b2n−1 are computed with (3.7), but the value of b2n+1 cannot be com-
puted with (3.7). If we choose b2n+1 to be an arbitrary number, then
b2n+3, b2n+5, . . . may also be computed with (3.7). The values of b2n may
be computed from the values of b2n−1 with formula (3.8). Similarly to Re-
mark 3.1, the values of f on D may be computed with (3.1). Therefore,
(∗∗) has at most one solution for every choice of b2n+1. This solution is
b2n+1F

(2n)
2 (x)

F
(2n)
2

(
1

22n+1

) . Therefore, all solutions of (∗∗) are
{

rF
(2n)
2 (x)|r ∈ R

}
.

The graphs of f obtained by calculating the values of f on D for
a = −32,−4, 7.9, 8.1, 16, 50 are given on Fig. 2. Now we show that (∗) has no
solution when a ∈ S. Let a = 22m−1. With this value of a, equation (3.7)
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Fig. 2: The solutions of equations (∗) for a = −4, 16 (top), a = 7.9, 8.1 and
a = 7.99, 8.01 (middle) and a = −32, 50 (bottom)
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becomes

b2n−1

(
22n−1 − 22m−1

)
= 22n−1

(
2− 22m−1+

n∑
k=2

2(2m−1)(2k−1)22k2−3k+2−2n(2k−1)b2n−2k+1

(2k − 1)!

)
b2n−1

(
1− 22(m−n)

)
= 2− 22m−1+ (3.9)

n∑
k=2

22k2−3k+2+(2m−2n−1)(2k−1)b2n−2k+1

(2k − 1)!

b2n−1 =
1

1− 4m−n

(
2
(
1− 4m−1

)
+

n∑
k=2

22k2−3k+2+(2m−2n−1)(2k−1)b2n−2k+1

(2k − 1)!

)
.

The numbers b1 = 2, b3, . . . , b2m−3 are computed with the above formula.
When n = m, formula (3.9) becomes

0 = 2(1− 4m−1) +
m∑

k=2

22k2−5k+3b2m−2k+1

(2k − 1)!

4m−1 − 1 =
m∑

k=2

22k2−5k+2b2m−2k+1

(2k − 1)!
.

(3.10)

Formula (3.10) gives a relation between b1, . . . , b2m−3 and is a necessary condi-
tion for existence of a solution of equations (∗) when a = 22m−1. In Lemma 3.5
we show that (3.10) is not satisfied. In the proof of Lemma 3.5 we use Propo-
sition 3.1 and Lemma 3.4.

Proposition 3.1. Let ek be the power of 3 in (2k − 1)!. Then ek ≤ k − 1.

Proof.

ek =
∑

3r≤2k−1

⌊
2k − 1

3r

⌋
≤

r0∑
r=1

2k − 1
3r

where r0 = blog3(2k − 1)c.

ek ≤
2k − 1

3

1− 1
3r0

1− 1
3

=
2k − 1

2

(
1− 1

3r0

)
<

2k − 1
2

< k.

Therefore, ek ≤ k − 1.
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The numbers b1, b3, . . . , b2m−3 are rational numbers in lowest terms. Let
d2n−1 be the power of 3 in the denominator of b2n−1. The sequence {d2n−1}m−1

n=1

is increasing and satisfies the following inequality.

Lemma 3.4.
d2n−1 − d2n−3 ≥ 2 (3.11)

Proof. We prove (3.11) by induction on n. b1 = 2 and d1 = 0. By (3.7),

b3 =
1

1− 4m−2

(
2(1− 4m−1) +

28−6+2+1+(2m−5)3

3!

)
=

6(1− 4m−1) + 26m−11

3 (1− 4m−2)
.

Let’s denote by d(k) the power of 3 in 4k − 1. Then d(k) ≥ 1 because

4k − 1 = 3(4k−1 + 4k−2 + · · ·+ 1).

The numerator of b3 is not divisible by 3. Therefore d3 = d(m − 2) + 1 ≥ 2
and (3.11) is satisfied for n = 2. Suppose that d2k−1 − d2k−3 ≥ 2 for every
k = 2, 3, . . . , n− 1.

b2n−1 =
1

1− 4m−n

(
2(1− 4m−1) +

64m−nb2n−3

3
+

n∑
k=3

22k2−3k+2+(2m−2n−1)(2k−1) b2n−2k+1

(2k − 1)!

)
.

By the induction assumption,

d2n−3 − d2n−2k+1 =
k−1∑
l=2

[d2n−2l+1 − d2n−2l−1] ≥ 2(k − 2) = 2k − 4

d2n−2k+1 + 2k − 4 ≤ d2n−3.

The power of 3 in the denominator of
b2n−2k+1

(2k − 1)!
is d2n−2k+1 + ek. From

Proposition 3.1, we have that

d2n−2k+1 + ek ≤ d2n−2k+1 + k − 1 ≤ d2n−2k+1 + 2k − 4 ≤ d2n−3 < d2n−3 + 1
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for 3 ≤ k ≤ n. The power of 3 in the denominator of
b2n−3

3!
is d2n−3 + 1.

Therefore, the power of 3 in the denominator of
b2n−3

3!
is greater than the

power of 3 in the denominator of
b2n−2k+1

(2k − 1)!
for every k = 3, 4, . . . , n. Then the

power of 3 in the denominator of

64m−nb2n−3

3
+

n∑
k=2

22k2−3k+2−(2m−2n−1)(2k−1) b2n−2k+1

(2k − 1)!

is exactly d2n−3 + 1, and so the power of 3 in the denominator of

1
1− 4m−n

(
64m−nb2n−3

3
+

n∑
k=3

22k2−3k+2−(2m−2n−1)(2k−1) b2n−2k+1

(2k − 1)!

)

is equal to d2n−3 + d(m− n) + 1. Then

d2n−1 = d2n−3 + d(m− n) + 1 ≥ d2n−3 + 2.

In Lemma 3.5, we prove that the necessary condition (3.10) for a solution
of (∗) is not satisfied.

Lemma 3.5.

4m−1 − 1 6=
n∑

k=2

22k2−5k+2b2m−2k+1

(2k − 1)!
.

Proof. We want to show that the denominator of
n∑

k=2

22k2−5k+2 b2m−2k+1

(2k − 1)!

is divisible by 3.

n∑
k=2

22k2−5k+2 b2m−2k+1

(2k − 1)!
=

b2m−3

3!
+

n∑
k=3

22k2−5k+2 b2m−2k+1

(2k − 1)!

The power of 3 in the denominator of

22k2−5k+2 b2m−2k+1

(2k − 1)!
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is d2m−2k+1 + ek. By Proposition 3.1 and Lemma 3.4, we have that

d2m−2k+1 + ek ≤ d2m−2k+1 +k− 1 ≤ d2m−2k+1 +2k− 4 ≤ d2m−3 < d2m−3 +1

for 3 ≤ k ≤ n. The power of 3 in the denominator of
b2m−3

3!
is d2m−3 + 1.

Therefore, the power of 3 in the denominator of
n∑

k=2

22k2−5k+2 b2m−2k+1

(2k − 1)!

is d2m−3 + 1. Then the denominator of
n∑

k=2

22k2−5k+2 b2m−2k+1

(2k − 1)!

is divisible by 3. Hence,

4m−1 − 1 6=
n∑

k=2

22k2−5k+2b2m−2k+1

(2k − 1)!

as required.

From Lemma 3.5 it follows that equations (∗) have no solution when a ∈ S
because the necessary condition (3.10) is not satisfied.

4 Successive Approximations to the Solution.

In Section 2 and Section 3, we proved part (ii) of Theorem 2.1. We also
showed that if a ∈ S, equations (∗) have no solution. In Section 4, we show
that equations (∗) have a solution for every a /∈ S. According to the following
remark, this solution is unique. Remark 3.1. Let f be a solution of (∗)

and x ∈
[
0,

1
2

]
. Then f(x) = f(0) +

∫ x

0
f ′(t) dt = 2 − a +

∫ x

0
af(2t) dt =

2− a +
a

2
∫ 2x

0
f(t) dt. Let n be the smallest integer such that 2 |a| < 4n. Now,

we use the above equation to define a sequence of functions {hk}∞k=0 which

approximates f on the interval
[
0,

1
4n−1

]
by

h0(x) = x

hk(x) = 2− a +
a

2

∫ 2x

0

hk−1(t) dt for 0 ≤ x ≤ 2
4n

hk

(
2
4n

+ x

)
= p2n−1(x)− hk

(
2
4n

− x

)
for 0 < x ≤ 2

4n
.

(4.1)
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Proposition 4.1. The functions hk are continuous for all k ≥ 2 .

Proof. The functions hk are continuous on the intervals
[
0,

2
4n

]
and

(
2
4n

,
1

4n−1

]
.

Now, we show that hk is continuous at
2
4n

. From the first equation of (4.1)

and x =
2
4n

, we have that

hk

(
2
4n

)
= 2− a +

a

2

∫ 1
4n−1

0

hk−1(t) dt

= 2− a +
a

2

∫ 2
4n

0

hk−1(t) dt +
a

2

∫ 1
4n−1

2
4n

hk−1(t) dt

= 2− a +
a

2

∫ 2
4n

0

hk−1(t) dt +
a

2

∫ 2
4n

0

hk−1

(
2
4n

+ u

)
du

= 2− a +
a

2

∫ 2
4n

0

hk−1(t) dt +
a

2

∫ 2
4n

0

[
p2n−1(u)− hk−1

(
2
4n

− u

)]
du

hk

(
2
4n

)
= 2− a +

a

2

∫ 2
4n

0

p2n−1(u) du.

From (3.2), we have that ap2n−1(u) = p′2n

(u

2

)
. Then

hk

(
2
4n

)
= 2− a +

1
2

∫ 2
4n

0

p′2n

(u

2

)
du = 2− a +

∫ 1
4n

0

p′2n(u) du

hk

(
2
4n

)
= 2− a + p2n

(
1
4n

)
− p2n(0) = 2− a + b2n−1 − 2 + a = b2n−1.

From the second equation of (4.1), we obtain

hk

(
2
4n

+
)

= lim
x→0+

f

(
2
4n

+ x

)
= lim

x→0+

[
p2n−1(x)− hk

(
2
4n

− x

)]
hk

(
2
4n

+
)

= p2n−1(0)− hk

(
2
4n
−
)

= 2b2n−1 − b2n−1 = b2n−1.

Therefore,

hk

(
2
4n

)
= hk

(
2
4n

+
)

= bn−1.
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0.5 1

4

0.5 1

4

0.5 1

4

Fig. 3: The approximations h1, h2 and h3 to the solution of (∗) for a = 1.99

The function hk is right continuous at x =
2
4n

and so it is continuous on the

interval
[
0,

1
4n−1

]
.

When a = 1.99, then n = 1, because 2 |a| < 4. The sequence of functions
{hk}∞k=0 approximates the solution of (∗) on the interval [0, 1]. The graphs of
the first three approximations h1, h2 and h3 are given on Fig. 3. The solution
of equations (∗) for a = 2 is 4F2 (Fig. 2). The solutions of (∗) for a = 1.99
and a = 2 differ by less than 0.015. Now we define a system of functional

differential equations on the interval
[
0,

1
4k−1

]
. Let k be a positive integer,

and denote by Eqns[k] the following functional differential equations.
f ′(x) = af(2x) for 0 ≤ x ≤ 2

4k

f

(
2
4k

+ x

)
= p2k−1(x)− f

(
2
4k

− x

)
for 0 < x ≤ 2

4k

f(0) = 2− a

(Eqns[k])

Proposition 4.2. Let f be a solution of Eqns[k]. Then

f

(
1

4k−1

)
= b2k−2 and f ′

(
1

4k−1

)
= ab2k−3.

Proof. From the second equation of Eqns[k] and x =
2
4k

, we have that

f

(
1

4k−1

)
= p2k−1

(
2
4k

)
− f(0) = p2k−1

(
2
4k

)
− 2 + a = b2k−2.
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By differentiating the second equation of Eqns[k], we obtain

f ′
(

2
4k

+ x

)
= p′2k−1(x) + f ′

(
2
4k

− x

)
.

Put x =
2
4k

in the above equation,

f ′
(

1
4k−1

)
= p′2k−1

(
2
4k

)
+ f ′(0) = ap2k−2

(
1

4k−1

)
+ af(0)

f ′
(

1
4k−1

)
= a(b2k−3 − 2 + a) + a(2− a) = ab2k−3.

By Proposition 4.2, equations (∗) are the same as Eqns[1].

Lemma 4.1. (i) The sequence of functions hk(x) converges uniformly.
(ii) The limit function fn(x) = lim

k→∞
hk(x) is continuously differentiable and

satisfies Eqns[n].

Proof. (i) Let Mk = sup
x∈[0, 1

4n−1 ]

|hk(x)− hk−1(x)|. From the second equation

of (4.1), we have that

Mk = sup
x∈[0, 2

4n ]

|hk(x)− hk−1(x)| .

From the first equation of (4.1),

hk(x)− hk−1(x) =
a

2

∫ 2x

0

hk−1(u) du− a

2

∫ 2x

0

hk−2(u) du

|hk(x)− hk−1(x)| ≤ a

2

∫ 2x

0

|hk−1(u)− hk−2(u)| du.

Therefore,

Mk ≤
a

2

∫ 2x

0

Mk−1 du =
|a|
2

2xMk−1 ≤
2 |a|
4n

Mk−1.
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Let t =
2 |a|
4n

. Then 0 < t < 1, because n is chosen such that 2 |a| < 4n.

Therefore, Mk ≤ tMk−1. By induction, we obtain Mk ≤ tk−1M1. Then

sup
x∈[0, 1

4n−1 ]

|hs(x)− hr(x)| ≤
s∑

k=r+1

sup
x∈[0, 1

4n−1 ]

|hk(x)− hk−1(x)|

≤
s∑

k=r+1

Mk ≤ M1

s∑
k=r+1

tk−1 ≤ M1

∞∑
k=r

tk ≤ M1t
r

1− t

for s > r. Therefore, hk is a Cauchy sequence, and so, it converges uniformly.

(ii) The function fn is continuous because it is a uniform limit of continuous

functions. In the proof of Proposition 4.1, we showed that hk

(
2
4n

)
= b2n−1

for k ≥ 2. Then fn

(
2
4n

)
= b2n−1. By letting k →∞ in (4.1), we obtain

fn(x) = 2− a +
a

2

∫ 2x

0

fn(t) dt for 0 ≤ x ≤ 2
4n

fn

(
2
4n

+ x

)
= p2n−1(x)− fn

(
2
4n

− x

)
for 0 < x ≤ 2

4n
.

(4.2)

Form the first and second equations of (4.2), the function fn is continuously

differentiable on the intervals
[
0,

2
4n

]
and

(
2
4n

,
1

4n−1

]
. Now, we show that

fn is differentiable at x =
2
4n

. Let f ′(x−) and f ′(x+) denote

f ′(x+) = lim
t→x+

f(t)− f(x)
t− x

and f ′(x−) = lim
t→x−

f(t)− f(x)
t− x

.

Then

f ′n

(
2
4n

+
)

= lim
x→0+

fn

(
2
4n

+ x

)
− fn

(
2
4n

)
x

= lim
x→0+

p2n−1(x)− fn

(
2
4n

− x

)
− fn

(
2
4n

)
x

= lim
x→0+

p2n−1(x)− p2n−1(0)− fn

(
2
4n

− x

)
+ fn

(
2
4n

)
x
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(
because p2n−1(0)− fn

(
2
4n

)
= 2b2n−1 − b2n−1 = fn

(
2
4n

))

= lim
x→0+

p2n−1(x)− p2n−1(0)
x

+ lim
x→0+

fn

(
2
4n

− x

)
− fn

(
2
4n

)
−x

= p′2n−1(0) + f ′n

(
2
4n
−
)

= ap2n−2(0) + f ′n

(
2
4n
−
)

= f ′n

(
2
4n
−
)

Therefore, fn is differentiable at x =
2
4n

. From the second equation of (4.3),
we have that

f ′n

(
2
4n

+ x

)
= p′2n−1(x) + f ′n

(
2
4n

− x

)
.

Then

lim
x→0+

f ′n

(
2
4n

+ x

)
= p′2n−1(0) + lim

x→0+
f ′n

(
2
4n

− x

)
= f ′n

(
2
4n
−
)

.

Therefore, fn is continuously differentiable at x =
2
4n

, and so fn is con-

tinuously differentiable at each point of the interval
[
0,

1
4n−1

]
. From the

first equation of (4.2), we have that fn(0) = 2 − a and f ′n(x) = afn(2x) for

0 ≤ x ≤ 2
4n

. Therefore, fn satisfies Eqns[n] as required.

Lemma 4.2. Suppose that g1(x) is a continuously differentiable function
which satisfies Eqns[k + 1]. Let g2(x) be an extension of g1(x) defined by

g2(x) = g1(x) if 0 ≤ x ≤ 1
4k

g2

(
1
4k

+ x

)
= p2k(x) + g2

(
1
4k

− x

)
if 0 < x ≤ 1

4k

g2

(
2
4k

+ x

)
= p2k−1(x)− g2

(
2
4k

− x

)
if 0 < x ≤ 2

4k

(4.3)

Then g2(x) is continuously differentiable on
[
0,

1
4k−1

]
, and satisfies Eqns[k].
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Proof. The function g2 is continuously differentiable on the intervals
[
0,

1
4k

]
,(

1
4k

,
2
4k

]
and

(
2
4k

,
1

4k−1

]
. Now, we show that g2 is differentiable at x =

1
4k

.

g′2

(
1
4k

+
)

= lim
x→0+

g2

(
1
4k

+ x

)
− g2

(
1
4k

)
x

= lim
x→0+

p2k(x) + g2

(
1
4k

− x

)
− g2

(
1
4k

)
x

= lim
x→0+

p2k(x)− p2k(0)
x

− lim
x→0+

g2

(
1
4k

− x

)
− g2

(
1
4k

)
−x

= p′2k(0)− g′2

(
1
4k
−
)

By Proposition 4.2, g′2

(
1
4k
−
)

= ab2k−1. Then

g′2

(
1
4k

+
)

= ap2k−1(0)− ab2k−1 = 2ab2k−1 − ab2k−1 = g′2

(
1
4k
−
)

.

Therefore, g2 is differentiable at x =
1
4k

, and g′2

(
1
4k

)
= ab2k−1. Now we

show that g′2 is continuous at x =
1
4k

. It is enough to show that

lim
x→0+

g′2

(
2
4k

+ x

)
= g′2

(
2
4k

)

because g′2 is continuous on
[
0,

1
4k

]
. From the second equation of (4.3), we

have that

g′2

(
1
4k

+ x

)
= p′2k(x)− g′2

(
1
4k

− x

)
.
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Then

lim
x→0+

g′2

(
1
4k

+ x

)
= lim

x→0+

[
p′2k(x)− g′2

(
1
4k

− x

)]
= p′2k(0)− g′2

(
1
4k
−
)

= 2ab2k−1 − ab2k−1

= ab2k−1 = g′2

(
1
4k

)
.

Therefore, g2 is continuously differentiable at x =
1
4k

. The proof that g2 is

continuously differentiable at x =
2
4k

is similar. Now we show that g2 satisfies

the conditions of Eqns[k]. By the definition of g2, we have that g2(0) = 0 and

g2

(
2
4k

+ x

)
= p2k−1(x)− g2

(
2
4k

− x

)
for 0 < x ≤ 2

4k
. Also, g′2(x) = ag2(2x) for 0 < x ≤ 2

4k+1
because g2(x) = g1(x)

on the interval
[
0,

1
4k

]
and g1 satisfies Eqns[k + 1]. By the third equation of

Eqns[k + 1], we have that

g2

(
2

4k+1
+ x

)
= p2k+1(x)− g2

(
2

4k+1
− x

)
for 0 < x ≤ 2

4k+1
. By differentiating the above equation, we obtain

g′2

(
2

4k+1
+ x

)
= p′2k+1(x) + g′2

(
2

4k+1
− x

)
g′2

(
2

4k+1
+ x

)
= ap2k(2x) + ag2

(
1
4k

− 2x

)
= ag2

(
1
4k

+ 2x

)
.

By the second equation of (4.3),

g2

(
1
4k

+ x

)
= p2k(x) + g2

(
1
4k

− x

)
for 0 < x ≤ 1

4k
. Then

g′2

(
1
4k

+ x

)
= p′2k(x)− g′2

(
1
4k

− x

)
g′2

(
1
4k

+ x

)
= ap2k−1(2x)− ag2

(
2
4k

− 2x

)
= ag2

(
2
4k

+ 2x

)
.
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10.50.250.25

0.25
85400

h2

h3

Fig. 4: The graphs of h2 and h3 (left) and f̄3 and f on the same axis (right)
for a = 7.999

Therefore, g′2(x) = ag2(2x) for all 0 < x ≤ 2
4k

. Then g2 is a continuously

differentiable function on
[
0,

1
4k−1

]
which satisfies Eqns[k].

Let n = blog4 2ac+ 1. In Lemma 4.1, we showed that fn satisfies Eqns[n].
Let {f̃k}n

k=1 be a sequence of functions where f̃n = fn, and f̃k is the extension

of f̃k+1 to the interval
[
0,

1
4k−1

]
with formulas (4.3) for k = 1, 2, . . . , n − 1.

By Lemma 4.2, the functions f̃k satisfy Eqns[k] for all k = 1, 2, . . . , n.

Corollary 4.1. The function f̃1 is continuously differentiable and satisfies
equations (∗).

Proof. The function f̃1 satisfies Eqns[1] and by Proposition 4.2: f̃1(1) =
2 + a. Therefore f̃1 satisfies (∗).

When a = 7.999, the sequence {hk}∞k=0 defined with (4.1) and h0(x) = x

converges to the solution of (∗) on the interval
[
0,

1
4

]
. The graphs of h2 and

h3 are given on Figure 4 (left). Let f̄3 be the extension of h3 with formulas
(4.3) where g1 = h3 and g2 = f̄3. The function f̄3 is an approximation to
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the solution f of (∗) on [0, 1]. Although the values of f are in the interval
[−85400, 85400], the graph of the third approximation f̄3 already resembles
the graph of f (Fig. 4). When a = 2, the solution of (∗) is 4F2 and the Fabius
function F2 is infinitely differentiable and nowhere analytic in [0, 1]. Now we
show that this is the only infinitely differentiable solution of (∗).

Corollary 4.2. Let f be the solution of (∗) where a 6= 2 and a /∈ S. Then

f
′′
(x) is discontinuous at

1
2
.

Proof. By differentiating the first two equations of (∗) we obtain

f ′′(x) = 2a2f(4x) if 0 ≤ x ≤ 1
4
,

f ′′(x) = 2a2f(2− 4x) if
1
4

< x ≤ 1
2
,

f ′′(x) = −2a2f(4x− 2) if
1
2

< x ≤ 3
4
,

f ′′(x) = −2a2f(4− 4x) if
3
4

< x ≤ 1.

(4.4)

From the second and the third equations of (4.4) and x =
1
2
, we obtain

f ′′
(

1
2
−
)

= 2a2(2− a)

and

f ′′
(

1
2
+
)

= −2a2(2− a).

Therefore, f ′′ is discontinuous at x =
1
2
.
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