Yuri Dimitrov and G. A. Edgar, Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, USA. email: yuri@math.ohio-state.edu and edgar@math.ohio-state.edu

SOLUTIONS OF SELF-DIFFERENTIAL FUNCTIONAL EQUATIONS

Abstract

The system of functional differential equations (1) has a continuously differentiable solution for every value of the parameter a. The boundary values and a are related with d(2 - a) = c(2 + a). When $a \in S$ where

$$S = \left\{2^{2n+1} : n = 1, 2, 3, \ldots\right\}$$

the system (1) has infinitely many solutions with boundary values c = 0and d = 0. For all other values of a, the system (1) has a unique solution.

$$\begin{cases}
F'(x) = aF(2x) & \text{if } 0 \le x \le \frac{1}{2} \\
F'(x) = aF(2-2x) & \text{if } \frac{1}{2} \le x \le 1 \\
F(0) = c, F(1) = d.
\end{cases}$$
(1)

1 Introduction.

A function $f : [a, b] \to \mathbb{R}$ is self-differential if [a, b] can be subdivided into a finite number of sub-intervals, and on each sub-interval the derivative of f is equal to f by the graph transformed by an affine map. The case to be studied here is (1), where [0, 1] is decomposed into $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$, and the affine transformed images of F are aF(2x) and aF(2-2x).

In [4] Fabius showed that the distribution function F_2 of the random variable $U = \sum_{n=1}^{\infty} 2^{-n}U_n$, where U_1, U_2, \ldots are independent random variables uniformly distributed on [0, 1], is the solution of (1) for a value of the parameter a = 2 and boundary values c = 0 and d = 1. The function F_2 is infinitely

Key Words: linear functional differential equations, iteration

Mathematical Reviews subject classification: 34K06, 26A18

Received by the editors May 15, 2005

Communicated by: Zbigniew Nitecki

differentiable and nowhere analytic on [0, 1]. The derivatives of F_2 of order 2n are also solutions of (1) for $a = 2^{2n+1}$ and c = d = 0. In Theorem 2.1 (i), we show that (1) has a unique solution for all other values of a. We prove the existence of the solution using a modification of the method of the successive approximations on a sub-interval $\left[0, \frac{1}{4^n}\right]$ and extend it to [0, 1] with formulas (4.3). This method is used by Kato and McLeod [5] for the solution of the initial value functional differential equation $y(x) = \alpha y'(\lambda x) + \beta y(x), y(0) = 1$. Similar initial value functional differential equations have been studied by De Bruijn [1]. A distinctive feature of the solution F of (1) is that if it is known on any sub-interval, then it can be extended to [0, 1] using only polynomials. This property of the solutions of boundary value self-differential equations is analogous to the notion of self-similarity for fractals (p. 135, Edgar [3]).

Definition 1.1. A differentiable function f is polynomially divided on the interval [0,1] if for every $N \ge 0$ there exists an integer $n \ge N$ and polynomials $\{p_{n,i}(x)\}_{i=1}^{n-1}$ such that either $f\left(\frac{i}{n}+x\right) = f\left(\frac{i}{n}-x\right) + p_{n,i}(x)$ or $f\left(\frac{i}{n}+x\right) = f\left(\frac{i-1}{n}+x\right) + p_{n,i}(x)$ for i = 1, 2, ..., n-1 and $x \in \left[0, \frac{1}{n}\right]$.

This definition means that if [0, 1] is partitioned to n sub-intervals of equal length, the values of f on two neighboring intervals differ only by a polynomial. The solutions of (1) are polynomially divided by Lemma 3.1. In Section 2 we find a relation between the boundary values which allows us to decompose equations (1) to the simpler functional differential equations (*) and (**). The decomposition of the solutions is different, depending on whether or not abelongs to the set $S = \{2^{n+1} : n = 1, 2, 3, ...\}$. The main motivation to study self-differential equations is to generalize the exponential functions which have derivatives constant multiples of themselves. It is an interesting question to find self-differential equations which have practical applications.

This work is part of the Ph.D. thesis of the first author, written under the direction of the second author.

2 Basic Properties.

When a = 0, equations (1) have a solution F(x) = c with boundary values c = d. For boundary conditions c = d = 0, equations (1) have a solution F(x) = 0 for all values of the parameter a. The Fabius function $dF_2(x)$ is a solution of (1) for a = 2, c = 0 and every value of F(1) = d. Other solutions are obtained from the derivatives of $F_2(x)$ of even order.

Lemma 2.1. The function $F_2^{(2n)}$ is a solution of (1) with $a = 2^{2n+1}$ and boundary values c = d = 0, for all n = 1, 2, ...

PROOF. The Fabius function F_2 satisfies

$$\begin{cases} F_2'(x) = 2F_2(2x) & \text{if } 0 \le x \le \frac{1}{2}, \\ F_2'(x) = 2F_2(2-2x) & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

By differentiating 2n times these equations, we obtain

$$\begin{cases} F_2^{(2n+1)}(x) = 2^{2n+1} F_2^{(2n)}(2x) & \text{if } 0 \le x \le \frac{1}{2}, \\ F_2^{(2n+1)}(x) = 2^{2n+1} F_2^{(2n)}(2-2x) & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

From the first formula and x = 0 we obtain

$$F_2^{(2n+1)}(0) = F_2^{(2n)}(0) = \dots = F_2'(0) = F_2(0) = 0$$

and by the second formula and x = 1 we have that

$$F_2^{(2n+1)}(1) = 2^{2n+1}F_2^{(2n)}(0) = 0.$$

Therefore $F_2^{(2n)}$ satisfies (1) with parameter $a = 2^{2n+1}$ and boundary values c = d = 0.

The graphs of the solutions of (1) for a = 2, 8 and 32 are given in Fig. 1. Every constant multiple function of $F_2^{(2n)}(x)$ is also a solution of (1). Therefore (1) has infinitely many solutions for every $a \in S$. In Section 3 we show that equations (1) have a unique solution for all other values of $a \notin S$. Now we want to find a relation between the boundary values and the parameter a. Suppose that the function F(x) is a solution of the system of equations (1).

Proposition 2.1. The solution F of (1) satisfies

$$F\left(\frac{1}{2}+x\right) + F\left(\frac{1}{2}-x\right) = c+d \tag{2.1}$$

Fig. 1: The solutions $4F_2, F_2''$ and $F_2^{(4)}$ of (1) for a = 2, 8 and a = 32

Proof.

Let
$$G(x) = F\left(\frac{1}{2} + x\right) + F\left(\frac{1}{2} - x\right)$$
 for $0 \le x \le \frac{1}{2}$.
Then $G'(x) = F'\left(\frac{1}{2} + x\right) + F'\left(\frac{1}{2} - x\right)$
 $G'(x) = aF\left(2 - 2\left(\frac{1}{2} + x\right)\right) + aF\left(2\left(\frac{1}{2} - x\right)\right)$
 $G'(x) = aF(1 - 2x) - aF(1 - 2x) = 0.$

Therefore,

$$G(x) = G\left(\frac{1}{2}\right) = F(0) + F(1) = c + d.$$

From (2.1) and
$$x = \frac{1}{2}$$
, we obtain $F\left(\frac{1}{2}\right) = \frac{c+d}{2}$.

Lemma 2.2. The boundary values of equations (1) satisfy d(2-a) = c(2+a).

PROOF. We evaluate $\int_0^1 F(x) dx$ in two ways:

$$\int_0^1 F(x) \, dx = \int_0^{\frac{1}{2}} F(x) \, dx + \int_{\frac{1}{2}}^1 F(x) \, dx = \int_0^{\frac{1}{2}} F(x) \, dx + \int_0^{\frac{1}{2}} F(1-u) \, du$$

and

$$\int_0^1 F(x) \, dx = \int_0^{\frac{1}{2}} [F(u) + F(1-u)] \, du.$$

By Proposition 2.1 we have that F(u) + F(1-u) = c + d. Then

$$\int_0^1 F(x) \, dx = \int_0^{\frac{1}{2}} [c+d] \, dx = \frac{c+d}{2}.$$
 (2.2)

Let x = 2y.

$$\int_{0}^{1} F(x) dx = 2 \int_{0}^{\frac{1}{2}} F(2y) dy = \frac{2}{a} \int_{0}^{\frac{1}{2}} F'(y) dy$$
$$= \frac{2}{a} \left(F\left(\frac{1}{2}\right) - F(0) \right) = \frac{2}{a} \left(\frac{c+d}{2} - c\right) = \frac{d-c}{a}$$
(2.3)

By (2.2) and (2.3) we obtain $\frac{d-c}{a} = \frac{c+d}{2}$. Therefore, c(a+2) = d(2-a). \Box

In Lemma 2.2 we showed that if equations (1) have a solution, then the boundary values satisfy c(a+2) = d(2-a). In this way we have the following four possibilities for the values of the parameters c and d depending on the values of a:

- $a \neq \pm 2$. The value of d is determined from c with $d = \frac{(a+2)c}{2-a}$.
- a = 2. Then c = 0 and d is an arbitrary real number.
- a = -2. Then d = 0 and c is an arbitrary real number. These relations of the boundary values lead to the following system of functional differential equations.

$$\begin{cases} f'(x) = af(2x) & \text{if } 0 \le x \le \frac{1}{2} \\ f'(x) = af(2-2x) & \text{if } \frac{1}{2} \le x \le 1 \\ f(0) = 2 - a, f(1) = 2 + a. \end{cases}$$
(*)

In Theorem 2.1 we show that (*) has a unique solution when $a \notin S$.

• c = d = 0 and a is an arbitrary real number. With these values of the parameters equations (1) become

$$\begin{cases} f'(x) = af(2x) & \text{if } 0 \le x \le \frac{1}{2} \\ f'(x) = af(2-2x) & \text{if } \frac{1}{2} \le x \le 1 \\ \zeta f(0) = 0, f(1) = 0. \end{cases}$$

$$(**)$$

In Lemma 2.2 we have already found infinitely many nonzero solutions of (**) for every $a \in S$. The solution of (1) is either a constant multiple of a solution of (*) or it is a solution of (**) if c = d = 0. These results are summarized in Theorem 2.1 and Corollary 2.1.

Theorem 2.1. (i) Equations (*) have a unique C^1 solution for all $a \notin S$ and have no solution if $a \in S$.

(ii) Equations (**) have infinitely many C^1 solutions $\left\{ rF_2^{(2n)} | r \in R \right\}$ for every $a = 2^{2n+1} \in S$ and have no nonzero solutions if $a \notin S$.

The proof of Theorem 2.1 is divided into lemmas. In Section 3 we show that a necessary condition for a solution of equations (*) is that $a \notin S$ and we prove that all solutions of (**) with parameter $a = 2^{2n+1}$ are constant multiples of $F_2^{(2n)}$. In Section 4 we construct the solution of (*) using a modification of the method of the successive approximations. The solution of equations (1) is derived from the solution of (*) in the following way.

Corollary 2.1. Let $a \notin S$ and f(x) be the unique solution of equations (*). If d(2-a) = c(a+2), then equations (1) have a unique C^1 solution F(x) where $F(x) = \frac{cf(x)}{2-a}$ if $a \neq 2$. When a = 2 and c = 0 the solution is $F(x) = \frac{d}{4}f(x)$.

3 Necessary Conditions.

In Section 2 we found infinitely many solutions of (**) for every $a \in S$. In this Section we prove that these are the only solutions of (**) and that (*) has no solution if $a \in S$. Let f(x) be a solution of (*) or (**) and denote $b_k = f\left(\frac{1}{2^k}\right)$. In Proposition 2.1 we showed that $f\left(\frac{1}{2}+x\right)+f\left(\frac{1}{2}-x\right)=c+d$. Now we show that similar property holds at each point $\frac{1}{2^n}$.

Lemma 3.1. The function f satisfies

$$f\left(\frac{1}{2^n} + x\right) + (-1)^{n+1} f\left(\frac{1}{2^n} - x\right) = p_n(x)$$
(3.1)

for $0 \le x \le \frac{1}{2^n}$. The polynomials p_n are defined recursively by $\int p'_{2l-1}(x) = ap_{2l-2}(2x)$

$$\begin{cases} p_{2l-1}(x) = ap_{2l-2}(2x) \\ p_{2l-1}(0) = 2b_{2l-1} \end{cases}$$
(3.2)

and

$$\begin{cases} p'_{2l}(x) = ap_{2l-1}(2x) \\ p_{2l}(0) = 0 \end{cases}$$
(3.3)

where

$$p_1(x) = \begin{cases} 4 & \text{if } f \text{ is a solution of } (*) \\ 0 & \text{if } f \text{ is a solution of } (**). \end{cases}$$

PROOF. We prove Lemma 3.1 by induction on n. When n = 1 equation (3.1) is satisfied by Proposition 2.1. Suppose that

$$f\left(\frac{1}{2^n}+x\right) + (-1)^{n+1}f\left(\frac{1}{2^n}-x\right) = p_n(x).$$

Put x = 2t to obtain

$$f\left(\frac{1}{2^n} + 2t\right) + (-1)^{n+1}f\left(\frac{1}{2^n} - 2t\right) = p_n(2t).$$

From the second equations of (*) and (**) with $x = \frac{1}{2^n} + 2t$ and $x = \frac{1}{2^n} - 2t$ we have that

$$f\left(\frac{1}{2^n} - 2t\right) = \frac{1}{a}f'\left(\frac{1}{2^{n+1}} - t\right)$$

and

$$f\left(\frac{1}{2^n} + 2t\right) = \frac{1}{a}f'\left(\frac{1}{2^{n+1}} + t\right).$$

Then

$$f'\left(\frac{1}{2^{n+1}}+t\right) + (-1)^{n+1}f'\left(\frac{1}{2^{n+1}}-t\right) = ap_n(2t).$$

By integrating the above equation from 0 to x we obtain

$$\int_0^x \left[f'\left(\frac{1}{2^{n+1}} + t\right) + (-1)^{n+1} f'\left(\frac{1}{2^{n+1}} - t\right) \right] dt = \int_0^x ap_n(2t) dt$$
$$\left[f\left(\frac{1}{2^{n+1}} + t\right) + (-1)^{n+2} f\left(\frac{1}{2^{n+1}} - t\right) \right]_0^x = a \int_0^x p_n(2t) dt$$
$$f\left(\frac{1}{2^{n+1}} + x\right) + (-1)^{n+2} f\left(\frac{1}{2^{n+1}} - x\right) - \gamma f\left(\frac{1}{2^{n+1}}\right) = a \int_0^x p_n(2t) dt$$

where $\gamma = 1 + (-1)^{n+2}$.

Case1 *n* is even. Then $\gamma = 0$, and when n = 2l, we have that

$$f\left(\frac{1}{2^{2l+1}}+x\right) + f\left(\frac{1}{2^{2l+1}}-x\right) - 2f\left(\frac{1}{2^{2l+1}}\right) = a\int_0^x p_{2l}(2t) dt$$
$$f\left(\frac{1}{2^{2l+1}}+x\right) + f\left(\frac{1}{2^{2l+1}}-x\right) = 2b_{2l+1} + a\int_0^x p_{2l}(2t) dt.$$

Therefore, f satisfies (3.1) with n = 2l + 1 and

$$p_{2l+1}(x) = 2b_{2l+1} + a \int_0^x p_{2l}(2t) dt.$$
(3.4)

Case 2 *n* is odd. Then $\gamma = 0$, and when n = 2l - 1 we have that

$$f\left(\frac{1}{2^{2l}} + x\right) - f\left(\frac{1}{2^{2l}} - x\right) = a \int_0^x p_{2l-1}(2t) dt$$

$$p_{2l}(x) = a \int_0^x p_{2l-1}(2t) dt.$$
(3.5)

We obtain equations (3.2) and (3.3) from (3.4) and (3.5) by differentiation with respect to x.

The solution f of (1) is polynomially divided because it satisfies (3.1). If f is known on the interval $\left[0, \frac{1}{2^m}\right]$, then we can extend it to $\left[0, \frac{1}{2^{m-1}}\right]$ with formula (3.1) and n = m. By using the same procedure m - 1 times with $n = m - 1, m - 2, \ldots, 1$ we can reconstruct f on the interval [0, 1]. Even more, if the function f is known on an arbitrary sub-interval (a, b) of [0, 1] where $a < \frac{s}{2^m} < \frac{s+1}{2^m} < b$, for some integers s and m, then using the reverse procedure we can find the values of f on $\left[0, \frac{1}{2^m}\right]$ and then extend f to the interval [0, 1]. In this way, we can reconstruct the solution of (1) from any sub-interval of [0, 1] using only the polynomials p_n . Now we express the coefficients of $p_{2n}(x)$ with $b_1, b_3, \ldots, b_{2n-1}$. From (3.1) and $x = \frac{1}{2^n}$ we can find the values of p_n and $x = \frac{1}{2^n}$.

Corollary 3.1. Suppose that f is a solution of (*). Then

$$p_{2n}\left(\frac{1}{2^{2n}}\right) = b_{2n-1} - 2 + a \text{ and } p_{2n+1}\left(\frac{1}{2^{2n+1}}\right) = b_{2n} + 2 - a.$$

Corollary 3.2. Suppose that f is a solution of (**). Then

$$p_n\left(\frac{1}{2^n}\right) = b_{n-1}.$$

In the next lemma we find a formula for the polynomials p_{2n} .

Lemma 3.2. The polynomials p_n with even index are given by

$$p_{2n}(x) = \sum_{k=1}^{n} \frac{a^{2k-1}2^{2k^2-3k+2}b_{2n-2k+1}x^{2k-1}}{(2k-1)!}.$$
(3.6)

PROOF. By Lemma 3.1, p_{2n} is a polynomial of degree 2n-1. The coefficients may be computed by Taylor's formula. Compute successive derivatives using Lemma 3.1:

$$\begin{aligned} p'_{2n}(x) &= ap_{2n-1}(2x) \\ p''_{2n}(x) &= 2ap'_{2n-1}(2x) = 2a^2p_{2n-2}(4x) \\ p''_{2n}(x) &= 8a^2p'_{2n-2}(4x) = 22^2a^3p_{2n-3}(8x) = 2^3a^3p_{2n-3}(8x) \\ p^{(4)}_{2n}(x) &= 64a^3p'_{2n-3}(8x) = 22^22^3a^4p_{2n-4}(16x) = 2^6a^4p_{2n-4}(16x), \end{aligned}$$

and in general, by induction

$$p_{2n}^{(l)}(x) = 2^{1+2+3+\dots+(l-1)}a^l p_{2n-l}(2^l x) = 2^{\frac{l(l-1)}{2}}a^l p_{2n-l}(2^l x).$$

But $p_{2n-2k}(0) = 0$ and $p_{2n-2k+1}(0) = 2b_{2n-2k+1}$; so

$$p_{2n}(x) = \sum_{k=1}^{2n-1} \frac{p_{2n}^{(l)}(0)x^l}{l!} = \sum_{k=1}^n \frac{a^{2k-1}2^{2k^2-3k+2}b_{2n-2k+1}x^{2k-1}}{(2k-1)!}.$$

In Lemma 2.1, we found infinitely many solutions

$$f(x) = rF_2^{(2n)}(x)$$

of equations (**) for $a = 2^{2n+1} \in S$ and $r \in \mathbb{R}$. In the next corollary, we show that $a \in S$ is a necessary condition for a solution of (**).

Corollary 3.3. Let f be a nonzero solution of (**) such that $b_1 = \cdots = b_{2n-1} = 0$ and $b_{2n+1} \neq 0$. Then $a = 2^{2n+1}$.

PROOF. By Lemma 3.2,

$$p_{2n+2}(x) = \sum_{k=1}^{n+1} \frac{a^{2k-1}2^{2k^2-3k+2}b_{2n-2k+3}x^{2k-1}}{(2k-1)!} = 2ab_{2n+1}x.$$

Then

$$f\left(\frac{1}{2^{2n+2}}+x\right) - f\left(\frac{1}{2^{2n+2}}-x\right) = 2ab_{2n+1}x.$$

Put $x = \frac{1}{2^{2n+2}}$ to obtain

$$f\left(\frac{1}{2^{2n+1}}\right) - f(0) = \frac{ab_{2n+1}}{2^{2n+1}}$$
 and $b_{2n+1} = \frac{ab_{2n+1}}{2^{2n+1}}$.

Therefore, $a = 2^{2n+1}$ as required.

Now we use Lemma 3.2 to find a formula which relates the numbers $b_1, b_3, \ldots, b_{2n-1}$.

Lemma 3.3. The numbers $\{b_{2n-1}\}_{n=0}^{\infty}$ satisfy

$$b_{2n-1}\left(2^{2n-1}-a\right) = 2^{2n-1}\left(2-a+\sum_{k=2}^{n}\frac{a^{2k-1}2^{2k^2-3k+2-2n(2k-1)}b_{2n-2k+1}}{(2k-1)!}\right).$$
(3.7)

PROOF. By Corollary 3.1,

$$p_{2n}\left(\frac{1}{2^{2n}}\right) = b_{2n-1} - 2 + a.$$

From (3.6) and $x = \frac{1}{2^{2n}}$ we have that

$$p_{2n}\left(\frac{1}{2^{2n}}\right) = \sum_{k=1}^{n} \frac{a^{2k-1}2^{2k^2-3k+2-2n(2k-1)}b_{2n-2k+1}}{(2k-1)!}$$

Then

$$b_{2n-1}\left(1-\frac{a}{2^{2n-1}}\right) = 2-a + \sum_{k=2}^{n} \frac{a^{2k-1}2^{2k^2-3k+2-2n(2k-1)}b_{2n-2k+1}}{(2k-1)!}.$$

So far we have found formulas to compute the polynomials $p_{2n}(x)$ and the numbers b_{2n-1} .

Corollary 3.4. Let f be a solution of (*) or (**). The numbers b_{2n} and the coefficients of p_{2n+1} are obtained from $\{b_{2k-1}\}_{k=1}^n$ by

$$p_{2n+1}(x) = \sum_{k=0}^{n} \frac{a^{2k} 2^{2k^2 - k + 1} b_{2n-2k+1} x^{2k}}{(2k)!}$$

and

$$b_{2n} = \begin{cases} \sum_{k=0}^{n} \frac{a^{2k} 2^{2k^2 - k + 1 - 2k(2n+1)} b_{2n-2k+1}}{(2k)!} + a - 2 & \text{if } f \text{ satisfies } (*) \\ \sum_{k=0}^{n} \frac{a^{2k} 2^{2k^2 - k + 1 - 2k(2n+1)} b_{2n-2k+1}}{(2k)!} & \text{if } f \text{ satisfies } (**) \end{cases}$$

$$(3.8)$$

PROOF. We have that

$$p_{2n+1}(x) = 2b_{2n+1} + a \int_0^x p_{2n}(2t) dt.$$

From (3.6) and x = 2t,

$$p_{2n}(2t) = \sum_{k=1}^{n} \frac{a^{2k-1}2^{2k^2-k+1}b_{2n-2k+1}t^{2k-1}}{(2k-1)!}.$$

Then

$$p_{2n+1}(x) = 2b_{2n+1} + a \sum_{k=1}^{n} \int_{0}^{x} \frac{a^{2k-1}2^{2k^{2}-k+1}b_{2n-2k+1}t^{2k-1}}{(2k-1)!} dt$$
$$= \sum_{k=0}^{n} \frac{a^{2k}2^{2k^{2}-k+1}b_{2n-2k+1}x^{2k}}{(2k)!}.$$

If f is a solution of (*), then $p_{2n+1}\left(\frac{1}{2^{2n+1}}\right) = b_{2n} + 2 - a$ and

$$b_{2n} = \sum_{k=0}^{n} \frac{a^{2k} 2^{2k^2 - k + 1 - 2k(2n+1)} b_{2n-2k+1}}{(2k)!} + a - 2.$$

If f is a solution of (**), then $p_{2n+1}\left(\frac{1}{2^{2n+1}}\right) = b_{2n}$ and

$$b_{2n} = \sum_{k=0}^{n} \frac{a^{2k} 2^{2k^2 - k + 1 - 2k(2n+1)} b_{2n-2k+1}}{(2k)!}.$$

Remark 3.1. If $a \notin S$ and f is a solution of (*), then the values $b_n = f\left(\frac{1}{2^n}\right)$ are computed with formulas (3.7) and (3.8). The values of f on the set

$$D = \left\{ \frac{k}{2^n} | k = 1, \dots, 2^n, n \in N \right\}$$

are computed from $\{b_n\}$ with formula (3.1). The set D is dense in [0,1] and the values of f are determined for every $x \in [0,1]$ from the values of f on Dwith $f(x) = \lim_{n \to \infty} f(d_n)$ where $d_n \in D$ and $\lim_{n \to \infty} d_n = x$. Therefore, (*) has at most one solution for every $a \notin S$. We show that (*) has a unique solution for all $a \notin S$ in Section 4.

Remark 3.2. If $a = 2^{2n+1}$ and f is a solution of (**), then $b_1 = 0$ and b_3, \ldots, b_{2n-1} are computed with (3.7), but the value of b_{2n+1} cannot be computed with (3.7). If we choose b_{2n+1} to be an arbitrary number, then $b_{2n+3}, b_{2n+5}, \ldots$ may also be computed with (3.7). The values of b_{2n} may be computed from the values of b_{2n-1} with formula (3.8). Similarly to Remark 3.1, the values of f on D may be computed with (3.1). Therefore, (**) has at most one solution for every choice of b_{2n+1} . This solution is $\frac{b_{2n+1}F_2^{(2n)}(x)}{F_2^{(2n)}\left(\frac{1}{2^{2n+1}}\right)}$. Therefore, all solutions of (**) are $\left\{rF_2^{(2n)}(x)|r \in R\right\}$.

The graphs of f obtained by calculating the values of f on D for a = -32, -4, 7.9, 8.1, 16, 50 are given on Fig. 2. Now we show that (*) has no solution when $a \in S$. Let $a = 2^{2m-1}$. With this value of a, equation (3.7)

Fig. 2: The solutions of equations (*) for a = -4, 16 (top), a = 7.9, 8.1 and a = 7.99, 8.01 (middle) and a = -32, 50 (bottom)

becomes

$$b_{2n-1} \left(2^{2n-1} - 2^{2m-1} \right) = 2^{2n-1} \left(2 - 2^{2m-1} + \sum_{k=2}^{n} \frac{2^{(2m-1)(2k-1)}2^{2k^2 - 3k + 2 - 2n(2k-1)}b_{2n-2k+1}}{(2k-1)!} \right)$$

$$b_{2n-1} \left(1 - 2^{2(m-n)} \right) = 2 - 2^{2m-1} +$$

$$\sum_{k=2}^{n} \frac{2^{2k^2 - 3k + 2 + (2m-2n-1)(2k-1)}b_{2n-2k+1}}{(2k-1)!}$$

$$1 - \left(\sum_{k=2}^{n} \frac{n}{2^{2k^2 - 3k + 2 + (2m-2n-1)(2k-1)}b_{2n-2k+1}}{(2k-1)!} \right)$$

$$b_{2n-1} = \frac{1}{1 - 4^{m-n}} \left(2\left(1 - 4^{m-1}\right) + \sum_{k=2}^{n} \frac{2^{2k^2 - 3k + 2 + (2m-2n-1)(2k-1)}b_{2n-2k+1}}{(2k-1)!} \right)$$

The numbers $b_1 = 2, b_3, \ldots, b_{2m-3}$ are computed with the above formula. When n = m, formula (3.9) becomes

$$0 = 2(1 - 4^{m-1}) + \sum_{k=2}^{m} \frac{2^{2k^2 - 5k + 3}b_{2m-2k+1}}{(2k-1)!}$$

$$4^{m-1} - 1 = \sum_{k=2}^{m} \frac{2^{2k^2 - 5k + 2}b_{2m-2k+1}}{(2k-1)!}.$$
(3.10)

Formula (3.10) gives a relation between b_1, \ldots, b_{2m-3} and is a necessary condition for existence of a solution of equations (*) when $a = 2^{2m-1}$. In Lemma 3.5 we show that (3.10) is not satisfied. In the proof of Lemma 3.5 we use Proposition 3.1 and Lemma 3.4.

Proposition 3.1. Let e_k be the power of 3 in (2k-1)!. Then $e_k \leq k-1$.

Proof.

$$e_k = \sum_{3^r \le 2k-1} \left\lfloor \frac{2k-1}{3^r} \right\rfloor \le \sum_{r=1}^{r_0} \frac{2k-1}{3^r}$$

where $r_0 = \lfloor \log_3(2k - 1) \rfloor$.

$$e_k \le \frac{2k-1}{3} \frac{1-\frac{1}{3^{r_0}}}{1-\frac{1}{3}} = \frac{2k-1}{2} \left(1-\frac{1}{3^{r_0}}\right) < \frac{2k-1}{2} < k.$$

Therefore, $e_k \leq k - 1$.

1		

The numbers $b_1, b_3, \ldots, b_{2m-3}$ are rational numbers in lowest terms. Let d_{2n-1} be the power of 3 in the denominator of b_{2n-1} . The sequence $\{d_{2n-1}\}_{n=1}^{m-1}$ is increasing and satisfies the following inequality.

Lemma 3.4.

$$d_{2n-1} - d_{2n-3} \ge 2 \tag{3.11}$$

PROOF. We prove (3.11) by induction on n. $b_1 = 2$ and $d_1 = 0$. By (3.7),

$$b_3 = \frac{1}{1 - 4^{m-2}} \left(2(1 - 4^{m-1}) + \frac{2^{8-6+2+1+(2m-5)3}}{3!} \right)$$
$$= \frac{6(1 - 4^{m-1}) + 2^{6m-11}}{3(1 - 4^{m-2})}.$$

Let's denote by d(k) the power of 3 in $4^k - 1$. Then $d(k) \ge 1$ because

$$4^{k} - 1 = 3(4^{k-1} + 4^{k-2} + \dots + 1).$$

The numerator of b_3 is not divisible by 3. Therefore $d_3 = d(m-2) + 1 \ge 2$ and (3.11) is satisfied for n = 2. Suppose that $d_{2k-1} - d_{2k-3} \ge 2$ for every $k = 2, 3, \ldots, n-1$.

$$b_{2n-1} = \frac{1}{1 - 4^{m-n}} \left(2(1 - 4^{m-1}) + \frac{64^{m-n}b_{2n-3}}{3} + \sum_{k=3}^{n} 2^{2k^2 - 3k + 2 + (2m-2n-1)(2k-1)} \frac{b_{2n-2k+1}}{(2k-1)!} \right)$$

By the induction assumption,

$$d_{2n-3} - d_{2n-2k+1} = \sum_{l=2}^{k-1} \left[d_{2n-2l+1} - d_{2n-2l-1} \right] \ge 2(k-2) = 2k - 4$$
$$d_{2n-2k+1} + 2k - 4 \le d_{2n-3}.$$

The power of 3 in the denominator of $\frac{b_{2n-2k+1}}{(2k-1)!}$ is $d_{2n-2k+1} + e_k$. From Proposition 3.1, we have that

 $d_{2n-2k+1} + e_k \le d_{2n-2k+1} + k - 1 \le d_{2n-2k+1} + 2k - 4 \le d_{2n-3} < d_{2n-3} + 1$

for $3 \le k \le n$. The power of 3 in the denominator of $\frac{b_{2n-3}}{3!}$ is $d_{2n-3} + 1$. Therefore, the power of 3 in the denominator of $\frac{b_{2n-3}}{3!}$ is greater than the power of 3 in the denominator of $\frac{b_{2n-2k+1}}{(2k-1)!}$ for every $k = 3, 4, \ldots, n$. Then the power of 3 in the denominator of

$$\frac{64^{m-n}b_{2n-3}}{3} + \sum_{k=2}^{n} 2^{2k^2 - 3k + 2 - (2m-2n-1)(2k-1)} \frac{b_{2n-2k+1}}{(2k-1)!}$$

is exactly $d_{2n-3} + 1$, and so the power of 3 in the denominator of

$$\frac{1}{1-4^{m-n}} \left(\frac{64^{m-n}b_{2n-3}}{3} + \sum_{k=3}^{n} 2^{2k^2 - 3k + 2 - (2m-2n-1)(2k-1)} \frac{b_{2n-2k+1}}{(2k-1)!} \right)$$

is equal to $d_{2n-3} + d(m-n) + 1$. Then

$$d_{2n-1} = d_{2n-3} + d(m-n) + 1 \ge d_{2n-3} + 2.$$

In Lemma 3.5, we prove that the necessary condition (3.10) for a solution of (*) is not satisfied.

Lemma 3.5.

$$4^{m-1} - 1 \neq \sum_{k=2}^{n} \frac{2^{2k^2 - 5k + 2}b_{2m-2k+1}}{(2k-1)!}.$$

PROOF. We want to show that the denominator of

$$\sum_{k=2}^{n} 2^{2k^2 - 5k + 2} \frac{b_{2m-2k+1}}{(2k-1)!}$$

is divisible by 3.

$$\sum_{k=2}^{n} 2^{2k^2 - 5k + 2} \frac{b_{2m-2k+1}}{(2k-1)!} = \frac{b_{2m-3}}{3!} + \sum_{k=3}^{n} 2^{2k^2 - 5k+2} \frac{b_{2m-2k+1}}{(2k-1)!}$$

The power of 3 in the denominator of

$$2^{2k^2-5k+2}\frac{b_{2m-2k+1}}{(2k-1)!}$$

is $d_{2m-2k+1} + e_k$. By Proposition 3.1 and Lemma 3.4, we have that

 $d_{2m-2k+1} + e_k \leq d_{2m-2k+1} + k - 1 \leq d_{2m-2k+1} + 2k - 4 \leq d_{2m-3} < d_{2m-3} + 1$ for $3 \leq k \leq n$. The power of 3 in the denominator of $\frac{b_{2m-3}}{3!}$ is $d_{2m-3} + 1$. Therefore, the power of 3 in the denominator of

$$\sum_{k=2}^{n} 2^{2k^2 - 5k + 2} \frac{b_{2m-2k+1}}{(2k-1)!}$$

is $d_{2m-3} + 1$. Then the denominator of

$$\sum_{k=2}^{n} 2^{2k^2 - 5k + 2} \frac{b_{2m-2k+1}}{(2k-1)!}$$

is divisible by 3. Hence,

$$4^{m-1} - 1 \neq \sum_{k=2}^{n} \frac{2^{2k^2 - 5k + 2}b_{2m-2k+1}}{(2k-1)!}$$

as required.

From Lemma 3.5 it follows that equations (*) have no solution when $a \in S$ because the necessary condition (3.10) is not satisfied.

4 Successive Approximations to the Solution.

In Section 2 and Section 3, we proved part (*ii*) of Theorem 2.1. We also showed that if $a \in S$, equations (*) have no solution. In Section 4, we show that equations (*) have a solution for every $a \notin S$. According to the following remark, this solution is unique. Remark 3.1. Let f be a solution of (*) and $x \in \left[0, \frac{1}{2}\right]$. Then $f(x) = f(0) + \int_0^x f'(t) dt = 2 - a + \int_0^x af(2t) dt =$ $2 - a + \frac{a}{2} \int_0^{2x} f(t) dt$. Let n be the smallest integer such that $2|a| < 4^n$. Now, we use the above equation to define a sequence of functions $\{h_k\}_{k=0}^{\infty}$ which approximates f on the interval $\left[0, \frac{1}{4^{n-1}}\right]$ by

$$\begin{cases}
h_0(x) = x \\
h_k(x) = 2 - a + \frac{a}{2} \int_0^{2x} h_{k-1}(t) \, dt \text{ for } 0 \le x \le \frac{2}{4^n} \\
h_k\left(\frac{2}{4^n} + x\right) = p_{2n-1}(x) - h_k\left(\frac{2}{4^n} - x\right) \text{ for } 0 < x \le \frac{2}{4^n}.
\end{cases}$$
(4.1)

Proposition 4.1. The functions h_k are continuous for all $k \ge 2$.

PROOF. The functions h_k are continuous on the intervals $\left[0, \frac{2}{4^n}\right]$ and $\left(\frac{2}{4^n}, \frac{1}{4^{n-1}}\right]$. Now, we show that h_k is continuous at $\frac{2}{4^n}$. From the first equation of (4.1) and $x = \frac{2}{4^n}$, we have that

$$h_k\left(\frac{2}{4^n}\right) = 2 - a + \frac{a}{2} \int_0^{\frac{1}{4^n-1}} h_{k-1}(t) dt$$

$$= 2 - a + \frac{a}{2} \int_0^{\frac{2}{4^n}} h_{k-1}(t) dt + \frac{a}{2} \int_{\frac{2}{4^n}}^{\frac{1}{4^n-1}} h_{k-1}(t) dt$$

$$= 2 - a + \frac{a}{2} \int_0^{\frac{2}{4^n}} h_{k-1}(t) dt + \frac{a}{2} \int_0^{\frac{2}{4^n}} h_{k-1}\left(\frac{2}{4^n} + u\right) du$$

$$= 2 - a + \frac{a}{2} \int_0^{\frac{2}{4^n}} h_{k-1}(t) dt + \frac{a}{2} \int_0^{\frac{2}{4^n}} \left[p_{2n-1}(u) - h_{k-1}\left(\frac{2}{4^n} - u\right) \right] du$$

$$h_k\left(\frac{2}{4^n}\right) = 2 - a + \frac{a}{2} \int_0^{\frac{2}{4^n}} p_{2n-1}(u) du.$$

From (3.2), we have that $ap_{2n-1}(u) = p'_{2n}\left(\frac{u}{2}\right)$. Then

$$h_k\left(\frac{2}{4^n}\right) = 2 - a + \frac{1}{2} \int_0^{\frac{2}{4^n}} p'_{2n}\left(\frac{u}{2}\right) \, du = 2 - a + \int_0^{\frac{1}{4^n}} p'_{2n}(u) \, du$$
$$h_k\left(\frac{2}{4^n}\right) = 2 - a + p_{2n}\left(\frac{1}{4^n}\right) - p_{2n}(0) = 2 - a + b_{2n-1} - 2 + a = b_{2n-1}$$

From the second equation of (4.1), we obtain

$$h_k\left(\frac{2}{4^n}+\right) = \lim_{x \to 0^+} f\left(\frac{2}{4^n}+x\right) = \lim_{x \to 0^+} \left[p_{2n-1}(x) - h_k\left(\frac{2}{4^n}-x\right)\right]$$
$$h_k\left(\frac{2}{4^n}+\right) = p_{2n-1}(0) - h_k\left(\frac{2}{4^n}-\right) = 2b_{2n-1} - b_{2n-1} = b_{2n-1}.$$

Therefore,

$$h_k\left(\frac{2}{4^n}\right) = h_k\left(\frac{2}{4^n}\right) = b_{n-1}.$$

Fig. 3: The approximations h_1, h_2 and h_3 to the solution of (*) for a = 1.99

The function h_k is right continuous at $x = \frac{2}{4^n}$ and so it is continuous on the interval $\left[0, \frac{1}{4^{n-1}}\right]$.

When a = 1.99, then n = 1, because 2|a| < 4. The sequence of functions $\{h_k\}_{k=0}^{\infty}$ approximates the solution of (*) on the interval [0, 1]. The graphs of the first three approximations h_1, h_2 and h_3 are given on Fig. 3. The solution of equations (*) for a = 2 is $4F_2$ (Fig. 2). The solutions of (*) for a = 1.99 and a = 2 differ by less than 0.015. Now we define a system of functional differential equations on the interval $\left[0, \frac{1}{4^{k-1}}\right]$. Let k be a positive integer, and denote by Eqns[k] the following functional differential equations.

$$\begin{cases} f'(x) &= af(2x) \text{ for } 0 \le x \le \frac{2}{4^k} \\ f\left(\frac{2}{4^k} + x\right) &= p_{2k-1}(x) - f\left(\frac{2}{4^k} - x\right) \text{ for } 0 < x \le \frac{2}{4^k} \qquad (Eqns[k]) \\ f(0) &= 2 - a \end{cases}$$

Proposition 4.2. Let f be a solution of Eqns[k]. Then

$$f\left(\frac{1}{4^{k-1}}\right) = b_{2k-2}$$
 and $f'\left(\frac{1}{4^{k-1}}\right) = ab_{2k-3}$.

PROOF. From the second equation of Eqns[k] and $x = \frac{2}{4^k}$, we have that

$$f\left(\frac{1}{4^{k-1}}\right) = p_{2k-1}\left(\frac{2}{4^k}\right) - f(0) = p_{2k-1}\left(\frac{2}{4^k}\right) - 2 + a = b_{2k-2}$$

By differentiating the second equation of Eqns[k], we obtain

$$f'\left(\frac{2}{4^k}+x\right) = p'_{2k-1}(x) + f'\left(\frac{2}{4^k}-x\right).$$

Put $x = \frac{2}{4^k}$ in the above equation,

$$f'\left(\frac{1}{4^{k-1}}\right) = p'_{2k-1}\left(\frac{2}{4^k}\right) + f'(0) = ap_{2k-2}\left(\frac{1}{4^{k-1}}\right) + af(0)$$
$$f'\left(\frac{1}{4^{k-1}}\right) = a(b_{2k-3} - 2 + a) + a(2 - a) = ab_{2k-3}.$$

By Proposition 4.2, equations (*) are the same as Eqns[1].

Lemma 4.1. (i) The sequence of functions $h_k(x)$ converges uniformly. (ii) The limit function $f_n(x) = \lim_{k \to \infty} h_k(x)$ is continuously differentiable and satisfies Eqns[n].

PROOF. (i) Let $M_k = \sup_{x \in [0, \frac{1}{4^{n-1}}]} |h_k(x) - h_{k-1}(x)|$. From the second equation of (4.1), we have that

$$M_{k} = \sup_{x \in [0, \frac{2}{4^{n}}]} |h_{k}(x) - h_{k-1}(x)|.$$

From the first equation of (4.1),

$$h_k(x) - h_{k-1}(x) = \frac{a}{2} \int_0^{2x} h_{k-1}(u) \, du - \frac{a}{2} \int_0^{2x} h_{k-2}(u) \, du$$
$$|h_k(x) - h_{k-1}(x)| \le \frac{a}{2} \int_0^{2x} |h_{k-1}(u) - h_{k-2}(u)| \, du.$$

Therefore,

$$M_k \le \frac{a}{2} \int_0^{2x} M_{k-1} \, du = \frac{|a|}{2} 2x M_{k-1} \le \frac{2|a|}{4^n} M_{k-1}.$$

Let $t = \frac{2|a|}{4^n}$. Then 0 < t < 1, because *n* is chosen such that $2|a| < 4^n$. Therefore, $M_k \leq tM_{k-1}$. By induction, we obtain $M_k \leq t^{k-1}M_1$. Then

$$\sup_{x \in [0, \frac{1}{4^{n-1}}]} |h_s(x) - h_r(x)| \le \sum_{k=r+1}^s \sup_{x \in [0, \frac{1}{4^{n-1}}]} |h_k(x) - h_{k-1}(x)|$$
$$\le \sum_{k=r+1}^s M_k \le M_1 \sum_{k=r+1}^s t^{k-1} \le M_1 \sum_{k=r}^\infty t^k \le \frac{M_1 t^r}{1 - t}$$

for s > r. Therefore, h_k is a Cauchy sequence, and so, it converges uniformly.

(*ii*) The function f_n is continuous because it is a uniform limit of continuous functions. In the proof of Proposition 4.1, we showed that $h_k\left(\frac{2}{4^n}\right) = b_{2n-1}$ for $k \ge 2$. Then $f_n\left(\frac{2}{4^n}\right) = b_{2n-1}$. By letting $k \to \infty$ in (4.1), we obtain

$$\begin{cases} f_n(x) = 2 - a + \frac{a}{2} \int_0^{2x} f_n(t) dt & \text{for } 0 \le x \le \frac{2}{4^n} \\ f_n\left(\frac{2}{4^n} + x\right) = p_{2n-1}(x) - f_n\left(\frac{2}{4^n} - x\right) & \text{for } 0 < x \le \frac{2}{4^n}. \end{cases}$$
(4.2)

Form the first and second equations of (4.2), the function f_n is continuously differentiable on the intervals $\left[0, \frac{2}{4^n}\right]$ and $\left(\frac{2}{4^n}, \frac{1}{4^{n-1}}\right]$. Now, we show that f_n is differentiable at $x = \frac{2}{4^n}$. Let f'(x-) and f'(x+) denote

$$f'(x+) = \lim_{t \to x^+} \frac{f(t) - f(x)}{t - x}$$
 and $f'(x-) = \lim_{t \to x^-} \frac{f(t) - f(x)}{t - x}$.

Then

$$f'_{n}\left(\frac{2}{4^{n}}+\right) = \lim_{x \to 0^{+}} \frac{f_{n}\left(\frac{2}{4^{n}}+x\right) - f_{n}\left(\frac{2}{4^{n}}\right)}{x}$$
$$= \lim_{x \to 0^{+}} \frac{p_{2n-1}(x) - f_{n}\left(\frac{2}{4^{n}}-x\right) - f_{n}\left(\frac{2}{4^{n}}\right)}{x}$$
$$= \lim_{x \to 0^{+}} \frac{p_{2n-1}(x) - p_{2n-1}(0) - f_{n}\left(\frac{2}{4^{n}}-x\right) + f_{n}\left(\frac{2}{4^{n}}\right)}{x}$$

$$\left(\text{because } p_{2n-1}(0) - f_n\left(\frac{2}{4^n}\right) = 2b_{2n-1} - b_{2n-1} = f_n\left(\frac{2}{4^n}\right)\right)$$
$$= \lim_{x \to 0^+} \frac{p_{2n-1}(x) - p_{2n-1}(0)}{x} + \lim_{x \to 0^+} \frac{f_n\left(\frac{2}{4^n} - x\right) - f_n\left(\frac{2}{4^n}\right)}{-x}$$
$$= p'_{2n-1}(0) + f'_n\left(\frac{2}{4^n}\right) = ap_{2n-2}(0) + f'_n\left(\frac{2}{4^n}\right)$$
$$= f'_n\left(\frac{2}{4^n}\right)$$

Therefore, f_n is differentiable at $x = \frac{2}{4^n}$. From the second equation of (4.3), we have that

$$f'_n\left(\frac{2}{4^n} + x\right) = p'_{2n-1}(x) + f'_n\left(\frac{2}{4^n} - x\right).$$

Then

$$\lim_{x \to 0^+} f'_n \left(\frac{2}{4^n} + x\right) = p'_{2n-1}(0) + \lim_{x \to 0^+} f'_n \left(\frac{2}{4^n} - x\right) = f'_n \left(\frac{2}{4^n} - \right).$$

Therefore, f_n is continuously differentiable at $x = \frac{2}{4^n}$, and so f_n is continuously differentiable at each point of the interval $\left[0, \frac{1}{4^{n-1}}\right]$. From the first equation of (4.2), we have that $f_n(0) = 2 - a$ and $f'_n(x) = af_n(2x)$ for $0 \le x \le \frac{2}{4^n}$. Therefore, f_n satisfies Eqns[n] as required.

Lemma 4.2. Suppose that $g_1(x)$ is a continuously differentiable function which satisfies Eqns[k+1]. Let $g_2(x)$ be an extension of $g_1(x)$ defined by

$$\begin{cases} g_2(x) = g_1(x) & \text{if } 0 \le x \le \frac{1}{4^k} \\ g_2\left(\frac{1}{4^k} + x\right) = p_{2k}(x) + g_2\left(\frac{1}{4^k} - x\right) & \text{if } 0 < x \le \frac{1}{4^k} \\ g_2\left(\frac{2}{4^k} + x\right) = p_{2k-1}(x) - g_2\left(\frac{2}{4^k} - x\right) & \text{if } 0 < x \le \frac{2}{4^k} \end{cases}$$
(4.3)

Then $g_2(x)$ is continuously differentiable on $\left[0, \frac{1}{4^{k-1}}\right]$, and satisfies Eqns[k].

22

PROOF. The function g_2 is continuously differentiable on the intervals $\begin{bmatrix} 0, \frac{1}{4^k} \end{bmatrix}$, $\left(\frac{1}{4^k}, \frac{2}{4^k}\right)$ and $\left(\frac{2}{4^k}, \frac{1}{4^{k-1}}\right]$. Now, we show that g_2 is differentiable at $x = \frac{1}{4^k}$. $g_2'\left(\frac{1}{4^k}+\right) = \lim_{x \to 0^+} \frac{g_2\left(\frac{1}{4^k}+x\right) - g_2\left(\frac{1}{4^k}\right)}{x}$ $= \lim_{x \to 0^+} \frac{p_{2k}(x) + g_2\left(\frac{1}{4^k}-x\right) - g_2\left(\frac{1}{4^k}\right)}{x}$ $= \lim_{x \to 0^+} \frac{p_{2k}(x) - p_{2k}(0)}{x} - \lim_{x \to 0^+} \frac{g_2\left(\frac{1}{4^k}-x\right) - g_2\left(\frac{1}{4^k}\right)}{-x}$ $= p_{2k}'(0) - g_2'\left(\frac{1}{4^k}-\right)$

By Proposition 4.2, $g'_2\left(\frac{1}{4^k}-\right) = ab_{2k-1}$. Then

$$g_2'\left(\frac{1}{4^k}+\right) = ap_{2k-1}(0) - ab_{2k-1} = 2ab_{2k-1} - ab_{2k-1} = g_2'\left(\frac{1}{4^k}-\right).$$

Therefore, g_2 is differentiable at $x = \frac{1}{4^k}$, and $g'_2\left(\frac{1}{4^k}\right) = ab_{2k-1}$. Now we show that g'_2 is continuous at $x = \frac{1}{4^k}$. It is enough to show that

$$\lim_{x \to 0^+} g_2'\left(\frac{2}{4^k} + x\right) = g_2'\left(\frac{2}{4^k}\right)$$

because g'_2 is continuous on $\left[0, \frac{1}{4^k}\right]$. From the second equation of (4.3), we have that

$$g'_2\left(\frac{1}{4^k}+x\right) = p'_{2k}(x) - g'_2\left(\frac{1}{4^k}-x\right).$$

Then

$$\lim_{x \to 0^+} g_2' \left(\frac{1}{4^k} + x \right) = \lim_{x \to 0^+} \left[p_{2k}'(x) - g_2' \left(\frac{1}{4^k} - x \right) \right]$$
$$= p_{2k}'(0) - g_2' \left(\frac{1}{4^k} - \right) = 2ab_{2k-1} - ab_{2k-1}$$
$$= ab_{2k-1} = g_2' \left(\frac{1}{4^k} \right).$$

Therefore, g_2 is continuously differentiable at $x = \frac{1}{4^k}$. The proof that g_2 is continuously differentiable at $x = \frac{2}{4^k}$ is similar. Now we show that g_2 satisfies the conditions of Eqns[k]. By the definition of g_2 , we have that $g_2(0) = 0$ and

$$g_2\left(\frac{2}{4^k}+x\right) = p_{2k-1}(x) - g_2\left(\frac{2}{4^k}-x\right)$$

for $0 < x \le \frac{2}{4^k}$. Also, $g'_2(x) = ag_2(2x)$ for $0 < x \le \frac{2}{4^{k+1}}$ because $g_2(x) = g_1(x)$ on the interval $\left[0, \frac{1}{4^k}\right]$ and g_1 satisfies Eqns[k+1]. By the third equation of Eqns[k+1], we have that

$$g_2\left(\frac{2}{4^{k+1}}+x\right) = p_{2k+1}(x) - g_2\left(\frac{2}{4^{k+1}}-x\right)$$

for $0 < x \le \frac{2}{4^{k+1}}$. By differentiating the above equation, we obtain

$$g_{2}'\left(\frac{2}{4^{k+1}}+x\right) = p_{2k+1}'(x) + g_{2}'\left(\frac{2}{4^{k+1}}-x\right)$$
$$g_{2}'\left(\frac{2}{4^{k+1}}+x\right) = ap_{2k}(2x) + ag_{2}\left(\frac{1}{4^{k}}-2x\right) = ag_{2}\left(\frac{1}{4^{k}}+2x\right).$$

By the second equation of (4.3),

$$g_2\left(\frac{1}{4^k} + x\right) = p_{2k}(x) + g_2\left(\frac{1}{4^k} - x\right)$$

for $0 < x \le \frac{1}{4^k}$. Then

$$g_{2}'\left(\frac{1}{4^{k}}+x\right) = p_{2k}'(x) - g_{2}'\left(\frac{1}{4^{k}}-x\right)$$
$$g_{2}'\left(\frac{1}{4^{k}}+x\right) = ap_{2k-1}(2x) - ag_{2}\left(\frac{2}{4^{k}}-2x\right) = ag_{2}\left(\frac{2}{4^{k}}+2x\right)$$

24

Fig. 4: The graphs of h_2 and h_3 (left) and \overline{f}_3 and f on the same axis (right) for a = 7.999

Therefore, $g'_2(x) = ag_2(2x)$ for all $0 < x \le \frac{2}{4^k}$. Then g_2 is a continuously differentiable function on $\left[0, \frac{1}{4^{k-1}}\right]$ which satisfies Eqns[k].

Let $n = \lfloor \log_4 2a \rfloor + 1$. In Lemma 4.1, we showed that f_n satisfies Eqns[n]. Let $\{\tilde{f}_k\}_{k=1}^n$ be a sequence of functions where $\tilde{f}_n = f_n$, and \tilde{f}_k is the extension of \tilde{f}_{k+1} to the interval $\left[0, \frac{1}{4^{k-1}}\right]$ with formulas (4.3) for $k = 1, 2, \ldots, n-1$. By Lemma 4.2, the functions \tilde{f}_k satisfy Eqns[k] for all $k = 1, 2, \ldots, n$.

Corollary 4.1. The function \tilde{f}_1 is continuously differentiable and satisfies equations (*).

PROOF. The function \tilde{f}_1 satisfies Eqns[1] and by Proposition 4.2: $\tilde{f}_1(1) = 2 + a$. Therefore \tilde{f}_1 satisfies (*).

When a = 7.999, the sequence $\{h_k\}_{k=0}^{\infty}$ defined with (4.1) and $h_0(x) = x$ converges to the solution of (*) on the interval $\left[0, \frac{1}{4}\right]$. The graphs of h_2 and h_3 are given on Figure 4 (left). Let \bar{f}_3 be the extension of h_3 with formulas (4.3) where $g_1 = h_3$ and $g_2 = \bar{f}_3$. The function \bar{f}_3 is an approximation to

the solution f of (*) on [0, 1]. Although the values of f are in the interval [-85400, 85400], the graph of the third approximation \overline{f}_3 already resembles the graph of f (Fig. 4). When a = 2, the solution of (*) is $4F_2$ and the Fabius function F_2 is infinitely differentiable and nowhere analytic in [0, 1]. Now we show that this is the only infinitely differentiable solution of (*).

Corollary 4.2. Let f be the solution of (*) where $a \neq 2$ and $a \notin S$. Then f''(x) is discontinuous at $\frac{1}{2}$.

PROOF. By differentiating the first two equations of (*) we obtain

$$\begin{cases} f''(x) = 2a^2 f(4x) & \text{if } 0 \le x \le \frac{1}{4}, \\ f''(x) = 2a^2 f(2-4x) & \text{if } \frac{1}{4} < x \le \frac{1}{2}, \\ f''(x) = -2a^2 f(4x-2) & \text{if } \frac{1}{2} < x \le \frac{3}{4}, \\ f''(x) = -2a^2 f(4-4x) & \text{if } \frac{3}{4} < x \le 1. \end{cases}$$

$$(4.4)$$

From the second and the third equations of (4.4) and $x = \frac{1}{2}$, we obtain

$$f''\left(\frac{1}{2}-\right) = 2a^2(2-a)$$

and

$$f^{\prime\prime}\left(\frac{1}{2}+\right) = -2a^2(2-a)$$

Therefore, f'' is discontinuous at $x = \frac{1}{2}$.

References

- [1] N. G. De Bruijn, The Difference-Differential Equation $F'(x) = e^{\alpha x + \beta} F(x-1)$, Indagationes Math., **15** (1953), 449–464.
- Y. Dimitrov, Polynomially-divided Solutions of Bipartite Self-differential Functional Equations, Ph.D. Thesis, (2006).
- [3] G. Edgar, Integral, Probability and Fractal Measure, Springer-Verlag, New York, 1998.

- [4] J. Fabius, A Probabilistic Example of a Nowhere Analytic C[∞]-Function,
 Z. Wahrsch. Verw. Gebiete, 5 (1966), 173–174.
- [5] T. Kato and J. B. McLeod, The Functional-Differential Equation $y'(x) = ay(\lambda x) + by(x)$, Bull. Amer. Math. Soc., **77** (1971) 891–937.
- [6] S. Wolfram, *The Mathematica Book*, 4th ed., Wolfram Media/Cambridge University Press, 1999.