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WEAK SEPARATION IN SELF-SIMILAR FRACTALS

MANAV DAS AND G A EDGAR

Abstract. We consider the “weak separation property” for
graph-directed iterated function systems of similitudes in Eu-
clidean space. The formulations that are known to be equiva-
lent in the case of strongly connected graph are, in general, no
longer equivalent when the graph is not strongly connected.

1. Introduction

We consider graph-directed self-similar fractals. The figures il-
lustrate an example. (This is Example 4.6, discussed in a more
technical way below.) Figure 1A is a directed multigraph.

Figure 1A. A directed multigraph

Figure 1B illustrates an iterated function system (IFS) di-
rected by that graph. There are four sets, and maps sending some
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of the sets inside others. For example, node 1 in the graph has two
edges leaving it, one to node 3 and one to node 4. Correspondingly,
set 1 contains one image of set 3 and one image of set 4. Similarly
for all the other nodes and edges of the graph. We are dealing
specifically with “self-similar” sets, so the maps are all similitudes.

Figure 1B. Four sets mapped according to the graph

Here is a more detailed description of how the similitudes are
illustrated in the figures. There are four nodes in the graph in
Figure 1A. This means we will be constructing four sets in the
plane. But for clarity they are shown in four separate pictures of the
plane. In Figures 1B and 1C, the four pictures are labeled 1, 2, 3,
and 4. There is an arrow from node 1 to node 3 in Figure 1A. This is
supposed to correspond to a similitude of the plane. It maps picture
3 to picture 1 in Figure 1B. In picture 3 there is a large irregular
pentagon surrounding everything else. The image of that pentagon
is the pentagon shown in picture 1. (Because the pentagon has no
symmetries, this uniquely determines the similitude of the plane.)
There is an arrow from node 1 to node 4 in Figure 1A. This is
supposed to correspond to a similitude of the plane. It maps picture
4 to picture 1 in Figure 1B. In picture 4 there is a large irregular
hexagon surrounding everything else. The image of that hexagon
is the hexagon shown in picture 1. Departing from node 2 of the
graph is only a single arrow, going back to node 2. This indicates
a similitude, mapping picture 2 into itself. The image of the large
square is the small square. (In fact, because of the summetries of
the square, this does not uniquely determine the similitude. For
the pictures I chose the one that rotates clockwise by less than 45
degrees.) Departing from node 3 there are three arrows, two going
back to 3 itself, and one going to 2. The corresponding similitudes
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are represented in Figure 1B. The large pentagon in 3 is mapped to
each of the smaller pentagons by the first two similitudes, and the
large square in picture 2 maps to the square in picture 3. Departing
from node 4 there are three arrows, two going back to 4 itself, and
one going to 2. These are represented in the same way as before by
the two small hexagons and the square in picture 4.

Figure 1C illustrates the “attractors” or “invariant sets” defined
by this IFS. (Set 2 is a single point at the origin.) Each of these
sets is made up of images of the others as directed by the graph.
For example, set 1 is the union of the image of set 3 and the image
of set 4 under the similitudes described.

Figure 1C. The four attractors

When we study such self-similar sets, and try to determine a
fractal dimension of the attractors (such as Hausdorff dimension or
box dimension), the most familiar situation involves the open set
condition (OSC). This example was chosen so that the OSC fails.
There is no way to choose four nonempty open sets, so that the
images as specified by the IFS are inside the appropriate sets, and
disjoint. (For example, the open sets 3 and 4 should have images
inside open set 1, but disjoint from each other.) This is described
more technically in Section 2, below.

When (as in this case) an IFS fails the OSC, that means there is
overlap of the images. Computation of the fractal dimension may
be difficult. Two papers that study this problem in one dimension
are: Keane, Simon & Solomyak [7] and Sidorov [13]. The weak
separation property (WSP) has been proposed by Lau & Ngai
[8] to single out cases where the dimension computation is simplified
by the combinatorial nature of the overlaps. We studied this in our
previous paper [4] under the assumption that the graph directing
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the IFS is strongly connected. This work was in turn motivated by
Zerner [14].

A special subclass of the IFS with WSP, are those that are of
finite type. These were studied in Das & Ngai [5] and Ngai &
Wang [10]. An IFS of finite type gives rise to a new graph-directed
IFS. Oftentimes, even though the original IFS may be determined
by a strongly connected graph, the new IFS may be determined by
a graph that is not strongly connected. This raises the question
as to which separation condition to use, and what it might even
mean. It is worth noting that Bandt & Rao [3] gives an analysis of
the relationship between the open set condition and finite type for
connected self-similar sets in the plane. The relationship between
finite-type and WSP was first proved in Nguyen [11].

So what should the definition be when the graph is not strongly
connected? One natural possibility is simply to require WSP sep-
arately for each connected component of the graph. In fact, that
is probably the best choice. But our concern in this paper is what
can be said when the definition of WSP is taken for the entire IFS.

Note that we are adapting only the first part of [4]. Adaptation
to non-strongly-connected graphs of the later parts of that paper
(such as: similarity and growth dimensions, finite type) is left for
the future.

The paper is organized as follows: Section 2 describes the setting.
The weak separation property is discussed in Section 3. Finally, in
Section 4, we provide several examples, both to illustrate the results
and to provide counterexamples.

2. The setting

It may be noted that our setting can be thought of as a gen-
eralization of finitely generated semigroups of contracting homoth-
eties, which have been studied earlier in the literature. But in that
study, there is no mention of the self-similar sets that are generated,
whereas for us these sets are the main item of interest.

2.1. Directed multigraph. The weak separation property for
iterated function systems with overlap was defined and studied for
the one-node setting by Lau & Ngai [8] and Zerner [14], follow-
ing work by Band & Graf [2] and Schief [12]. In [4], the authors
generalized this to the graph-directed setting, but only for strongly
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connected graphs. In the present paper we consider the definition
for general graphs, not necessarily strongly connected.

The setting is the same as in [4], but the definitions are repeated
here. Begin with a directed multigraph G = (V,E). So V is a finite
set (of “vertices”), E is a finite set (of “edges”), for each u, v ∈ V ,
Euv ⊆ E (the set of edges “from u to v”). For convenience we
assume that E is the disjoint union of the sets Euv. If e ∈ Euv then
e has initial vertex u and final vertex v. Again for convenience
we assume that every node u is the initial vertex for at least one
edge. Write E(k)

uv for paths of length k, say σ = e1e2 · · · ek where e1
has initial vertex u, the final vertex of each ei matches the initial
vertex of the next one ei+1, and the final vertex of ek is v. Then
E

(∗)
uv =

⋃∞
k=0E

(k)
uv is the forest of all paths in G.

2.2. The IFS. For each u ∈ V we associate a complete metric
space Xu. For now we will assume each Xu ⊆ Rd for a certain
d. For each e ∈ Euv we associate a similitude Se : Xv → Xu, with
contraction ratio ρe:

|Se(x)− Se(y)| = ρe|x− y|.

(A similitude defined on a subset of Euclidean space can be ex-
tended to a similitude on the whole space, so when convenient we
will assume Se is defined on all of Rd. Also recall that a similitude
R on Rd is affine so that it has the form R(x) = Ax+ b for some
matrix A and vector b. When considered defined on all of Rd, the
similitude Se has an inverse from Rd to itself. If σ ∈ E

(∗)
uv and

dimXu = dimXv, then since Sσ maps Xv into Xu it will be bijec-
tive and the inverse maps Xu to Xv. But if dimXu > dimXv, of
course the inverse will not map Xu into Xv.) Assume 0 < ρe < 1.
Write ρmin = min { ρe : e ∈ E }, ρmax = max { ρe : e ∈ E }. For
σ = e1e2 · · · ek write Sσ = Se1 ◦Se2 ◦ · · · ◦Sek

and ρ(σ) = ρe1 · · · ρek
.

This formulation is found in [9, 6].
The original version of an IFS, where no graph is specified, can

be fit into this scheme by using a graph G = (V,E) where V has
exactly one element. Then all edges are loops from that node to
itself. To emphasize this case, we will sometimes call it the one-
node case.
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There is then a unique family {Ku : u ∈ V } of nonempty com-
pact sets such that

Ku =
⋃
v∈V

⋃
e∈Euv

Se(Kv)

for all u ∈ V . These are the attractors or invariant sets defined
by the IFS.

Sometimes it will be convenient to allow ρe ≥ 1 for some edges
e. But as long as ρ(σ) < 1 for all cycles σ, the situation reduces
to the previous case by multiplying the metric in each Xu by an
appropriate constant [6, Exercise (4.3.9)].

If R is a similitude, write ρ(R) for its contraction ratio. So in
our setting, ρ(Sσ) = ρ(σ).

We will assume that Xu is the affine span of the attractor Ku.
This means that if R1, R2 : Xu → Rd are affine, and R1(x) = R2(x)
for all x ∈ Ku, then R1(x) = R2(x) for all x ∈ Xu. If E(∗)

uv 6= ∅,
so that there is a path from u to v in the graph G, we say u
precedes v. So if u precedes v, then the attractor Ku contains
a similar image of Kv, and therefore the affine dimensions satisfy
dimXu ≥ dimXv. Within a component of G all dimensions dimXu

are the same, but if G is not strongly connected, then dimXu may
differ from component to component. If dimXu = dimXv for all
u, v, then we will say that (Se) has uniform affine dimension.
And when this is true, there is no harm in assuming Xu = Rd for
all u.

2.3. Definitions. We give next a few definitions formulated in
terms of a graph-directed iterated function system. Note that many
of these are computed in the examples below, see especially Ex-
ample 4.3. Reading the examples may help in understanding the
definitions.

Let u, v ∈ V , 0 < a < b, I ⊆ R an interval, 0 < r < 1, U ⊆ Xu

bounded, M ⊆ Xv nonempty. Define

Ruv = {R : R is a similitude from Xv to Xu }
Ruv(I) = {R ∈ Ruv : ρ(R) ∈ I }

E(∗)
uv

(
]a, b]

)
=
{
σ ∈ E(∗)

uv : Sσ ∈ Ruv
(
]a, b]

)}
Fuv
(
]a, b]

)
=
{
Sσ : σ ∈ E(∗)

uv

(
]a, b]

)}
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Fuv
(
]a, b]

)
=
{
T−1 ◦ S : T, S ∈ Fuv

(
]a, b]

) }
(These map Xv into Rd.)

Fuv
(
r
)

=
⋃
b>0

Fuv
(
]rb, b]

)
Fuv =

⋃
0<a<b

Fuv
(
]a, b]

)
=

⋃
0<r<1

Fuv(r)

=
{
S−1
τ ◦ Sσ : τ, σ ∈ E(∗)

uv

}
Fuv(]a, b], U,M) =

{
T ∈ Fuv

(
]a diam U, b diam U ]

)
:

T (M) ∩ U 6= ∅
}

γuv(]a, b],M) = sup {#Fuv(]a, b], U,M) : U ⊆ Xu bounded }

Proposition 2.1. Fuv(r) = Fuv ∩Ruv
(
]r, r−1[

)
Proof. Let R ∈ Fuv(r). Then there is b so that R = T−1 ◦ S with
T, S ∈ Fuv

(
]rb, b]

)
. So ρ(R) = ρ(T )−1ρ(S) < (rb)−1b = r−1 and

ρ(R) = ρ(T )−1ρ(S) > b−1(rb) = r. So R ∈ Fuv ∩Ruv
(
]r, r−1[

)
.

Conversely, let R ∈ Fuv ∩Ruv
(
]r, r−1[

)
. Say R = T−1 ◦ S. First

take the case ρ(T ) ≤ ρ(S). Let b = ρ(S) so that T, S ∈ Fuv
(
]rb, b]

)
and R ∈ Fuv(r). For the other case ρ(T ) > ρ(S), let b = ρ(T ) and
again R ∈ Fuv(r). �

3. The weak separation property

For each u ∈ V let Xu ⊆ Rd be the affine span of Ku. For e ∈ Euv
let Se : Rd → Rd be a similitude with ratio ρe that maps Xv into
Xu. Let r ∈]0, ρmin]. We will consider the conditions given below.
The length of the list is justified by the fact that it exists in the
literature: In [14] all ten of these conditions are proved equivalent
in the one-node setting. For the graph-directed setting, in the case
of strongly connected graph G, it was proved in [4] that all ten
conditions are equivalent.

• (1a) For all v ∈ V , there exist x ∈ Kv and ε > 0 such
that for all u preceding v and all R ∈ Fuv(r), either R is
the identity on Xv or |R(x)− x| ≥ ε.
• (1b) For all v ∈ V there exist x ∈ Xv and ε > 0 such that

for all u preceding v and all R ∈ Fuv(r), either R(x) = x
or |R(x)− x| ≥ ε.
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• (2a) For all v ∈ V there are ε > 0 and {x0, · · · , xm} ⊆ Xv

with affine span Xv such that for all u preceding v, all
R ∈ Fuv(r), and all j, either R(xj) = xj or |R(xj)−xj | ≥ ε.
• (2b) For all v ∈ V there are ε > 0 and {x0, · · · , xm} ⊆ Xv

with affine span Xv such that for all u preceding v and all
R ∈ Fuv(r), eitherR is the identity onXv or |R(xj)−xj | ≥ ε
for some j.
• (3a) For all u, v ∈ V with u preceding v, the identity is an

isolated point of Fuv.
• (3b) For all u, v ∈ V with u preceding v, the identity is an

isolated point of Fuv(r).
• (4a) For all u, v ∈ V with u preceding v, all bounded
M ⊆ Xv, and all b > 0, we have γuv(]rb, b],M) <∞.
• (4b) For all u, v ∈ V with u preceding v, there exist

nonemptyM ⊆ Xv and b > 0 such that γuv(]rb, b],M) <∞.
• (5a) For all u, v, w ∈ V such that u precedes v precedes w,

and all z ∈ Xw, there exists l ∈ N such that for any τ ∈ E(∗)
vw

and any b > 0, every ball in Xu with radius b contains at
most l elements of

{
Sστ (z) : σ ∈ E(∗)

uv

(
]rb, b]

)}
.

• (5b) For all u, v, w ∈ V such that u precedes v precedes
w, there exist z ∈ Xw and l ∈ N such that for any τ ∈ E(∗)

vw

and any b > 0, every ball in Xu with radius b contains at
most l elements of

{
Sστ (z) : σ ∈ E(∗)

uv

(
]rb, b]

)}
.

We will prove:

(1a)
⇓

(1b) ⇐⇒ (2a)
⇓

(2b) ⇐⇒ (3a) ⇐⇒ (3b)
⇓

(4a) ⇐⇒ (4b) ⇐⇒ (5a) ⇐⇒ (5b)

and provide examples showing the vertical arrows cannot be re-
versed.

Theorem 3.1 proves the implications that do not use the as-
sumption of uniform affine dimension, and Theorem 3.3 proves the
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implications that do use that assumption. Most of the proofs are
taken from [4], where they are carried out in the case of strongly
connected graph.

It may also be noted that Theorem 3.1 does not use the system of
attractors, so it may be thought of as a result for sets of affine maps
of Euclidean space equipped with the compact-open topology which
(depending on the situation) are either contracting homotheties or
which are homotheties whose dilations are uniformly bounded from
above and below. In particular, this point of view easily explains
the equivalence of (2b), (3a), (3b).

Theorem 3.1. Let G = (V,E) be a directed multigraph. Let the
iterated function system (Se)e∈E with invariant list (Ku)u∈V in Rd

be directed by G. Then (1a) =⇒ (1b) ⇐= (2a) =⇒ (2b) ⇐⇒ (3a)
⇐⇒ (3b) =⇒ (4b) ⇐⇒ (4a) =⇒ (5a) =⇒ (5b).

Proof. (1a) =⇒ (1b), (2a) =⇒ (2b), (3a) =⇒ (3b), (4a) =⇒ (4b),
(5a) =⇒ (5b) are trivial.

(2a) =⇒ (1b) is trivial: let x = x0.
(2b) =⇒ (3a): Assume (2b). Let u, v ∈ V be given with u

preceding v. Note thatRuv
(
]r, r−1[

)
is an open neighborhood of the

identity in Ruv and Fuv(r) = Fuv ∩Ruv
(
]r, r−1[

)
. Let {x0, · · · , xd}

and ε be as in (2b). The set

{R ∈ Fuv(r) : |R(xj)− xj | < ε for all j } = {id}
is an open neighborhood of the identity in Fuv(r). So the identity
is an isolated point of Fuv.

(3b) =⇒ (2b): Assume (3b). Let v be given. Let {x0, · · · , xd} be
any set with affine span Xv. The map R 7→ (R(x0), · · · , R(xd)) is a
homeomorphism since it is bijective and affine from one Euclidean
space onto another [from the set of affine maps on Rd to the set
(Xu)d+1]. But if u precedes v, then the identity is isolated in Fuv(r),
so there is εu > 0 so that for all R ∈ Fuv(r) except the identity,
|R(xj)− xj | ≥ εu. Let ε = min { εu : u precedes v }.

(2b) =⇒ (4a): Assume (2b). Let u precede v, let M ⊆ Xv

be bounded, and let b > 0. Then apply (2b) with node v to get
{x0, · · · , xd} with affine span Xv and ε > 0. Let k = diam

(
M ∪

{x0, · · · , xd}
)
. We must show γuv(]rb, b],M) <∞. Let U ⊆ Xu be

bounded. Now if T, S ∈ Fuv
(
]rb, b], U,M

)
, and T 6= S, then there

exists j = j(S, T ) ∈ {0, · · · , d} with |T−1(S(xj))−xj | ≥ ε, and thus
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|S(xj) − T (xj)| ≥ rbεdiam U . This choice of j(S, T ) is a “colour-
ing” of all pairs from Fuv

(
]rb, b], U,M

)
in d+1 colours. From Ram-

sey’s Theorem it follows that if supU #Fuv
(
]rb, b], U,M

)
=∞, then

supU #F ′U =∞ as well, for some choice of F ′U ⊆ Fuv
(
]rb, b], U,M

)
such that all pairs T, S ∈ F ′U have the same colour. But suppose all
pairs in F ′U have colour j. Then the balls B(T (xj), (rbε/2)diam U),
T ∈ F ′U , are disjoint, and all their centers have distance at most
bkdiam U from U . So these balls are all contained in a ball of
radius (1 + bk + rbε/2)diam U . Comparing volumes we see that
#F ′U ≤ (1 + bk + rbε/2)d/(rbε/2)d, where d is the affine dimen-
sion of Xu, a bound independent of U . So in fact γuv(]rb, b],M) =
supU #Fuv

(
]rb, b], U,M

)
<∞.

(4a) =⇒ (5a): Assume (4a). Let u, v, w ∈ V and z ∈ Xw be
given. Then the set

M =
{
Sτ (z) : τ ∈ E(∗)

vw

}
is bounded. Let l = γuv

(
]r/2, 1/2],M) <∞. Then for any τ ∈ E(∗)

vw ,
any b > 0, and any ball U in Xu of radius b (and diameter 2b):

#
({

Sστ (z) : σ ∈ E(∗)
uv

(
]rb, b]

)}
∩ U

)
≤ #

{
T ∈ Fuv

(
]rb, b]

)
: T (Sτ (z)) ∈ U

}
≤ #

{
T ∈ Fuv

(
]rb, b]

)
: T (M) ∩ U 6= ∅

}
= #Fuv

(
]r/2, 1/2], U,M

)
≤ l.

(4b) =⇒ (4a): Assume (4b). Let u, v ∈ V . There exist M0 6= ∅
and b0 > 0 with γuv

(
]rb0, b0],M0

)
<∞. Then since M0 6= ∅, there

is y0 ∈M0 with γuv
(
]rb0, b0], {y0}

)
<∞.

We claim now that γuv
(
]rb, b], {y0}

)
< ∞ for all b > 0. Indeed,

let c be the number of balls of diameter b required to cover a set in
Xu of diameter b0. Given a bounded set U ⊆ Xu, write k = diam U ,
cover U by c balls Vi of diameter kb/b0. Then

Fuv
(
]rb, b], U, {y0}

)
=
{
T ∈ Fuv

(
]rbk, bk]

)
: T (y0) ∈ U

}
=
⋃
i

{
T ∈ Fuv

(]
rb0

kb

b0
, b0

kb

b0

])
: T (y0) ∈ Vi

}
,
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so #Fuv
(
]rb, b], U, {y0}

)
≤ cγuv

(
]rb0, b0], {y0}

)
. Taking supremum

on U , we conclude

γuv
(
]rb, b], {y0}

)
≤ cγuv

(
]rb0, b0], {y0}

)
.

Now we are ready to prove (4a). Let M ⊆ Xv be bounded, and
let b > 0. We claim there exists b′ > 0 such that

γuv
(
]rb, b],M

)
≤ γuv

(
]rb′, b′], {y0}

)
.

To see this: let k = diam (M ∪ {y0}), and b′ = b/(1 + 2bk). Let
U ⊆ Xu be a bounded set. Define U ′ = B(U, bkdiam U), the open
set of all points within distance less than bkdiam U of the set U .
So diam U ′ = diam U + 2bkdiam U = (1 + 2bk)diam U . We claim
that

Fuv
(
]rb, b], U,M

)
⊆ Fuv

(
]rb′, b′], U ′, {y0}

)
.

Indeed, let T ∈ Fuv
(
]rb, b], U,M

)
. So ρ(T ) ∈]rbdiam U, bdiam U ]

and T (M) ∩ U 6= ∅. So there exists y ∈ M with T (y) ∈ U . Now
|y − y0| ≤ k, and |T (y)− T (y0)| ≤ bkdiam U , so T (y0) ∈ U ′. Also

ρ(T ) ∈
]

rb

1 + 2bk
diam U ′,

b

1 + 2bk
diam U ′

]
.

Thus T ∈ Fuv
(
]rb′, b′], U ′, {y0}

)
, as required. Now we have

#Fuv
(
]rb, b], U,M

)
≤ #Fuv

(
]rb′, b′], U ′, {y0}

)
≤ γuv

(
]rb′, b′], {y0}

)
.

This is true for all U , so

γuv
(
]rb, b],M

)
≤ γuv

(
]rb′, b′], {y0}

)
<∞.

This completes the proof of (4a). �

Lemma 3.2. Assume (Se) is an IFS with uniform affine dimen-
sion. Let u, v ∈ V such that u precedes v. Assume (5b) holds. Then
there exist w, z, l as in (5b), a constant C, and τ ∈ E(∗)

vw such that
v precedes w and for all y ∈ Xu, and all b > 0,

#
{
T ∈ Fuv

(
]br, b]

)
: T (Sτ (z)) = y

}
≤ C.

Proof. For each w preceded by v use (5b) with u, v, w to choose
zw ∈ Xw and lw ∈ N. Let l = maxw lw. Write

A =
{
Sτ (zw) : v precedes w, τ ∈ E(∗)

vw

}
.

We claim that the affine span of A is Xv. Indeed, suppose not.
Then A ⊆ L, where L is a proper affine subspace. But Kv spans
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Xv, so there is x ∈ Kv \ L. There is w1 preceded by v and τ1 ∈
E

(∗)
vw1 so that x ∈ Sτ1(Kw1) and Sτ1(Kw1) ∩ L = ∅. Then if d0 =

max { dist(zw,Kw) : u precedes w }, then there is w2 preceded by
w1 and τ2 ∈ E

(∗)
w1w2 as long as d0ρ(τ1τ2) < dist(Sτ1(Kw1), L). So

Sτ1τ2(zw2) 6∈ L.
Let d be the dimension of Xv, and let x0, · · · , xd ∈ A have affine

span Xv, with xj = Sτj (zwj ). Let t = max { |xj − x0| : 0 ≤ j ≤ d },
let ct be the number of balls of radius 1 required to cover a ball
in Xu of radius t, write m = (d + 1)ctl and C = m(m − 1)(m −
2) · · · (m− d+ 1).

Now let y ∈ Xu and b > 0 be given. The ball B(y, bt) is covered
by ct balls of radius b, so for each j ∈ {0, · · · , d}

#
{
T (xj) : T ∈ Fuv

(
]br, b]

)
, T (xj) ∈ B(y, bt)

}
= #

({
Sστj (z) : σ ∈ E(∗)

uv

(
]rb, b]

)}
∩B(y, bt)

)
≤ ctl.

If T ∈ Fuv
(
]br, b]

)
and T (x0) = y, then |T (xj) − y| = |T (xj) −

T (x0)| ≤ bt for all j. So

#
{
T (xj) : T ∈ Fuv

(
]br, b]

)
, j ∈ {0, · · · , d}, T (x0) = y

}
≤ (d+ 1)ctl = m.

And a similitude is determined by its values on {x0, · · · , xd}, so

#
{
T ∈ Fuv

(
]br, b]

)
: T (x0) = y

}
≤ m(m− 1)(m− 2) · · · (m− d+ 1) = C.

�

Theorem 3.3. Let the IFS (Se) be as in Lemma 3.2. Assume also
that it has uniform affine dimension. Then (1b) =⇒ (2a) and (5b)
=⇒ (4b).

Proof. (1b) =⇒ (2a): Assume (1b). For each w ∈ V , apply (1b):
there exist yw ∈ Xw and εw > 0 so that for all u preceding w and
all R ∈ Fuw(r) either R(yw) = yw or |R(yw)− yw| ≥ εw.

Let v ∈ V be given. Then Xv is the affine span of Kv, so the set{
Sτ (yw) : v precedes w, τ ∈ E(∗)

vw

}
also has Xv as affine span. So there exist w0, w1, · · · , wd preceded
by v and τj ∈ E

(∗)
vwj such that

{
Sτj (ywj ) : 0 ≤ j ≤ d

}
spans Xv.
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Write xj = Sτj (ywj ). Define ε = minj εwjρ(τj). Let u precede v,
let R ∈ Fuv(r), and j ∈ {0, · · · , d}. Then R = T−1 ◦ S with T, S ∈
Fuv
(
]rb, b]

)
for some b. So T ◦ Sτj , S ◦ Sτj ∈ Fuwj

(
]rbρ(τj), bρ(τj)]

)
and (T ◦ Sτj )−1 ◦ (S ◦ Sτj ) ∈ Fuwj (r), so∣∣T−1(S(xj))− xj

∣∣ = ρ(τj)
∣∣(T ◦ Sτj )−1 ◦ (S ◦ Sτj )(ywj )− ywj

∣∣ ≥ ε
if it is not zero.

(5b) =⇒ (4b): Assume (5b). Let u, v ∈ V be given. Apply
Lemma 3.2 to get x0 = Sτ (z) and C > 0, where w, z, l are as in
(5b). Let c be the number of balls of radius 1 required to cover a
set of diameter 2 in Xu. We claim that γuv(]r/2, 1/2], {x0}) ≤ cCl.
Indeed, let U ⊆ Xu be a bounded set. Write b = diam U . Now let
B be a ball in Xu of radius b/2. Write

Q =
{
T (x0) : T ∈ Fuv

(
]rb/2, b/2]

) }
∩B.

Then #Q ≤ l, and

#
{
T ∈ Fuv

(
]rb/2, b/2]

)
: T (x0) ∈ B

}
=
∑
y∈Q

#
{
T ∈ Fuv

(
]rb/2, b/2]

)
: T (x0) = y

}
≤ Cl.

Then since U can be covered by at most c balls of radius b/2,

#Fuv
(
]r/2, 1/2], U, {x0}

)
≤ cCl.

This is true for all U , so γuv(]r/2, 1/2], {x0}) ≤ cCl. �

4. Examples

We collect here some examples of iterated function systems (Se)
to illustrate the alternate definitions for WSP. There is a lot of
repetition in the descriptions, but we have kept it that way so that
the examples can be read independently.

4.1. Example. Why we need span Ku to be Xu.
For this example, let the graph have one node V = {2}, and

two edges E = {d, e}. Let X2 = R, let α, β ∈]0, 1[ (to be specified
later), and define the maps as:

Sd(x) = αx, Se(x) = βx.

So in this case we have K2 = {0} with affine span not equal to
X2 = R.
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Now for σ ∈ E(n)
22 we get

Sσ(x) = αkβn−kx

for some k with 0 ≤ k ≤ n. And for R ∈ F22 we get

R(x) = αnβmx

for any n,m ∈ N. Now of course (1b) is satisfied in this case, for if
we let x0 = 0, then R(x0) = x0 for all R.

Now assume logα and log β are not commensurable. This means
that n,m can be chosen so that αnβm is not 1 but as close to 1 as we
like. So (2a) fails: for any x1 6= 0, any r ∈]0, 1[, and any ε > 0, we
can choose n,m so that αnβm ∈]r, r−1[ and |R(x1)−x1| < ε. Thus,
in the proof that (1b) =⇒ (2a), we really do need the assumption
that the affine span of Ku is Xu. Of course we can repair this case
by declaring X1 = {0}.

4.2. Example. Why we need uniform affine dimension.
Now consider a larger graph, in which we have the same node 2

as the previous example where K2 has affine dimension 0, but also
another node 1. Let the graph be as shown, Sd, Se as before, and

Sa(x) = αx, Sb(x) = α(x+ 1), Sc(x) = αx.

If α < 1/2, then the attractor K1 is a Cantor set (together
with countably many images of the point K2, which are contained
in that Cantor set). So K1 has affine dimension 1. We assume
0 < β < α < 1/2 and logα/ log β is irrational. We claim that (1b)
holds but not (2a). The reason that (2a) fails is the same as the
previous example. To see (1b), we must do some computations.

As before, maps S ∈ F22 have the form

S(x) = αkβlx.

Maps S ∈ F11 have the form

S(x) = αnx+
n∑
i=1

θiα
i,

where θi ∈ {0, 1}. Any choice θi of digits 0, 1 can be realized by
choosing the appropriate string of a, b. And the attractor K1 is{ ∞∑

i=1

θiα
i : θi ∈ {0, 1}

}
.
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Figure 4.2A. The graph and the IFS

Maps S ∈ F12 have the form

S(x) = αn+k+1βlx+
n∑
i=1

θiα
i+1, θi ∈ {0, 1}.

We can always assume k = 0 by increasing n and adding extra
digits θi = 0. Now R ∈ F12 has the form R = S′−1 ◦ S, where

S(x) = αn+1βlx+
n∑
i=1

θiα
i+1, S′(x) = αn

′+1βl
′
x+

n′∑
i=1

θ′iα
i+1,

θi, θ
′
i ∈ {0, 1}, so that

R(x) = αn−n
′
βl−l

′
x+

n∑
i=1

θiα
i+1−n′

β−l
′ −

n′∑
i=1

θ′iα
i+1−n′

β−l
′
.

Now fix r ∈]0, β]. If R ∈ F12(r), then αn−n
′
βl−l

′
> r, so α−n

′
β−l

′
>

rα−nβ−l.

Proposition 4.2.1. The IFS defined above satisfies (1b).

Proof. We will verify (1b) for node 2. (The argument for node 1
is similar but easier, since no β is involved.) Let x0 = 0 ∈ K2

and ε = rα(1 − 2α)/(1 − α). Let R ∈ F12(r), as computed above.
Assume R(0) 6= 0. We claim that |R(0)| ≥ ε. Now

R(0) =
n∑
i=1

θiα
i+1−n′

β−l
′ −

n′∑
i=1

θ′iα
i+1−n′

β−l
′
.

Since R(0) 6= 0, there exist i so that θi 6= θ′i [where by convention
nonexistent θs are 0]. Let i0 be the least such i. Then

|R(0)| > αi0+1−n′
β−l

′

1−
∞∑
j=1

αj

 = αi0+1−n′
β−l

′ 1− 2α
1− α

.
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If i0 < n′, then i0 + 1− n′ ≤ 0 so αi0+1−n′ ≥ 1; also β−l
′ ≥ 1, so

|R(0)| > 1− 2α
1− α

> ε.

On the other hand, if i0 ≥ n′, then i0 ≤ n and αi0+1−n′
β−l

′ ≥
rαi0+1−nβ−l, αi0+1−n ≥ α, β−l ≥ 1, and

|R(0)| > rα(1− 2α)
1− α

= ε.

This completes the proof of (1b). �

Again this time we can try to get out of the difficulty by declaring
X2 = {0}. But then we do not know how to define F12 and related
constructions. We must have X1 = R since the Cantor set K1 is
not a single point. If we allow dimX2 = 0 6= 1 = dimX1, what
should we do? In order to define maps like R = S−1

τ ◦ Sσ, we need
Sc to have an inverse S−1

c of some kind. And whatever that inverse
is, if Sb(0) 6= 0, then we need S−1

c (Sb(0)) 6= S−1
c (0). Our solution

in this paper is to require all similitudes be defined on Rd, and then
maps R = S−1

τ ◦ Sσ exist and have range in Rd, but need not map
Xu into itself. Even in classical cases like the middle-thirds Cantor
set in R, maps S−1

τ ◦ Sσ do not map the attractor Ku into itself.

4.3. Example. An example with a graph that is not strongly con-
nected. We will compute some of the conditions related to the
WSP.

Let α, β ∈]0, 1/2[ and γ > 0. The case α = β = 1/3 is interesting,
but for this example we will want α 6= β, and in fact logα, log β
incommensurable. The graph G = (V,E) is shown; V = {1, 2},
E = {a, b, c, d, e}. The two components in the graph are {1} and
{2}.

Figure 4.3A. The graph and the IFS
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The IFS (Se) is defined with: X1 = X2 = R,

Sa(x) = αx,

Sb(x) = αx+ γ,

Sc(x) = αx,

Sd(x) = βx,

Se(x) = βx+ (1− β).

So E
(∗)
11 =

{
Sσ : σ ∈ {a, b}(∗)

}
corresponds to a Cantor set C1

of dimension D1 = log 2/ log(1/α). Component {1} by itself it
satisfies OSC and the identity is isolated in F11. Similarly, E(∗)

22 ={
Sσ : σ ∈ {d, e}(∗)

}
corresponds to a Cantor set C2 of dimension

D2 = log 2/ log(1/β). Component {2} by itself it satisfies OSC and
the identity is isolated in F22.

Proposition 4.3.1. Let logα, log β be incommensurable. Then the
identity is not isolated in F12.

Proof. Consider T = Sτ , S = Sσ ∈ F12 defined by τ = cdn, σ =
amc. Then T−1 ◦ S(x) = β−nαmx. Choose sequences nk,mk ↗∞
with mk logα−nk log β → 0. Then β−nkαmkx→ x. So the identity
is not isolated. �

Next we investigate γuv(]a, b],M). Of course, by the result for the
one-node case, we have γ11(]a, b],M) < ∞ and γ22(]a, b],M) < ∞
for all nonempty M . And of course γ21(]a, b],M) = 0. For γ12 we
need a lemma.

Lemma 4.3.2. Let A,B > 0, A/B irrational. Then

lim sup
k→∞

# { (n,m) ∈ N× N : k − 1 < nA+mB < k } =∞.

Proof. For k ∈ N write

Sk = { (n,m) ∈ N× N : k − 1 < nA+mB < k } .
Since A/B is irrational, each line

Lk = { (x, y) ∈ R× R : xA+ yB = k }
can have at most one lattice point on it. The rectangle{

(x, y) : 0 < x <
k

A
, 0 < y <

k

B

}
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contains at least (
k

A
− 2
)(

k

B
− 2
)

lattice points and is covered by the closures of 2k strips S1, · · · , S2k.
At most 2k + 1 of the lattice lattice points lie on the lines Lk, so
there is at least one (open) strip with at least(

k
A − 2

) (
k
B − 2

)
− (2k + 1)

2k
lattice points in it. This goes to ∞. �

Proposition 4.3.3. Assume logα, log β are incommensurable and
0 < a < b. Then γ12(]a, b], {0}) =∞.

Proof. Write

q = b

(
1
β
− 1
)
, p = q − 1, a′ = max

{
a,

p
1
β − 1

}
.

So 0 < a′ < b, a ≤ a′, p ≤ a′( 1
β − 1), 0 < a′/b < 1. The two

numbers

A =
log 1

α

log b
a′
> 0 and B =

log 1
β

log b
a′
> 0

are incommensurable. Given C > 0, there exists k ∈ N so that

#

{
(m,n) : k − 1 < (m+ 1)

log 1
α

log b
a′

+ (n+ 1)
log 1

β

log b
a′
< k

}
> C.

So for all (m,n) in the set,

(k − 1) log
b

a′
≤ (m+ 1) log 1

α + (n+ 1) log 1
β ≤ k log

b

a′
,

bk−1

a′k−1
< 1

αm+1βn+1 <
bk

a′k
,

a′k−1

bk−1
> αm+1βn+1 >

a′k

bk
,

bε > αm+1βn+1 > a′ε,

where ε = a′k−1/bk goes to 0 as k →∞.
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So let τ = amcdne, T = Sτ , M = {0}, U =]pε, qε[; so diam U =
ε, ρ(T ) = αm+1βn+1, T ∈ F12(]adiam U, bdiam U ]),

T (0) = αm+1βn(1− β) = αm+1βn+1

(
1
β
− 1
)
,

so T (0) < bε( 1
β − 1) = qε, T (0) > a′ε( 1

β − 1) ≥ pε. So T (0) ∈ U .
Different (m,n) yield different T . So #F12(]a, b], U, {0}) > C, and
therefore γ12(]a, b], {0}) =∞. �

Proposition 4.3.4. Assume logα, log β are incommensurable and
0 < a < b and M 6= ∅. Then γ12(]a, b],M) =∞.

Proof. Let y ∈ M . If y = 0, use the preceding. We do the case
y > 0 here. The case y < 0 is similar.

Let p = by, q = p − 1, a′ = max
{
a, q/y

}
. Choose (m,n) as

before, so a′ε < αm+1βn+1 < bε where ε = a′k−1/bk goes to 0 as
k → ∞. Let U =]qε, pε[, diam U = ε, let τ = amcdn+1, T = Sτ .
Then ρ(T ) = αm+1βn+1,

T (y) = αm+1βn+1y < bεy = pε,

T (y) = αm+1βn+1y > a′εy ≥ q

y
εy = qε,

so T (y) ∈ U for all these T . Therefore #F12(]a, b], U,M) > C so
γ12([a, b],M) =∞. �

What of the attractors (invariant sets) for this IFS? The dimen-
sion is the maximum of D1 and D2. If α < β, then the dimension
is D2 = log 2/ log(1/β). And K2 is a Cantor set of that dimension,

0 < HD2(K2) <∞.
But K1 is a Cantor set C1 of dimension D1 < D2 plus countably
many images of K2. In fact, there are 2n images of size αn+1 for
n = 0, 1, · · · . Then

HD2(K1) ≤ HD2(C1) +
∞∑
n=0

2n
(
αD2

)n+1HD2(K2).

The first term is 0, and since αD1 = 2, βD2 = 2, we have 1/2 =
βD2 > αD2 , so 2αD2 < 1 and the series is a convergent geometric
series. Therefore

0 < HD2(K1) <∞.
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What about the case α > β, so the dimension is D1? Again K2

is a Cantor set of dimension D2 < D1, so HD1(K2) = 0. And K1

is a Cantor set C1 of dimension D1 plus countably many images of
K2.

HD1(K1) ≤ HD1(C1) +
∞∑
n=0

2n
(
αD2

)n+1HD1(K2).

Now all the terms in the series are zero, so we get just HD1(C1),
which is positive and finite.

Finally consider the case α = β. So D1 = D2. Now K2 is a
Cantor set of that dimension, 0 < HD1(K2) <∞. And K1 consists
of a Cantor set C1 of dimension D1 plus countably many images of
K2. So, unless there is serious overlap of the images, we get

HD1(K1) = HD1(C1) +
∞∑
n=0

2n
(
αD1

)n+1HD1(K2)

= HD1(C1) +HD1(K2)

[ ∞∑
n=0

1
2

]
=∞

since αD1 = 1/2. Presumably for most γ there is negligible overlap
in this final computation, so HD1(K1) =∞. So in this case the at-
tractor has infinite but sigma-finite measure in its fractal dimension
D1. The relevant feature of the graph G = (V,E) is that the max-
imum dimension occurs in two comparable components. This type
of dimension computation was described by Mauldin & Williams
[9].

4.4. Example. An example where (4b) holds but (3a) fails.
The graph G = (V,E) is shown; V = {1, 2}, E = {a, b, c, d, e}.

The two components in the graph are {1} and {2}.
A number β = 0.012 · · · will be specified below. The IFS (Se) is

defined with: X1 = X2 = R,

Sa(x) = 10−1x,

Sb(x) = 10−1x+ 10−1,

Sc(x) = x+ β,

Sd(x) = 10−1x,

Se(x) = 10−1x+ 10−1.

(The figure has ratio 5−1 instead of 10−1.)
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Figure 4.4A The graph and the IFS

So E(∗)
11 =

{
Sσ : σ ∈ {a, b}(∗)

}
corresponds to a Cantor set C1

of dimension D1 = log(2)/ log(10). Component {1} by itself it
satisfies OSC and the identity is isolated in F11. Similarly, E(∗)

22 ={
Sσ : σ ∈ {d, e}(∗)

}
corresponds to a Cantor set C2 of dimension

D2 = log(2)/ log(10). Component {2} by itself it satisfies OSC and
the identity is isolated in F22.

The number β is defined by a decimal expansion:

β = 0.012321010010001000010000010000001 · · ·
all remaining digits are 0 and 1; there are longer and longer blocks
of consecutive 0’s separated by single 1’s.

Theorem 4.4.1. The identity is not isolated in F12.

γ12

(
]10−1, 1], {0}

)
<∞.

Let’s do a few computations. If σ ∈ E(n)
11 , then σ is a string of

length n made up of the letters a, b. By induction on n,

Sσ(x) = 10−nx+
n∑
i=1

εi10−i,

with all digits εi ∈ {0, 1}. In fact, every sequence of 0’s and 1’s
occurs for a corresponding string of a’s and b’s.

The description of E(n)
22 is the same, except that the strings are

made up of d’s and e’s.
For σ ∈ E(n+1)

12 , say σ consists of a string of a’s and b’s of length
k, followed by the letter c, followed by a string of d’s and e’s of
length n− k. Then

Sσ(x) = 10−nx+
n∑
i=1

εi10−i + 10−kβ, where all digits εi ∈ {0, 1}.
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Here 0 ≤ k ≤ n, and every sequence εi of 0’s and 1’s is possible.
Taking into account the decimal expansion of β, we conclude that
the constant term

Sσ(0) =
n∑
i=1

εi10−i + 10−kβ

has a decimal expansion using only digits 0, · · · , 4.

Lemma 4.4.2. Let

x =
∞∑
i=N

ai10−i, with all digits ai ∈ {−8,−7, · · · , 7, 8}.

Then x = 0 only if all ai = 0. More precisely, if n is the first index
with an 6= 0, then |x| > 10−n−1.

Proof. Either an > 0 or an < 0. Without loss of generality, say
an > 0. Then ai = 0 for all i < n, an ≥ 1, and ai ≥ −8 for all
i > n. Therefore

x ≥ 10n +
∞∑

i=n+1

(−8)10−i = 10−n
(

1− 8
9

)
> 10−n−1.

�

Lemma 4.4.3. Let

x =
∞∑
i=N

ai10−i, x′ =
∞∑

i=N ′

a′i10−i,

with all digits ai, a′i ∈ {−4, · · · , 4}. If x = x′, then ai = a′i for
all i. More precisely, if n is the first index with an 6= a′n, then
|x− x′| > 10−n−1.

Proof. Subtract x − x′ to get a decimal of the form in Lemma
4.4.2. �

Proposition 4.4.4. The identity is not isolated in F12.

Proof. For n ∈ N, n ≥ 5, let S, T ∈ F12 be

S(x) = 10−nx+
n∑
i=1

εi10−i + 10−1β,

T (x) = 10−nx+
n∑
i=1

ε′i10−i + 100β,
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T−1(S(x)) = x+
n∑
i=1

(εi − ε′i)10n−i + 10n−1β − 10nβ.

When we do the subtraction 10n−1β − 10nβ (without borrowing)
we get a decimal with digits in {−1, 0, 1}, so we can choose εi, ε′i
to cancel all of the digits to the left of the decimal point. If n is
chosen so that a string of k zeros begins in β in place 10−n−1, we
will have the constant term

n∑
i=1

(εi − ε′i)10−i + 10n−1β − 10nβ

with all 0’s to the left of the decimal, a string of 0’s of length k− 1
to the right of the decimal, followed by other digits in {−1, 0, 1}.
So the constant term has absolute value < 10−k+2. We can do this
for k as large as we like, so we can arrange |T−1(S(x))−x| as small
as we like. �

Proposition 4.4.5. γ12

(
]10−1, 1], {0}

)
≤ 2 · 104.

Proof. Let U be an interval in R. There is a unique n with 10−n ≤
diam U < 10−n+1, so that 10−n ∈]10−1diam U,diam U ]. But the
only ratios in the IFS are powers of 10−1, so all

S ∈ F12

(
]10−1diam U,diam U ]

)
must have the same ratio 10−n. I claim that if V is any interval of
length 10−n−3, then

#
{
S ∈ F12

(
]10−1diam U,diam U ]

)
: S(0) ∈ V

}
≤ 2.

To see this, recall that such S has the form

S(x) = 10−nx+
n∑
i=1

εi10−i + 10−kβ.

By Lemma 2, different maps S have different constant terms S(0).
Indeed, given S(0), we may determine k by looking at the digits to
the right of the decimal, and then subtract 10−kβ to determine the
εi. How could two different S(0)’s be in V ? Suppose

S(0) =
n∑
i=1

εi10−i + 10−kβ, S′(0) =
n∑
i=1

ε′i10−i + 10−k
′
β,



24 MANAV DAS AND G A EDGAR

where S 6= S′ and |S(0) − S′(0)| < 10−n−3. First, if k = k′, then
we have εi 6= ε′i for some i, so that by Lemma 2, |S(0) − S′(0)| >
10−n−1, which is too large. Next, if k ≤ k′ − 2, then 10−kβ has a
digit 3 in a place where 10−k

′
β has digit ≤ 1 and also |εi − ε′i| ≤ 1,

so S(0) − S′(0) has nonzero digit in that place, no further to the
right than the 10−n+2−4 place, so |S(0) − S′(0)| > 10−n−3, again
too large. Finally, if k = k′−1, then 10−kβ−10−k

′
β has only digits

−1, 0, 1; if εi are all given, then ε′i are uniquely determined by the
condition that all digits of S(0)−S′(0) up to place 10−n must be 0.
Therefore: if three different maps S ∈ F12

(
]10−1diam U,diam U ]

)
all have S(0) ∈ V , then the three corresponding values of k must
be pairwise consecutive, which is impossible.

The set U has length < 10−n+1, so it can be covered by at
most 104 invervals V of length 10−n−3 and each of these intervals
V can contain at most two S(0). So in all there are at most 2 · 104

different S ∈ F12

(
]10−1diam U,diam U ]

)
with S(0) ∈ U . This

means: γ12

(
]10−1, 1], {0}

)
≤ 2 · 104. �

4.5. Example. This is an example where (2b) holds but (2a) fails.
We begin with a general description of the IFS. The details will

be filled in below. The directed multigraph G is (V,E). There is a
“contraction factor” α ∈]0, 1[. There are two digit-sets (finite sets
of real numbers) A and D. There are two numbers β, γ ∈ [0, 1].

Figure 4.5A. The graph and the IFS

The vertex set is V = {1, 2}. For edges, we will have #E11 = #A,
#E22 = #D, #E12 = 2, and #E21 = 0. All ratios in E11 and
E22 are α, and all ratios in E12 are 1. The IFS (Se) will have
X1 = X2 = R and: maps Se for e ∈ E11 are the maps

α(x+ ε), ε ∈ A;



WEAK SEPARATION IN SELF-SIMILAR FRACTALS 25

maps Se for e ∈ E22 are the maps

α(x+ θ), θ ∈ D;

maps Se for e ∈ E12 are the maps

Sb(x) = x+ β, Sc(x) = −x+ γ.

In this IFS, component {1} alone has an attractor consisting of
all points with expansion in base α using digit set A. It could be
either an interval or a Cantor set, depending on the choice of digits.
In our example, it will be a Cantor set. For σ ∈ E(n)

11 compute

Sσ(x) = αnx+
n∑
i=1

εi α
i,

where the digits εi ∈ A. Any choice of εi may be obtained by using
the proper choice of σ.

Similarly, for σ ∈ E(n)
22 ,

Sσ(x) = αnx+
n∑
i=1

θi α
i,

where θi ∈ D.
Of course E(∗)

21 = ∅. Elements of E(∗)
12 are of two types, depending

on whether the string contains letter b or letter c. In the first case,
an element σ ∈ E(n+1)

12 consists of a string in E
(k)
11 , then b, then a

string in E
(n−k)
22 . Here, 0 ≤ k ≤ n. The result is a map

S(x) = αnx+
k∑
i=1

εiα
i +

n∑
i=k+1

θiα
i + αkβ, εi ∈ A, θi ∈ D.

Similarly, when the letter c appears, the result is a map

T (x) = −αnx+
k∑
i=1

εiα
i −

n∑
i=k+1

θiα
i + αkγ, εi ∈ A, θi ∈ D.

Now let r = ρmin = α. Since all ratios ρ(R) for maps R ∈ Fuv
are integer powers of α, the interval ]r−1, r[ contains no such ratio
except 1. Therefore all R ∈ Fuv(r) have ρ(R) = 1.
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Next we compute the sets Fuv(r) as follows. Let R ∈ F11(r);
then R = S−1

σ′ ◦ Sσ, where for some n,

Sσ(x) = αnx+
n∑
i=1

εi α
i, Sσ′(x) = αnx+

n∑
i=1

ε′i α
i.

Thus

R(x) = x+
n∑
i=1

(εi − ε′i)αi−n, εi, ε
′
i ∈ A.

Similarly, R ∈ F22(r) is of the form

R(x) = x+
n∑
i=1

(θi − θ′i)αi−n, θi, θ
′
i ∈ D.

For R ∈ F12(r) there are four cases. Case 1 is R = S′−1 ◦ S where
for some n and some k, k′ ∈ {0, · · · , n}

S(x) = αnx+
k∑
i=1

εiα
i +

n∑
i=k+1

θiα
i + αkβ, εi ∈ A, θi ∈ D;

S′(x) = αnx+
k′∑
i=1

ε′iα
i +

n∑
i=k′+1

θ′iα
i + αk

′
β, ε′i ∈ A, θ′i ∈ D;

so

R(x) = x+
k∑
i=1

εiα
i−n −

k′∑
i=1

ε′iα
i−n +

n∑
j=k+1

θiα
i−n

−
n∑

i=k′+1

θ′iα
i−n + αk−nβ − αk′−nβ.

Case 2 is R = T ′−1 ◦ T where

T (x) = −αnx+
k∑
i=1

εiα
i −

n∑
i=k+1

θiα
i + αkγ, εi ∈ A, θi ∈ D.

T ′(x) = −αnx+
k′∑
i=1

ε′iα
i −

n∑
i=k′+1

θ′iα
i + αk

′
γ, ε′i ∈ A, θ′i ∈ D.
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so

R(x) = x−
k∑
i=1

εiα
i−n +

k′∑
i=1

ε′iα
i−n +

n∑
j=k+1

θiα
i−n

−
n∑

i=k′+1

θ′iα
i−n + αk−nγ − αk′−nγ.

Case 3 is R = T ′−1 ◦ S where

S(x) = αnx+
k∑
i=1

εiα
i +

n∑
i=k+1

θiα
i + αkβ, εi ∈ A, θi ∈ D;

T ′(x) = −αnx+
k′∑
i=1

ε′iα
i −

n∑
i=k′+1

θ′iα
i + αk

′
γ, ε′i ∈ A, θ′i ∈ D.

so

R(x) = −x−
k∑
i=1

εiα
i−n +

k′∑
i=1

ε′iα
i−n −

n∑
j=k+1

θiα
i−n

−
n∑

i=k′+1

θ′iα
i−n − αk−nβ + αk

′−nγ.

Case 4 is R = S′−1 ◦ T where

T (x) = −αnx+
k∑
i=1

εiα
i −

n∑
i=k+1

θiα
i + αkγ, εi ∈ A, θi ∈ D.

S′(x) = αnx+
k′∑
i=1

ε′iα
i +

n∑
i=k′+1

θ′iα
i + αk

′
β, ε′i ∈ A, θ′i ∈ D;

so

R(x) = −x+
k∑
i=1

εiα
i−n −

k′∑
i=1

ε′iα
i−n −

n∑
j=k+1

θiα
i−n

−
n∑

i=k′+1

θ′iα
i−n + αk−nγ − αk′−nβ.

Now we specialize the choices. Let α = 1/9, A = {−1, 0}, D =
{0, 1, 2, 3, 4}. Let q ∈]4/9, 1/2[ be “normal” base 9 in the sense that
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the expansion in base 9 contains all finite strings from the alphabet
{0, · · · , 8} (with the appropriate frequency). Let β ∈ [2/9, 3/9[ and
γ ∈ [6/9, 7/9[ be such that γ−β = q. (In fact, β = 2/9, γ = q+2/9
will do.)

Proposition 4.5.1. For the IFS defined above, components {1}
and {2} both satisfy WSP.

Proof. Component {2} satisfies the open set condition using open
set ]0, 1[. Component {1} satisfies the open set conditions using
open set ]−1, 0[. And OSC implies WSP.

Alternatively, we may consider the maps in F22(r) as computed
before:

x+
n∑
i=1

(θi − θ′i)9n−i, θi, θ
′
i ∈ D.

These have the form x+ b where b is an integer. So the identity is
isolated in F22(r). Component {1} is done in the same way. �

Proposition 4.5.2. The IFS defined above satisfies (2b).

Proof. We know (2b), (3a), (3b) are equivalent. By Proposition
4.5.1, the identity is isolated in F11 and in F22. So we must show
that the identity is isolated in F12. Let R ∈ F12. Then R has
the form ax + b. Because all ratios a are powers of α = 1/9, it
follows that if R is close enough to the identity, then a = 1. Write
ε0 = 1/24. We will show that if R(x) = x+ b is in F12 and |b| < ε0,
then b = 0. That will show that the identity is isolated.

So assume R ∈ F12 is of the form R(x) = x + b with |b| < ε0.
There are two possibilities for b. Case 1:

b =
k∑
i=1

εi9n−i −
k′∑
i=1

ε′i9
n−i +

n∑
i=k+1

θi9n−i

−
n∑

i=k′+1

θ′i9
n−i + 9n−kβ − 9n−k

′
β.

First we claim that k = k′. Indeed, suppose k < k′. (The case
k > k′ is similar.) Now the sum

∑k
i=1(εi− ε′i)9n−i is 9n−k times an
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integer K. If K ≥ 0, then

−
k′∑

i=k+1

ε′i9
n−i ≥ 0,

+
n∑

i=k+1

θi9n−i ≥ 0,

−
n∑

i=k′+1

θ′i9
n−i ≥ 9n−k

′

−4
∞∑
j=1

9−j

 = −9n−k
′ 1

2

≥ −9n−k
1
18
,

+(9n−k − 9n−k
′
)β ≥ 9n−k

(
1− 1

9

)
2
9
≥ 9n−k

16
81
.

Therefore

b ≥ 9n−k
(
− 1

18
+

16
81

)
= 9n−k

23
162
≥ ε0.

On the other hand, if K < 0, then K ≤ −1 and

−
k′∑

i=k+1

ε′i9
n−i ≤ 9n−k

 ∞∑
j=1

9−j

 = 9n−k
1
8
,

+
n∑

i=k+1

θi9n−i ≤ 9n−k

4
∞∑
j=1

9−j

 = 9n−k
1
2
,

−
n∑

i=k′+1

θ′i9
n−i ≤ 0,

+(9n−k − 9n−k
′
)β ≤ 9n−k(1− 0)

3
9

= 9n−k
1
3
.

Therefore

b ≤ 9n−k
(
−1 +

1
8

+
1
2

+
1
3

)
= −9n−k

1
24
≤ − 1

24
≤ −ε0.

So we must have k = k′. Then

b =
k∑
i=1

(εi − ε′i)9n−i +
n∑

i=k+1

(θi − θ′i)9n−i.
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This is an integer with |b| < 1 so b = 0 as claimed.
Case 2:

b = −
k∑
i=1

εi9n−i +
k′∑
i=1

ε′i9
n−i +

n∑
i=k+1

θi9n−i

−
n∑

i=k′+1

θ′i9
n−i − 9n−kγ + 9n−k

′
γ.

First we claim that k = k′. Indeed, suppose k < k′. (The case
k > k′ is similar.) Now the sum

∑k
i=1(εi− ε′i)9n−i is 9n−k times an

integer K. If K > 0, then K ≥ 1 and

+
k′∑

i=k+1

ε′i9
n−i > 9n−k

− ∞∑
j=1

 = −9n−k
1
8
,

+
n∑

i=k+1

θi9n−i ≥ 0,

−
n∑

i=k′+1

θ′i9
n−i ≥ 9n−k

′

−4
∞∑
j=1

9−j

 = −9n−k
′ 1

2
≥ −9n−k

1
18
,

(−9n−k + 9n−k
′
)γ ≥ 9n−k(−1 + 0)

7
9

= 9n−k
7
9
.

Therefore

b ≥ 9n−k
(

1− 1
8
− 1

18
− 7

9

)
= 9n−k

1
24
≥ 1

24
≥ ε0.

On the other hand, if K ≤ 0, then

+
k′∑

i=k+1

ε′i9
n−i ≤ 0,

+
n∑

i=k+1

θi9n−i ≤ 9n−k

4
∞∑
j=1

9−j

 = 9n−k
1
2
,

−
n∑

i=k′+1

θ′i9
n−i ≤ 0,
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(−9n−k + 9n−k
′
)γ ≤ 9n−k

(
−1 +

1
9

)
2
3

= −9n−k
16
27
.

Therefore

b ≤ 9n−k
(

1
2
− 16

27

)
= 9n−k

5
54
≤ − 5

54
≤ −ε0

So we must have k = k′. Then

b =
k∑
i=1

(ε′i − εi)9n−i +
n∑

i=k+1

(θi − θ′i)9n−i.

This is an integer with |b| < 1 so b = 0 as claimed. �

Proposition 4.5.3. For the IFS defined above, (2a) fails.

Proof. Let x0 ∈ X2 = R and let ε > 0. We claim that there is
R ∈ F12(r) such that R(x0) 6= x0 but |R(x0) − x0| < ε. Consider
R = S′−1 ◦ T where for some n (and k = k′ = 0)

R(x) = −x−
n∑
i=1

(θi + θ′i)9
n−i + 9n(γ − β).

We claim that n, θi, θ′i may be chosen so that R(x) = −x + b with
0 < 2x0− b < ε. Note that θi+ θ′i can have any value in {0, · · · , 8},
so that

∑n
i=1(θi+θ′i)9

n−i can have any integer value from 0 to 9n−1.
Also, 9n(γ − β) = 9nq is between (4/9)9n and (1/2)9n. Choose n
so that (4/9)9n > |2x0| and the fractional part of 2x0 − 9nq lies in
]0, ε[. This is possible since the base 9 expansion of q is normal.
Then choose θi, θ′i so that −

∑n
i=1(θi+θ′i)9

n−i is the greatest integer
≤ 2x0 − 9nq. Then b = −

∑n
i=1(θi + θ′i)9

n−i + 9nq satisfies 0 <
2x0 − b < ε. So R(x0) − x0 = −x0 + b − x0 = b − 2x0. Thus we
have R(x0) 6= x0 and |R(x0)− x0| < ε as required. �

4.6. Example. This is an example where (1b) holds but (1a) fails.
Such a counterexample is impossible in one dimension, so we do it
in the plane, which we identify with the set C of complex numbers.
However, we have not kept the condition of uniform affine dimen-
sion. [In this case the problem is with K2 = {0}.] We haven’t
found a way to adapt this example, yet still keep uniform affine
dimension.

The parameters in this case are as follows. A complex number α
in polar coordinates α = se2πiφ; we will use s = 1/10 and φ ∈]0, 1/2[
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irrational. So if ω = e2πiφ, then
{
ωk : k ∈ N

}
is dense in the unit

circle { z ∈ C : |z| = 1 }. [In the preceding, we have used “i” for√
−1, but from now on “i” is merely an index.] Two digit-sets

A = {0, 1}, D = {0, 2}.
The vertex set is V = {1, 2, 3, 4}. For edges, we will have #E13 =

1, #E32 = 1, #E14 = 1, #E42 = 1, #E33 = 2, #E44 = 2, #E22 =
1, and all others empty. All ratios are s = |α|. The IFS (Se)
will have X1 = X2 = X3 = X4 = C and: the maps (Se) for
e ∈ E33 are the maps α(x+ θ), where θ ∈ {0, 2}; the maps (Se) for
e ∈ E44 are the maps α(x+ ε), where ε ∈ {0, 1}; the maps (Se) for
e ∈ E13 ∪ E32 ∪ E42 ∪ E22 are all equal to the map αx; the map
(Se) for e ∈ E14 is the map αx. The overline x denotes the complex
conjugate of x.

Figures illustrating this example were given in the Introduction,
above. The figures use ratio 2/3 rather than 1/9 and φ = 0.4.

In this IFS, component {3} alone has an attractor consisting of
all points with expansion in base α using digit-set {0, 2}. It is a
Cantor set. For σ ∈ E(n)

33 compute

Sσ(x) = αnx+
n∑
i=1

θi α
i,

where the digits θi ∈ {0, 2}. Any choices of θi from the digit-set
{0, 2} can be obtained by using the proper choice of σ.

Similarly, for σ ∈ E(n)
44 ,

Sσ(x) = αnx+
n∑
i=1

εi α
i,

where εi ∈ {0, 1}.
Of course, for σ ∈ E(n)

22 there is only Sσ(x) = αnx. The attractor
for component {2} is the single point 0.

Elements of E(∗)
12 are of two types, depending on whether the

string passes through node 3 or node 4. In the first case, an element
σ ∈ E(n+2)

12 consists of the edge from 1 to 3 followed by a string in
E

(n−k)
33 , then the edge from 3 to 2, then a string in E

(k)
22 . Here
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0 ≤ k ≤ n. The result is a map

S(x) = αn+2x+
n−k∑
i=1

θiα
i+1, θi ∈ {0, 2}.

This may be written as

S(x) = αn+2x+
n∑
i=1

θiα
i+1, θi ∈ {0, 2},

where the sum goes all the way to n, with the proviso that, when
k > 0, then some of the θi are required to be 0. But by taking
k = 0 we may realize any sequence of θi ∈ {0, 2}. Similarly, when
the path passes through node 4, the result is a map

T (x) = ααn+1x+
n∑
i=1

εiαα
i, εi ∈ {0, 1}.

Again, we may realize any sequence of εi ∈ {0, 1}.
Now let r = ρmin = s. Since all ratios ρ(R) for maps R ∈ Fuv

are integer powers of s, the interval ]r−1, r[ contains no such ratio
except 1. Therefore all R ∈ Fuv(r) have ρ(R) = 1.

Next we compute the sets Fuv(r) as follows. Let R ∈ F12(r);
then there are four cases. Case 1 is R = S′−1 ◦ S where

S(x) = αn+2x+
n∑
i=1

θiα
i+1, S′(x) = αn+2x+

n∑
i=1

θ′iα
i+1,

so

R(x) = x+
n∑
i=1

θiα
i−1−n −

n∑
i=1

θ′iα
i−1−n.

Case 2 is R = T ′−1 ◦ T where

T (x) = ααn+1x+
n∑
i=1

εiαα
i, T ′(x) = ααn+1x+

n∑
i=1

ε′iαα
i,

so

R(x) = x+
n∑
i=1

εiα
i−1−n −

n∑
i=1

ε′iα
i−1−n.

Case 3 is R = T ′−1 ◦ S where

S(x) = αn+2x+
n∑
i=1

θiα
i+1, T ′(x) = ααn+1x+

n∑
i=1

ε′iαα
i,
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so

R(x) = α−n−1αn+1x+
n∑
i=1

θiα
−n−1αi −

n∑
i=1

ε′iα
i−n−1.

Case 4 is R = S′−1 ◦ T where

T (x) = ααn+1x+
n∑
i=1

εiαα
i, S′(x) = αn+2x+

n∑
i=1

θ′iα
i+1,

so

R(x) = α−n−1αn+1x+
n∑
i=1

εiα
−n−1αi −

n∑
i=1

θ′iα
i−n−1.

If we write α = sω as above, these four cases become:

S′
−1(

S(x)
)

= x+
n∑
i=1

si−1−n(ωi−1−nθi − ωi−1−nθ′i
)
,

T ′
−1(

T (x)
)

= x+
n∑
i=1

si−1−n(ωi−1−nεi − ωi−1−nε′i
)
,

T ′
−1(

S(x)
)

= ω−2n−2x+
n∑
i=1

si−1−n(ω−i−1−nθi − ωi−1−nε′i
)
,

S′
−1(

T (x)
)

= ω−2n−2x+
n∑
i=1

si−1−n(ω−i−1−nεi − ωi−1−nθ′i
)
.

Proposition 4.6.1. The IFS defined above satisfies (1b).

Proof. Let x0 = 0, ε0 = 1. We will show that if R ∈ F12(r), then
either R(0) = 0 or |R(0)| ≥ ε0. There are different cases depending
on the cases for the map R defined above.

Let R ∈ F12(r) fall in Case 1:

R(0) =
n∑
i=1

10n+1−i(ωi−1−nθi − ωi−1−nθ′i
)
.

Suppose |R(0)| < ε0. We must show that R(0) = 0. In fact we
claim that θi = θ′i for all i. Assume not: then let i0 be the least i
with θi 6= θ′i. Now θi − θ′i is 2, 0, or −2, and

|R(0)| ≥ 10n+1−i0

2− 2
∞∑
j=1

10−j

 ≥ 10
(

2− 2
9

)
=

160
9
≥ ε0.
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Let R ∈ F12(r) fall in Case 2:

R(0) =
n∑
i=1

10n+1−i(ωi−1−nεi − ωi−1−nε′i
)
.

Suppose |R(0)| < ε0. We must show that R(0) = 0. In fact we
claim that εi = ε′i for all i. Assume not: then let i0 be the least i
with εi 6= ε′i. Now εi − ε′i is 1, 0, or −1, and

|R(0)| ≥ 10n+1−i0

1−
∞∑
j=1

10−j

 ≥ 10
(

1− 1
9

)
=

80
9
≥ ε0.

Let R ∈ F12(r) fall in Case 3:

R(0) =
n∑
i=1

10n+1−i(ω−i−1−nθi − ωi−1−nε′i
)
.

Suppose |R(0)| < ε0. We must show that R(0) = 0. In fact we
claim that θi = ε′i = 0 for all i. Assume not: then let i0 be the
least i where it fails. We take two subcases: If θi0 = 2, then

|R(0)| ≥ 10n+1−i0

2− 1− 3
∞∑
j=1

10−j


≥ 10

(
2− 1− 3

9

)
=

20
3
≥ ε0.

On the other hand, if θi0 = 0, then εi0 = 1 and

|R(0)| ≥ 10n+1−i0

1− 3
∞∑
j=1

10−j

 ≥ 10
(

1− 3
9

)
=

20
3
≥ ε0.

Case 4 is similar.
So in every case, if |R(0)| < ε0, then R(0) = 0. This completes

the verification of (1b). �

Proposition 4.6.2. For the IFS defined above, (1a) fails.

Proof. Let x ∈ C and ε > 0. We claim that there exists R ∈ F12(r),
R 6= id, |R(x) − x| < ε. To do this, we will take R in Case 3 with
all θi = ε′i = 0. Then R(x) = ω−2n−2x. This is not the identity.
Also, R(0) = 0, so if x = 0 we are done. So assume x 6= 0.
Since

{
ωk : k = 1, 2, 3, · · ·

}
is dense in the unit circle, there exist
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n1 < n2 < n3 < · · · in N such that ω−2nk−2 → x/x and therefore
ω−2nk−2x→ x. So for some k, |R(x)− x| < ε. �

Open question. Is (1a) equivalent to (1b) when the IFS has uni-
form affine dimension? We have not answered this.
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