EISENSTEIN SERIES AND THE TRACE FORMULA
FOR GL(2) OVER A FUNCTION FIELD

YUVAL Z. FLICKER

ABSTRACT. We write out and prove the trace formula for a convolution operator on the space of
cusp forms on GL(2) over the function field F' of a smooth projective absolutely irreducible curve
over a finite field. The proof — which follows Drinfeld — is complete and all terms in the formula
are explicitly computed. The structure of the homogeneous space GL(2, F')\ GL(2, A) is studied in
section 2 by means of locally free sheaves of Ox-modules. Section 3 deals with the regularization
and computation of the geometric terms, over conjugacy classes. Section 4 develops the theory of
intertwining operators and Eisenstein Series, and the trace formula is proven in section 5.

1. INTRODUCTION AND STATEMENT OF THE TRACE FORMULA

1.1. Introduction. The (non-invariant) trace formula for GL(2) over a number field was stated
and its proof sketched in chapter 15 of the influential book of Jacquet and Langlands [JL70] of
1970. It was used there for comparison of automorphic representations of the multiplicative group
of a quaternion algebra, with automorphic representations of GL(2).

Drinfeld used the trace formula for GL(2) over a function field F' to prove Langlands’ conjecture
for GL(2, F), and to count in [D81] the number of two dimensional irreducible representations of
the fundamental group of a smooth projective geometrically irreducible curve X over a finite field.
To check the statement of the trace formula of [JL70] in the function field case, Drinfeld gave a
detailed (but unpublished) proof, which differs from the one sketched in [JL70].

It is this proof of Drinfeld which is given in this paper.

The main reason why this proof is still interesting is the elementary and unconventional treatment
of Eisenstein series (see subsections 4.7-4.8 below), and the computation of traces in the spirit of
Tate [T68], see subsection 5.2. In both cases it is based on a “baby model” (see Proposition 4.31,
Corollary 4.32, Lemma 5.11), which cries out for generalization.

Let us describe the contents of this article.

The trace formula itself is stated in subsection 1.2 with a few comments. More comments,
including informal ones, are given in section 3.

Section 2 contains a dictionary between the language of adeles and the language of vector bundles
on the smooth projective curve X corresponding to F'. In particular, the set of rank n vector
bundles on X is identified with GL(n, F')\ GL(n,A)/ GL(n,O4), where Oy C A is the ring of
integral adeles. This dictionary goes back to A. Weil [W38], although in an older language. It
underlies the Geometric Langlands program [BD].

The terms which appear in the geometric part of the trace formula — orbital integrals and weighted
orbital integrals — are estimated and regularized in section 3.
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In section 4 intertwining operators, Eisenstein series, and L-functions are introduced. The ra-
tionality of the intertwining operator M (ju1, us2,t) and the functional equation M? = 1 are first
proven using local computations: normalization of the intertwining operators by L-functions and
e-factors, and the functional equation of the L-functions.

In subsections 4.7-4.8 these facts are proven using an alternative, global approach. The ideas
might go back to Selberg. But technically the exposition is quite different and more elementary:
in the case of function fields the analytic problems disappear.

The trace formula is proven in section 5. The logarithmic derivative of the intertwining operator
appears as a result of a computation of the trace of some operator in a power series space, see
Lemma 5.11. This computation is probably related to Tate’s article [T68].

Here are some questions.

1. Could the methods of subsections 4.7-4.8 and section 5 be extended to prove the functional
equation for Fisenstein series, and the trace formula, for an arbitrary reductive group over a function
field?

2. Is there a modification of the technique from subsections 4.7-4.8 that would work in the case
of number fields, e.g., for GL(2,Q)? One could try to replace the space of formal power series used
in subsections 4.7-4.8 by some space of holomorphic functions.

3. What is the precise relationship between Lemma 5.11 and Tate’s [T68]?

4. What is the relationship between the approach to Eisenstein series of subsections 4.7-4.8,
and the classical approaches: that of Selberg-Langlands-Arthur, and that of scattering theory (see
[FPT72] or [LP76])7

This author’s initial motivation to write out Drinfeld’s expression and proof of the trace formula
for GL(2) over a function field stems from his search for higher rank analogues of Drinfeld’s formula
[D81]. This led us to count with Deligne [DF13] the number of rank n (> 2) local systems with
principal unipotent local monodromy at least at two places. There we use the trace formula in the
compact quotient case, and the transfer of automorphic representations from a compact form to
GL(n). This explains the condition: “at least at two places”.

The case of [D81] is rank n = 2, no monodromy. To complete the study of [D81] and of [DF13]
in rank two one has to consider the case of principal unipotent local monodromy at a single place.
This is done in [F], using the explicit computations of the trace formula for GL(2) over a function
field of the present work. This was our initial motivation to write out this formula. Drinfeld’s proof
in the case of rank two, no ramification, is also given in [F].

Of course there are numerous expositions of the trace formula of [JL70], e.g. [GJ79], geared
to explain the lifting application of [JL70], mainly in the number field case. But none computes
explicitly (and accurately, cf. [D81]) all the terms which appear in the trace formula. The latter is
precisely what is needed for the counting applications of [D81] and [F]. An attempt at a complete
exposition of the computations for GL(2) in the number field case is at [AFOO].

Of course the trace formula of [JL70] was generalized to the higher rank case by Arthur, see e.g.
[AO5], in the number field case, and by Lafforgue, see e.g. [Lf97], in the function field case. But
the important applications of these works did not require explicit evaluation of all the terms which
appear in the trace formula, so our results are not included in those of [Lf97], even in the case of
GL(2) considered here.

In the number field case, the Remark on p. 112 of [A05] states: “As a matter of fact, it is only
in the case of GL(2) that the general coefficients have been evaluated. It would be very interesting
to understand them better in other examples, although this does not seem to be necessary for
presently conceived applications of the trace formula”. Indeed the applications of [D81], [DF13],
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[F] — counting rather than comparing — are of different nature than those of [JL70], [A05], [Lf97],
where most terms can be erased a-priori in the comparison so they need not be computed.

To repeat what is explained above, we also think the approach of subsections 4.7-4.8 and section
5 is original, substantially different from the currently known methods (which are developed in
[A05], [Lf97]), interesting and warrants further development.

I wish to express my deep gratitude to V. Drinfeld for making available to me his unpublished
notes, for teaching me lots of mathematics in the process, and for his permission to publish this
paper, to A. Beilinson for telling me about Drinfeld’s notes, and to the referee for very careful
reading.

1.2. Statement of the Trace Formula. Let us write the trace formula for GL(2) over a function
field F' of a smooth projective geometrically connected curve X over a finite field F,, and a test
function f in C2°(GL(2,A)) (subscript ¢ for “compactly supported”, superscript oo for “locally
constant”, A denotes the ring of adeles of F'). Let 9 be the representation of GL(2,A) by right
translation on the space A, of cusp forms on o - GL(2, F)\ GL(2,A), and ro(f) = [ f(g)ro

(g € GL(2,A)) the convolution operator; dg = ®,dg, is a Haar measure. Here « is a fixed idele of
degree 1, whose components are almost all equal to 1.

A cusp form is a function ¢ : GL(2, F)\ GL(2,A) — E (F is a fixed algebraically closed sub-
field of C) which is invariant on the right by some open compact subgroup of GL(2,A), and
fN(F)\N(A) ¢(nx)dn = 0 for all z in GL(2,A). Here N denotes the unipotent upper triangular
subgroup of GL(2). We also write A for the diagonal subgroup, and A’ = A — Z where Z is the
center of GL(2). By a well known result of G. Harder, when F is a function field (but not a number
field) a cusp form is compactly supported modulo Z(A).

Theorem 1.1. For any f € C(GL(2,A)) we have trro(f) = 21958 Si(f). Here

Sif) = |o® GLE F\GLEZ A)| Y f(

yeal.FX

f) = ZSQ,FQ(f)
Fy

So.m(f) = [Autp Fp| 7 ) /G flayz™Y)dz.

7. X
ol (Fy— ) ) GL2A) [0 F;

Here Fy ranges over the set of isomorphism classes of quadratic extensions of the field F'. For each
Fs we fix an embedding Fy — M (2, F') into the ring of 2 X 2 matrices over F'.

S(h= 3 / fa Yy )o(a)de.

o) AR\ GLE2A)

Any x € GL(2,A) can be written in the form ank, a € A(A), k € GL(2,04), n = ((1) ’1’), b is
determined uniquely by x up to b — ub+w, u € Oy, w € Oy. Put v(z) =}, log,(max(1, |by],)).

S = Y a0 Buglt) = 560 (0) + bug (7))

Fe (g2 ) " @y,
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ht™ : GL(2,A) — Z is deﬁned by htt ((35) k) = dega — degh (k € GL(2,04); a,b € AX; c € A).

/
m

= Jia= m(p1/p2, 2)

Here m(u,z) = L(p,2)/L(p, z/q). The u1, us range over the set of characters of AX/F* - a”
v, (z) = 298 Also I(uy1, po) is the space of right locally constant functions ¢ on GL(2,A) with

¢((55)x) = la/b]*m(a)pa(b)p(z)  (z € GL(2,A); a,be AX; c€A).

It is a GL(2, A)-module by right translation, and trI(piv,, pav,-1, f) is the trace of the indicated
convolution operator.

)
471_1 Z H1Vz, 2V, —17f) (Ml,ﬂz,z) laR(Ml,Waz)]dz-

p e Y 171= 1

Notations are as in Ss(f), and R(p1, po, z) = I(pivs, pov,—1) — I(pov,—1, piv,) is an operator,
rational in z, defined as a product @y R(p1v, p2v, 2v), 20 = 2deg(v) - The product is well defined as the
local operator maps the function in the source whose restriction to GL(2,0,) is 1 to such function in

the taye, Buther, R . ) s deied 10 b [ =)/ Ll )M e 2.
The operator M (p1y, 2y, 2) = M (u1oVs, popV,-1) is defined first by an integral

b / SO (AU 2)dy i [(po/pan)(m)2?] < 1,

then by analytic continuation, as it is a rational function in z. The operators I(uivy, pav,-1, f)
and R(u1, 12, 2) are considered as operators on

To(pa, p2) = {9 € C(GL(2,04)); ¢ ((55)z) = p1(a)pa(b)é();
r € GL(2,04), a,be O; c€ Oy}

1
:4zu:trf(,u,u,f), Z/G,L2A p(det z)dz.

Both sums range over all characters i of A*/F* -a?%. The sum of Sy is over all automorphic one
dimensional representations (podet) of o\ GL(2,A). The integral there represents the trace of the
convolution operator associated with f.

The terms Si(f) and S2(f) are finite by Proposition 3.5, 3.6, 3.9. The argument used in the
proof of Proposition 3.9 shows that for any v € aZ(A(F) — Z(F)) the function x — f(z~1yz) on
A(A)\ GL(2,A) has compact support, hence the integral in S3(f) converges.

By Proposition 3.11 the function 6, ¢(¢) is rational and may have at ¢ = 1 a pole of order at
most 1, for each a € A*. Hence éa, #(t) is regular at ¢ = 1. From Proposition 3.5 it follows that the
sums in S3(f) and Sy(f) are finite, so these terms are well defined.

For any f = ®f, in C>°(GL(2,A)), the operator I(u1, 2, f) is zero unless p; are unramified at
each v where f, is GL(2,0,) biinvariant. This implies that the sums in S;(f) (5 < i < 8) are
finite, for a given f. To see that S5(f) and Sg(f) are well defined, note that the rational functions
m(p,t), R(u1, po,t), R(p1, u2,t)~! are regular on [t| = 1 for all characters u, u1, g of AX/F* - aZ
For m(p,t) this follows from Proposition 4.11, for R and R~! from Corollary 4.28.

The distributions [linear forms on C°(GL(2,A))] f — trro(f), Si(f) (i =1,2,5,7,8) are invari-
ant, namely take the same value at f and f"(z) = f(h~'xh), h € GL(2,A). For i = 3,4, 6 we have
Si(f™) = Si(f) if h € GL(2,04), but S; is not invariant.
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If f e CX(GL(2,A)) takes values in Q then trro(f) € Q, since the representation rg is defined
over Q. For i = 1,2,3,4,8 it is clear that S;(f) € Q. For ¢ = 7 the integrand contains the factor
11(ab)|a/b|/? which involves ,/q. However the sum includes with 4 also pe, e(a) = —1, and so the
sum of the terms indexed by p and pe can be written as an integral over the domain where |a/b|
. . QZ
is in g*~.

To see that S5(f) is rational, we put a(jy, po) = 5= fltlzl f(p1, po, t)dt where

2mi

d
J(p, po,t) = tr I(pave, pave-, f) - 7 Inm(p/pa, %),

and claim that for any o € Gal(Q/Q) one has o(a(u1, i2)) = a(°u1,%u2). Note that Gal(Q/Q)
acts on the group of characters on AX/F* . o” as they are all Q-valued. Now a(uy,p2) is the
sum of the residues of f(u1, po,t) at the points of the unit disc. We have that o(f(u1,u2,t)) =
F(Op1,%p2,e(o) - °t) with (o) = o(y/q)/\/q- However, if f(u1,pu2,t) has a pole at ¢t = ¢y and
[to] < 1, then by Proposition 4.11, |o(¢9)| < 1 for any o € Gal(Q/Q). Hence S5(f) € Q.

To see that Sg(f) € Q one proceeds similarly, using the results of Corollary 4.28 on the poles of
R(p1, p2, t) and R(ua, o, 1)~

2. LOCALLY FREE SHEAVES OF O x-MODULES

2.1. Stable bundles. Let X be a smooth geometrically connected projective curve over F, (we
take minimal ¢). Denote by Ox the structure sheaf of X. Denote by Bun,, the set of isomorphism
classes of rank n locally free sheaves of Ox-modules. By a (vector) bundle we mean here simply a
locally free sheaf. In particular, Bun; = Pic X. The Picard group Pic X of invertible, or rank 1,
locally free sheaves £ of Ox-modules, is naturally isomorphic to the group of classes D of (Weil)
divisors D = )", n,v (n, € Z, v € | X|). Here |X]| is the set of closed points of X, and the divisors
D, D’ lie in the same class (are linearly equivalent) if their difference is the (principal) divisor
(f) = >_,ordy(f)v where f is a nonzero rational function on X and ord,(f) is the order of f at
v € |X]| (ordy,(f) > 0 if v is a zero, ord,(f) < 0 if v is a pole, ord,(f) = 0 otherwise). If L,
M € Pic X correspond to the divisors D, D’ then £ ® M corresponds to D + D'.

There is a degree map deg on Pic X: deg(d_, n,v) = >, n,deg(v) defines deg(L) = deg(D),
where deg(v) = [k, : Fy|. Here k, is the residue field of the function field F' = F (X ) of X over F, at
v; assume [y is algebraically closed in F'. We write F), for the completion of F' at v, O, for its ring
of integers. The cardinality of the residue field k, = F,, at v is denoted by ¢,, thus ¢, = qdes(®),
We also write deg(D) for deg(D), as the degree of a principal divisor is 0; recall that D denotes
the class of D.

Denote by x(£) = dimp, H*(X, £) — dimg, H*(X, £) the Euler-Poincaré characteristic of £ €
Pic X. Here H'(X, L) are finite dimensional vector spaces over F,. Then x(Ox) = 1 — g where
g = dimp, H'(X, Ox) is named the genus of X. The Riemann-Roch theorem asserts that x(£) —
deg(L) = x(Ox) is independent of L € Pic X.

Define the degree of a locally free sheaf £ of O x-modules of rank n to be deg & = x(£) —nx(Ox).
The determinant of € isdet & = \" € € Pic X. We have deg & = degdet £. This gives an alternative
definition of the degree. A proof of this equality is as follows. If £ is a line bundle, then there is
nothing to prove. In the general case, use the fact that both deg& and degdet & are additive (if
&' C & is a subbundle, then deg& = deg &’ + deg(€£/E’) and similarly for degdet &), and that each
vector bundle has a flag, &;, such that &;/&;_1 are line bundles.

The height of a rank two locally free sheaf € of Ox-modules is the integer ht(€) = max (2 deg L—
deg &), L ranges over all invertible subsheaves of £.
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Proposition 2.1. We have —2g < ht(£) < co.

Proof. Let £ be an invertible subsheaf of £. From the Riemann-Roch theorem x(L£) = deg L +
1 — g we obtain dimg, H*(X,L£) > degL + 1 — g, whence deg L < dimp, H*(X,L) + g — 1 <
dimp, H(X,€) + g — 1, so ht(€) is finite.

Let £ be an invertible subsheaf of £ of maximal degree. Let M be an invertible sheaf with
degM = degL + 1. Then Hom(M,E) = 0. Also, by Riemann-Roch for the rank 2 sheaf &,
dimp, Hom(M, &) = dimp, HO(X, M1€) > deg(M 1) + 2 — 29 = deg& — 2deg M + 2 — 2g =
deg€& —2deg L — 2¢g, so 2deg L — deg& > —2g. U

A rank two locally free sheaf £ of Ox-modules is called stable if ht(£) < 0 and semistable if
ht(£) < 0. In general, the slope u(E) of a locally free sheaf £ over an algebraic curve is defined
to be degE/rk &, and £ is called stable if u(F) < p(€) for all proper nonzero subbundles F of £
(semistable if <). A locally free sheaf £ of rank two is called almost stable if ht(£) < 2¢g — 1, and
very unstable if ht(£) > 2g — 1. If g = 0, every & is very unstable.

Remark 1. A very unstable vector bundle £ of rank 2 splits into the direct sum of two line bundles.
We give here a relatively elementary treatment. An extension can be found in the work of Harder
and Narasimhan. If £ is very unstable, £ is an invertible subsheaf of £ of maximal degree, and
M = E/L, then M is invertible and Ext(M, L) = H' (X, ML) is 0 since degM 'L = deg £ —
deg M = 2deg L—deg £ = ht £ > 2g—1. Indeed, by Serre duality H! (X, M~1£) = HY(X, L~ Mw)
where w denotes the canonical bundle. But deg £~ Mw < 2g—2—(29—1) < 0, and H*(X,F) =0
for an invertible sheaf F with negative degree.

Proposition 2.2. The number of isomorphism classes of almost stable rank two locally free sheaves
E of Ox-modules with a fixed degree is finite.

Proof. The height of an almost stable sheaf lies in [-2g,2¢g — 2]. Hence it suffices to show the
finiteness for £ with a fixed degree n and height h. Every such sheaf lies in an exact sequence
0= L =& — M — 0, where £ and M are invertible sheaves and 2deg L — deg& = h. Then
degL = (n+ h)/2, degM = (n — h)/2. Since the degrees of £ and M are fixed, there are only
finitely many possibilities for £ and M (set of cardinality of the F-points on the abelian variety
Pic’(X)). With £ and M fixed there are only finitely many choices for £ as Ext(£, M) is finite. [

The group Pic X acts on Bung : (£ € PicX,€ € Bung) — L® E. As deg(L ® &) = 2deg(L) +
deg(€), the set of almost stable sheaves is invariant under this action. In a Pic X-orbit we may
choose £ to have deg(€) in {0,1}. Hence we deduce

Corollary 2.3. The number of Pic X -orbits on the set of isomorphism classes of almost stable rank
two locally free sheaves of Ox-modules is finite.

2.2. Bundles and lattices. Let £ be a rank n locally free sheaf of Ox-modules. Denote by &,
the fiber (= stalk) of £ over the generic point 1 of X. Let £, be the stalk of £ at the closed point
v € |X|. Let O, be the local ring of X at v. Then &, is an n-dimensional vector space over F,
and &,y is an O(,)-lattice in &, namely a rank n free O(,)-submodule of &,.

A set M of O,-lattices M, in a finite dimensional vector space V over F, v ranges over the
set | X| of closed points in X, is called adelic if there exists a basis {e1,...,e,} in V such that
My = Owyer + -+ + Oyey, for almost all v in |X|. “Almost all” means “with at most finitely
many exceptions”. If M is adelic then it is adelic with respect to any basis {e1,...,e,} of V.

The set of stalks {£(,);v € |X|} of a locally free sheaf £ of Ox-modules is adelic. Conversely, an
adelic set of lattices M = {M(,);v € |X|} in a finite dimensional vector space V' over F is the set of
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stalks of the locally free sheaf £ of Ox-modules defined by HO(U,£) = {s € V;Vv € U,s € M)}
for any open subset U of X. Obtained is an equivalence of the category of finite rank locally free
sheaves of Ox-modules, with the category of finite dimensional vector spaces over F with adelic
sets of O(y,)-lattices.

Let O, be the completion of O(,). The completion of F' at v is denoted F,. Let V be a finite
dimensional vector space over F. Put V,, = V ®r F,. There is a natural bijection between the
set of O, -lattices in V, and O,-lattices in V,: an O(,)-lattice M C V' corresponds to the lattice
M R0, O, in V,; an O,-lattice N C V,, corresponds to the O(v)—lattice NNV.

The category C whose objects are finite dimensional F-vector spaces V' with adelic sets {M,;v €
|X|} of Oy-lattices M, in V, is equivalent to the category of finite rank locally free sheaves of
Ox-modules &, by £ — (&,,{E}), where &, is the generic fiber of £ and &, is the completion of
the stalk of £ at the closed point v € | X].

Let R, be the set of isomorphism classes of pairs (£,i) where £ is a rank n locally free sheaf
of Ox-modules, and i is an isomorphism from the generic fiber of £ to F". The pairs (£,4) and
(&’,4") are isomorphic if there is an isomorphism £-=E&" which induces a commutative diagram when
restricted to the generic fiber with sides ¢ and i’ and the identity F™ — F™. The group GL(n, F)
acts on R, by g : (£,i) — (£,g01i). Then GL(n, F)\R,, = Bun,, is the set of isomorphism classes
of rank n locally free sheaves of Ox-modules.

The set R, is the set of adelic collections of O,-lattices M, C F', v € |X|. The group
GL(n, Fy) acts transitively on the set of O,-lattices in F}'. The stabilizer of the standard lat-
tice O} in F}} is GL(n,0,). Thus the set of O,-lattices in F}' is GL(n, F,)/ GL(n,0O,), and
R, is GL(n,A)/ GL(n,Oy), where A is the ring of adeles in I and Ox = [[,¢x;Ov. Thus
Bun, = GL(n, F)\ GL(n,A)/GL(n,04). The elements of GL(n,A)/ GL(n,0O4) are called ma-
trix divisors, and the elements of GL(n, F')\ GL(n,A)/ GL(n,O4) classes of matrix divisors. For
n = 1, the identification of GL(n, F')\ GL(n, A)/ GL(n, O,) with Bun,, is the identification of classes
of divisors with invertible sheaves.

The group GL(n,A) can be identified with the set of triples (£,i, : & — F", (i, : & — OD)).
Given a rank n locally free sheaf &, an isomorphism i, : &, 5 ™, and for each closed point v
in |X| an isomorphism i, : £ — O} of the completion &, of the stalk £, at v with O}, let us
define the corresponding g = (g,) in GL(n,A). Each g, has to be an automorphism F' — F;',

-1

with g, (Oy) = Oy for almost all v. Construct g, as the composition 4, o,

in iv

F)'=F'"@pF, < & @ Fy,=Ep, =&, ®0, F, & O @0, F, = F)".

Note that since £ is locally free, for almost all v the map g, = %, o 1-771 takes O} C F' to &, C
&y @r Fy, via iy, and then to O} via 4,. To show that the map {(&,iy, (iy))} — GL(n,A) is
bijective one shows that GL(n,A) acts on the set of triples, simply transitively. Viewing the
trivial locally free sheaf as O} (space of columns), g(&, 1y, (i,)) is defined to be (g€, ip, (iy 0 g, 1)),
where i, o g, ' maps the stalk g,&, of g€ at v to OF. The set of pairs {(£,i,)} then corresponds
to GL(n,A)/ GL(n,Oy), the set of pairs {(&, (iy))} to GL(n, F)\ GL(n,A), and the set {£} to
GL(n, F)\ GL(n,A)/ GL(n, Oy).

To an idele a = (w,; ™ uy;v € | X]), where 7, denotes a generator of the maximal ideal in the
ring O, of integers in F, u, € O and n, € Z, we associate the divisor D = ) n,v, and the
degree deg(a) = deg(D) = >, n,deg(v), deg(v) = [F, : Fy], where F, is the residue field of F' at
v, a finite field of g, = ¢%°&(") elements. For g € GL(2,A) write degg for degdetg. Recall that
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Op =I1,00 (v € |X]). For t € C* we write v,(a) = t~ 8@ =[] ¢, ™ where t, = t4°8("). Then
ve-1(a) =[], ¢y = |a| is equal to v(a) = q1°8(@ . Also vy(m,) = t,, Vg-1(my) = |y

Let £ and M be invertible sheaves. Fix isomorphisms i,, i of their generic fibers with F'. Each
of (L,ir) and (M, i) defines an element of A*/Of , namely a divisor on X. Choose representatives
a, bin A*, for example ) n,v is represented by (m; ™). Given an exact sequence 0 — £ — & —
M — 0 of locally free sheaves, choose an isomorphism ¢ between the generic fiber of £ and F?
so that the induced exact sequence of generic fibers 0 — F — F?2 — F — 0 is standard (l‘ —
(8),(y)— y) The isomorphism ¢ is defined uniquely up to left multiplication by an automorphism
of F? of the form (} %), t € F. The pair (£, ¢) determines an element of GL(2,A)/ GL(2,0,), of
the form u = (} %) (8 2), with z in A. Since u is defined up to right multiplication by an element
of GL(2,0), z is uniquely defined up to addition of an element of $O4. Replacing ¢ by ()¢
with ¢ € F replaces z by z +t. Thus we get a bijection Ext(M, L) — A/(F + $Oy). This is an
isomorphism of F-vector spaces.

In summary, if the invertible sheaves £ and M correspond to ideles a and b, then Ext(M, L) ~
A/(F + $04), and the map Ext(M, £) — Buny which associates to the exact sequence 0 — £ —
& — M — 0 its middle term, coincides with the map A/(F + $04) ~ HY(X, M~1L), see [S97], II.
5. The isomorphism A/(F 4+ $0,) = Ext(M, £) is HY(X, M~1L£)= Ext(M, L).

2.3. The space GL(2, F)\ GL(2,A).
Proposition 2.4. Given a € A*, dega > 2g — 1, then aOy + F = A.

Proof. If £ is an invertible sheaf on X associated with a, then A/(F + aO,) = HY(X,L). By
Serre duality H'(X,£) ~ H°(X, L 'w), where w is the canonical bundle of degree 2g — 2. Then
deg(L'w) < (29 —2) — (29 — 1) = —1 < 0, hence H(X, £L~1w) = {0}. O

Define a function ht™ : GL(2,A) — Z by ht™ ((4§) k) = dega — degb for all a,b € AX, ¢ € A,
k € GL(2,04). It is clearly a well defined function on B(F)\ GL(2,A). For x € GL(2,A), put
ht(x) = max,eqro,r) ht* (). On GL(2, F)\ GL(2,A) it is well defined.

Proposition 2.5. For any = € GL(2,A) we have —2g < ht(z) < co.

Proof. This follows from Proposition 2.1 as if £ is a rank two locally free sheaf of Ox-modules
associated to the image of x in GL(2, F')\ GL(2,A)/ GL(2,Op), then ht(z) = ht(£). O
Put Hp = {z € B(F)\ GL(2,A);ht*(z) > 0} and
H = {z € GL(2, F)\ GL(2,A); ht(z) > 0}.
Proposition 2.6. (1) The natural projections p : Hg — H is a homeomorphism.
(2) The set {x € GL(2,F)\ GL(2,A);ht(z) < n} is compact modulo the center Z(A) of GL(2,A)

for every integer n.

Proof. (1) The map p is clearly onto. To show that p is injective it suffices to show for any = in
GL(2,A),y € GL(2, F), that ht™(z) > 0 and ht*(yx) > 0 implies v € B(F). This is a typical
application of the Harder-Narasimhan filtration. In simple, explicit terms, this follows from

Lemma 2.7. If g € GL(2,F) — B(F) then ht™(z) + ht"(gz) < 0.
Proof. Write g as giwgs with g1,g2 in B(F), w = (9}). Put 2/ = gox. Then ht*(z) = ht*(z),
ht*(gz) = ht* (wa’). Thus we need to show that ht* (2') + ht " (wa’) < 0. Suppose 2’ = (G ;1) k1,

wa' = (9 2) ky with ki, ky € GL(2,04). Put koky! = (:g). Then (¥ %) (f;?) —w (49 =
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( 0 by ), hence by = a1, thus dega; < degbs (as degy < 0, since v € Op). But degasbe = degaiby,

ai c1

hence deg as < degb;. Then ht*(z') + ht* (wa’) = dega; — deg by + degas — deg by < 0. O

Now the natural map B(F')\ GL(2,A) — GL(2, F)\ GL(2,A) is open and Hp is an open subset

of B(F)\ GL(2,A), hence the bijection p : Hg — H is open. Since it is also continuous, p is a
homeomorphism.
(2) The image under p of the set S = {x € B(F)\GL(2,A);—2g < ht"(x) < n} of Hp in
GL(2, F)\ GL(2,A) contains the set {x € GL(2, F)\ GL(2,A);ht(z) < n}. So it suffices to show
that S is compact mod Z(A). Choose a compact C in A* with CF* = {t € A*; —2¢g < degt < n}.
Choose an idele d with degd > 2g — 1. Put

Y = {(g)g) (29)k; ke CL(2,04), abeAX, %ec, cedOA}.
Lemma 2.8. The map Y — S is surjective.

Proof. Let x € GL(2,A), —2g < ht"(z) < n. We need to show that z can be written as hy with
y€Y and h € B(F). Write x as (({) K with k € GL(2,04),r,t € A*,s € A. It remains to show
that (¢ §) can be expressed as (3}) (5%) (82) with a,b € A*, 2 € C,c €dOy, o, € F*, vy € F.
Thus we need to show the existence of a, b, ¢, a, 8, such that
(*) ac =71, Bb=t, a,bcA*, o,fcF*, §eC,
(**) blac+ ) =s, c€dOy, ~ve€F.

By definition of =, degr — degt lies in [—2g, n], so the existence of a, b, o, 8 satisfying (*) follows
from the definition of C'. The existence of ¢ € dOy and v € F satisfying ac+ vy = s/b follows from:
cOp + F =Aifdege>2g— 1. O

Since Y is compact mod Z(A), so is S, and (2) follows. O

In summary, the homogeneous space GL(2, F')\ GL(2, A) is the union of the compact mod Z(A)
set {x € GL(2,F)\ GL(2,A); ht(z) < 0}, and the set H = {x € GL(2,F)\ GL(2,A); ht(z) >
0}, whose structure is simpler. The set Hp, hence also the sets H and GL(2, F)\ GL(2,A), are
noncompact modulo Z(A). Indeed the function ht* takes arbitrary large values.

The image of H in Buny = GL(2, F')\ GL(2,A)/ GL(2,04) is the set of nonsemistable locally
free sheaves.

The set GL(2, F)\ GL(2,A)/ GL(2,0,) is analogous to the set SL(2,Z)\SL(2,R)/SO(2) =
SL(2,Z)\b, where h = {z € C;Imz > 0}, the upper half plane, is isomorphic to SL(2,R)/SO(2),
by g + g(i) = (ai +b)/(ci + d). The set B(F)\ GL(2,A)/ GL(2,0,) is analogous to N'\h where
N is the group of transformations z ++ z +n (n € Z) on h. The function ht™ is analogous to
the function z — InImz on N\h. The statement —2g < ht(z) < oo corresponds to the state-
ment that the natural map from the half plane {z € C;Imz > /3/2} to SL(2,Z)\b is onto.
The statement that p : Hg — H is homeomorphism corresponds to the statement that the map
{z € C;Imz > 1} — SL(2,Z)\bh is injective, and the compactness of {z € GL(2, F)\ GL(2,A);
ht(x) < n} corresponds to the statement that the complement in SL(2,Z)\h of the image of the
half plane {z € C;Imz > h} is compact.

2.4. f-groups. An fl-space is a Hausdorff topological space such that each of its points has a
fundamental system of open compact neighborhoods.

We shall consider on #-spaces only measures for which every open compact subset is measurable,
and its volume is a rational number. If dz is such a measure on an ¢-space Y, and f is a locally
constant compactly supported function on Y with values in a field E of characteristic zero, then
[y f(x)dz reduces to a finite sum, and it is well defined.
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On topological groups we consider only left- or right-invariant measures.
An {-group is a topological group with an ¢-space structure.

Proposition 2.9. Let G be an {-group. Then (1) there exists a fundamental system of neighbor-
hoods of the identity in G consisting of open compact subgroups;

(2) there exists a left Haar measure on G such that the volume of each open compact set is a rational
number.

Proof. (1) Let U be a neighborhood of the identity in G. We shall show that U contains an
open compact subgroup. Since G is f-space, we may assume that U is open and compact. Put
V ={r € G;2U C U}. Then V = NyueyUu~?, hence it is compact. Now for each v in V and u
in U, by continuity of multiplication m there exists an open subset W, containing v, and U, in
U containing u, such that m(W,,U,) C U. As U is compact and U = Uy,cyU,, there are finitely
many ui,...,u, in U with U = U1<;<pUy,. Then W = Ni<;<, Wy, is open in V' and it contains v.
Thus V is an open neighborhood of the identity, and V-V = V. Then VNV ! is an open compact
subgroup in U.

(2) Fix some left Haar measure on G. Denote the volume of an open compact subgroup U by
|U|. For two such groups, U; and Us we have

Uil U] Uzl [Ur:U1NUy]

= = e Q.
‘U2| |U1ﬂU2’ |U1ﬂU2’ [UQIUlﬂUQ] Q

Consequently the Haar measure on G can be chosen to assign rational volume to every open compact
subgroup of G. But then the volume of every open compact subset K in G is rational, since as in
(1) for such K there is a compact open subgroup U of G with KU C K, and then |K| = [K : U]|U]|
is rational, where K is a disjoint union of [K : U] translates of U. O

Fix an ¢-group G and a left Haar measure on G such that the volume of any open compact set
is a rational number. Fix a field F of characteristic zero. The E-vector space Hg of compactly
supported locally constant functions f : G — E is an algebra under the convolultion (f; % f2)(g) =
fG f1(h)f2(h~tg)dh. For an open compact subgroup U in G the set of U-biinvariant functions in
Hg is a subalgebra HY, called the Hecke algebra of (G,U). Although H¢ has no unit (unless G is
discrete, when the §-function is in Hg), Hg does: it is Iy : G — Q, the characteristic function of
U divided by |U].

A representation 7 of the group G on a vector space V is called smooth if the stabilizer of any
vector of V is open, and admissible if it is smooth and for any open subgroup U of G the space VV
of U-fixed vectors in V is finite dimensional.

If 7 is a smooth representation of an /-group G on a vector space V over E, for each f € Hg
define the operator 7(f) : V — V by n(f)v = fG f(g)m(g)vdg. This integral reduces to a finite sum
since 7 is smooth, and 7 (f1 * f2) = 7(f1) o w(f2). Then V is naturally an Hg-module, and for any
open compact subgroup U of G, the space V'V is a unital module over Hg .

Proposition 2.10. (1) A smooth G-module V' # {0} is irreducible iff for every open compact
subgroup U of G either VU =0 or VU is an irreducible Hg-module.

(2) Given an open compact subgroup U of G and an irreducible unital Hg—module M, there exists
a smooth irreducible G-module V' such that VY is isomorphic to M as an Hg—module, and V is
determined by this property up to isomorphism.

For a proof see [BZ76], 2.10. See [BZ76], 2.11 for
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Schur’s Lemma. Let w be an irreducible admissible representation of G in a vector space V
over an algebraically closed field E. Then any nonzero G-module morphism (intertwining operator)
V — V is a scalar.

Proposition 2.11. Let 7 be an irreducible admissible representation of G in a vector space V over
an algebraically closed field E. For any field extension E' of E, the representation of G in V Qg E’
1$ also irreducible.

Proof. By Proposition 2.10, the statement reduces to a similar statement for finite dimensional
algebras, since 7 is assumed to be admissible. O

Let E be a subfield of C invariant with respect to complex conjugation. A representation of G
on a vector space V over E is unitary if there is a G-invariant scalar product on V' (thus a bilinear
function (+,-) : V. x V — E with (v,w) = (w,v) and (v,v) =0 iff v = 0, and (gv, gw) = (v, w) for
all v,w in V and ¢ in G).

Note that we do not require V' to be complete with respect to the scalar product, even in the case
E =C. If FE is algebraically closed and the representation of G in F is irreducible and admissible,

then the G-invariant inner product on V' is unique up to a scalar multiple, if it exists.

Proposition 2.12. Let m be an admissible unitary representation of G in the E-space V. Fix
a G-invariant scalar product on V. Let L be an invariant subspace of V, and L* its orthogonal
complement. Then V =L & L*.

Proof. Given z € V', we need to express it as 1 + x2 with 1 € L and x4 € Lt. Since 7 is smooth
there exists a compact open subgroup U of G with z € VU. Since 7 is admissible, dimg V'V is finite.
Thus z = 21 + x3 for some x; € LY, 29 € VY, 2 orthogonal to LY. Tt remains to show that x5 is
orthogonal to the entire space L. Let dy be the unit in Hg Then 7(dr7) is the orthogonal projector
V VY. Hence for every y in L, (z2,y) = (7(p)x2,y) = (22, 7(6y)y) = 0 since 7(dy)y € LY. O

It follows that every admissible unitary representation of G is a direct sum of irreducible repre-
sentations. This sum is not necessarily finite. However, given an open compact subgroup U of G,
only finitely many summands contain nonzero U-invariant vectors.

2.5. Automorphic forms. Let E be an algebraically closed field of characteristic zero. An auto-
morphic form is a smooth function ¢ : GL(2, F')\ GL(2,A) — E, where by smooth we mean that
there is an open subgroup U, of GL(2, A) such that ¢(2xu) = ¢(z) for all u € Uy and 2 € GL(2, A).
A cusp form is an automorphic form ¢ with fA/F ¢ ((§3)x)dz =0 for all z € GL(2,A).

Since ¢ is right locally constant (= smooth) and A/F is compact, the integral here is well defined
and reduces to a finite sum.

Let AY be the space of cusp forms ¢ : GL(2, F)\ GL(2,A) — E. The group GL(2,A) acts on
AF by right translation: (r(h)¢)(g) = ¢(gh). By a character of an f-group G with values in F we
mean a locally constant homomorphism x : G — E*. If E C C such y is called a unitary character
if |x(g)] =1 for all g in G.

Denote by A% (x) the space of ¢ € AY with ¢(ax) = x(a)é(z),a € A* (identified with the center
of GL(2,A)),r € GL(2, F)\ GL(2,A). The space A¥(x) is invariant under the GL(2, A)-action.

Let 7 be an irreducible representation of GL(2, A) over E. By Schur’s lemma, there is a character
X : A* — E* such that for every a in A* 7(a) is multiplication by x(a). This y is called the central
character of .

If V C A¥ is an irreducible admissible representation 7 of GL(2, A) and x is the central character
of V, then V .C AF(x). Since the center of GL(2, F) acts trivially on A¥, x is trivial on F*. Thus



12 YUVAL Z. FLICKER

every irreducible admissible m C AOE lies in Aéﬂ (x), where y is the central character of 7, which is
a character of A*/F*. The following is known also e.g. for GL(n).

Proposition 2.13. Fiz an open subgroup U of GL(2,A). There exists a compact mod Z(A) subset
K of GL(2, F)\ GL(2,A) such that the support of any U-invariant cusp form is contained in K.

Proof. We first show that there is an integer n such that given z € A and =z € GL(2,A) with
ht*(z) > n, there exist u € U and 8 € F with ({ %)z = ((1] f) ru.

To see this, fix an effective divisor —D = Zuepﬂ nyv on X, put d = (w}*) and let Jp = dOp be
the corresponding ideal in Op. The groups I'(D) = {y € GL(2,04);y =1 mod Jp} make a basis
of neighborhoods of the identity in GL(2,A). Thus we may assume in this proof that U = T'(D).
In this case we shall show that n = 2g — 1 — deg(d). Indeed, fix z € A and z = (§ )k with
k € GL(2,0,) and ht*(z) = dega—degb > 2g—1—deg(d) (note: deg(d) = —deg D = >, n, degv).
Then %dOA—FF =A and z = %dt—kﬂ for some B € F and t € Oy. Put u = k1 (étld)k. Then
wel(D)and ({ %)z = (éf)xu

We claim the proposition holds with K = {z € GL(2, F)\ GL(2,A);ht(x) < n}. This K is
compact modulo Z(A). Let ¢ be a U-invariant cusp form, x € GL(2,A), ht(x) > n. We shall show
that ¢(x) = 0. Replacing x by v for suitable v € GL(2, F), we assume that ht*(z) > n. By our
choice of n, ¢ ((§%)x) = ¢(x) for all z in A. Since ¢ is a cusp form, ¢(x) = 0. O

Corollary 2.14. The representation of GL(2,A) in A¥(x) is admissible.

Proposition 2.15. Let E' be an extension of E, and x : A*/F* — E* a character. Then
AF (0 = AF (x) ®p E.

Proof. The space A¥(x) ®g E' consists of the functions ¢ in Ag’(x) whose values span a finite
dimensional space over E, since ¢ € AF(x) takes finite number of values times the set T' of values

of x. But every ¢ in Ag/(x) has this property, since the set of its values lies in finitely many cosets
of T. O

Given a representation m of GL(2,A) over F and a character w : A* — E*, write wm or 7w or
w®mor m®w for the representation (rw)(z) = w(det x)7(z) in the space of .

Proposition 2.16. For any characters x,w : AX/F* — EX, we have AY(x) ® w = AF (xw?).

Proof. We need to construct an invertible linear map L : AF(x) — AL (xw?) such that for every
¢ € AP(x) and h € GL(2,A) we have r(h)L(¢) = w(det h)L(r(h)¢), where (r(h)®)(z) = ¢(xh).
Such L is (L¢)(z) = ¢(z)w(det z). O

Proposition 2.17. Given a character x : A*/F* — E* there ezists a character w : A /F* — E*
such that x(z)w(z)? is a oot of unity for every x in AX/FX.

Proof. Fix a € A*/F* with dega = 1. Such « exists since in the finite field extension F/F,(t),
where t € F is transcendental over F,, there are always primes which split completely. Fix c in
the algebraically closed field E with ¢ = x(a). Define w : AX/F* — EX by w(z) = ¢ 8@
put x1(z) = x(z)w?(z), put o = {a™;n € Z}. Then x; is a character of the profinite group
AX/F* . a”, hence the values of x1 are roots of 1. O

Proposition 2.18. Let E be a subfield of C invariant under complex conjugation, x an E*-valued
unitary character of AX/F*. Then the representation of GL(2,A) in AF(x) is unitary.
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Proof. The function = +— ¢1(x)dy(x) on GL(2, F)\ GL(2,A), where ¢1,¢2 € AF(x), is invariant
under Z(A) and is compactly supported as a function on PGL(2, F)\ PGL(2,A). Let dz be an
invariant measure on PGL(2, F)\ PGL(2,A). It exists since PGL(2, F') is a discrete subgroup of
PGL(2,A), a group with a two-sided invariant measure. Then (¢1,¢2) = [ ¢1(z)dy(z)dr (x

PGL(2, F)\ PGL(2,A)) is an invariant scalar product on AF(x). D

Corollary 2.19. The representation of GL(2,A) in AY(x) is a direct sum of irreducible subrepre-
sentations.

Note that we may assume that all values of y are roots of unity, and that £ = Q.

The multiplicity one theorem asserts that in AOE (x) any irreducible representation of GL(2,A)
occurs with multiplicity one.

An irreducible representation of GL(2,A) over an algebraically closed fieldE is called cuspidal if
it is isomorphic to a subrepresentation of AOE .

2.6. Factorizability. Irreducible admissible representations of GL(2,A) are factorizable, as we
proceed to show. Let E denote an algebraically closed subfield of C. An irreducible representation
of GL(2, F},) in an E-space V is unramified if V' contains a nonzero GL(2, O, )-invariant vector.

Proposition 2.20. The space of GL(2, O,)-invariant vectors VG200 in an unramified represen-
tation (m,V') of GL(2, F,)) is one dimensional.

Proof. Denote by H, = C.(GL(2,0,)\ GL(2, F,)/ GL(2,0,)) the Hecke convolution algebra of
compactly supported GL(2, O,)-biinvariant E-valued functions on GL(2, F,). We claim it is a
commutative algebra. Indeed, for any f € H,, the function * f (x) = f(*z), where 'z is the transpose
of x, is also in H,. Since !(zy) = 'y'z, we have (f x fg) =tfyxtf) for all f1, fo € H,. By Cartan
decomposition every GL(2, O, ) double coset in GL(2, F,) contains a diagonal matrix. Hence ! f = f
for all f € Hy,, and f1 * fo =t(fi* f2) = fox'fi = fox f1 for all f1, fo € H,. If V is unramified,
VGL(2:0v) is a nonzero irreducible H,-module. But H, is commutative, so dimpg VGL2.0v) s 1. O

Given an irreducible admissible representation 7, of GL(2, F})) in a space V,, for every closed point
v € |X| such that 7, is unramified for all v € S, S C | X| finite, construct a representation = = @,
of GL(2, A) as follows. For each v € | X|— S choose a nonzero vector &) € VA0 por any finite
set S’ D S of closed points of X put Vg = Queg'V,. If S” D 5" O S, define an inclusion Vg < Vn
by 2 — (Qpesr_5&)) @ x. Put V = lim Vg It is the span of the vectors ®y¢|x|&v, & = €9 for

§/58

almost all v, and &, € V,, for all v € | X|. Then V is a GL(2,A)-module in a natural way; denote
by 7 the corresponding representation of GL(2,A). The vectors £J are determined uniquely up to
a scalar multiple, hence 7 is uniquely determined by the m, for all v € | X]|.

Reducing to irreducible finite dimensional representations of tensor products of algebras, we have

Proposition 2.21. Given an irreducible admissible representation m, of GL(2, F,) for every v
in | X| which is unramified for almost all v, 1 = ®,m, is an irreducible admissible representa-
tion of GL(2,A). Fvery irreducible admissible representation m of GL(2,A) equals ®,m, for some
irreducible admissible representations m, of GL(2, F,)) which are almost all unramified. The repre-
sentations m, are determined by m uniquely up to isomorphism.

3. LOOKING FOR A TRACE FORMULA

3.1. Trace formula in the compact case. Let X be an ¢-space. Denote by C°°(X) the space
of locally constant (= smooth) E-valued functions on X. Here FE is a fixed algebraically closed
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subfield of C. Let C°(X) be the space of smooth compactly supported E-valued functions on X.
Let r be an admissible representation of an ﬁ—group G in an E-space V. Fix a Haar measure dx
on G. Given f € C°(G), define r(f) = [, f(x)r(z)dz, an endomorphism of V. Since f is C*°,
that is smooth, it is right invariant under an open subgroup U of G. Then Im7(f) C VY, so
Imr(f) is finite dimensional, and the trace trr(f) is well defined. Let r be now the representation
of G on C*°(T'\G) by right translation, where I" is a discrete cocompact subgroup of G. Since r is
admissible, trr(f) is defined.

Proposition 3.1. Let G be an {-group and I' a discrete cocompact sugroup of G. Then G has a
two sided invariant measure and I'\G has a G-invariant measure.

Proof. Since (see [BZ76]) I'\G admits a measure which when translated by z in G is multiplied by

A(x), where A is the modulus of G, we have |[I'\G| = A(z)|T'\G|, thus A = 1. O
Proposition 3.2. Let X be an {-space, dx a measure on X K € C*(X x X). Define a lin-
ear endomorphism A of COO( ) by (Ap)(y) = [\ K )dac Then the image of A is finite

dimensional and tr A = [ K(z,z)dzx.

Proof. We may assume that K (x,y) is of the form ¢(z)1(y), as such functions span C2°(X x X).
In this case the claim is clear. O

Proposition 3.3. Let G be an £-group, I' a discrete cocompat subgroup, r the representation of G in
C>*(I'\G) by right translation, dz a Haar measure on G, f € C°(G), S a set of representatives of the
conjugacy classes in I'; Zp(7y) the centralizer of v in I'. Then trr(f) = Zwes fG/Zr(v) flzyz—Y)dz.

Proof. We first show that for each v € T' the function x — f(zyz~!) on G/Zr(y) is compactly
supported, and that there are at most finitely many v € S for which 2 +— f(zy2~!) is not identically
zero. For this, fix a compact subset K in G with KT' = G. Given z € G thereare k € K, € I, with
x=kd. Fixy € I. If f(zyz~!) # 0 then kdv5 'k~ lies in suppf, thus 676! € Ky = K-suppf- K.
Since K is compact K NI is finite, and there are only finite number of possibilities for dv6~!. Hence
there are only a finite number of possibilities 61, ...,d, for § modulo Zp(y). Then f(zyz=') # 0
implies that = € K'Zp(7), where K’ = Uj<;<,K&; is compact. If f(zyz~!) # 0, the conjugacy
class of v in I' intersects the finite set Ky N I". The number of such classes is finite. Thus the sum
is finite and the integrals converge.
Now given ¢ in C*°(I'\G), for any y in G we have

/ F(@)d(ye)dz = /G fw)e@)dz = | Kp(w,y)é()da

G
where K¢(z,y) =3 cr f(y~'~yx). Then

trr(f) = G K¢(z,z)dx = /F\GZf(x_lfy:U)d:r

vyel’
:/ Y e o) dm—Z/ e 6 o) da
NG €8 5e 20 (y)\D ves /ITN\G 6le(7
= Z/ f(z™ yz)de.
i e



EISENSTEIN SERIES AND THE TRACE FORMULA 15

3.2. Case of GL(2), oversimplified. Let now Agj denote the space of E-valued cusp forms on
GL(2, F)\ GL(2,A). The right-shifts representation of GL(2,A) on A¥ is not admissible since the
center Z(A) of GL(2,A) is not compact. Fix a degree-one idele a and put o = {a";n € Z}. It
is a cyclic subgroup of A*, and we view A* as the center of GL(2,A). Denote by AOE7 ., the space
of cusp forms in A} invariant under o, and by 7y the representation of GL(2,4) on ADE7 o by right
translation. Since A*/F *a? is compact and every U-invariant cusp form — where U is an open
subgroup of GL(2,A) — is supported on some compact module Z(A) set K C GL(2, F)\ GL(2,A),
the representation rg is admissible. Hence trro(f) is defined for every f € C°(GL(2,A)).

Put Ao = C(a? - GL(2, F)\ GL(2,A)). Fix f € C(GL(2,A)). Let r be the right represen-
tation of GL(2,A) on A.,. We proceed to compute tr7(f) as if the space aZ - GL(2, F)\ GL(2, A)
were compact, to see what needs to be corrected. This space is not compact and r is not admissible,
so that in fact trr(f) makes no sense.

For any ring R define A(R) = {diag(a,b);a,b € R*}, A'(R) = {diag(a,b);a,b € R*, a # b},
N(R) = {(}4);a € R}. Let Q be the set of quadratic extensions of the field F. For each L € Q
choose an embedding L < M (2, F); it exists and is unique up to an automorphism of M (2, F'); all
automorphisms of M (2, F) are inner. Given v € aZ - GL(2, F), denote by Z(v) the centralizer of v
in o’ GL(2, F).

Proposition 3.4. Every conjugacy class of o” - GL(2, F) intersects precisely one of : F* - o;
a({1), ae F*-al; ol  A(F); of - (L* — F*) for some L € Q. In the first two cases the number
of intersection pomts is 1, in the 3rd case 2, in the 4th case: the number of automorphisms of L
over F. The centralizers Z(7y) are o” - GL(2, F), o*? F*N(F), o” - A(F), o*L*, respectively.

Immitating the trace formula in the compact case, one may expect

trr(f) +ZSZL )+ S3(f) + Sa(f)
LeQ
with
Si(f) = o®- GL( F)\GL(2,A)],
So.0(f) = | Autp (L) / f(a ") de,
oZ-L*\ GL(2,A)

yeak-( L><

S3(f) = % Z /a f(z™ yz)dz,

Z
SeaZa(F) ? LA\ GL(2,4)

Z / flea (1) z)de.

went.px ) aPF* N(F)\ GL(2,A)
The left side of this wrong trace formula is divergent. So is S3(f), since the homogeneous space
A(A)/a”- A(F) is not compact. We shall show that S1(f) and > e 92,L(f) converge, and although
S4(f) diverges, we shall show in which way it does.

Proposition 3.5. Given f € C°(GL(2,A)), the number of conjugacy classes of v € a” - GL(2, F)
with x € GL(2,A) and f(zyz~') # 0 is finite.

Proof. The sets K1 = {trh;h € suppf} C A, Ky = {deth;h € suppf} C A* are compact. It
suffices to show that the set {y € o - GL(2, F);try € Ki,dety € Ky} is a union of finitely many
conjugacy classes. Put v = o"x for some z € GL(2,F). Then 2n = deg~, so n lies in a finite
set. Fix n. Then trz € o "K;,detz € o ?"K,. But the sets F Na "K; and F* Na ?"K, are
finite. Hence the trace and determinant of x can take only finitely many values. As the number of
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conjugacy classes of elements in GL(2, F') with fixed trace and determinant is at most two, we are
done. g

3.3. Central elements.
Proposition 3.6. The volume | GL(2, F) - o\ GL(2,A)| is finite.
Proof. This volume is equal to

> la” GL(2, F) Nz GL(2,04)2z~"\z GL(2,04)|
z€a? GL(2,F)\ GL(2,A)/ GL(2,04)

= |GL(2,0,)| > la? GL(2, F) N2 GL(2,04)z 1.
zeaZ GL(2,F)\ GL(2,A)/ GL(2,04)

For z in GL(2,A)/ GL(2,0,), let £ = zO% be the associated rank 2 locally free sheaf on X.
Then Aut(£) consists of the g € GL(2,A) which map (£ =)z02 to 202 and the generic fiber F
to itself, thus Aut & is GL(2, F) Nz GL(2,04)2~ = o” GL(2, F) Nz GL(2,04)2z 1.

We then need to show the convergence of

> JAutg ™

E€Buny /J

J being the image of o under the natural homomorphism AX — Pic X. The number of J-orbits
on the set of stable rank two locally free sheaves on X is finite, so it remains to show that the
sum of | Aut £|~! over the set Buny® of J-orbits of unstable rank two locally free sheaves on X is
convergent.

Lemma 3.7. (1) A rank two locally free sheaf £ on X is very unstable (ht(E) > 2g—1) iff € ~ LOM
where L, M are invertible sheaves with deg L — deg M > 2¢g — 1.
(2) If L, M € Pic X and deg L — deg M > max(2g — 1,1) then

| Aut(£ & M)| = (q — 1)?¢les £-dee Mtl—g,
(3) FLEM ~ L' & M with deg £ > deg M, deg £/ > deg M’ then £~ L/, M ~ M.

Proof. (1) If £ is an invertible sheaf of £ of maximal degree and M = £/L, then M is invertible,
and Ext(M, L) = HY(X,M~1L) is 0 (by Serre duality) since deg ML = degL — deg M =
2deg L —deg& =ht(€) >2g—1

The exact sequence 0 — Hom(M, L) — Aut(L & M) — Aut L x Aut M — 0 implies (2) since
Hom(M, £) = H*(X, ML) and H' (X, M~1L) = {0}, so Riemann-Roch theorem implies that
dim HO(X, M~1L) = deg(M~1L) + 1 — g. Further, if the invertible sheaf £ corrsponds to aOy,
then Aut £ consists of ¢ € A* which map the generic fiber F' onto itself (thus g € F*) and map
aOy onto itself (thus g € Oy ). Then Aut L = F* N Oy = Fy has cardinality ¢ — 1.

For (3), put £ = LOEM 5 L' @ M'. Since deg L > (deg&)/2 > deg M', we have Hom(L, M) =
{0}. Hence the image of £ under the isomorphism £® M = L' @® M’ lies in £'. Hence £ ~ L' and
M=EL~E/L ~ M. O

Assume g > 1, so that 2g — 1 > 1 (the case g = 0 is similar). The lemma implies
> JAwE T = (g - 1)?PiId(X)] > ¢ < oo

£eBuny™ /J n=>2g—1
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Corollary 3.8. If the Haar measure on GL(2, A) is normalized so that
| GL(2,04)| is a rational number, then |o? - GL(2, F)\ GL(2,A)| € Q.

This follows from the proof of the last proposition.

3.4. Elliptic elements.

Proposition 3.9. Let L be a quadratic extension of F, v € o% - (L* — F*) C GL(2,A), and
f € CX(GL(2,A)). Then the function x — f(zyx™') on GL(2,A)/a” - L* has compact support.

Proof. We need to show that the map x ~— zyz~' on GL(2,A)/a? - L* is proper (the preimage
of a compact is compact). Since (L ®r A)*/a”? - L* is compact, it suffices to show that the map
Y(z) = zyx~t ¢ GL(2,A)/AF — GL(2,A), is proper (A = L ®F A is the ring of adeles of L).

Lemma 3.10. Let F be a local field in this lemma. Suppose v € M(2,F) is reqular, i.e. the
subalgebra E = F[vy] generated by v is a field or is F' x F. Then the map ¥ : GL(2,F)/E* —
GL(2, F), x v xyx~", is proper. Moreover, if v € GL(2,0) and the ring O[y] is integrally closed,
then ¥~ 1(GL(2,0)) = GL(2,0)/E* N GL(2,0).

Proof. The conjugacy class C of « is a closed subset of GL(2, F'), since + is regular. So it suffices
to show that ¢ maps GL(2, F')/E* homeomorphically onto C. It is clear that 1 is continuous,
injective and Im = C. Tt remains to show that the map ¢’ : GL(2, F) — C, x — xyxr~!, is open.
For this, it suffices to show that C' is the set of F-points of a smooth variety C over F', and that
1’ is smooth, that is its differential is everywhere onto. Since C is a homogeneous space under a
connected group G is suffices to show that the tangent map di)’ of 1)’ at the identity is onto. When
verifying these properties of C and v’, we may replace F' with an extension, thus we may assume
that v is of the form diag(a,b) with a # b, or (&) (if E is nonseparable over F'). To compute the
tangent map dy’ : Lie G — T.,(C) of ¢/(z) = xyz~! near the identity z = 1, let Y be in Lie G, and
put z = 1+€Y, where €2 =0. Thenz! = 1—¢Y and ¢/(z) = (1+eY)y(1—€Y) = 1 +€e(Yy—~Y),
so dy/(Y) =Y~ —~Y is onto the tangent space T, (C) of C at +y, and ® is proper.

If » € GL(2,F) and zyz~! € GL(2,0), put M = 27'0% Then YM C M. In addition,
v € GL(2,0), so yO? C O%. Thus M and O? are Oy]-submodules in F2. Both modules are of
finite type. As 2 is a rank one free E = F[y]-module, and we assume that O[y] is integrally closed,
namely it is the ring of integers in £ = F[y], both M and O? are rank one torsion free over the
discrete valuation ring O[y] (being rank two over O). Hence there exists a € E* with M = aO?.
Thus zaO? = 02, that is za € GL(2,0). O

Now for 7 as in the proposition, for almost all closed points in X the component of o at v is 1,
v € GL(2,0,), and the ring O,[v] is integrally closed. This and the lemma imply the proposition.
O

3.5. Regularization of the unipotent terms. To study the integral which occurs in S4(f), we

regularize it as

Oa.7(t) = / f(a:z:_1 ([1) %):E)thﬁ(x)d:n.
oZ-FXN(F)\ GL(2,F)

Proposition 3.11. (1) For every f € C*(GL(2,A)) and a € A*, the integral 0, ¢(t) converges as
an element of C((t)), and Cr(q~"t) "0, (t) € C[t,t1], where (p(t) = [T,ex| (1 —ts) 7", b, = 198,
(2) If f is the characteristic function of GL(2,04) in GL(2,A), then

01,7(t) = |GL(2,04)] - (¢ — 1) "¢~ - | Pic®(X)|¢r(qg't).
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Proof. (1) It suffices to consider f(x) = [[, fo(zv), z = (2,,) € GL(2,A), where f,, € C°(GL(2, F}))
for all v € |X| and f, is the characteristic function f0 of GL(2,0,) at almost all v, since such
functions span C2°(GL(2,A)). Normalize the measures on F,* and F, so that (O] = 1 = |O,].
Denote by val,(z,) the valuation of x, € F,*, normalized by val,(m,) = 1. Define a function

hi : GL(2,F,) — Z by h ((§ ) k) = val,(a) — valy(c), k€ GL(2,0,).
Then h; is well-defined and ht™ (x) = > velx| bl (zv) deg(v). We have
s =18 1| 1/FIT Fulawa™ (§ 1)) ey,
FJN(Fy)\ GL(2,Fy)

Denote the local factor here by 6, ¢ (t,), where t, = tdeg(v)  To compute it, note that Doy =
diag(m)),1) (n € Z) make a set of representatives of the two sided coset space

FYN(F,)\GL(2, F,)/ GL(2,0,).

Then
buct (t) = Y12 [ Folave™ (51) 2)d
nez, Y FXN(Fs)pny GL(2,00)pn,0 \pa,w GL(2,00)
= Zt” F)N(F, ﬂpniGL(Q O )pn,v|1/ ) folawz ™t (§ 1) z)da
nez pr_L,v GL(Z’O’U)

= Z q "ty / fv(avypn,v ((13 %)pr:i;y dy = Z Tn(fo)a, "ty
GL(2,0,)

nez neZ
where 7,,(fy) = fGL 2.00) folayy (1 ”") y~Ddy is 0 if n << 0 and 7,(f,) = fo(ay,) for n >> 0.

If a, € O and fv is the characteristic function of GL(2,0,), then 7,(f,) = | GL(2,0,)| for
n >0 and u,, =0 for n <0, so

Oa, .1, (ts) = | GL(2,00)|(1 — to/qu) ™
(2) It remains to compute (note that [Of| =1 and |Oa| = 1) :

[AXN(A)/a“F*N(F)| = (|A* Ja®F*|/|O)(IA/F|/|Owl).

The exact sequence 1 — F X — Of — A*Ja?F* — Pic X/a”(= Pic’(X)) — 1 implies that the
first factor on the right is | Pic’(X)|/(¢ — 1). The exact sequence 0 — F, — Oy — A/F —
H'(X,0x) — 0 implies that the second factor on the right is ¢9~!. O

4. INTERTWINING OPERATORS AND EISENSTEIN SERIES

4.1. Intertwining operators. Let E be an algebraically closed field of characteristic zero, and
v € | X| a closed point of X. Denote by |a|, the absolute value of a € F* normalized by |m,| = ¢, *.
It is an E*-valued character of F. Fix a square root ,/q = ¢/2of gin E. If E c C we
choose ¢'/2 > 0. For E-valued characters pi1, po of E) denote by I(u1,p2) both the space of right

locally constant functions ¢ : GL(2, F,)) — E with ¢(( 4 abz) x) = \al/ag|11/2u1(a1)u2(a2)¢(x) (x €

GL(2,Fy);a1,a2 € FJ;b € F,), and the action of the group GL(2, F,) by right translation on
I(p, ,ug). The induced representation I(u1, p2) is admissible by the Iwasawa decomposition G =

1/2 1/2
|- 10 ),

in whose definition the factor |a1/a2|11,/2u1(a1)ﬂg(a2) becomes |aq|yp1(ar)pz(az), but later we shall

need to multiply back by | - |;1/2

BK. It is unitarizable when p1, po are unitary. It is possible to work with I(] -

The following is a standard basic result.
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Proposition 4.1. If pui/ps # | - |v, | - |, ', then the representations of GL(2,F,) in I(u1,ps)

and I(po, p1) are irreducible and isomorphic. If p1/pus = |- |o or |- |1 then I(uy, ) contains
a unique proper invariant subspace I'(u1, u2) and there is a GL(2, F,)-isomorphism I'(u1, po) =~
I(po, p1) /I (o, pa). If pa/pa = | - v, the subspace I'(uq] - \;1/2,u1| . 11/2) is one dimensional;

x € GL(2, F,) acts on I'(u1] - ];1/2

(o) - 10/, pal - ;M%) is denoted by St(uz) = St(us| - [}/%, p2 - [;1/3).

N ]11,/2) via multiplication by pi(x). The subspace

It is isomorphic to I(ua| - ;1/2,u2] : 11,/2)/.[/(,[1,2| . ];1/2,,u2| . \11,/2). It consists of
6 € ol |2 pal- [ with [ pa(dera)o(e)ds =0
GL(2,00)

If I(pa, p2) == I(py, ) then {pn, pe} = {uy, po}, the representations I(p1, p2) (pa/p2 # |- |0 or
|- |5Y) and St(uh) are infinite dimensional and inequivalent, and St(u1) ~ St(uz) implies 1 = .

We proceed to describe the operator intertwining (1, p2) and (g, p1).
Proposition 4.2. If |ui(m,)/ua(my)| < 1 the integral

W@@=LM@#HHMW

v

converges for each ¢ € I(pu1, pe) and x € GL(2, F,), and M@ € I(u2, p1).

Proof. As (1) (3Y) = (ygl _yl> (yll ?), the integrand is

pe )l e (L4 9) 7).

which is 0 if |y|, is small, and u2(y)p1 (y) ~|yl, té(x) if |y|, is big enough. For sufficiently large n
then the part of the integral over |y|, > ¢if is bounded by ¢(z) times

2 W)/ ()] - yly 'y = 101> | () /pa () |F < oo,

k>
[ylv>qR =n

It is clear that (M¢)((§§)z) = (M@)(x) (c € F,) and (M¢)((&9) z) equals

1/2
[ o520 (34#) vy = st |

b

:

(M¢)().

v

We obtained, if |p1(my)/pa(my)| < 1, a GL(2, F,,)-equivariant map

M = M(p1, p2) = I(p1, p2) — I(p2, p1)-

Let vy be the unramified character of F* with vy(m,) = t. Put M(u1, pe,t) = M (pive, povi-1).
It converges for any pq, g, provided t € C is small enough in absolute value. To define M (1, u2)
as the value at ¢ = 1 of the analytic continuation of M (1, u2,t), we need these operators to be
defined on the same space, which we will take to be

Io(pir, p2) = {¢ € C®(GL(2,00)); 8((4 2 ) @) = pn(a1) pa(az)d(x),
aj,az € OF, be O,, =€ GL(2,0,)}.

By the Iwasawa decomposition G = BK, the restriction map I(puivy, pove-1) — ILo(p1, pe) is bi-
jective for any t. Identifying these spaces, the operator M (1, pe,t) becomes a map Io(pu1, p2) —
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To(p2, p1). Write L(p,t) for (1 — p(m,)t)~t if p is unramified, and L(p,t) = 1 if p is a ramified
character of F).

Proposition 4.3. The operator valued function M (u, u2,t) is rational int € C*. In fact the func-
tion t — L(py/po, t2) "YW (M (p1, po, t)d)(z) is a polynomial int for all ¢ € Io(p1, o), © € GL(2,0,).
If p1,pa are unramified and the restrictions of ¢ € I(uyvy, povy—1) and v € I(povy—1, puivy) to

GL(2,0,) are 1, then M (u1, pa,t)d = %w

Proof. Put ¢ = M (u1, u2,t)¢ and a1 = flylvél gi)(( 1 _y ) z)dy where z € GL(2,0,). Then

¢i(x) = a1 + /yl >1u2(y)u1(y)’1\y!;1 y) %0 (( 1 1) w) dy.

We shall show that this is the Taylor series of a rational function.
If n is large enough, ¢ (<y11 ?) :1:) = ¢(x) for |y|y, > ¢} Then ¢(z) = a1 + az(t) + as(t) with

w®) = [ ) ) (4 ) <) b
az(t) = ¢(x)/| N () ()~ ylore(y)~*dy.

Clearly a(t) is a polynomial in ¢ (since vy ("
If p1, po are unramified and = € GL(2,O,),

blr) =1 + / ) ) 2y
= 1= (=g ) S () a2

)"t =1t) and a3(t) = ct? L(pu1 /pe, t2).
a; = 1 and the expression for ¢;(x) is

k>1
= 1+ (1 — qgl)(ul(ﬂv)//iQ(ﬂ'v»tZ _ L(Ml/MQ,tZ)
1 — (pa(my)/po(my))t? L(u1/p2, o 't2)

0

The operator M (p1, po,t) : I(pive, povi—1) — I(povi—1, pivy) intertwines the GL(2, F,,)-modules
for every t where it is defined. It can be regarded as a rational function of ¢ (in fact, of #?) with
values in the set of operators Io(u1, u2) — To(p2, p1). Indeed,

M (p1, po,t) = M(pave, povi—1) = M(puivge, o).

Define s
(Ml/HZ: q, t )
R(/'Llnuaa ) - S M(Mlaﬂ%t)-
L(pa/ 2, t?)
Corollary 4.4. Suppose 1 and pg are unramified and ¢ € I(pivy, povi-1), ¥ € I(uavp—1, u1vy) are
the functions whose restrictions to GL(2,O,) are one, then R(p1, p2,t)p = 1. O

Given characters pi, pe of A*, write I(u1, pe) for the space of right locally constant functions ¢
on GL(2,A) which satisfy

¢ (%6 2)x) = p(a)pa(az)larfas] Pp(x). Put  v(a) = ¢,

Then I(p1, p2) is the restricted tensor product of the spaces I(fi1y, pi2,) Wwhere g, is the component
of p; at v (the restriction of p; to F < AX); it is spanned by ®y¢, with ¢, € I(u14, p2,) for all
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v and ¢,| GL(2,0,) = 1 for almost all v, where u;,|O)S = 1, i.e. p;, are unramified. Define the
character v; of A by v(a) = t9°8(®). Then the restriction of v; to F,* is v4,, the unramified character
of FX with vy, (m,) = t,(= t98(")), As in the local case, we identify the spaces I(u1vy, prov—1) with
Io(p1, po) for all ¢. The operator R(p1,po,t) from I(uivy, povi—1) to I(pevy—1, uivy) defined by
R(p1, po,t) = @y R(p10, 20, ty) is rational in t. On any element in (v, pav;—1) at most finitely
many components R(pi1y, poy, ty) do not act as the identity. Also write m(u,t) for L(p,t)/L(p,t/q).

4.2. Eisenstein series. Write A, = C*®(a? - GL(2, F)\ GL(2,A)),
Aee = CZ(0® - GL(2, F)\ GL(2,A)), Y = A(F)N(A)\GL(2, A)
and Y, = Y/a”. Normalize the Haar measure on N(A) ~ A by [N(A)/N(F)| = |A/F| = 1. The
Haar measure on N(A) is invariant with respect to conjugation by the elements of A(F') by the
product formula. So it extends to a two-sided invariant measure on the space a”- A(F)N(A). This,
and the two-sided Haar measure on GL(2, A) induce an invariant measure on Y.
Let ¢ and % be locally constant functions on Y, at least one of which is compactly supported.

Put (¢,9) = [} o(x)(x)dz. On o - GL(2, F)\ GL(2,A) a scalar product is similarly defined.
Define the map E* : A, — C*>(Y,) by

O dn, on(x)= / ¢(nx)dn, =z € GL(2,A).
N(F)\N(4)

Note that N(F)\N(A) is compact, so the integral converges. Note that ker E* is the space Ag o of
cusp forms invariant under a.. For any f € C°(Y,,) define a function Ef on o”-GL(2, F)\ GL(2,A)
by

(Ef)(x) = > fyz), =€ GL(2A).

YEA(F)N(F)\ GL(2,F)

Proposition 4.5. The sum defining (Ef)(x) converges. For f € C®°(Y,) and ¢ € A, we have
(Ef,¢) = (f.E*¢).

Proof. Consider the diagram
Y, & of - A(F)N(F)\GL(2,A) 3 o . GL(2, F)\ GL(2, A).

Since N(F)\N(A) is compact, the map r is proper. Hence the natural embedding r* maps C2°(Yy)
to C°(a” - A(F)N(F)\ GL(2,A)). Given

¢ € CF(aA(F)N(F)\ GL(2,4)),
define a function s, on o GL(2, F)\ GL(2,A) by
(s«p)(2) = > Y(yx), e GL(2,A).
~EA(F)N(F)\ GL(2,F)
The sum is finite since 9 is compactly supported, and
5. € C°(af GL(2, F)\ GL(2,A)).

The sum which defines (Ef)(z) converges since E = s,r*.
Now define E* = r,s*, where s* is the natural embedding, and

ry: O (o A(F)N(F)\ GL(2,A)) — C®(Ya)

is defined by (rih)(z) = fN(F)\N(A) h(nx)dn, x € GL(2,A). Since (r*,r,) and (s, s*) are adjoint
pairs, so is (E = s,r*, E* = r,s%). O
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The image Ap o of the Fisenstein map E = s,r* : C(Y,) — Acq is called the Fisenstein part

of Acn. The maps I and E* intertwine the GL(2, A)-action; AE o is an invariant subspace of A 4.
Proposition 4.6. The space A. o is an orthogonal direct sum of the space Ag o of cusp forms and
of Ag.a-

Proof. Cusp forms are compactly supported. Since Ag, = ker E* and Ag, = im E, we have

Ao L Ap . Given a compact open subgroup U in GL(2,A), put AY for the space of U-invariant
functions in A,, and

AU, =AcaNAY, Af,=A0anAY, AL, =Ap.nAl.
It remains to show that Ag ot A% o= Aga. If not there exists a nonzero linear form ¢ : Aga —C
which is zero on Af, + A%a. There exists f € AY such that £(¢) = (¢, f) for every ¢ € AY,,. For
any U-invariant function ¢ € C°(Y,) we have (¢, E*f) = (Ev, f) = ¢(Ev) = 0. Hence E*f =0,

thus f € A(I){ o This however is impossible since f is orthogonal to the space A§ o Of U-invariant
cusp forms. ]

Given ¢ € CX(Y,) and z € GL(2,A), put (M¢)(x) = fN(A) ¢((9 5') nz)dn. The integral
converges, by
Proposition 4.7. The map N(A) = Y, n— o A(F)N(A) (9 ') na, is proper.
Proof. 1t suffices to consider the case of z = 1. The function
ht*:Y, = Z, (o8)k+— dega — deghb,
is continuous. Thus it suffices to show that the map ¢(a) = ht™((9 ') ( ), ¢ : A — Z, is proper.
But ((lJ *01) ((1)(11”) is in GL(2,0,) if |ay|, < 1; otherwise it is = ( v ;j) ((%1 (1)) If a = (ay),

then ¢(a) = —2 3 max(0,log, |ay|y), as log, |a,|, = — val,(a,) deg(v). Hence ¢ is proper. O

By definition,  + (M¢)(x) is invariant under left translation by N(A), and also by o - A(F).
Indeed,

M(35)0) = [ o2 n (8 @y = 5] [ a((82) (27) na)an

N(zZ)

and |a/b| = ¢°8(¢/?). Thus M maps C°(Y,) to C®(Y,,).

Proposition 4.8. Denote by I the natural embedding of C°(Yy) in C>°(Yy). Then
E*E =1+ M.

Proof. By the Bruhat decomposition an element of GL(2, F') outside A(F)N(F') has a unique
decomposition nia (§ ') ne with n; € N(F), a € A(F). Thus, for any ¢ € C°(Y,), © € GL(2,A),

we have
(E¢)(z) = > d(yz) = o(x)+ Y o((373") va).
~EA(F)N(F)\ GL(2,F) VEN(F)
Hence
E*E¢)(x) = |N(A)/N(F)|¢p(x 0=1) ynz)dn
(E"E¢) () [N(A)/N(F)[o( )+/N(F)\N(A>Ve%(:p)¢((l o) vnz)

= 6(z) + /N QT i = o)+ (Vo))
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Proposition 4.9. Let pi, ps be characters of A*/F*. If t is sufficiently small, for all ¢ €
I(pive, povi—1) and © € GL(2,A), the integral (M (pu1, p2,t)9)(z) = fN(A) o((9 ') na)dn converges

and defines a function in I(uov,—1, pvy). Moreover, M (pu1, 2, t) = ¢*~Im(pu1 /pa, t2) R(u1, po, t).
Proof. Recall that |a| = ¢9°8(®) and that I (1, u2) consists of the ¢ in C°°(GL(2,A)) with
(4 o) w) = a1 /az|"? p1(ar) pa(az) p(x),

while v(a) = t4°€% We put t, = t48("). We may assume that ¢(z) = [, do(2,) with ¢, €
I(p1ovn,, povvy—1). For almost all v, the restriction of ¢, to GL(2,0,) is 1. We may replace
¢v, Wi, t by their complex absolute values to assume t > 0 and ¢,, y; take real nonnegative values.
Then (M (p1, po,t)¢)(x) = c[], 7, with 7, = fN(FU) ou((9 ') nay)dn = fFv ¢u((¥ ') zy)dz. The
measure dn, on N(F),) is normalized by |[N(O,)| = 1, and ¢ = |[N(A)/N(F)| in the measure ®,dn,
on N(A).

We saw that for small enough ¢ the integral which defines 7, converges for all v. For almost
all v we have 7, = L(u1v/20,12)/L(p10/ 1120, g, 't2), so the product [I, 7o converges for small t.

. 2
Now M (p1, p2,t) = c[[, M(pt1v, pr2v, tv). Each factor here is %’%R(ulv,ugv,tv). Put

R(p1, p2,t) = @y R (10, p2v, ty), and m(pu,t) = Lé(_’ﬁ’:?“), where L(p,t) =[], L(tw, ts). Note that c
is |O| = ¢'79, using 0 = F, - O = A/F — H'(X,0x) — 0. O

It follows (since L(u,t) is a rational function of t) that after identifying the spaces I(uvy, pove—1)
for all ¢, the operator

M (p1, 2, t) = I(pave, povi—1) — I(pavp-1, pave)

(defined for small ¢) depends on ¢ rationally. Hence M (pu1, p2,t) is defined for almost all ¢, and it
commutes with the action of GL(2, A).

4.3. L-functions. Let us review the theory of L-functions for GL(2). Let E be an algebraically
closed field of characteristic zero. The valuation val,(a) of a € F)* is the largest integer n with
a € m'O,. For any character ¢ : F,, — E* 1 # 1, let r(¢) be the largest n such that (7, "O,) = 1.
Normalize the Haar measure on F, by |O,| = 1. The conductor of a character x : ) - EX isn =0
if x(O)) =1, i.e., x is unramified; otherwise it is the smallest n > 1 such that x(1 4+ wO,) = 1.
Given y, put L(t,x) = (1 — x(m,)t) "1 if x is unramified, L(¢,x) = 1 is x is ramified. Given v # 1,
put

L(x,¥,t) = / s (@) (@)t @ dg, o Fy — EX.

This I'(, 1, t) is a formal power series in ¢ which contains positive and negative powers of ¢. Tate’s
thesis (see [Lg94], VII, section 3-4) establishes

Proposition 4.10. The formal series T'(x,1,t) has finitely many positive powers of t. It is a
rational function of t, namely a Laurent series of a rational function of t at t = co. Put e(x,¥,t) =

%@‘{jﬁ%. It has the form c(x, V)" If r(1p) = 0 then n(x,) is the conductor of x. If

in addition x is unramified then e(x,¥,t) is 1. If a € F)} ¢.(z) = (ax), then e(x,Vq,t) =
x(@)(gut)™@e(x, 9, 1).

Note that L and e are usually considered, in the case where F = C, as functions of s, where
t = g, °, rather than of ¢{. The Haar measure on F), is usually normalized by |O,| = qu» rw)/ 2, as
this measure is self-dual with respect to the pairing F,, x F, = E*, (z,y) — 1 (zy). This choice of

measure is not convenient if F¥ # C since E has no distinguished square root of q.
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Given a character x of A*, denote its restriction to F,* by x,. The restriction to F}, of a character
1 of A is denoted 1,. For a closed point v of X, we write deg(v) for the dimension of the residue
field at v over Fy, and ¢, = q4°8(") | Given a character x : AX/F* — E*, put L(x,t) = IL, L(xv, tv),
where t, = t3°8("); the product converges in E[[t]]. Let ¢ : A/F — E* be a character # 1. Then
e(x,t) = ¢ 911, e(Xov, tv, ty) converges as almost all factors are 1, and (x, t) is independent of ¢
by Proposition 4.10.

Proposition 4.11. For any character x : A*/F* — E* the formal series L(x,t) is rational in
t, and L(x,t) = e(x,t)L(x~', ¢ 1. If the restriction of x to the group of x € AX/F* with
deg(z) = 0 is nontrivial, then L(x,t) is a polynomial. If the restriction is trivial, x is given by
x(z) = ud®E@) and then L(x,t) has precisely two poles: t = u=' and t = ¢~ 'u~", both poles are
simple. If x : AX/F>* — C* is a unitary character (|x(x)| =1 for all x) then the zeroes of L(x,t)
lie in the doughnut {t € C;q~! < |t| < 1}.

The proof of this is also in [Lg94], Chapter VII, sections 7-8. The following is due to [W45].

Theorem 4.12. (A. Weil). For any unitary character x : A*/F* — C*, all zeroes of L(x,t) lie
on the circle |t| = ¢~ /2.

Given a character ¢ : A/F — E* ¢ # 1, let W (%) be the space of locally constant functions
¢ : GL(2,F,) — E with ¢(({ #) z) = ¢(2)¢(x) for all z € F,, x € GL(2, F,,). The group GL(2, F},)
acts on W (1) by right translation. Fix a Haar measure d*x on F,*. For any ¢ € W (%) put

250 = [ S(E@ D, Aol = [ (2@t

Both Ag(t) and A,(t) are formal power series in ¢, containing positive and negative powers of ¢.

Let m be an irreducible admissible representation of GL(2, F,) over E. Then 7((%9)) is the
operator of multiplication by a scalar n(a) € E*. The character n : F* — E* is called the central
character of .

Proposition 4.13. Let m be an irreducible admissible infinite dimensional representation over E
of GL(2, Fy). Let n be the central character of m. (1) There exists a unique GL(2, F,)-invariant
subspace W (m, 1)) of W (1)) equivalent tow. (2) If ¢ € W (m, ) then Ay(t) is the Laurent series att =
0 of a rational function, and Ay(t) is the Laurent series at t = oo of a rational function. (3) There
exists a nonzero polynomial P € E[t] such that for any ¢ € W (m, 1) we have P(t)A4(t) € Et,t71].
There exists ¢ € W (m,4) with Ag(t) # 0. (4) The quotient Ay(t)/Ay(t) of rational functions in t
does not depend on the choice of ¢ in W (m, ) with Ag(t) # 0. (5) The lowest degree polynomial
P € E[t] which satisfies (3) and P(0) = 1 is independent of ¢. (6) Put T(m,1,t) = Ay(t)/Ay(t)

and g(m,,t) = % where L(m,t) = P(t)~! with P of (5). Then e(m,1,t) has the

form c(m, )" c(m ap) in EX and n(m, 1) in Z. (7) If Ya(x) is ¥(ax) for a € EX, then
e(m, Yast) = n(a)(gut)> M @e(m, 4, 1).

This is [JL70], Theorem 2.18. Our L and ¢ relate to those L;1, €1, of Jacquet-Langlands by
Ljp(m,s) = L(m,ty), ty, = ¢,°, ejp(m,,s) = e(m,,t,). Note that the proof of [JL70], which
claims that Ay(t) is a Laurent series of a meromorphic function in C — {0}, shows that Ay(t)
is rational. In general, the meromorpic functions of s over p-adic and global function fields are
rational functions of ¢°. Every smooth finite dimensional irreducible representation of GL(2, F},) is
one dimensional, of the form = — x(det x), where x : F,* — E* is a character ([JL70], Proposition
2.7).
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Proposition 4.14. Let w, ©' be irreducible admissible infinite dimensional representations of
GL(2, Fy,) with equal central characters. If there is a character ¢ : F, — E* such that for ev-
ery character w : F — E* we have T'(mw, ¥, t) = T'(7'w,,t), then 7 ~ 7.

For a proof see [JL70], Corollary 2.19.

The conductor of an irreducible admissible infinite dimensional representation m of GL(2, F},) is
the integer n (7, 1), with ¢ normalized by r(¢)) = 0. It is well defined, as from (7) above, the integer
n(m, ) of (6) is not changed if ¢ is replaced by 9, : © — ¥ (ax).

Proposition 4.15. The conductor of 7 is the least integer n such that the representation space
of ™ contains a nonzero vector invariant under the group H, = {(2Y) € GL(2,0,); ¢ € ®O,,
d €1+ x"0,}. For this n, dimpwi» = 1.

For a proof see Casselman, Math. Ann. 201 (1973), 301-314.

Proposition 4.16. Let m be an irreducible admissible infinite dimensional representation, with
central character n, of GL(2, F,). Let i : F,, — E* be a nontrivial character. Then there ezists an
integer my such that if x : F, — E* is any character with conductor > my, then L(mx,t) =1 and

e(mx, b, t) = (6, s )e(xm, &, qut) g, ",
For a proof see [JL70], Proposition 3.8. See [JL70], Proposition 3.5, 3.6, for a proof of:

Proposition 4.17. Let ju1, po be characters of F.*, and v # 1 a character of Fy,. If u1/us # |- |
then L(I(p1, p2),t) = L(pa,t)L(p2,t) and

(I, p2), s t) = €1, 1, t)e(pa, ¥, t)g, "),

If pa/pa =1+ lv, then
L(St(ul - [, | - /%)) = Ll - /%, ),
~1/2 1/2 Lt e
e(St(pal - [y /% ml - [,/5),,t) = e(pr, s el - o s t)ay ™.
L(Nlat)

If m is a cuspidal representation of GL(2, F,) then L(w,t) is 1.

Recall that an irreducible admissible infinite dimensional representation m of GL(2, F}) on a
vector space V is called unramified if its space VX of K = GL(2,0,)-fixed vectors is nonzero. In
this case VX is one dimensional, and 7 = I(yy, po) with unramified 1, po and /s # | - |71

Corollary 4.18. Let w be an unramified irreducible admissible infinite dimensional representation
of GL(2, F,) and ¢ # 1 with r(¢) = 0. Then e(m,¢,t) = 1.

Proof. Here m = I(pu1, p2) with unramified pq, p2, so the claim follows from the last proposition
and Tate’s Thesis. O

Let m be an admissible irreducible representation of GL(2,A) whose local components are all
infinite dimensional. Put L(m,t) = [[, L(my, ty), t, = t38®); the infinite product converges in
E[[t]]. For any character ¢ : A/F' — E*, ¢ # 1, put e(m,¢,t) = [[, €(7y, v, ty); almost all factors
here are 1. From (7) it follows that if the central character of 7 is trivial on F'*, then e(m, 4, t) is
independent of the choice of ¥ : A/F — E*. We denote it in this case by &(m,t).

Theorems 11.1, 11.3 of [JL70] assert:

Theorem 4.19. Let w be an irreducible admissible representation of GL(2,A) over E. Denote by
n : AX — E* its central character. Then w is cuspidal iff (1) n is trivial on F*; (2) all local
components of w are infinite dimensional; (3) for any character w : A*/F* — E*, the formal
series L(mw,t) is a polynomial in t, and (4) L(nw,t) = e(nw, t)L(an~tw™!, ¢ 2t 1).
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Note that (4) makes sense due to (3). In [JL70], (3) is formulated as stating that the product
[1, L(mywy, ty) converges absolutely for sufficiently small ¢, and its value has an analytic continua-
tion to a holomorphic function in C—{0}. But the argument of [JL70] can be modified to lead to (3)
in our case of E which is not C, over a function field F'. Note that (4) is not [ [, I'(mywy, ¥y, ty) = 1;
indeed the product here does not converge.

Proposition 4.20. If m, ©’ are cuspidal representations of GL(2,A) and m, ~ 7, for almost all v,
then m ~ .

Proof. Let S be a finite set of closed points of X with m, ~ 7, at v € S. Let n, ' be the central
characters of 7, n’, and 7,, 1] their components at v (restrictions to F,*). By our assumption,
n, = ny for all v € S. But the groups F,*, v ¢ S, generate a dense subgroup of A*/F*. Hence
17’ = n. By the Theorem 4.19, of [JL70], above, fixing a character ¢ : A/F — E* 1 # 1, for any
character w : A*/F* — E* one has

HL(vavatv) = He(ﬁvwva¢vatv)L(anglw;17qg2t;1)v
v

v
HL(W;antU) = He(ﬂ-fluwva’(bvatU)L(ﬂ-;n;_lwljlﬂqu_Ztljl)'
v v

Since m, ~ 7, at all v € S, we conclude

t )L -1, ,—1 Qt—l
HP(vav,l/Jv,tv): Hg(ﬂvwv,ﬂ)v, v) (771)771, Wy 5 Gy "ty )

veS veES L(mowy, to)

_ (7w, Wy, to ) L(mhnl ~Lwy g2t t) B /
N H L(ﬂ-;wvatv) - H F(ﬂ'va,’lﬁv,tv).

veS veS

Since n = 7/, it follows from Proposition 4.16 that for each v € S there exists m, > 0 such that if
X : F — E* is any character whose conductor is > m,, then T'(m,x, ¥y, t) = T'(7) x, ¥y, t). Fix
v € S and a character x of F,*. By Proposition 4.14, it suffices to show I'(m,x, 1y, t) = T'(7) x, ¥y, t).
For this, it suffices to choose a character w : A*/F* — E* in the last displayed equation with
wy = x and such that for each u € S — {v}, the conductor of w, is bigger than m,. But the group
H = F; [l ,es-{v) Ou maps isomorphically and homeomorphically onto its image in A* /F. Hence
any character of H extends to a character of A*/F*. O

Proposition 4.21. Let n be a character of A*/F*, S a finite set of closed points of X, v # 1 a
character of A/ F with r(¢,) = 0 for all w in S. Suppose that for any closed point v € | X|— S, m,
is an irreducible admissible infinite dimensional representation of GL(2, F,) with central character
My such that almost all 7, are unramified, there is no pair pi,us of characters of A*/F* with
Ty = T(W1v, P2v) for almost all v € | X|— S, and for any character w of A* /F>* which is unramified
at all points of S, the formal series [[,yq L(mywy,tv) and [],q¢ L(myny wyt t,) are polynomials,
and there exists a number ¢ € E* and integers n,, > 0 (u € S) such that

H L(myway, ty) = ¢ H (w(mry)ty,)™™ H (Towy, Yo, to ) L(memy twy b, g 2t ).

vgS ues vgS

Then there exists a cuspidal representation © of GL(2,A) with central character n such that for
every v € | X| — S the local component of m at v is m,.

A proof is in [JL70], Theorem 11, Corollary 11.6, proof of Theorem 12.2.
The representation 7 is unique by Proposition 4.20.
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4.4. Intertwining again. We can now return to the study of the intertwining operators.

Proposition 4.22. Let p1, ug be characters of F,. Let ¢ # 1 be a character of F,. Then

— 1 — 2 _1,—
R(Ml?/’t27t>R(,U/27,u’17t 1) =¢& (Zza » Qy 1t2) € (Zl,quv 1t 2) .

Proof. By the transformation formula for the e-factors, the right hand side does not depend on ).
We then choose 1 with kery D O, and ker 2 m,'0,. We can rewrite the asserted equality as

M(Mlaﬂ%t)M(:uQalulat_l) =T <M7 7Q1)_1t2> r <Iu27'¢7qglt_2> .
M1 241
The restriction map I(p1, po) — I(p1/p2), where
11) = {1 € €=U F)): £ (810 ) ) = m@)lalf @)},

is an isomorphism (u : F)* — E* is a character). The group SL(2, F,) acts transitively on F2 —

{(0,0)} on the right. The stabilizer of the vector (0,1) is N(F,). Then N(F,)\SL(2, F,) can be

identified with F2 — {(0,0)} by (24) + (¢,d) € F2 —{(0,0)}. Using this we identify I(u) with
V(i) = {f € C¥(F; = {(0,0)}); f(az) = p(a) al, f(2),a € F'so € Fy ={(0,0)}},

so I(u1,p2) with V(u1/u2). The operator M (ju1, pa,t) corresponds to the operator M (u1/ua,t?)
where

M(uss) : Vi) = V(- wyr), (M s)f) () = /{ o
Y;TN\Y=

Here A denotes the symplectic form (a,b) A (¢,d) = ad — bc on F2. The measure on the line
by = {y € F%,2 Ny = 1} is transferred from the Haar measure on F), via the map F, — £, given
by a +— yo + ax where g is a fixed point on £,. So we need to show:

M(p,s)M(p~t, 571 =T, v, g5 ' s)D(uH 5171,
For sufficiently small s € C* define operators A; : C°(F2) — V(uvs) and Bs : CP(F?) —
V(p~tvs) by
(Asf)(x) = . flax)p(a)vs(a)da, (Bsf)(x) = : flaz)p(a)~ vs(a)da.
Restriction defines an isomorphism V' (uvy) — Vo(u), where

Volp) = {f € C=(07 = {(0,0)}); f(az) = u(a)"' f(z), x € OF = {(0,0)}, a € O},

so we can identify the spaces V (uvs) as s varies.

The operators As; and B, defined above for small s, depend rationally on s. Hence they can be
extended to all s.

Consider the Fourier transform

F:CR(F2) = CR(F2),  (Ff)(y) = /F @)l Ay

Lemma 4.23. We have M (u,s)As = T(u=t, 9, q, s B, F,
M(pt,s7)Byor =T, 1, q; ') ALF.
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Proof. Given f € C®(F?), z € F? —{(0,0)}, we first show

D™, ay s ) (B Ff) () = (M(u, 8)Asf) ().
The operators F, A, Bs commute with the action of SL(2,F,). This action is transitive on
F2 —{(0,0)}, so we may assume z = (0,1). We compute

(B Ff)((0,1)) = /(Ff)(( a))p(a) " vs-1(a)da,
(Ff)( /fy, (ya)dydz = $(—a),

@ = [ewitvady, o) = [ f2)d:

Tate’s functional equation (see [L], VII, section 3-4) is

F(u1,1#,%181)/@(a)u1(a)vs—1(a)da= /sa(y)u(y)vs(y)dy

lyl’
(Formally this Can be deduced from the definition of the I'-function and the inversion formula
= [ ¢(a)y(ay)da. However the left side converges for large |s|, while the right for small |s]|,
so one has to show both sides are rational in s).
We conclude that the left side of the equation to be shown is

[ ewut-vmty W|wy—//f% Yoyl dydz

while the right side is (recall: z = (0,1), s Y,2) = —y)
/(Af 1zdz—//f —y,yz)u(y)vs(y)dydz.
The proof of the second identity of the lemma is similar. O

The inverse Fourier transform coincides with F since the form (x,y) — x Ay in the definition of
F is skew-symmetric. Hence F? = 1, and it follows from the Lemma that

M(p, )M (=", 57 ) Byt = T, 0, gy )T (w40, ¢, s 1) By,
2

However, the operator By-1 is onto for those s where it is defined (even its restriction to C2°(F; —
{(0,0)}) is onto), as V (uvs) is irreducible, so the proposition follows. O

Proposition 4.24. For any characters pi, pa of A*/F* we have
M (p, pa, )M (p2, p1,t71) = 1.
Proof. From Proposition 4.21, M (1, p2,t) M (p2, o, t=1) is equal to
¢* 29 m(pa / po, t*Ym(pa/p, t ) R(pa, pa, t) R(pa, p, t1),
while Proposition 4.22 implies, for any character ¢ # 1 of A/F, that
R(p1, p2, t) R(pg, pr,t)
is

H[S(Mlv//,@v,wy,qv U) (,UQU/,Ufl'mwlan 1t 2)]

v

9% e(pa /p2, q e (pa /i, g7 HR).
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As e(x,t) = ¢" 791, e(xw, ¥u, ty) satisfies the functional equation L(x,t) = e(x,t)L(x~1, ¢ 1t 1),
we have that
(i /p2, g~ ) e(pa/pr, g~ 2 )ym(p /pa, )mpz/p, t72),
which is equal to
e(u1/p2, ¢ ') Lpa/p1,t?)  e(pa/p2, q't*) L{p /2, %)
L(p1/p2, g~ 1t?) L(pz/p,q71t72)
is equal to 1. O

4.5. M? =1 via Mellin transform. We shall next study the relationship between M : C°(Y,) —
C>®(Yy) and M (uq, p2,t) = I(pavt, pov=) — I(pov~t uivt), and conclude that M? = 1. Both
are defined by the same integral formula. Here p1, up are characters of AX/F* . o%. Put

n((a9)) = g1 (@) po(b)|a/b|Y vy (a/b), 0 ( )JA(F) - a® — E*, it is a character. Recall that
Y, = o N(A)A(F)\ GL(2,A) and (Mf fN(A ((§ ') na)dn. Suppose that f € C(Ya),
and t € E*. Define a function T'(f, p1, p2, ) GL(2,A) — C by
T (o) = | fla™ 2)n(a)d"a.
o? A(F)\A(A)

Then T(f, u1, o, t) € I(pivy, pov—y) is called the Mellin transform of f. The notation T can be
used also when f € C*(Y,) is not compactly supported, whenever the integral converges.

Proposition 4.25. For ¢ € CX(Y,), characters ui,po : AX/F* -a” — E* and large enough
t € C*, the integral defining T converges, and T(Mo, p1, 2, t) = M (p2, p1,t~ )T (@, pa, 1, t71).

Proof. By definition,

T(f, iz t)(@) = [ [ F(59)7 2 @pa(8)la/o 2 va(a 0y ads
Put f = Mo, so f((gg)f x) = \b/a|fN(A) 4,0((88)7 (Y 4') n@)dn. Hence T(f, ju1, p2, t)(z) equals
/// (20)7 (9 H) na)pa (@) pa(b)[b/al ?vy(a/b)d* ad* bdn

= / T (¢, piz, i1, t~ ) (9 ) na)dn = (M (po, pa, t™ )T (0, p2, pa, t 1)) ().
N(A)

If ¢ is large enough, the integral which defines M (uso, p11,t~ 1) converges, and so is the integral which
defines T'(f, 1, p2, t), which justifies the computation. O

Proposition 4.26. If p € C(Y,) then My € C®(Yy). If Mp € C(Y,,) then M*p = .
Proof. Put f = My and h = M f = M?y (h is defined if f € C>°(Y,)). By Proposition 4.25,
T(hnulu/'b%t) = M(N27M17 ) (fa H2y o1, 1)7
T(f’ M?),ulvt_l) — M(,U’lnu27 )T(QO)MLHQ’ )

The first equation holds only for large enough ¢, and the second only for small enough t. However,
both sides of the second equality depend rationally on ¢ (for the left side, this is true since f = My
is compactly supported), hence it holds for all ¢ in C*. Hence for large enough ¢, by Proposition
4.24 T(h, p1, pa,t) = T(p, p1, po,t) for all uy, pe. This implies h = . O
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4.6. Poles, zeroes and values of R and M. Recall that v;(z) = t4°8(®) is a character of A% /F*
with v(m,) = t, (= tdeg(”)), and locally we write 14 for the unramified character of F* with
Vt(ﬂ'y) =t. )

Let p1, 2 be characters of F*. Recall: R(u1, u2,t) = %M(m,ug,t).

Proposition 4.27. (1) The function R(u1, pa,t) is reqular at t = 0.

It has a pole at T € C* iff psv.—1/pvy = v (with v(mw,) = g, ). This pole has order 1.

The function R(p1,p2,t)~ has a pole at 7 € C* iff pyv, /pov,—1 = v. This pole has order 1.
(2) Suppose R(u1,p2,t)~" has a pole at T € C*. Then the function R(u1, 2, t) is reqular att = 7.
Put L = limy_,(t — 7)R(p1, pi2, 1)~ and Q = R(ua, p2,7). The operators Q : I(juyvy, povy—1) —
I(pov -1, pivy) and L 2 I(pov,—1, pivy) — I(pvy, pov,—1) intertwine the GL(2, Fy)-action. The
representations of GL(2, F,) in the spaces ker ), coker Q, im L are isomorphic to the square inte-
grable St(u1vr, pov.—1). The representations of GL(2, F,) in the spaces ker L, coker L, im Q) are
isomorphic to the one dimensional x — pa(x)(vv—1)(x) = p1(z)v.(x).

(3) The statement (2) remains true with R(uy, pa,t) replaced by R(p1, p2,t) L.

Proof. From the first part of the proof of Proposition 4.3 it follows that

M (pa, p2, t)/ L(pa [ p, %) = R(pa, pa, )/ Lp [ pa, gy '1%)

is regular. So R(u1,u2,t) could have a pole at t € C* only if L(ui/uz,q,'t?) is oo, that is
pav—1 /vy = v (recall: v(z) = |z|), and the order of the pole is at most 1.

A similar statement holds for R(ju1, 2, 1) ™" = e(p1, p2 )t #0H2) R(pug, pu1, ). (The last equality
follows from Proposition 4.22. In fact n(u1, p2) = 0, but we do not need this.) Namely R(j1, p2,t) !
has a pole at 7 € C* iff pyv,/pov,—1 = v. This pole has order 1.

Suppose p1v;/psv,—1 = v. Then pov.-1/piv, # v so that R(u1, po,t)~! is regular at t = 7.
With L, @ defined as in the proposition, it is clear they commute with the GL(2, F,)-action. If
L = 0 then Q = R(u1, p2, 7) has no pole, in fact it is an isomorphism. If @ = 0 then L would be
an isomorphism, as the operator lim; ., R(u1, p2,t)/(t — 7) would be the inverse of L. However,
the representations of GL(2, F,) in I(piv,, pov,y—1) and I(pgv,-1, u1v;) are not equivalent, hence
L+#0,Q#0. As L # 0, the function R(p1, u2,t)~! does have a pole at t = 7. From the description
of the invariant subspaces of I(u1vy, pov,y—1) and I(ugv, -1, piv,) the claims in the proposition on
the description of the action of GL(2, F;,) follow. The regularity of R(u1,pe,t) at t = 0 follows
from that of L(ju1/p2, g, 't%) " R(u1, p2,t). O

In conclusion, the representation of GL(2, Fy,) in I(pivt, pavy—1) is reducible iff R(u1, po,t) or
R(p1, 12, 1)1 has a pole at t = 7. These last operators are regular at t € C* if yy/us is ramified. If
1/ pe is unramified and (p1/p2)(my) = a, then the poles of R(u1, p2,t) are at £4/q,/a, and those
of R(p1, pu2,t)~1 are at ++/a/q,.

Corollary 4.28. Let ju1, po be characters of A*/F* -a”. If R(uy, po,t) has a pole att = 1 € C*,
then |7| = \/q. If R(p1, p2,t)~" has a pole at t =7 € C* then |7| = g V2

Indeed, a character of A*/F* which takes the value 1 at « is unitary, thus |a| = 1.

Proposition 4.29. Let p1, po be characters of AX/F* -a” and 7 € C*, |7| < 1. If M(p1, 2, t)
has a pole at t = 7 then pu1 = pe and ™ = +q V2. If w1 = po is denoted p and T = +£q~'/? then
M (p, i1, t) has an order 1 pole at 7. The image of the operator C' = limy_,.(t — 7) M (u, p1,t) in this
case is one dimensional and is spanned by the function f(z) = p(det z)v (det z) in I(pv,—1, pv;).
Further, M(u1, po,t) is reqular at t = 0.
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Proof. Recall that M (1, p2,t) = ¢'~9m(u1/pa, t*) R(p1, pa, t) where m(p,t) = L(u,t)/L(p, t/q).
Let 7 € C*, || < 1. By Corollary 4.28, the function R(u1,pg,t) is regular at 7. By Proposition
4.11, the function m(uy/po,t?) is not regular at 7 only if 3 = po and 7 = +¢~ /2. In these
cases it has a simple pole. Hence M (u1, uo,t) is regular at ¢ = 7 (0 < |7| < 1) unless u1 = po
and 7 = £¢~ Y2 where the order of the pole is at most 1. When p1 = po = pand 7 = +q1/2,
the operator C' = limy_.(t — 7)M (u, pu,t) is a scalar multiple of R(u, pu,t) = QuR(thy, fv, 7o),
7, = 79e8(V),

From (1) in Proposition 4.27, the function R(p, jty,7,) ! has a pole at t = 7 (¢, = 7,). Its
statement (2) implies that the image of R(ty, iy, 7y) is one dimensional and GL(2, F},) acts on it
via the character x — pu,(det 2)v;(det )47, This implies the proposition, except the final claim,
which follows from the regularily of R(u1,p2,t) at t = 0, and that of m(u1/uz,t?) at t = 0. O

Let p1, p2 be characters of A* /F*. The operator M (1, p2,t) maps I (14, pavy—1) into the space
I(povi-1, u1vy), which in general is different from I(uqvy, povy—1). However, when p; = pg = p and
t = +1, then M (p1,p2,t) maps I(ujvy, povy—1) to itself; M(p, pu,t) is regular at ¢ = +£1. The
representation of GL(2,A) in I(pv,, pvy—1), 7 = £1, is irreducible, and hence M (p, p, 7) is a scalar
operator. Moreover, from Proposition 4.26, M (p, 1, 7)?> = 1 at 7 = +1.

Proposition 4.30. If u is a character of A*/F* and T = £1, then M (u,pu,7) = —1.

Proof. In view of the relation between M and R, it suffices to verify that

L(lut) g—1
_ — n T) = 1.
lim a.t/g) q and R,y 7)
In fact, for any character w of E)X, R(LL),CL), 7) is1at = +1. Indeed, suppose first w is

unramified. Then there exists a function f in I(wv;,wr;) whose restriction to GL(2,0,) is 1. By
the normalization of the intertwining operator (Proposition 4.3(2)), R(w,w,T)f = f. However, the
representation of GL(2, F},) on I(wv,,wv,) is irreducible, so R(w,w, ) = 1 if w is unramified. The
general case reduces to the case where w is unramified, or even w = 1, by the commutativity of the
diagram

R s
I wvr wvr) (‘ﬂ) ™ I(wyr,wur)

) )
I(vr,vr)Q@w R(ii‘r) I(vr,vr)Qw

To compute the limit of the ratio of L-functions, we use the functional equation L(1,t/q) =
e(1,t/q)L(1,t~1). Then

lim L,(1,4)/L(1,t/q) = (1, 1/q)~" lim L(1,¢)/L(1, t=h).

By the definition of the global e-function and its properties (Proposition 6.1, 6.3), £(1,1/q) = ¢* 9.
Since L(1,t) has a pole of order one at t = 1, by L’Hopital rule lim;_,; L(1,¢)/L(1,t71)is —1. O

4.7. Global Eisenstein approach. These proofs of M? = 1 and rationality of M (1, u2,t) are
based on local computations (normalization of the intertwining operators by L-functions and e-
factors), and the functional equation of the L-function. The following alternative proof of these
results is based on properties of the Eisenstein map.

The alternative approach of this subsection, the following subsction 4.8, and the computation
of traces in subsection 5.2 are motivated by Tate [T68]. They are the newest part of this paper,
which — as noted in the introduction — cries out for generalization from our context of GL(2), and
for further study.
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We shall use the maps ht™ : Y, — Z and ht : o” GL(2, F)\ GL(2,A) — Z. Both maps are
proper. However, ht™ is onto while the image of ht contains the positive integers but only finitely
many negatives. So in some sense Y, is less compact than o” GL(2, F)\ GL(2,A), so the map
E : CX(Y,) — C®(a”GL(2, F)\ GL(2,A)) should have a big kernel. For ¢ in ker E we have
(1+ M)p = E*Ep = 0. Hence M%p = . Unlike M, the operator M? commutes with the action
of A(A) on C°(Y,) by left translation. Hence M2y = ¢ not only for ¢ € ker E but also for ¢
in the span of A(A)-translates of ¢ in ker E. The number of such linear combinations is already
sufficiently large to imply M? = 1. We now turn to rigorous proofs.

Proposition 4.31. Let M : C[z, 271" — C((2))" be a C-linear map with M(zu) = z~*M (u) for
all w € Clz,2z71|". Let I denote the natural embedding Clz, 271" — C((2))". Put B =1+ M.
Suppose there is some k € Z for which the vector space (Im B)/B(zFC[z~1") is finite dimensional.
Then there is some P(z) € GL(n,C(z)) C GL(n,C((2))) with P(z7') = P(2)~! and (Mu)(z) =
P(2)u(z™Y) for all u(z) € Clz, 271"

Proof. Denote by e; the column in C™ with nonzero entry only at the ith row, where it is 1. From
M0, cijl)e;) = 22 cijz7)Me;, we see that (Mu)(z) = P(z)u(2~!) where P(z) is the
n X n matrix with columns Mey, ..., Me, whose entries are in C((z)). If u is in the kernel of B =
I+ M, then P(2)u(z71) = —u(z). Since Im B = U,,>1 B(2™C[271]") and there is some k > 0 such
that B(z*C[z~1]") has finite codimension in Im B, there is some £ with B(z‘C[z~!]") = Im B. Then
ker B+ 2°C[z7|" = C[z, 27!]™. For eachi (1 <i < n), 2**le; € ker B+ 2/C[z!]". Hence there is a
matrix W € M(n, C|z, z~!]) whose columnes are in ker B and W — 2T 1d € 2/M (n, C[z~!]), where
Id is the identity matrix. But then W € GL(n,C(z)), and since the columns of W are in ker B, we
have P(2)W (27 !) = =W (z). Then P(z) = -W(2)W(z71)7L, and P(z71) = - W(="HhW(z)! =
P(z)~L O

Corollary 4.32. A C-linear map M : Clz,27Y] — C[z,271] which satisfies the conditions of
Proposition 4.31 has M? = 1d.

Recall that Y, = aZA(F)N(A)\ GL(2,A). Write C%°(Y,) for the space of the E-valued functions
f on Y, with (1) f(x) = 0 if ht*(z) is large enough, and (2) f is invariant under right translation
by some open subgroup U of GL(2, A).

Note that C°(Y,) C CF(Ya) C C(Ya).

Proposition 4.33. The image of CZ°(Yy) under M lies in C°(Yy).

Proof. For f € C°(Y,,) there exists an integer m such that f(z) = 0 if ht™(z) < —m. We shall
show that for such f, (M f)(x) = fN(A) (97 ne) do is zero if ht*(z) > m. It suffices to show

then that for z € GL(2,A) with ht*(z) > m, and any n € N(A), we have ht* ((? ') nz) < —m.
But by Lemma 2.7 we have

ht*(z) + ht™ (( 3') ne) =ht* (nz) + bt (( ') nz) <0.

Proposition 4.34. Let U be an open subgroup of GL(2,0). For every integer m > 1 define
W = {p € C2(Ya)"; p(x) = 0 if ht*(x) < m},

VU = {p € C=(o - GL(2, F)\GL(2, A)'; o(x) = 0 if ht*(z) < m}.
Then E(WY) =YY for large enough m.
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Proof. Put ZY = {p € C=(a? - A(F)N(F)\ GL(2,A))Y; p(z) = 0 if ht*(x) < m}. Recall that
E = s, su(x) = Y ¢(yx), v € AF)N(F)\GL(2, F). Tt is clear that s.(Z),) = Y} Tt
suffices to show that r*(WU) = ZU for sufficiently large m. In fact, we showed, as the first
claim in the proof of Proposition 2.13, that for an open subgroup U of GL(2,A), that there is
an integer m with the property that if z € A, x € GL(2,A), ht™(x) > m, then there is u € U,
B € F, with (§%)z = (}?)zu. In other words, if z € GL(2,A) and ht*(z) is large enough, then

N(A)z C N(F)aU. 0

We shall now give a different proof of Proposition 4.26.
Proposition 4.35. If ¢ € C°(Y,) and My € C(Y,) then M?p = .

Proof. Let us introduce a structure of C[z, z~1]-module on C*°(Y,) by

() = —

\/af((%}?)l“), feC*(Ya), xeGL(2A).

From
00) ((58)0) =[5] [, (61 (2! e) o

it follows that M (zf) = 2~ M(f); recall that || = ¢, and f is invariant under . This is the reason
for introducing the factor \/g. Let U be an open subgroup of GL(2,0). Put WY = C*(Y,)Y,
WY = C®(Y,)Y. Both are Clz, 2~ 1]-submodules in C*(Y,). Denote by W the set of functions
f € C®(Y,)Y such that f(z) = 0 if ht"(z) # 0. Then the natural map WY ®c Clz,271] — WY
is an isomorphism. In the same way we have a canonical isomorphism W{¢ ®c C((z)) — WY.
The operator M : W, = C*(Y,) — Wy = C(Y,) maps WY into WY. Hence it defines a
map M : WY ®@c Clz,271] — WV ®@¢ C((2)) satisfying the first condition of Proposition 4.31. It
remains to check the second condition of that Proposition. The space WU can be identified with
WY ®c 2~™C[271], and then the operator B = I + M is just E*E. Thus it suffices to show that for
some m € Z, the space E*E(WY)/E*E(WY) is finite dimensional. Since E(WY) = YU for large
m, and {z € GL(2, F)\ GL(2,A); ht(z) < m} is compact mod Z(A), it follows that the subspace
EWY) c C®(a”GL(2, F)\ GL(2,A))Y has finite codimension. Thus M satisfies both conditions
of Proposition 4.31, and our claim follows from Corollary 4.32. O

To use Proposition 4.31 to give another proof of the rationality of M (u1, p2,t), we take a different
view of the Mellin transform and the relationship between the operators M and M (u1, p2,t). Let
I.(u1v,—1, pav.) be the space of locally constant functions f : GL(2,A) — C[z, z~1] with

FU(§5)2) = pi(@)ua(b)vz(b/a)|a/b]'/? f ().
Let I (p1v,-1, povy) be
IC(ILLIVZ71 ) :U’QVZ) ®(C[z,z*1] C((Z))
The group o € GL(2,A) acts trivially on these I. and I,. We put

IC = @IC(/’Llyz*l),uQVZ)a I+ = EBI—{-(,U’lyz*lnu’ZVZ)?

where the sums range over all characters pi1, ps of AX/F* - a?.

Proposition 4.36. There exists an isomorphism of C((z))-modules I+ = C°(Yy) which is
GL(2, A)-equivariant and maps I. to C(Yy).
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Proof. Define a map F : I, — C°(Y,) by mapping ¢ = {@u1 us} € I+, Oy € Le(piv,-1, povs),
to (Fp)(x) = constant term of the formal series > . @u () € C((2)), for any x € GL(2,A).
The map F' is well defined, commutes with the actions of C((z)) and GL(2,A). The inverse of F
exists, as follows. If ¢ € C°(Y,) then F~1 () = {¢u, o} With puy uy € Lt (p1v,-1, piov) given by

Ppr iz (T) = fA(A)/aZ~A(F) Y(h~1x)n(h)dh, where

n: A(A) = C((2))", n(diag(a,b)) = p(a)p2(b)v:(a/b).
The last integral converges in the field C((z)). A base of the topology is given by z"C[[z]], n > 0.
The map F maps I, to C°(Yy). O

Put Ty = By o To(ju1, ), with Io(ju1, i) = {f € C¥(GL(2,0)); [ ((35)2) = pa(@)pa() ()}
Denote by M(z) the map Iy — Iy which takes Io(u1, p2) to Io(pe, p1) via M(u1, pe,z). We use
the isomorphism F to identify the spaces Iy and C°(Y,), as well as I, and C°(Y,,). The natural
isomorphism I (pnv, -1, pavs) = To(u1, p2) @cClz, 271 and L (p1v-1, pavs) = Io(pa, p2) @cC((2))
permit us to identify I, and Iy ®c C[z,271] as well as Iy and Iy ®c C((z)). Thus the map M :
C>(Ya) = C(Yy) induces an operator My : Iy ®c Clz, 271 — Inp @¢ C((2)).

Proposition 4.37. Regard the elements of [y@cClz, 2] as functions of z with values in Iy and the
elements of [y@cC((2)) as formal series in z with coefficients in Iy. Then for anyu € Iy®@cClz, 271
one has (Mou)(z) = M(2)u(z=1), M(2) is viewed as a formal series in z.

Proof. Write ¢ for the automorphism of C|[z,27!] which maps z to z~!. Given a function f :

GL(2,A) — C((2)), denote by fo the function GL(2,A) — C such that fo(x) is the constant term
of f(z).

Define an operator M” : Iy ®c C[z, 271 — Iy ®c C((2)) by (M"u)(z) = M(z)u(z~'). We claim
that My = M”. Consider M” as a map I. — I.. We have to show that for every f € I., we
have FM"f = MF f, for the isomorphism F : I, = C(Y,). As I. is the sum over ui, pa of
I.(pav,—1, povy), it suffices to consider f in one of these summands.

For z € GL(2,A), we have (M" f)(z) = fN(A) of ((95') nz) dn. Then

<mﬂmm=wwmmzﬁwm«%ﬂmMn

MFD@ = [ Fr((9F ) na)dn= [ (97 o) dn

N(A) N(A)
are equal, as required. ]

4.8. Rationality of M (u1,p2,t) and functional equation M (u1, 2, t) M (uz, p1,t7 1) = 1: a
second proof. Let U, WU, A be as in the proof of Proposition 4.35. Then WU = @MMW[LJIM,
where WV is the space of functions f € WV with

H1,042
F(§9)2) = mla)  ua(b)™" f(2)
whenever deg(a) = deg(b) = 0. The natural maps Io(u2, pt1)?Y = ngm permit one to identify WY
and the space I}/. The map M : WY ®@¢ C[z,271] — WY ®¢ C((2)) is induced by the operator
My : I ®c Clz, 271 — Ip ®c C((2)).

The proof of Proposition 4.35 implies that the operator M satisfies the conditions of Propo-
sition 4.31. Then M is given by a formula of the form (Mu)(z) = P(2)u(z"!), where P(2) is
an automorphism of V' which depends on z rationally, and P(z~!) = P(z)~!. From Proposi-
tion 4.37 it follows that P(z) is just the restriction of M(z) to I ®c¢ C[z,271]. The group U
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may be arbitrarily small. Hence M (z) is a rational function of z, and M(z)M(z~!) = 1. Hence
for any characters 1, f2, of a? - F*\A*, the operator M (u1, 2, z) depends rationally on z, and
M (p1, a2, 2)M (1, pi2, 2~ 1) = 1. The same is true for any characters ju1, po of A% /F> | which are not
necessarily trivial at a. To see this, it suffices to use the identities M (uivy, povy, z) = M (p1, p2, 2)
and M (pyvy, povi—1,2) = M (1, 12, t2). O

5. PROOF OF THE TRACE FORMULA

5.1. The geometric part. Our aim is to compute the trace trro(f), where f € C°(GL(2,A)) and
7o is the representation of GL(2,A) by right translation on the space Ag, of cusp forms invariant
under a. Recall that the space A., of a-invariant automorphic forms is equal to the direct sum
of Ap,q and Ap o = Im(E : C°(Y,) — Aca). The corresponding representations of GL(2,A) are
denoted by r and rg. Had r been admissible, we would have had trro(f) = trr(f) — trrg(f), and
the computation of trro(f) would have reduced to that of trr(f) and trrg(f). But r and rg are
not admissible, so trr(f) and trrg(f) make no sense.

Suppose f is right invariant under the open subgroup U of GL(2, 0). Denote by AY, AV, AY the
spaces of U-invariant vectors in Ag o, Ac,a, AE,o. Since Imro(f) C Ag, we have trro(f) = tr rg(f),
where r{/ (f) is the restriction of 7o(f) to AY.

Denote by X, the characteristic function of the set {z € o - GL(2, F)\ GL(2,A); ht(x) < m},
m > 0. Denote by 6, the operator of multiplication by x,, on A¢q.

Proposition 5.1. (1) For any m > 0, dim6,,(AY) < .
(2) If m >> 1 then (a) 0., acts as the identity on Af, and (b) 0,,(AY) c AY.
Proof. (1) The support of xp, is compact mod Z(A), the quotient by the open U is then finite. (2a)

A§ is finite dimensional, consisting of compactly supported forms. (2b) By (2a), (1 — 0,,,)AY =

(1-— Hm)Ag, and this lies in A% as U-invariant cusp forms are uniformly compactly supported.

Hence 6,,(A%) c AY. O
Denote by 7V (f) and r¥(f) the restrictions of r(f) to AV and AY. For m such that 6,,(AY) c AY,
denote the restriction of 6,, to A% again by 6,,. Then for m >> 1,
trro(f) = trog (f) = 2(@nr (f) = 0(OnrE(f)) = 2(0nr(f)) — tr(@mrg (f))-
We then proceed to compute tr(6,,7(f)) and tr(0,,r%(f)).

Proposition 5.2. There exist cy € E and oy, € E with limy, o oy = 0, and

1
te(Omr(£)) = D Si(f) +epm—3)+am.
1<i<4
Proof. The map 0,,7(f) : Aca — Ac is an integral operator with kernel x,,(y)K¢(x,y), where
Kf(xuy) = ZweaZGL(Q,F) f(ﬂc_lfyy). Then

(0 (f)) = Vo () K 1 (, 7).

/aZ-GL(2,F)\ GL(2,A)
Lemma 5.3. There ezists my > 0 such that if x € GL(2,A), v € a2 GL(2,F), ht*(z) > my,
f(z7lyz) £ 0, then v € aZA(F)N(F).

Proof. We have yx = zy, y in supp(f). Since ht*(z) +ht*(6x) < 0 for § € GL(2,F) — B(F), we
have that ht*(z) > 0. If in addition we had ht*(zy) > 0, we would conclude that v € a”B(F).
The number my = —min{ht " (z); 2 € GL(2,0)-supp(f)} then has the property that ht* (z) > my,
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y € supp(f), implies ht ™ (zy) = ht™ (x) +ht (ky) > 0, where = bk and ky = b'k’ so that zy = bb'k
(b, b/ € B(A); k, k' € GL(2,A)). O

Denote by &, the characteristic function of the set {x € GL(2,A); ht*(z) > by A'(F) the

m},
set of nonscalar diagonal matrices, and by Ell the set of elliptic matrices in GL(2, F'), namely those

whose eigenvalues are not in F. Put w = ({}).

Lemma 5.4. If m is big enough, then xm(y)Ky(x,x) is the sum of
Tl = nle) X ) Tl = 3 et

yeaL.-Fx ~yEaZ-Ell
Tim(w)=5 S X fa00) (1 Gu(6e) — En(wie)),
Y€l A!(F) SEA(F)\ GL(2,F)
Tim(x) = ) > fa™a7H(§8) 0x) - (1 - &m ().

acal-FX §€F* N(F)\ GL(2,F)

Proof. Ty s () is the contribution of the elements v € aZ - F* in x () K ¢ (z, 7).

We claim that the contribution of the elements v € o - Ell in xp(2)Kf(z,2) is Tom(z). To
show this, we need to see that if z € GL(2,A), v € o - Ell and ®(z~1yz) # 0, then ht* (z) < m.
Indeed, if ht(x) > m then there is some § € GL(2, F) with ht*(6x) > m. Lemma 5.3 then implies
that dv6~! € o A(F)N(F), contradicting v € o - Ell.

Denote by T3 ,,,(z) the contribution into x.n(z)K(z, ) of the elements + of the form oy, j € Z,
v € GL(2, F') with distinct eigenvalues in F'. By T}, () we denote the contribution of the elements
aly, j €Z, v € GL(2,F), v ¢ F* but the eigenvalues of v are equal. We have

T3 (@) = %xm(w) > S flamle ).

Neal-Al(F) SEA(F)\ GL(2,F)

The § appears since diag(b, a) is conjugate to diag(a, b). To show that T3 () = T3 m(z) it suffices
to show that when f(x =15 1ydz) # 0, xm(7) = 1 — &n(02) — & (wdz), namely if ht(z) > m then
either ht™(dz) > m or ht™(wdz) > m. So if ht(z) > m, then there is some n € GL(2, F) with
ht*(nz) > m. By Lemma 5.3, nd ~1ydn~1 € o A(F)N(F), but this implies that n6~! € A(F)N(F)
or nd 1w € A(F)N(F). Correspondingly, ht*(6x) = ht*(nz) > m or htT(wdx) = ht*(nz) > m,
but both inequalities cannot hold simultaneously if m > 0.

Now
Ton(@) = xm(@) Y S fale(ge) ).

acaZ-FX §€F* N(F)\ GL(2,F)

To show that this equals Ty ,,,(z) we need to check that when f(z7 1671 (§ 2) §x) # 0 and ht(z) > m,
then ht*(dz) > m. Suppose then that ht*(nz) > m for n € GL(2,F). Then by Lemma 5.3
nd 1 (&9)on~! € a” A(F)N(F). Hence nd~ € A(F)N(F), so that ht(6z) = ht™ (nz) > m. O

We conclude that tr6,r(f) = > <;<4tim With
ti,m :/ Tz,m($)d$
o.GL(2,F)\ GL(2,A)

To prove the proposition it suffices to show that t; ,, = Si(f)+ci(2m—1)+ 5y, foralli (1 < i < 4),
where ¢; does not depend on m and lim f3,, = 0. It is clear that ¢;,, — Si1(f) as m — oco. As
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T (x) is independent of m, tg,, = S2(f). Now

LD / Fla™'92)(1 = (@) — G (wa))da

eaZ Al (F) F)\ GL(2,A)

1 —
T2 Z / flz yz)s(x)d
veas-Ar(F) Y AB\GL(2,4)

where
) = [ 1~ n(y) — En(wyo)ldy
aZA(F)\A(A)
=vol{y € aZ A(F)\A(A); ht*(yz) < n, htT (wyz) < n}.
Note that for y € A(A), ht* (yx) = ht*(y) + ht*(x) and ht* (wyx) = ht* (wx) — ht*(y). Hence
s(z) = |{y € A(A)/a? - A(F); ht*(wz) —m < htT(y) < m —ht™(z)}].

This is the number of integers between ht™ (wz) —m and m —ht* (). So s(x) =2m —1—ht™(z) —
ht* (wx).

Lemma 5.5. We have ht*(z)+ht*(wz) = —2r(x), where ifz = a ((1) Yk, ae€ A(A), ke GL(2,0)
and y € A, we put r(z) = ), max(0,log, [yuv]v)-

Proof. Note that y is determined up to a change y — by +c¢, b € O*, ¢ € O, so r(z) is well defined.
The asserted relation does not change if = is replaced by axk, a € A(A), k € GL(2,0), so we
1
may assume z = (%) € N(A). Then ht*(z) =0, and (9§) (;¢) = (_05 ;) (% (1)) implies that
htt(wz) = —2r(x). O
Lemma 5.5 implies that
1 _
tim=Salf) +m—3) > [ fla ya)de.
Seazar(r)” A\ GL(2,4)
Next
wn= ¥ |, F (58 2) (1= n(a))da
aeazZ:FX ZFX N(F)\ GL(2,A) ( ° )

-y Ft (38 0) de,

wcal P {z€aZF* N(F)\ GL(2,A); htT (2)<m}

Recall that 6, f(t) = faZFxN(F)\GL(2’A) ft(§e) ) " (@ dy is a Laurent series at t = 0 of
a rational function of ¢ with (r(¢71)710, ¢(t) € C[t,t™!]. Suppose 0, ¢(t) = >, ug(a)t®. Then
tagn = D peaZ.px opem We(a). Since (p(g~'t) has a simple pole at t = 1, we have that 6 f(t) =
% + 6,4 £(t), with 0, ¢(t) without poles on 0 < |¢t| < 1. Then

G (6) = 5 (Bug (1) + 80 s (67)) = ;@,f(t) Fag) + %ma),
Oa,f (1) = Oq,r(1) + ;p +Z uy(a
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Then
~ 1
tam = Z O, 7(1) + (m — i)p(a) + Bm, Bm — 0 as m — oo,
ac€al-FX
and Si(f) = D caz.px 0~a,f(1). Proposition 5.2 follows. O

Note that £, is 0 for sufficiently large m, as will be seen below.

5.2. The Eisenstein contribution. Next we turn to computing tr(6,,r%(f)) for large m. Put
WCU = Ccoo(Ya)U7 W]\g[ = (1 + M)WCU'

Proposition 5.6. The operator E* maps A% isomorphically onto W]\U4

Proof. As AY = E(WY) and E*E = 1+ M, it suffices to show that ker E*E = ker E. For
¢ € ker E*E we have (Ep, E@) = (E*Ep, ) =0, hence Ep = 0. O

Definition 1. Denote by WY the space of f in WY with f(x) = 0 if ht*(2) < m. Denote
by &, also the operator WA% — Wg of multiplication by the characteristic function of the set
{x € Ya; htT(z) > m}. [If m > 0 then &, is a left inverse to the operator 1 + M : WY — W{.
Indeed, if f is in WU, then (M f)(z) = 0 already when ht*(z) > —m since ht ™ (wnz)+ht*(nz) < 0
implies ht* (wnz) < m and so f(wnz) = 0.] Hence 7™ = (1 + M)&, : WY — WY satisfies
ama™ = g™ for m > 0. Put m,, =1 — 7™

Proposition 5.7. For sufficiently large m, E* intertwines 0,, with 7, thus 7, E* = E*0,,, namely

the diagram
AV B wu
Omd Imm
AU B pu
g — Wi
18 commutative.

Proof. Suppose f € AY and (1 —6,,)f = 0. Then f(x) = 0 for z with ht(x) > m. As &, () #0
only on x with ht™(z) > m, we have 0 = (1 + M){nE*f = (1 — m,) E* f, the last equality as
1=y =a"= (14 M)&y,. For such f we have E*0,,f = E*f and m,, E* f = E*f.

If f e A% and 6,,f = 0, then by Proposition 4.34 there is ¢ € WY with f = FEy. Then
TmBE*f = 1t E*Ep = (1 + M) = (1 + M)Ep = T ™ = 0, hence E*0,, f = mp, E* f for
such f.

Any f € AU can be written as f = fi1 + f2, fi = (1 = 0)f, fo = O f, thus 0, f1 = 0 and
(1 - 9m)f2 =0. N

Definition 2. Recall that Y, = a”A(F)N(A)\ GL(2,A). Denote by 0., o4, ops the representations
of GL(2,A) in the spaces W, = C°(Yy,), Wi = C¥(Ya), War = (1 4+ M)C(Y,). Consider o.(f),
o (f), oa(f) as operators in the spaces WY, WE, wo.

Corollary 5.8. We have tr(6y, - 7%(f)) = tr(mp - o (f)).

Proof. E* is an isomorphism of AY, = E(WY) with W[, intertwining 6,, with 7,. O
In the proof of Proposition 4.35 we introduced a structure of C[z,2~!]-module on WY and

WY, as well as isomorphisms WY ~ W¥ @c¢ Clz, 271 and WY ~ WV ®@c C((z)), where W{ =

{f e WY; f(z) = 0if ht"(z) # 0}. Under these isomorphisms, the operator M : WY — WV

corresponds to the operator M : WY ®@¢ C[z, 271] — W} @¢ C((2)), which satisfies the conditions
of Proposition 4.31, hence has the form (Mu)(z) = P(2)u(z~!) for u € WY ®c¢ Clz, 27!] which is
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viewed as a function of z with values in W{/. Here P(z) is a rational function in z with values in
Aut WY, and P(z7!) = P(2)~L.

Now o.(f) is an endomorphism of WY as a C[z, z~!]-module. The corresponding endomorphism
of the module W} ®@¢ C[z, 27!] is determined by a function B(z) in End(WY) ®@¢ C[z, 27!]. The
endomorphism of W @c C((z)) corresponding to the operator o (f) is determined by the same
function B(z). The relation Mo.(f) = o4 (f)M becomes P(z)B(z Y u(z~') = B(2)P(2)u(z~") for
any u € WY @¢ Clz, 271, thus B(z7!) = P(2)"'B(2)P(2).

Definition 3. Under the isomorphism WY ~ W} @¢ C((2)), the subspaces W{; = (1 + M)WY
is mapped onto the subspace L consisting of all rational functions of the form u(z) + P(2)u(z~1),
with u € WY ®c Clz, 271]. Put Ly, = LN (WY ®c 27™1C][z]]). Denote by L™ the set of rational
functions of the form u(z) + P(2)u(z7!) with u € W ®¢ 2~™C[27!]. For sufficiently large m we
have L = L,, ® L™. Under the isomorphism W]\lj 5 L, the operator m,, : W]\[f[ — W]\% corresponds
to the idempotent operator L — L with kernel L™ and image L,,. This projection will also be
denoted by m,,. Thus tr(mpnon(f)) = tr(m,B), where B : L — L is the operator of multiplication
by B(z). On the left, m,, is an operator on W1, on the right, on L.

Fix Q1, Q2 € M (k,Clz,271]), k > 1, such that det Q; # 0. Suppose the function Q2(2)"1Q1(2)
is regular at z = oo, thus Q1(z) € Q2(2)M (k,C[[271]]), and the function Q1(2)~'Q2(2) is regular
at z = 0, thus Q2(2) € Q1(2)M (k,C[[2]]). Put R = C[z,2~1]*. For m > 1, put

Ry = RN 217Q1(2)C[[2]]F N 2™ Qo (2)Cl[z 7 1),
Also put R™ = z7™Q;(2)Clz~ 1% and R = 2™Q2(2)C[2]*. Then dim R,, is finite.
Proposition 5.9. We have R= R™ & R,,, ® R"",
Ry & RY = RN 217Qu(2)C[2])F
and
Ry @ R” = RN z""'Qa(2)C[27]]".
Proof. The natural map ¢ : R™ — X_ = C((2))*¥/2!7"™Q1(2)C][2]]* is an isomorphism (note that
C((2))/2"™C[[2]] ~ z~™C[z7!] and Qi(z) is invertible in GL(k,C((z))). The natural map 1 :
R™ — X4 = C((z71)*/2m71Q2(2)C[[z1]]* is then too. The natural map f: R/R,, — X_ & X,

is injective (by definition of R, as the intersection of R and the denominators of X_, X ) and the
composition of the natural map R' ® R™ — R/R,, with f is ¢ ® 1. O

Definition 4. (1) Denote by pr,, : R — R the projection with kernel R" @ R™ and image R,,.
(2) If A(2) is a matrix in M (k,C[z,271]), denote by A[z] also the corresponding automorphism of
R = Cl[z, 271]*. Denote by Ay the constant term of A(z).

Proposition 5.10. The trace tr(pr,, -A[z]) is equal to
(2m — 1) tr Ag — res.—o tr A(2)Q}(2)Q1(2) "Ldz — res,—oo tr A(2)Qh(2)Q2(2) ~Ldz.

Proof. Define a projection pr’!' : R — R with image R'' and kernel R™ + R,,, and a projection pr”” :
R — R with image R and kernel R+ R,,. Analogously to the decomposition R = R"® R, ®R']",
consider the decomposition

R=z""Clz"')* @ (2! "™C[2])* n 2" 1C[z~ %) @ 2™C[2],
namely the case where ()1 = 1 = (2. Denote the associated projections by p™, pp,, pl'. Since the
space z~™C[z"!¥/R™ N z~™C[z~!]¥ is finite dimensional, the operator pr’’ —p?* has finite rank,
and the operator pr™ —p™ has finite rank since 2™C[2]¥/R™ N 2™C][2]* is finite dimensional.
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Lemma 5.11. We have tr(pr™ -A[z] — p™ - A[2]) = res,—o tr A(2)Q}(2)Q1(2) ~1dz, as well as

tr(pr'f - Afz] — p - A2]) = res,—oo tr A(2)Q5(2)Qa(2) dz.
Proof. Denote by Pr"™ : C((2))* — C((2))* the projection with image z~™Q1(2)C[z~']* and kernel
217mQ1(2)C][2]]¥. Denote by P™ : C((2))¥ — C((2))* the projection with image z~™C[z~1]* and
kernel z!="CJ[[z]]¥ (thus the case of Q1 = 1). Denote by A((z)) the endomorphism of C((2))*
defined by multiplication by A(z). Then Pr™ = Q1((2)) - P™ - Q1((2))~!. Now Im(Pr"™-A((z)) —
P™-A((2))) C C[z, 2~1]¥, and the restriction of the operator Pr™-A((z)) — P™- A((2)) to C[z, 2~ 1]*
(C C((2))¥) is equal to pr™ -A[z] — p™ - A[z]. Hence

tr(pr” -A[z] — p™ - Alz]) = tr(Pr™ - A((2)) — P™ - A((2)))

= tr(Qu((2)) - P - Qu((2)) ™" - A((2)) — P - A((2)))
= tr(Q1((2)) - P 'C((Z)) P-Qi((2))-C((2))),  C(2) = Qu(2) " A(2).
As tr A(2)Q1(2)Q1(2) 7! = tr C(2)Q)(2), to prove the first claim of the lemma it suffices to show
that
(Qu((2) - P™ - C((2)) = P™ - Qu((2))C((2))) = resso tr C(2)Q} (2)d2

for any Q1(2) € M(k,Clz,271]), C(2) € M(k,C((2))). By linearity, it suffices to show this when
the matrices @1(z) and C(z) have a single nonzero entry. Thus we may assume k& = 1, and that
Q1(2) = 2°. Thus we need to verify that for any formal power series c(z) = >, cqsz? in C((2)), we
have tr[(((z)) - P™ — P™ - ((2*)))c((2))] = be_y, where the operations here are in C((z)). The left
side is equal to

6r[(((2)) - P ((z7°)) = P™) - ((2"))el(2))] = te[(PT" = P™) - ((z"))e((2))]

C—p C—p41 -+ C—1
C_p—1 C—p ... C_2

=tr . . = bc_p.
C1—-2b C2—2b co Cp

The second claim of the lemma is similarly proven. g

As pr,, —pm = (1 —pr™ —pr’") — (1 = p™ —p7') = (p™ — pr™) + (p7! — pr’l’), Lemma 5.11 implies
that tr(pr,, -A[z] — pm - Alz])

= —res,—o tr[A(2)Q (2)Q1(2) tdz] — res,—oo tr[A(2)Qh(2) Az (2) tdz].
Since tr(pm, - Alz]) = (2m — 1) tr Ap, the proposition follows. O
Proposition 5.12. Let ¢ : Clz,27']* — Clz,27)* be the involution (wu)(z) = u(z~1). For suffi-
ciently large m we have 2tr(v - pr,, -A[z]) = tr A(1) + tr A(—1).
Proof. Write A(z) = Y., Ar2*, Ay, € M(k,C). Then tr(c - py, - Alz]) = 2 lil<m tr Azi. If m is big
enough the right side here is equal to 3 (tr A(1)+tr A(—1)). It remains to show that tr(c-pr,, -A[z]) =
tr(e - pm - A[z]) for large enough m. As P, —Pm = P — prlf +(p — pr’™), it suffices to show that
for large enough m
- (7 — piT) - Al2]) = 0 = o (7 — pi™) - A[2)).

Note that pr'?" = [z™] pr% [z7™] and p7* = [2™]p% [z~™], where as usual [z] here means the operator

of multiplication by 2™. The operators pr’!" and p’!" were defined only for m > 0, but the definition
extends to m = 0 so that the two relations above hold. Now

tr(e- (pF —pr’?) - Al2]) = tr(e - [2™)(p) — pr)[z7™] - Al2])
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= tr([z7"e- (0F — P[] - Al2]) = tr(e- (0) — pr) [ ALE]ET)
=tr(e- (p5 —pr)le™ "] - Afe]).
Recall that dim V' is finite, where V = im[.(p. — pr%)]. If m is big enough then
(272 A2V € 27 'Cl 1 N 271 Qa(2)Cl[z ¥ € kerp? Nker prf. .
Hence tr(c - (p% — pr)[z72™] - A[z]) is zero, hence tr(.(p* — pr'?")Alz]) is zero.

The proof of tr(c(p™ — pr™)A[z]) = 0 for large m is analogous. O
Definition 5. Fix P € GL(k,C(z)) such that P(z) is regular at z = 0 and P(z)~! is regular at
z = 00. Put

S=Clz,z7 1"+ P-Clz,z7Y]%,  Sm=Snz""C[[2]]* n2""1P - C[[2]]F,
S = z=mC[z~ ¥4 2mP-C[z]*. Fix B in M (k,C|z,27']) such that P~'BP lies in M (k,C[z, 27 1]).
Then BS C S. We denote by [B] or B|z] the operator S — S of multiplication by B(z).

Proposition 5.13. We have S = S,,, & S™. Denote by ps,,, : S — S the projection with image Sy,
and kernel S™. Then

tr(ps,, -[B]) = (2m — 1) tr By — res,—oo tr[B(2) P'(2) P(2) " dz + tr([B]; S/C|z, 27 1]%).
Here By is the constant term of B = B(z), and tr([B];S/C[z, 2~ 1F) denotes the trace of the
endomorphism of S/C[z, 2~ ¥ induced by multiplication by B(z).

Proof. The space S is a k-dimensional free C[z, 2~ !]-submodule of C(z)*. Hence there exists a
matrix D in GL(k,C(z)) such that S = D - C[z,2"!]¥. Since S contains C[z,z~!]¥, D7! lies in
M (k,C[z,271]). Since S contains P - C[z,27']* we deduce that D™'P € M(k,C[z,27']). Put
Q1 = DY, Qa = D7'P. The function Q;(2)"'Q2(z) = P(z) is regular at z = 0. The function
Q2(2)7'Q1(2) is regular at z = co. Under the isomorphism S—=C[z, 271, u — D~ u, the subspaces
Sm and S™ correspond to the subspaces R,, and R™ of Proposition 5.9. The multiplication
[B] : S — S corresponds to [A] : C[z,271]* — C[z,271]*, A = D7'BD. Then Proposition 5.10
implies the first part of the proposition, as well as the equality

tr(ps,, -B[z]) = (2m — 1) tr Ag — res,—g tr A(2)Q} (2)Q1(2) 'dz
—re8.— oo tr A(2)Qh(2)Q2(2) " tdz.
Here Ay is the constant term of A(z). We have
tr(AQ1Q;") = —tr(D™'BD’) = —tx(BD'D™Y),
tr(AQLQ5 ) = —tr(D'BP'P™'D — D™'BD') = tr(BP'P™!) — tr(BD'D ™).

As A= D 'BD, tr A =tr B, and tr Ay = tr By. Hence

tr(ps,, -Blz]) = (2m — 1) tr By — res,—o tr B(2)P'(2)P(2) 1dz

+res,—q tr B(2)D'(2)D(2) tdz + res,—o tr B(2)D'(2)D(2) "1dz

+(2m — 1) tr By — res,—o tr B(2)P'(2)P(2) "tdz — Z res,—¢ tr B(2)D'(2)D(z) dz.
geCx

Lemma 5.14. Suppose T € GL(k,C((2))), C € M(k,C[[2]]) and T~*CT € M(k,C[[]]). Then
res,—o tr C(2)T'(2)T(2)~! = a — b, where a denotes the trace of the operator multiplication by C in
the space (C[[2]]F +TC[[2]]F)/TC[[z]]¥, while b denotes the trace of multiplication by C in the space
(Cll=1)* + TC[=))*) /C[[=])*-

—~ o~
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Proof. Both sides of the asserted equality do not change if (T, C) is replaced by (UTV,UCU!)
where U, V' € GL(k,C][z]]). We may then assume that T is a diagonal matrix, hence that k = 1.
When k = 1 both sides of the asserted relation are simply mC/(0), where m is the multiplicity of
zero of T'(z) at z = 0. O

It follows from the lemma that —res,_ tr(B(z)D’(z)D(z)"!)dz is just the trace of the operator
of multiplication by B(z) on the ¢ component of the module S/C[z,z71]*. This, and the equality
just before the lemma, implies the proposition. O

Suppose we have P(27!) = P(2)~!. Replace the assumption P(z)"'B(z)P(z) € M (k,Clz, 27 1])
in Proposition 5.13 with the stronger assumption P(z)"'B(2)P(z) = B(z~!). Recall that L is the
space of all rational functions of the form u(z) + P(z)u(z7!) with u € C[z,271]™. In view of the
stronger assumption, L is invariant under multiplication by B.

Definition 6. Denote by By, the operator of multiplication by B on L. Put L, = LNz~™C[[z]]*.
Denote by L™ the set of rational functions of the form wu(z) 4+ P(z)u(z~!) with u(z) € z~™C[z~1]*.
Proposition 5.15. The space L,, is finite dimensional, and L = L,,, ® L™. Denote by m, : L — L
the projection with image Ly, and kernel L™. Suppose the function P(z) is reqular at z = +£1.
Then for large enough m we have that tr(m, Br) equals

(m — %) tr By — %reszzoo tr(B(2) P (2)P(2) V) dz

+% i i[tr(B(l)P(l)) +tr(B(-1)P(-1))].

Here By is the constant term of B(z), and c is the trace of the operator of multiplication by B(z)
in the space (Clz, 2~ 1F + P(2)Clz, 271]%)/Clz, 2~ 1%

Proof. Let S, Sy, S™, ps,,, B be as in Proposition 5.13. From P(z~!) = P(z)~! it follows that
if u € S then @, given by @(z) = P(2)u(z1), is also in S. Define 7 : S — S by 7(u) = %i. Then
=1 L={u€eS;m(u) =u}, Ly, = SpNL, L™ = S"NL, and tr(my,Br) = 3 tr(ps,, -B[z]) +
$tr(7 - ps,, -B[z]). The finite dimensionality of S,, and Proposition 5.13 then imply that Ly, is
finite dimensional, and L = L,, ® L™. To deduce the last claim of the proposition from Proposition
5.13, it remains to show that tr(r - ps,, -[B]) = 1 (tr(B(1)P(1)) + tr(B(—1)P(—1))) for large enough
m.
Let D, Q1, Q2 be as in Proposition 5.13. Then under the isomorphism S=3C[z, 27 '|*, u +— D~ lu,
the operator ps,, : S — S translates into the operator pr,, (of Proposition 5.9), and multiplication
by B : S — S translates into multiplication by A = D™'BD, C[z,2!]*¥ — C[z,27!]*. The map
7: 5 — S translates into

[Cle: Clz, 271 = Clz, 271, () (2) =u(z™Y), C(z) = D(2)"'P(2)D(z1).

Hence
tI‘(T *PSpy, B[Z]) = tI‘(C[Z]L *Pry, A[ZD - tI‘(L Pry, A[Z]C[ZD7
which — by Proposition 5.9 — is

%(trA(l)C(l) Ftr A(—1)C(—1)) = %tr(B(l)P(l) +tr B(—1)P(—1)):

note that D(z) is regular at z = +1, since so is P(z). O
If F € M(k,C) and Y C C* is an F-invariant subspace, write tr(F,Y") for the trace of F on Y.
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Proposition 5.16. Fiz P(z) € GL(k,C(2)) with P(z7') = P(2)~!. Suppose that the function
P(z) is reqular on |z| = 1 and at z = 0, and that it has order 1 at all its poles (i, ..., s inside
{z € C; 0 < |2|] < 1}. Denote by Y; the image of the operator lim,_¢,(z — ¢;)P(2) acting on C*.
Fiz B(z) € M(k,C[z,27Y]) and suppose B1(z) = P(2)"'B(2)P(z) € M (k,C[z,27Y]). Then

tr(ps,, -[B]) = (2m — 1) tr By + % " tr B(2)P'(2)P(z) dz

+ ) t(B(G) + B¢, V),
1<i<s

with By being the constant term of B(z).
If in addition Bi(z) = B(z7!) then

tr(mmBr) = (m — %)trBo + 4i tr B(2)P'(2)P(z)"\dz
T J|z|=1
+ Y (B i[tr(B(l)P(l))—|—tr(B(—1)P(—1))].
1<i<s

Note that the subspace Y; of C¥ is invariant under B(¢;) and By (¢ ).

Proof. In view of Propositions 5.13 and 5.15 it suffices to verify that

1
— tr B(z)P'(2)P(2) 'z + Y tr(B(G) + Bi(¢), Vi)
20 Jyei=1 1<i<s
= tr([B], S/C[z, 27 1) — res,—oo tr B(2)P'(2)P(2) " tdz,
where S = C[z, 27 1% + P(2)Clz, 2 1]*.
For any ( # 0 in C denote by M, and N¢ the (-components of the C[z, z71]-modules S/Cl[z, 2 1]
and S/P(z)C[z, 271]¥, respectively. From Cauchy’s formula and Lemma 5.14, it follows that

% 3 ltrB(z)P’(z)P(z)_ldz: > w([B], M)
o= 1<[¢|<o0

- Z tr([B], N¢) — res;—o0 tr(B(2) P'(2) P(2) " 1)dz.
1<|¢]<o0

On the other hand, tr([B], S/C[z, z71]¥) = >_cecx tr([B], M¢). Hence the required identity follows

from
> (Bl Mg) = ) te(B(G), V),

0<l¢l<1 1<i<s
> t([BLN) = Y te(Bi(¢h), V)
1<|¢|<o0 1<i<s

If P(z) is regular at ¢ them My = 0. At each (;, P(z) has a pole of order one. Hence there
exists isomorphisms M, =Y; which translate the operator [B] : M, — M, to the operator of
multiplication by B((;) on Y;. This implies the first identity.

For the second identity, for any ¢ € C*, denote by N the (-component of the module (C|z, 2
+P(2)71C[z,271%) /C[z, 2~ 1¥. Multiplication by P(z)~! induces an isomorphism N;—N. Under
this isomorphism, multiplication by B : N; — N translates into multiplication by B : Wg — NC?
hence tr([B], N¢) = tr([B1], N¢). From P(z)~! = P(27!) we deduce that N = 0 if P(2) is regular

—l]k
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at z = ¢!, and that tr([Bl],Ngfl) = tr(B1(¢; "), Y:). This implies the second identity, hence the
proposition. ' O

5.3. Spectral terms. To deduce the trace formula from Proposition 5.16, we use properties of the
function M (p1, po,t).

Recall that we have the projection 7, : L — L with kernel L™ and image L,,, and B} denotes
the operator of multiplication by B(z) on L. The operator P(z) is the restriction to the subspace
of U-invariant vectors of the operator M on the space Iy = ®Ip(p1, p2) (1, p2 range over the
characters of AX /F* . a”), which maps Io(pu1, p2) to Io(pa, p1) via M (p1, g, 2).

Proposition 5.17. There exists ay € C such that for sufficiently large m,
1
tr(mmBr) = (m — 5)ay — Z Si(f)
5<i<8

Proof. By Proposition 4.29 the function P(z) has two poles in the domain |z| < 1, namely at
z = ¢ 1/2, each of order 1. We have P(z~!) = P(z)~! and P(z)"'B(z)P(z) = B(z~!). Hence
the final claim of Proposition 5.16 applies and implies that for large enough m,

tr(mn [B]) = (m — 5) 1 By + BEPEPE) e (B, Y

+ir(B(—¢/?),Y_) + %[tr(B(l)P(l)) + tr(B(=1)P(-1))].

Here By is the constant term of B(z) and the image of the operator lim,_, —1/2(2 F ¢ ?)P(2) is
denoted by Yi. The proposition follows once we show that

7{ | EBEPIPE) = —Ami(S(1) + S6(1)), 1)
tr(Blg?),Yy) + tr(B(—q V%), Y_) = —S5(f). 2)
tr(B()P(1)) + tr(B(—1)P(~1)) = —4S(f). (3)

Denote by r(z) the representation of GL(2, A) by right translation in I(2) = ®,, u, I (11,1, pavz).
Here ju1, po are characters of AX/EF* - a”. Let r(z, f) be the convolution operator defined by 7(2)
and the compactly supported function f in C’SO(GL( ,A)). Identify, as usual, I(z) to the space Iy,
and consider r(z, f) as an operator in Iy. From Proposition 4.36, B(z) coincides with the restriction
of 7(z, f) to IY. Also, P(2) coincides with the restriction of M(2) to I}. Hence the integral on the
left of (1) equals

% . trr(z, f)M'(2)M(2) " dz

Z% tr I (pov,—1, pavz, f)M' (1, po, 2)M (pa, po, 2) ™' dz

Z

1,142

Z% tr M (i, p2, 2) " (v, 1, pavs, fYM (i, pa, 2)dz
p e Y 121=

27{ tr I (pavs, prav,—1, f)M (p1, iz, 2) " M (p, o, 2)dz.
1,2 |z|=

Then (1) follows from Proposition 4.9.
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For (2), it follows from Proposition 4.29 that Y, = LY, with L = @®L,, L, C I(u,p) being
generated by the function x +— p(z). The operator r(qil/Q,f) acts in L, as the operator of
multiplication by fGL(2 A) f(z)u(det x)dx. Hence

(Bl )Y = DD =3 [ flaa(det o,
o Jar.a)
where . ranges over the set of characters of AX/F* - o”. Similarly

T —1/2 _:rr—*1/2 = x etx)v_ etx)dx.
tr(Bg™?),Y-) = tr(r(—q~%, /), L) ;/GL(M)J% Jiu(det @) (det 2)d

27 Z

Every character of A* which is trivial on F'* - a*” is either trivial on F* - «
v_1 is, so (2) follows.

For (3) note that
e BO)P(1) = trr(L, (M) = 3 b0 (o, )M (o, 1) = — St T, f)
u u

or its product with

by Proposition 4.30. Similarly tr B(—1)P(—1) = —>_  tr I(pv_1, pv_1, ). O

This completes the proof of the trace formula.
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