
EISENSTEIN SERIES AND THE TRACE FORMULA

FOR GL(2) OVER A FUNCTION FIELD

YUVAL Z. FLICKER

Abstract. We write out and prove the trace formula for a convolution operator on the space of
cusp forms on GL(2) over the function field F of a smooth projective absolutely irreducible curve
over a finite field. The proof – which follows Drinfeld – is complete and all terms in the formula
are explicitly computed. The structure of the homogeneous space GL(2, F )\GL(2,A) is studied in
section 2 by means of locally free sheaves of OX -modules. Section 3 deals with the regularization
and computation of the geometric terms, over conjugacy classes. Section 4 develops the theory of
intertwining operators and Eisenstein Series, and the trace formula is proven in section 5.

1. Introduction and statement of the Trace Formula

1.1. Introduction. The (non-invariant) trace formula for GL(2) over a number field was stated
and its proof sketched in chapter 15 of the influential book of Jacquet and Langlands [JL70] of
1970. It was used there for comparison of automorphic representations of the multiplicative group
of a quaternion algebra, with automorphic representations of GL(2).

Drinfeld used the trace formula for GL(2) over a function field F to prove Langlands’ conjecture
for GL(2, F ), and to count in [D81] the number of two dimensional irreducible representations of
the fundamental group of a smooth projective geometrically irreducible curve X over a finite field.
To check the statement of the trace formula of [JL70] in the function field case, Drinfeld gave a
detailed (but unpublished) proof, which differs from the one sketched in [JL70].

It is this proof of Drinfeld which is given in this paper.
The main reason why this proof is still interesting is the elementary and unconventional treatment

of Eisenstein series (see subsections 4.7-4.8 below), and the computation of traces in the spirit of
Tate [T68], see subsection 5.2. In both cases it is based on a “baby model” (see Proposition 4.31,
Corollary 4.32, Lemma 5.11), which cries out for generalization.

Let us describe the contents of this article.
The trace formula itself is stated in subsection 1.2 with a few comments. More comments,

including informal ones, are given in section 3.
Section 2 contains a dictionary between the language of adèles and the language of vector bundles

on the smooth projective curve X corresponding to F . In particular, the set of rank n vector
bundles on X is identified with GL(n, F )\GL(n,A)/GL(n,OA), where OA ⊂ A is the ring of
integral adèles. This dictionary goes back to A. Weil [W38], although in an older language. It
underlies the Geometric Langlands program [BD].

The terms which appear in the geometric part of the trace formula – orbital integrals and weighted
orbital integrals – are estimated and regularized in section 3.
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In section 4 intertwining operators, Eisenstein series, and L-functions are introduced. The ra-
tionality of the intertwining operator M(µ1, µ2, t) and the functional equation M2 = 1 are first
proven using local computations: normalization of the intertwining operators by L-functions and
ε-factors, and the functional equation of the L-functions.

In subsections 4.7-4.8 these facts are proven using an alternative, global approach. The ideas
might go back to Selberg. But technically the exposition is quite different and more elementary:
in the case of function fields the analytic problems disappear.

The trace formula is proven in section 5. The logarithmic derivative of the intertwining operator
appears as a result of a computation of the trace of some operator in a power series space, see
Lemma 5.11. This computation is probably related to Tate’s article [T68].

Here are some questions.
1. Could the methods of subsections 4.7-4.8 and section 5 be extended to prove the functional

equation for Eisenstein series, and the trace formula, for an arbitrary reductive group over a function
field?

2. Is there a modification of the technique from subsections 4.7-4.8 that would work in the case
of number fields, e.g., for GL(2,Q)? One could try to replace the space of formal power series used
in subsections 4.7-4.8 by some space of holomorphic functions.

3. What is the precise relationship between Lemma 5.11 and Tate’s [T68]?
4. What is the relationship between the approach to Eisenstein series of subsections 4.7-4.8,

and the classical approaches: that of Selberg-Langlands-Arthur, and that of scattering theory (see
[FP72] or [LP76])?

This author’s initial motivation to write out Drinfeld’s expression and proof of the trace formula
for GL(2) over a function field stems from his search for higher rank analogues of Drinfeld’s formula
[D81]. This led us to count with Deligne [DF13] the number of rank n (≥ 2) local systems with
principal unipotent local monodromy at least at two places. There we use the trace formula in the
compact quotient case, and the transfer of automorphic representations from a compact form to
GL(n). This explains the condition: “at least at two places”.

The case of [D81] is rank n = 2, no monodromy. To complete the study of [D81] and of [DF13]
in rank two one has to consider the case of principal unipotent local monodromy at a single place.
This is done in [F], using the explicit computations of the trace formula for GL(2) over a function
field of the present work. This was our initial motivation to write out this formula. Drinfeld’s proof
in the case of rank two, no ramification, is also given in [F].

Of course there are numerous expositions of the trace formula of [JL70], e.g. [GJ79], geared
to explain the lifting application of [JL70], mainly in the number field case. But none computes
explicitly (and accurately, cf. [D81]) all the terms which appear in the trace formula. The latter is
precisely what is needed for the counting applications of [D81] and [F]. An attempt at a complete
exposition of the computations for GL(2) in the number field case is at [AFOO].

Of course the trace formula of [JL70] was generalized to the higher rank case by Arthur, see e.g.
[A05], in the number field case, and by Lafforgue, see e.g. [Lf97], in the function field case. But
the important applications of these works did not require explicit evaluation of all the terms which
appear in the trace formula, so our results are not included in those of [Lf97], even in the case of
GL(2) considered here.

In the number field case, the Remark on p. 112 of [A05] states: “As a matter of fact, it is only
in the case of GL(2) that the general coefficients have been evaluated. It would be very interesting
to understand them better in other examples, although this does not seem to be necessary for
presently conceived applications of the trace formula”. Indeed the applications of [D81], [DF13],
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[F] – counting rather than comparing – are of different nature than those of [JL70], [A05], [Lf97],
where most terms can be erased a-priori in the comparison so they need not be computed.

To repeat what is explained above, we also think the approach of subsections 4.7-4.8 and section
5 is original, substantially different from the currently known methods (which are developed in
[A05], [Lf97]), interesting and warrants further development.

I wish to express my deep gratitude to V. Drinfeld for making available to me his unpublished
notes, for teaching me lots of mathematics in the process, and for his permission to publish this
paper, to A. Beilinson for telling me about Drinfeld’s notes, and to the referee for very careful
reading.

1.2. Statement of the Trace Formula. Let us write the trace formula for GL(2) over a function
field F of a smooth projective geometrically connected curve X over a finite field Fq, and a test
function f in C∞c (GL(2,A)) (subscript c for “compactly supported”, superscript ∞ for “locally
constant”, A denotes the ring of adèles of F ). Let r0 be the representation of GL(2,A) by right
translation on the space A0,α of cusp forms on αZ ·GL(2, F )\GL(2,A), and r0(f) =

∫
f(g)r0(g)dg

(g ∈ GL(2,A)) the convolution operator; dg = ⊗vdgv is a Haar measure. Here α is a fixed idèle of
degree 1, whose components are almost all equal to 1.

A cusp form is a function φ : GL(2, F )\GL(2,A) → E (E is a fixed algebraically closed sub-
field of C) which is invariant on the right by some open compact subgroup of GL(2,A), and∫
N(F )\N(A) φ(nx)dn = 0 for all x in GL(2,A). Here N denotes the unipotent upper triangular

subgroup of GL(2). We also write A for the diagonal subgroup, and A′ = A − Z where Z is the
center of GL(2). By a well known result of G. Harder, when F is a function field (but not a number
field) a cusp form is compactly supported modulo Z(A).

Theorem 1.1. For any f ∈ C∞c (GL(2,A)) we have tr r0(f) =
∑

1≤i≤8 Si(f). Here

S1(f) =
∣∣∣αZ ·GL(2, F )\GL(2,A)

∣∣∣ ∑
γ∈αZ·F×

f(γ).

S2(f) =
∑
F2

S2,F2(f),

S2,F2(f) = |AutF F2|−1
∑

γ∈αZ(F2−F )

∫
GL(2,A)/αZ·F×2

f(xγx−1)dx.

Here F2 ranges over the set of isomorphism classes of quadratic extensions of the field F . For each
F2 we fix an embedding F2 ↪→M(2, F ) into the ring of 2× 2 matrices over F .

S3(f) =
∑

γ∈αZ·A′(F )

∫
A(A)\GL(2,A)

f(x−1γx)v(x)dx.

Any x ∈ GL(2,A) can be written in the form ank, a ∈ A(A), k ∈ GL(2, OA), n =
(

1 b
0 1

)
, b is

determined uniquely by x up to b 7→ ub+ w, u ∈ O×A , w ∈ OA. Put v(x) =
∑

v logq(max(1, |bv|v)).

S4(f) =
∑

a∈F×αZ

θ̃a,f (1), θ̃a,f (t) =
1

2
(θa,f (t) + θa,f (t−1)),

θa,f (t) =

∫
F×αZN(F )\GL(2,A)

f
(
x−1 ( a a0 a )x

)
tht+(x)dx,
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ht+ : GL(2,A)→ Z is defined by ht+ (( a c0 b ) k) = deg a− deg b (k ∈ GL(2, OA); a, b ∈ A×; c ∈ A).

S5(f) =
−1

4πi

∑
µ1,µ2

∮
|z|=1

tr I(µ1νz, µ2νz−1 , f)
m′(µ1/µ2, z)

m(µ1/µ2, z)
2zdz.

Here m(µ, z) = L(µ, z)/L(µ, z/q). The µ1, µ2 range over the set of characters of A×/F× · αZ,

νz(x) = zdeg(x). Also I(µ1, µ2) is the space of right locally constant functions φ on GL(2,A) with

φ (( a c0 b )x) = |a/b|1/2µ1(a)µ2(b)φ(x) (x ∈ GL(2,A); a, b ∈ A×; c ∈ A).

It is a GL(2,A)-module by right translation, and tr I(µ1νz, µ2νz−1 , f) is the trace of the indicated
convolution operator.

S6(f) =
−1

4πi

∑
µ1,µ2

∮
|z|=1

tr[I(µ1νz, µ2νz−1 , f) ·R(µ1, µ2, z)
−1 d

dz
R(µ1, µ2, z)]dz.

Notations are as in S5(f), and R(µ1, µ2, z) : I(µ1νz, µ2νz−1) → I(µ2νz−1 , µ1νz) is an operator,

rational in z, defined as a product ⊗vR(µ1v, µ2v, zv), zv = zdeg(v). The product is well defined as the
local operator maps the function in the source whose restriction to GL(2, Ov) is 1 to such function in
the target. Further, R(µ1v, µ2v, z) is defined to be [L(µ1v/µ2v, z

2/qv)/L(µ1v/µ2v, z
2)]M(µ1v, µ2v, z).

The operator M(µ1v, µ2v, z) = M(µ1vνz, µ2vνz−1) is defined first by an integral

φ 7→
∫
φ
((

0 −1
1 0

) (
1 y
0 1

)
x
)
dy if |(µ1v/µ2v)(πππv)z

2| < 1,

then by analytic continuation, as it is a rational function in z. The operators I(µ1νz, µ2νz−1 , f)
and R(µ1, µ2, z) are considered as operators on

I0(µ1, µ2) = {φ ∈ C∞(GL(2, OA)); φ (( a c0 b )x) = µ1(a)µ2(b)φ(x);

x ∈ GL(2, OA), a, b ∈ O×A ; c ∈ OA}.

S7(f) =
1

4

∑
µ

tr I(µ, µ, f), S8(f) = −
∑
µ

∫
GL(2,A)

f(x)µ(detx)dx.

Both sums range over all characters µ of A×/F× ·α2Z. The sum of S8 is over all automorphic one
dimensional representations (µ◦det) of αZ\GL(2,A). The integral there represents the trace of the
convolution operator associated with f .

The terms S1(f) and S2(f) are finite by Proposition 3.5, 3.6, 3.9. The argument used in the
proof of Proposition 3.9 shows that for any γ ∈ αZ(A(F ) − Z(F )) the function x 7→ f(x−1γx) on
A(A)\GL(2,A) has compact support, hence the integral in S3(f) converges.

By Proposition 3.11 the function θa,f (t) is rational and may have at t = 1 a pole of order at

most 1, for each a ∈ A×. Hence θ̃a,f (t) is regular at t = 1. From Proposition 3.5 it follows that the
sums in S3(f) and S4(f) are finite, so these terms are well defined.

For any f = ⊗fv in C∞c (GL(2,A)), the operator I(µ1, µ2, f) is zero unless µi are unramified at
each v where fv is GL(2, Ov) biinvariant. This implies that the sums in Si(f) (5 ≤ i ≤ 8) are
finite, for a given f . To see that S5(f) and S6(f) are well defined, note that the rational functions
m(µ, t), R(µ1, µ2, t), R(µ1, µ2, t)

−1 are regular on |t| = 1 for all characters µ, µ1, µ2 of A×/F× ·αZ.
For m(µ, t) this follows from Proposition 4.11, for R and R−1 from Corollary 4.28.

The distributions [linear forms on C∞c (GL(2,A))] f 7→ tr r0(f), Si(f) (i = 1, 2, 5, 7, 8) are invari-
ant, namely take the same value at f and fh(x) = f(h−1xh), h ∈ GL(2,A). For i = 3, 4, 6 we have
Si(f

h) = Si(f) if h ∈ GL(2, OA), but Si is not invariant.



EISENSTEIN SERIES AND THE TRACE FORMULA 5

If f ∈ C∞c (GL(2,A)) takes values in Q then tr r0(f) ∈ Q, since the representation r0 is defined
over Q. For i = 1, 2, 3, 4, 8 it is clear that Si(f) ∈ Q. For i = 7 the integrand contains the factor

µ(ab)|a/b|1/2 which involves
√
q. However the sum includes with µ also µε, ε(α) = −1, and so the

sum of the terms indexed by µ and µε can be written as an integral over the domain where |a/b|
is in q2Z.

To see that S5(f) is rational, we put a(µ1, µ2) = 1
2πi

∮
|t|=1 f(µ1, µ2, t)dt where

f(µ1, µ2, t) = tr I(µ1νt, µ2νt−1 , f) · d
dt

lnm(µ1/µ2, t
2),

and claim that for any σ ∈ Gal(Q/Q) one has σ(a(µ1, µ2)) = a(σµ1,
σµ2). Note that Gal(Q/Q)

acts on the group of characters on A×/F× · αZ as they are all Q-valued. Now a(µ1, µ2) is the
sum of the residues of f(µ1, µ2, t) at the points of the unit disc. We have that σ(f(µ1, µ2, t)) =
f(σµ1,

σµ2, ε(σ) · σt) with ε(σ) = σ(
√
q)/
√
q. However, if f(µ1, µ2, t) has a pole at t = t0 and

|t0| < 1, then by Proposition 4.11, |σ(t0)| < 1 for any σ ∈ Gal(Q/Q). Hence S5(f) ∈ Q.
To see that S6(f) ∈ Q one proceeds similarly, using the results of Corollary 4.28 on the poles of

R(µ1, µ2, t) and R(µ1, µ2, t)
−1.

2. Locally free sheaves of OX-modules

2.1. Stable bundles. Let X be a smooth geometrically connected projective curve over Fq (we
take minimal q). Denote by OX the structure sheaf of X. Denote by Bunn the set of isomorphism
classes of rank n locally free sheaves of OX -modules. By a (vector) bundle we mean here simply a
locally free sheaf. In particular, Bun1 = PicX. The Picard group PicX of invertible, or rank 1,
locally free sheaves L of OX -modules, is naturally isomorphic to the group of classes D of (Weil)
divisors D =

∑
v nvv (nv ∈ Z, v ∈ |X|). Here |X| is the set of closed points of X, and the divisors

D, D′ lie in the same class (are linearly equivalent) if their difference is the (principal) divisor
(f) =

∑
v ordv(f)v where f is a nonzero rational function on X and ordv(f) is the order of f at

v ∈ |X| (ordv(f) > 0 if v is a zero, ordv(f) < 0 if v is a pole, ordv(f) = 0 otherwise). If L,
M∈ PicX correspond to the divisors D, D′ then L ⊗M corresponds to D +D′.

There is a degree map deg on PicX: deg(
∑

v nvv) =
∑

v nv deg(v) defines deg(L) = deg(D),
where deg(v) = [kv : Fq]. Here kv is the residue field of the function field F = Fq(X) of X over Fq at
v; assume Fq is algebraically closed in F . We write Fv for the completion of F at v,Ov for its ring

of integers. The cardinality of the residue field kv = Fqv at v is denoted by qv, thus qv = qdeg(v).

We also write deg(D) for deg(D), as the degree of a principal divisor is 0; recall that D denotes
the class of D.

Denote by χ(L) = dimFq H
0(X,L) − dimFq H

1(X,L) the Euler-Poincaré characteristic of L ∈
PicX. Here H i(X,L) are finite dimensional vector spaces over Fq. Then χ(OX) = 1 − g where
g = dimFq H

1(X,OX) is named the genus of X. The Riemann-Roch theorem asserts that χ(L) −
deg(L) = χ(OX) is independent of L ∈ PicX.

Define the degree of a locally free sheaf E of OX -modules of rank n to be deg E = χ(E)−nχ(OX).
The determinant of E is det E =

∧n E ∈ PicX. We have deg E = deg det E . This gives an alternative
definition of the degree. A proof of this equality is as follows. If E is a line bundle, then there is
nothing to prove. In the general case, use the fact that both deg E and deg det E are additive (if
E ′ ⊂ E is a subbundle, then deg E = deg E ′ + deg(E/E ′) and similarly for deg det E), and that each
vector bundle has a flag, Ei, such that Ei/Ei−1 are line bundles.

The height of a rank two locally free sheaf E of OX -modules is the integer ht(E) = maxL(2 degL−
deg E), L ranges over all invertible subsheaves of E .
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Proposition 2.1. We have −2g ≤ ht(E) <∞.

Proof. Let L be an invertible subsheaf of E . From the Riemann-Roch theorem χ(L) = degL +
1 − g we obtain dimFq H

0(X,L) ≥ degL + 1 − g, whence degL ≤ dimFq H
0(X,L) + g − 1 ≤

dimFq H
0(X, E) + g − 1, so ht(E) is finite.

Let L be an invertible subsheaf of E of maximal degree. Let M be an invertible sheaf with
degM = degL + 1. Then Hom(M, E) = 0. Also, by Riemann-Roch for the rank 2 sheaf E ,
dimFq Hom(M, E) = dimFq H

0(X,M−1E) ≥ deg(M−1E) + 2 − 2g = deg E − 2 degM + 2 − 2g =
deg E − 2 degL − 2g, so 2 degL − deg E ≥ −2g. �

A rank two locally free sheaf E of OX -modules is called stable if ht(E) < 0 and semistable if
ht(E) ≤ 0. In general, the slope µ(E) of a locally free sheaf E over an algebraic curve is defined
to be deg E/ rk E , and E is called stable if µ(F) < µ(E) for all proper nonzero subbundles F of E
(semistable if ≤). A locally free sheaf E of rank two is called almost stable if ht(E) < 2g − 1, and
very unstable if ht(E) ≥ 2g − 1. If g = 0, every E is very unstable.

Remark 1. A very unstable vector bundle E of rank 2 splits into the direct sum of two line bundles.
We give here a relatively elementary treatment. An extension can be found in the work of Harder
and Narasimhan. If E is very unstable, L is an invertible subsheaf of E of maximal degree, and
M = E/L, then M is invertible and Ext(M,L) = H1(X,M−1L) is 0 since degM−1L = degL −
degM = 2 degL−deg E = ht E ≥ 2g−1. Indeed, by Serre dualityH1(X,M−1L) = H0(X,L−1Mω)
where ω denotes the canonical bundle. But degL−1Mω ≤ 2g−2− (2g−1) < 0, and H0(X,F) = 0
for an invertible sheaf F with negative degree.

Proposition 2.2. The number of isomorphism classes of almost stable rank two locally free sheaves
E of OX-modules with a fixed degree is finite.

Proof. The height of an almost stable sheaf lies in [−2g, 2g − 2]. Hence it suffices to show the
finiteness for E with a fixed degree n and height h. Every such sheaf lies in an exact sequence
0 → L → E → M → 0, where L and M are invertible sheaves and 2 degL − deg E = h. Then
degL = (n + h)/2, degM = (n − h)/2. Since the degrees of L and M are fixed, there are only
finitely many possibilities for L and M (set of cardinality of the Fq-points on the abelian variety
Pic0(X)). With L andM fixed there are only finitely many choices for E as Ext(L,M) is finite. �

The group PicX acts on Bun2 : (L ∈ PicX, E ∈ Bun2) 7→ L ⊗ E . As deg(L ⊗ E) = 2 deg(L) +
deg(E), the set of almost stable sheaves is invariant under this action. In a PicX-orbit we may
choose E to have deg(E) in {0, 1}. Hence we deduce

Corollary 2.3. The number of PicX-orbits on the set of isomorphism classes of almost stable rank
two locally free sheaves of OX-modules is finite.

2.2. Bundles and lattices. Let E be a rank n locally free sheaf of OX -modules. Denote by Eη
the fiber (= stalk) of E over the generic point η of X. Let E(v) be the stalk of E at the closed point
v ∈ |X|. Let O(v) be the local ring of X at v. Then Eη is an n-dimensional vector space over F ,
and E(v) is an O(v)-lattice in Eη, namely a rank n free O(v)-submodule of Eη.

A set M of O(v)-lattices M(v) in a finite dimensional vector space V over F , v ranges over the
set |X| of closed points in X, is called adelic if there exists a basis {e1, . . . , en} in V such that
M(v) = O(v)e1 + · · · + O(v)en for almost all v in |X|. “Almost all” means “with at most finitely
many exceptions”. If M is adelic then it is adelic with respect to any basis {e1, . . . , en} of V .

The set of stalks {E(v); v ∈ |X|} of a locally free sheaf E of OX -modules is adelic. Conversely, an
adelic set of lattices M = {M(v); v ∈ |X|} in a finite dimensional vector space V over F is the set of
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stalks of the locally free sheaf E of OX -modules defined by H0(U, E) = {s ∈ V ;∀v ∈ U, s ∈ M(v)}
for any open subset U of X. Obtained is an equivalence of the category of finite rank locally free
sheaves of OX -modules, with the category of finite dimensional vector spaces over F with adelic
sets of O(v)-lattices.

Let Ov be the completion of O(v). The completion of F at v is denoted Fv. Let V be a finite
dimensional vector space over F . Put Vv = V ⊗F Fv. There is a natural bijection between the
set of O(v)-lattices in V , and Ov-lattices in Vv: an O(v)-lattice M ⊂ V corresponds to the lattice
M ⊗O(v)

Ov in Vv; an Ov-lattice N ⊂ Vv corresponds to the O(v)-lattice N ∩ V .

The category C whose objects are finite dimensional F -vector spaces V with adelic sets {Mv; v ∈
|X|} of Ov-lattices Mv in Vv is equivalent to the category of finite rank locally free sheaves of
OX -modules E , by E 7→ (Eη, {Ev}), where Eη is the generic fiber of E and Ev is the completion of
the stalk of E at the closed point v ∈ |X|.

Let Rn be the set of isomorphism classes of pairs (E , i) where E is a rank n locally free sheaf
of OX -modules, and i is an isomorphism from the generic fiber of E to Fn. The pairs (E , i) and
(E ′, i′) are isomorphic if there is an isomorphism E→̃E ′ which induces a commutative diagram when
restricted to the generic fiber with sides i and i′ and the identity Fn → Fn. The group GL(n, F )
acts on Rn by g : (E , i) 7→ (E , g ◦ i). Then GL(n, F )\Rn = Bunn is the set of isomorphism classes
of rank n locally free sheaves of OX -modules.

The set Rn is the set of adelic collections of Ov-lattices Mv ⊂ Fnv , v ∈ |X|. The group
GL(n, Fv) acts transitively on the set of Ov-lattices in Fnv . The stabilizer of the standard lat-
tice Onv in Fnv is GL(n,Ov). Thus the set of Ov-lattices in Fnv is GL(n, Fv)/GL(n,Ov), and
Rn is GL(n,A)/GL(n,OA), where A is the ring of adèles in F and OA =

∏
v∈|X|Ov. Thus

Bunn = GL(n, F )\GL(n,A)/GL(n,OA). The elements of GL(n,A)/GL(n,OA) are called ma-
trix divisors, and the elements of GL(n, F )\GL(n,A)/GL(n,OA) classes of matrix divisors. For
n = 1, the identification of GL(n, F )\GL(n,A)/GL(n,OA) with Bunn is the identification of classes
of divisors with invertible sheaves.

The group GL(n,A) can be identified with the set of triples (E , iη : Eη
∼→ Fn, (iv : Ev

∼→ Onv )).

Given a rank n locally free sheaf E , an isomorphism iη : Eη
∼→ Fn, and for each closed point v

in |X| an isomorphism iv : Ev
∼→ Onv of the completion Ev of the stalk E(v) at v with Onv , let us

define the corresponding g = (gv) in GL(n,A). Each gv has to be an automorphism Fnv → Fnv ,
with gv(O

n
v ) = Onv for almost all v. Construct gv as the composition iv ◦ i−1

η :

Fnv = Fn ⊗F Fv
iη
∼← Eη ⊗F Fv = EFv = Ev ⊗Ov Fv

iv∼→ Onv ⊗Ov Fv = Fnv .

Note that since E is locally free, for almost all v the map gv = iv ◦ i−1
η takes Onv ⊂ Fnv to Ev ⊂

Eη ⊗F Fv via i−1
η , and then to Onv via iv. To show that the map {(E , iη, (iv))} → GL(n,A) is

bijective one shows that GL(n,A) acts on the set of triples, simply transitively. Viewing the
trivial locally free sheaf as OnA (space of columns), g(E , iη, (iv)) is defined to be (gE , iη, (iv ◦ g−1

v )),
where iv ◦ g−1

v maps the stalk gvEv of gE at v to Onv . The set of pairs {(E , iη)} then corresponds
to GL(n,A)/GL(n,OA), the set of pairs {(E , (iv))} to GL(n, F )\GL(n,A), and the set {E} to
GL(n, F )\GL(n,A)/GL(n,OA).

To an idèle a = (πππ−nvv uv; v ∈ |X|), where πππv denotes a generator of the maximal ideal in the
ring Ov of integers in Fv, uv ∈ O×v and nv ∈ Z, we associate the divisor D =

∑
v nvv, and the

degree deg(a) = deg(D) =
∑

v nv deg(v), deg(v) = [Fv : Fq], where Fv is the residue field of F at

v, a finite field of qv = qdeg(v) elements. For g ∈ GL(2,A) write deg g for deg det g. Recall that
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OA =
∏
v Ov (v ∈ |X|). For t ∈ C× we write νt(a) = t− deg(a) =

∏
v t
−nv
v where tv = tdeg(v). Then

νq−1(a) =
∏
v q

nv
v = |a| is equal to ν(a) = qdeg(a). Also νt(πππv) = tv, νq−1(πππv) = |πππv|.

Let L andM be invertible sheaves. Fix isomorphisms iL, iM of their generic fibers with F . Each
of (L, iL) and (M, iM) defines an element of A×/O×A , namely a divisor on X. Choose representatives
a, b in A×, for example

∑
v nvv is represented by (πππ−nvv ). Given an exact sequence 0→ L → E →

M → 0 of locally free sheaves, choose an isomorphism ϕ between the generic fiber of E and F 2

so that the induced exact sequence of generic fibers 0 → F → F 2 → F → 0 is standard
(
x 7→

( x0 ) , ( xy ) 7→ y
)
. The isomorphism ϕ is defined uniquely up to left multiplication by an automorphism

of F 2 of the form ( 1 t
0 1 ), t ∈ F . The pair (E , ϕ) determines an element of GL(2,A)/GL(2, OA), of

the form u = ( 1 z
0 1 )

(
a 0
0 b

)
, with z in A. Since u is defined up to right multiplication by an element

of GL(2, O), z is uniquely defined up to addition of an element of a
bOA. Replacing ϕ by ( 1 t

0 1 )ϕ
with t ∈ F replaces z by z + t. Thus we get a bijection Ext(M,L) → A/(F + a

bOA). This is an
isomorphism of Fq-vector spaces.

In summary, if the invertible sheaves L and M correspond to idèles a and b, then Ext(M,L) '
A/(F + a

bOA), and the map Ext(M,L) → Bun2 which associates to the exact sequence 0 → L →
E →M→ 0 its middle term, coincides with the map A/(F + a

bOA) ' H1(X,M−1L), see [S97], II.

5. The isomorphism A/(F + a
bOA)

∼→ Ext(M,L) is H1(X,M−1L)→̃Ext(M,L).

2.3. The space GL(2, F )\GL(2,A).

Proposition 2.4. Given a ∈ A×, deg a ≥ 2g − 1, then aOA + F = A.

Proof. If L is an invertible sheaf on X associated with a, then A/(F + aOA) = H1(X,L). By
Serre duality H1(X,L) ' H0(X,L−1ω), where ω is the canonical bundle of degree 2g − 2. Then
deg(L−1ω) ≤ (2g − 2)− (2g − 1) = −1 < 0, hence H0(X,L−1ω) = {0}. �

Define a function ht+ : GL(2,A) → Z by ht+ (( a c0 b ) k) = deg a − deg b for all a, b ∈ A×, c ∈ A,
k ∈ GL(2, OA). It is clearly a well defined function on B(F )\GL(2,A). For x ∈ GL(2,A), put
ht(x) = maxγ∈GL(2,F ) ht+(γx). On GL(2, F )\GL(2,A) it is well defined.

Proposition 2.5. For any x ∈ GL(2,A) we have −2g ≤ ht(x) <∞.

Proof. This follows from Proposition 2.1 as if E is a rank two locally free sheaf of OX -modules
associated to the image of x in GL(2, F )\GL(2,A)/GL(2, OA), then ht(x) = ht(E). �

Put HB = {x ∈ B(F )\GL(2,A); ht+(x) > 0} and

H = {x ∈ GL(2, F )\GL(2,A); ht(x) > 0}.

Proposition 2.6. (1) The natural projections p : HB → H is a homeomorphism.
(2) The set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ n} is compact modulo the center Z(A) of GL(2,A)
for every integer n.

Proof. (1) The map p is clearly onto. To show that p is injective it suffices to show for any x in
GL(2,A), γ ∈ GL(2, F ), that ht+(x) > 0 and ht+(γx) > 0 implies γ ∈ B(F ). This is a typical
application of the Harder-Narasimhan filtration. In simple, explicit terms, this follows from

Lemma 2.7. If g ∈ GL(2, F )−B(F ) then ht+(x) + ht+(gx) ≤ 0.

Proof. Write g as g1wg2 with g1, g2 in B(F ), w = ( 0 1
1 0 ). Put x′ = g2x. Then ht+(x) = ht+(x′),

ht+(gx) = ht+(wx′). Thus we need to show that ht+(x′) + ht+(wx′) ≤ 0. Suppose x′ =
( a1 c1

0 b1

)
k1,

wx′ =
( a2 c2

0 b2

)
k2 with k1, k2 ∈ GL(2, OA). Put k2k

−1
1 =

(
α β
γ δ

)
. Then

( a2 c2
0 b2

) ( α β
γ δ

)
= w

( a1 c1
0 b1

)
=
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0 b1
a1 c1

)
, hence b2γ = a1, thus deg a1 ≤ deg b2 (as deg γ ≤ 0, since γ ∈ OA). But deg a2b2 = deg a1b1,

hence deg a2 ≤ deg b1. Then ht+(x′) + ht+(wx′) = deg a1 − deg b1 + deg a2 − deg b2 ≤ 0. �

Now the natural map B(F )\GL(2,A)→ GL(2, F )\GL(2,A) is open and HB is an open subset
of B(F )\GL(2,A), hence the bijection p : HB → H is open. Since it is also continuous, p is a
homeomorphism.

(2) The image under p of the set S = {x ∈ B(F )\GL(2,A);−2g ≤ ht+(x) ≤ n} of HB in
GL(2, F )\GL(2,A) contains the set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ n}. So it suffices to show
that S is compact mod Z(A). Choose a compact C in A× with CF× = {t ∈ A×;−2g ≤ deg t ≤ n}.
Choose an idèle d with deg d ≥ 2g − 1. Put

Y =
{

( 1 c
0 1 )

(
a 0
0 b

)
k; k ∈ GL(2, OA), a, b ∈ A×,

a

b
∈ C, c ∈ dOA

}
.

Lemma 2.8. The map Y → S is surjective.

Proof. Let x ∈ GL(2,A),−2g ≤ ht+(x) ≤ n. We need to show that x can be written as hy with
y ∈ Y and h ∈ B(F ). Write x as ( r s0 t )K with k ∈ GL(2, OA), r, t ∈ A×, s ∈ A. It remains to show
that ( r s0 t ) can be expressed as

( α γ
0 β

)
( 1 c

0 1 )
(
a 0
0 b

)
with a, b ∈ A×, ab ∈ C, c ∈ dOA, α, β ∈ F×, γ ∈ F .

Thus we need to show the existence of a, b, c, α, β, γ such that
(*) aα = r, βb = t, a, b ∈ A×, α, β ∈ F×, a

b ∈ C,
(**) b(αc+ γ) = s, c ∈ dOA, γ ∈ F.

By definition of x, deg r− deg t lies in [−2g, n], so the existence of a, b, α, β satisfying (*) follows
from the definition of C. The existence of c ∈ dOA and γ ∈ F satisfying αc+ γ = s/b follows from:
cOA + F = A if deg c ≥ 2g − 1. �

Since Y is compact mod Z(A), so is S, and (2) follows. �

In summary, the homogeneous space GL(2, F )\GL(2,A) is the union of the compact mod Z(A)
set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ 0}, and the set H = {x ∈ GL(2, F )\GL(2,A); ht(x) >
0}, whose structure is simpler. The set HB, hence also the sets H and GL(2, F )\GL(2,A), are
noncompact modulo Z(A). Indeed the function ht+ takes arbitrary large values.

The image of H in Bun2 = GL(2, F )\GL(2,A)/GL(2, OA) is the set of nonsemistable locally
free sheaves.

The set GL(2, F )\GL(2,A)/GL(2, OA) is analogous to the set SL(2,Z)\ SL(2,R)/ SO(2) =
SL(2,Z)\h, where h = {z ∈ C; Im z > 0}, the upper half plane, is isomorphic to SL(2,R)/ SO(2),
by g 7→ g(i) = (ai + b)/(ci + d). The set B(F )\GL(2,A)/GL(2, OA) is analogous to N\h where
N is the group of transformations z 7→ z + n (n ∈ Z) on h. The function ht+ is analogous to
the function z 7→ ln Im z on N\h. The statement −2g ≤ ht(x) < ∞ corresponds to the state-
ment that the natural map from the half plane {z ∈ C; Im z ≥

√
3/2} to SL(2,Z)\h is onto.

The statement that p : HB → H is homeomorphism corresponds to the statement that the map
{z ∈ C; Im z > 1} → SL(2,Z)\h is injective, and the compactness of {x ∈ GL(2, F )\GL(2,A);
ht(x) ≤ n} corresponds to the statement that the complement in SL(2,Z)\h of the image of the
half plane {z ∈ C; Im z > h} is compact.

2.4. `-groups. An `-space is a Hausdorff topological space such that each of its points has a
fundamental system of open compact neighborhoods.

We shall consider on `-spaces only measures for which every open compact subset is measurable,
and its volume is a rational number. If dx is such a measure on an `-space Y , and f is a locally
constant compactly supported function on Y with values in a field E of characteristic zero, then∫
Y f(x)dx reduces to a finite sum, and it is well defined.
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On topological groups we consider only left- or right-invariant measures.
An `-group is a topological group with an `-space structure.

Proposition 2.9. Let G be an `-group. Then (1) there exists a fundamental system of neighbor-
hoods of the identity in G consisting of open compact subgroups;
(2) there exists a left Haar measure on G such that the volume of each open compact set is a rational
number.

Proof. (1) Let U be a neighborhood of the identity in G. We shall show that U contains an
open compact subgroup. Since G is `-space, we may assume that U is open and compact. Put
V = {x ∈ G;xU ⊂ U}. Then V = ∩u∈UUu−1, hence it is compact. Now for each v in V and u
in U , by continuity of multiplication m there exists an open subset Wu containing v, and Uu in
U containing u, such that m(Wu, Uu) ⊂ U . As U is compact and U = ∪u∈UUu, there are finitely
many u1, . . . , un in U with U = ∪1≤i≤nUui . Then W = ∩1≤i≤nWui is open in V and it contains v.
Thus V is an open neighborhood of the identity, and V ·V = V . Then V ∩V −1 is an open compact
subgroup in U .

(2) Fix some left Haar measure on G. Denote the volume of an open compact subgroup U by
|U |. For two such groups, U1 and U2 we have

|U1|
|U2|

=
|U1|

|U1 ∩ U2|
/
|U2|

|U1 ∩ U2|
=

[U1 : U1 ∩ U2]

[U2 : U1 ∩ U2]
∈ Q.

Consequently the Haar measure on G can be chosen to assign rational volume to every open compact
subgroup of G. But then the volume of every open compact subset K in G is rational, since as in
(1) for such K there is a compact open subgroup U of G with KU ⊂ K, and then |K| = [K : U ]|U |
is rational, where K is a disjoint union of [K : U ] translates of U . �

Fix an `-group G and a left Haar measure on G such that the volume of any open compact set
is a rational number. Fix a field E of characteristic zero. The E-vector space HG of compactly
supported locally constant functions f : G→ E is an algebra under the convolultion (f1 ∗ f2)(g) =∫
G f1(h)f2(h−1g)dh. For an open compact subgroup U in G the set of U -biinvariant functions in

HG is a subalgebra HU
G , called the Hecke algebra of (G,U). Although HG has no unit (unless G is

discrete, when the δ-function is in HG), HU
G does: it is δU : G → Q, the characteristic function of

U divided by |U |.
A representation π of the group G on a vector space V is called smooth if the stabilizer of any

vector of V is open, and admissible if it is smooth and for any open subgroup U of G the space V U

of U -fixed vectors in V is finite dimensional.
If π is a smooth representation of an `-group G on a vector space V over E, for each f ∈ HG

define the operator π(f) : V → V by π(f)v =
∫
G f(g)π(g)vdg. This integral reduces to a finite sum

since π is smooth, and π(f1 ∗ f2) = π(f1) ◦ π(f2). Then V is naturally an HG-module, and for any
open compact subgroup U of G, the space V U is a unital module over HU

G .

Proposition 2.10. (1) A smooth G-module V 6= {0} is irreducible iff for every open compact
subgroup U of G either V U = 0 or V U is an irreducible HU

G -module.
(2) Given an open compact subgroup U of G and an irreducible unital HU

G -module M , there exists
a smooth irreducible G-module V such that V U is isomorphic to M as an HU

G -module, and V is
determined by this property up to isomorphism.

For a proof see [BZ76], 2.10. See [BZ76], 2.11 for
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Schur’s Lemma. Let π be an irreducible admissible representation of G in a vector space V
over an algebraically closed field E. Then any nonzero G-module morphism (intertwining operator)
V → V is a scalar.

Proposition 2.11. Let π be an irreducible admissible representation of G in a vector space V over
an algebraically closed field E. For any field extension E′ of E, the representation of G in V ⊗E E′
is also irreducible.

Proof. By Proposition 2.10, the statement reduces to a similar statement for finite dimensional
algebras, since π is assumed to be admissible. �

Let E be a subfield of C invariant with respect to complex conjugation. A representation of G
on a vector space V over E is unitary if there is a G-invariant scalar product on V (thus a bilinear

function (·, ·) : V × V → E with (v, w) = (w, v) and (v, v) = 0 iff v = 0, and (gv, gw) = (v, w) for
all v, w in V and g in G).

Note that we do not require V to be complete with respect to the scalar product, even in the case
E = C. If E is algebraically closed and the representation of G in E is irreducible and admissible,
then the G-invariant inner product on V is unique up to a scalar multiple, if it exists.

Proposition 2.12. Let π be an admissible unitary representation of G in the E-space V . Fix
a G-invariant scalar product on V . Let L be an invariant subspace of V , and L⊥ its orthogonal
complement. Then V = L⊕ L⊥.

Proof. Given x ∈ V , we need to express it as x1 + x2 with x1 ∈ L and x2 ∈ L⊥. Since π is smooth
there exists a compact open subgroup U of G with x ∈ V U . Since π is admissible, dimE V

U is finite.
Thus x = x1 + x2 for some x1 ∈ LU , x2 ∈ V U , x2 orthogonal to LU . It remains to show that x2 is
orthogonal to the entire space L. Let δU be the unit in HU

G . Then π(δU ) is the orthogonal projector
V 7→ V U . Hence for every y in L, (x2, y) = (π(δU )x2, y) = (x2, π(δU )y) = 0 since π(δU )y ∈ LU . �

It follows that every admissible unitary representation of G is a direct sum of irreducible repre-
sentations. This sum is not necessarily finite. However, given an open compact subgroup U of G,
only finitely many summands contain nonzero U -invariant vectors.

2.5. Automorphic forms. Let E be an algebraically closed field of characteristic zero. An auto-
morphic form is a smooth function φ : GL(2, F )\GL(2,A) → E, where by smooth we mean that
there is an open subgroup Uφ of GL(2,A) such that φ(xu) = φ(x) for all u ∈ Uφ and x ∈ GL(2,A).
A cusp form is an automorphic form φ with

∫
A/F φ (( 1 z

0 1 )x) dz = 0 for all x ∈ GL(2,A).

Since φ is right locally constant (= smooth) and A/F is compact, the integral here is well defined
and reduces to a finite sum.

Let AE0 be the space of cusp forms φ : GL(2, F )\GL(2,A) → E. The group GL(2,A) acts on
AE0 by right translation: (r(h)φ)(g) = φ(gh). By a character of an `-group G with values in E we
mean a locally constant homomorphism χ : G→ E×. If E ⊂ C such χ is called a unitary character
if |χ(g)| = 1 for all g in G.

Denote by AE0 (χ) the space of φ ∈ AE0 with φ(ax) = χ(a)φ(x), a ∈ A× (identified with the center
of GL(2,A)), x ∈ GL(2, F )\GL(2,A). The space AE0 (χ) is invariant under the GL(2,A)-action.

Let π be an irreducible representation of GL(2,A) over E. By Schur’s lemma, there is a character
χ : A× → E× such that for every a in A×, π(a) is multiplication by χ(a). This χ is called the central
character of π.

If V ⊂ AE0 is an irreducible admissible representation π of GL(2,A) and χ is the central character
of V , then V ⊂ AE0 (χ). Since the center of GL(2, F ) acts trivially on AE0 , χ is trivial on F×. Thus



12 YUVAL Z. FLICKER

every irreducible admissible π ⊂ AE0 lies in AE0 (χ), where χ is the central character of π, which is
a character of A×/F×. The following is known also e.g. for GL(n).

Proposition 2.13. Fix an open subgroup U of GL(2,A). There exists a compact mod Z(A) subset
K of GL(2, F )\GL(2,A) such that the support of any U -invariant cusp form is contained in K.

Proof. We first show that there is an integer n such that given z ∈ A and x ∈ GL(2,A) with
ht+(x) ≥ n, there exist u ∈ U and β ∈ F with ( 1 z

0 1 )x =
(

1 β
0 1

)
xu.

To see this, fix an effective divisor −D =
∑

v∈|X| nvv on X, put d = (πππnvv ) and let JD = dOA be

the corresponding ideal in OA. The groups Γ(D) = {γ ∈ GL(2, OA); γ ≡ I mod JD} make a basis
of neighborhoods of the identity in GL(2,A). Thus we may assume in this proof that U = Γ(D).
In this case we shall show that n = 2g − 1 − deg(d). Indeed, fix z ∈ A and x = ( a c0 b ) k with
k ∈ GL(2, OA) and ht+(x) = deg a−deg b ≥ 2g−1−deg(d) (note: deg(d) = −degD =

∑
v nv deg v).

Then ad
b OA + F = A and z = ad

b t + β for some β ∈ F and t ∈ OA. Put u = k−1
(

1 td
0 1

)
k. Then

u ∈ Γ(D) and ( 1 z
0 1 )x =

(
1 β
0 1

)
xu.

We claim the proposition holds with K = {x ∈ GL(2, F )\GL(2,A); ht(x) < n}. This K is
compact modulo Z(A). Let φ be a U -invariant cusp form, x ∈ GL(2,A), ht(x) ≥ n. We shall show
that φ(x) = 0. Replacing x by γx for suitable γ ∈ GL(2, F ), we assume that ht+(x) ≥ n. By our
choice of n, φ (( 1 z

0 1 )x) = φ(x) for all z in A. Since φ is a cusp form, φ(x) = 0. �

Corollary 2.14. The representation of GL(2,A) in AE0 (χ) is admissible.

Proposition 2.15. Let E′ be an extension of E, and χ : A×/F× → E× a character. Then

AE
′

0 (χ) = AE0 (χ)⊗E E′.

Proof. The space AE0 (χ) ⊗E E′ consists of the functions φ in AE
′

0 (χ) whose values span a finite
dimensional space over E, since φ ∈ AE0 (χ) takes finite number of values times the set Γ of values

of χ. But every φ in AE
′

0 (χ) has this property, since the set of its values lies in finitely many cosets
of Γ. �

Given a representation π of GL(2,A) over E and a character ω : A× → E×, write ωπ or πω or
ω ⊗ π or π ⊗ ω for the representation (πω)(x) = ω(detx)π(x) in the space of π.

Proposition 2.16. For any characters χ, ω : A×/F× → E×, we have AE0 (χ)⊗ ω = AE0 (χω2).

Proof. We need to construct an invertible linear map L : AE0 (χ) → AE0 (χω2) such that for every
φ ∈ AE0 (χ) and h ∈ GL(2,A) we have r(h)L(φ) = ω(deth)L(r(h)φ), where (r(h)φ)(x) = φ(xh).
Such L is (Lφ)(x) = φ(x)ω(detx). �

Proposition 2.17. Given a character χ : A×/F× → E× there exists a character ω : A×/F× → E×

such that χ(x)ω(x)2 is a root of unity for every x in A×/F×.

Proof. Fix α ∈ A×/F× with degα = 1. Such α exists since in the finite field extension F/Fq(t),
where t ∈ F is transcendental over Fq, there are always primes which split completely. Fix c in

the algebraically closed field E with c2 = χ(α). Define ω : A×/F× → E× by ω(x) = c− deg(x),
put χ1(x) = χ(x)ω2(x), put αZ = {αn;n ∈ Z}. Then χ1 is a character of the profinite group
A×/F× · αZ, hence the values of χ1 are roots of 1. �

Proposition 2.18. Let E be a subfield of C invariant under complex conjugation, χ an E×-valued
unitary character of A×/F×. Then the representation of GL(2,A) in AE0 (χ) is unitary.
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Proof. The function x 7→ φ1(x)φ2(x) on GL(2, F )\GL(2,A), where φ1, φ2 ∈ AE0 (χ), is invariant
under Z(A) and is compactly supported as a function on PGL(2, F )\PGL(2,A). Let dx be an
invariant measure on PGL(2, F )\PGL(2,A). It exists since PGL(2, F ) is a discrete subgroup of
PGL(2,A), a group with a two-sided invariant measure. Then (φ1, φ2) =

∫
φ1(x)φ2(x)dx (x ∈

PGL(2, F )\PGL(2,A)) is an invariant scalar product on AE0 (χ). �

Corollary 2.19. The representation of GL(2,A) in AE0 (χ) is a direct sum of irreducible subrepre-
sentations.

Note that we may assume that all values of χ are roots of unity, and that E = Q.
The multiplicity one theorem asserts that in AE0 (χ) any irreducible representation of GL(2,A)

occurs with multiplicity one.
An irreducible representation of GL(2,A) over an algebraically closed fieldE is called cuspidal if

it is isomorphic to a subrepresentation of AE0 .

2.6. Factorizability. Irreducible admissible representations of GL(2,A) are factorizable, as we
proceed to show. Let E denote an algebraically closed subfield of C. An irreducible representation
of GL(2, Fv) in an E-space V is unramified if V contains a nonzero GL(2, Ov)-invariant vector.

Proposition 2.20. The space of GL(2, Ov)-invariant vectors V GL(2,Ov) in an unramified represen-
tation (π, V ) of GL(2, Fv) is one dimensional.

Proof. Denote by Hv = Cc(GL(2, Ov)\GL(2, Fv)/GL(2, Ov)) the Hecke convolution algebra of
compactly supported GL(2, Ov)-biinvariant E-valued functions on GL(2, Fv). We claim it is a
commutative algebra. Indeed, for any f ∈ Hv, the function tf(x) = f(tx), where tx is the transpose
of x, is also in Hv. Since t(xy) = tytx, we have t(f1 ∗ f2) = tf2 ∗ tf1 for all f1, f2 ∈ Hv. By Cartan
decomposition every GL(2, Ov)-double coset in GL(2, Fv) contains a diagonal matrix. Hence tf = f
for all f ∈ Hv, and f1 ∗ f2 = t(f1 ∗ f2) = tf2 ∗ tf1 = f2 ∗ f1 for all f1, f2 ∈ Hv. If V is unramified,

V GL(2,Ov) is a nonzero irreducible Hv-module. But Hv is commutative, so dimE V
GL(2,Ov) is 1. �

Given an irreducible admissible representation πv of GL(2, Fv) in a space Vv for every closed point
v ∈ |X| such that πv is unramified for all v ∈ S, S ⊂ |X| finite, construct a representation π = ⊗πv
of GL(2,A) as follows. For each v ∈ |X| −S choose a nonzero vector ξ0

v ∈ V
GL(2,Ov)
v . For any finite

set S′ ⊃ S of closed points of X put VS′ = ⊗v∈S′Vv. If S′′ ⊃ S′ ⊃ S, define an inclusion VS′ ↪→ VS′′
by x 7→ (⊗v∈S′′−S′ξ0

v) ⊗ x. Put V = lim
→

S′⊃S
VS′ . It is the span of the vectors ⊗v∈|X|ξv, ξv = ξ0

v for

almost all v, and ξv ∈ Vv for all v ∈ |X|. Then V is a GL(2,A)-module in a natural way; denote
by π the corresponding representation of GL(2,A). The vectors ξ0

v are determined uniquely up to
a scalar multiple, hence π is uniquely determined by the πv for all v ∈ |X|.

Reducing to irreducible finite dimensional representations of tensor products of algebras, we have

Proposition 2.21. Given an irreducible admissible representation πv of GL(2, Fv) for every v
in |X| which is unramified for almost all v, π = ⊗vπv is an irreducible admissible representa-
tion of GL(2,A). Every irreducible admissible representation π of GL(2,A) equals ⊗vπv for some
irreducible admissible representations πv of GL(2, Fv) which are almost all unramified. The repre-
sentations πv are determined by π uniquely up to isomorphism.

3. Looking for a trace formula

3.1. Trace formula in the compact case. Let X be an `-space. Denote by C∞(X) the space
of locally constant (= smooth) E-valued functions on X. Here E is a fixed algebraically closed
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subfield of C. Let C∞c (X) be the space of smooth compactly supported E-valued functions on X.
Let r be an admissible representation of an `-group G in an E-space V . Fix a Haar measure dx
on G. Given f ∈ C∞c (G), define r(f) =

∫
G f(x)r(x)dx, an endomorphism of V . Since f is C∞,

that is smooth, it is right invariant under an open subgroup U of G. Then Im r(f) ⊂ V U , so
Im r(f) is finite dimensional, and the trace tr r(f) is well defined. Let r be now the representation
of G on C∞(Γ\G) by right translation, where Γ is a discrete cocompact subgroup of G. Since r is
admissible, tr r(f) is defined.

Proposition 3.1. Let G be an `-group and Γ a discrete cocompact sugroup of G. Then G has a
two sided invariant measure and Γ\G has a G-invariant measure.

Proof. Since (see [BZ76]) Γ\G admits a measure which when translated by x in G is multiplied by
∆(x), where ∆ is the modulus of G, we have |Γ\G| = ∆(x)|Γ\G|, thus ∆ = 1. �

Proposition 3.2. Let X be an `-space, dx a measure on X, K ∈ C∞c (X × X). Define a lin-
ear endomorphism A of C∞(X) by (Aφ)(y) =

∫
X K(x, y)φ(x)dx. Then the image of A is finite

dimensional and trA =
∫
X K(x, x)dx.

Proof. We may assume that K(x, y) is of the form ϕ(x)ψ(y), as such functions span C∞c (X ×X).
In this case the claim is clear. �

Proposition 3.3. Let G be an `-group, Γ a discrete cocompat subgroup, r the representation of G in
C∞(Γ\G) by right translation, dx a Haar measure on G, f ∈ C∞c (G), S a set of representatives of the
conjugacy classes in Γ, ZΓ(γ) the centralizer of γ in Γ. Then tr r(f) =

∑
γ∈S

∫
G/ZΓ(γ) f(xγx−1)dx.

Proof. We first show that for each γ ∈ Γ the function x 7→ f(xγx−1) on G/ZΓ(γ) is compactly
supported, and that there are at most finitely many γ ∈ S for which x 7→ f(xγx−1) is not identically
zero. For this, fix a compact subset K in G with KΓ = G. Given x ∈ G there are k ∈ K, δ ∈ Γ, with
x = kδ. Fix γ ∈ Γ. If f(xγx−1) 6= 0 then kδγδ−1k−1 lies in suppf , thus δγδ−1 ∈ Kf = K·suppf ·K.
SinceKf is compactKf∩Γ is finite, and there are only finite number of possibilities for δγδ−1. Hence
there are only a finite number of possibilities δ1, . . . , δn for δ modulo ZΓ(γ). Then f(xγx−1) 6= 0
implies that x ∈ K ′ZΓ(γ), where K ′ = ∪1≤i≤nKδi is compact. If f(xγx−1) 6= 0, the conjugacy
class of γ in Γ intersects the finite set Kf ∩ Γ. The number of such classes is finite. Thus the sum
is finite and the integrals converge.

Now given φ in C∞(Γ\G), for any y in G we have

(r(f)φ)(y) =

∫
G
f(x)φ(yx)dx =

∫
G
f(y−1x)φ(x)dx =

∫
Γ\G

Kf (x, y)φ(x)dx

where Kf (x, y) =
∑

γ∈Γ f(y−1γx). Then

tr r(f) =

∫
Γ\G

Kf (x, x)dx =

∫
Γ\G

∑
γ∈Γ

f(x−1γx)dx

=

∫
Γ\G

∑
γ∈S

∑
δ∈ZΓ(γ)\Γ

f(x−1δ−1γδx)dx =
∑
γ∈S

∫
Γ\G

∑
δ∈ZΓ(γ)\Γ

f(x−1δ−1γδx)dx

=
∑
γ∈S

∫
ZΓ(γ)\G

f(x−1γx)dx.

�
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3.2. Case of GL(2), oversimplified. Let now AE0 denote the space of E-valued cusp forms on
GL(2, F )\GL(2,A). The right-shifts representation of GL(2,A) on AE0 is not admissible since the
center Z(A) of GL(2,A) is not compact. Fix a degree-one idèle α and put αZ = {αn;n ∈ Z}. It
is a cyclic subgroup of A×, and we view A× as the center of GL(2,A). Denote by AE0,α the space

of cusp forms in AE0 invariant under α, and by r0 the representation of GL(2,A) on AE0,α by right

translation. Since A×/F×αZ is compact and every U -invariant cusp form – where U is an open
subgroup of GL(2,A) – is supported on some compact module Z(A) set K ⊂ GL(2, F )\GL(2,A),
the representation r0 is admissible. Hence tr r0(f) is defined for every f ∈ C∞c (GL(2,A)).

Put Ac,α = C∞c (αZ · GL(2, F )\GL(2,A)). Fix f ∈ C∞c (GL(2,A)). Let r be the right represen-
tation of GL(2,A) on Ac,α. We proceed to compute tr r(f) as if the space αZ ·GL(2, F )\GL(2,A)
were compact, to see what needs to be corrected. This space is not compact and r is not admissible,
so that in fact tr r(f) makes no sense.

For any ring R define A(R) = {diag(a, b); a, b ∈ R×}, A′(R) = {diag(a, b); a, b ∈ R×, a 6= b},
N(R) = {( 1 a

0 1 ) ; a ∈ R}. Let Q be the set of quadratic extensions of the field F . For each L ∈ Q
choose an embedding L ↪→M(2, F ); it exists and is unique up to an automorphism of M(2, F ); all
automorphisms of M(2, F ) are inner. Given γ ∈ αZ ·GL(2, F ), denote by Z(γ) the centralizer of γ
in αZ GL(2, F ).

Proposition 3.4. Every conjugacy class of αZ · GL(2, F ) intersects precisely one of : F× · αZ;
a ( 1 1

0 1 ), a ∈ F× ·αZ; αZ ·A′(F ); αZ · (L× −F×) for some L ∈ Q. In the first two cases the number
of intersection points is 1, in the 3rd case 2, in the 4th case: the number of automorphisms of L
over F . The centralizers Z(γ) are αZ ·GL(2, F ), αZF×N(F ), αZ ·A(F ), αZL×, respectively.

Immitating the trace formula in the compact case, one may expect

tr r(f) = S1(f) +
∑
L∈Q

S2,L(f) + S3(f) + S4(f)

with
S1(f) = |αZ ·GL(2, F )\GL(2,A)|,

S2,L(f) = |AutF (L)|−1
∑

γ∈αZ·(L×−F×)

∫
αZ·L×\GL(2,A)

f(x−1γx)dx,

S3(f) =
1

2

∑
γ∈αZA′(F )

∫
αZA(F )\GL(2,A)

f(x−1γx)dx,

S4(f) =
∑

a∈αZ·F×

∫
αZF×N(F )\GL(2,A)

f(x−1a ( 1 1
0 1 )x)dx.

The left side of this wrong trace formula is divergent. So is S3(f), since the homogeneous space
A(A)/αZ·A(F ) is not compact. We shall show that S1(f) and

∑
L∈Q S2,L(f) converge, and although

S4(f) diverges, we shall show in which way it does.

Proposition 3.5. Given f ∈ C∞c (GL(2,A)), the number of conjugacy classes of γ ∈ αZ ·GL(2, F )
with x ∈ GL(2,A) and f(xγx−1) 6= 0 is finite.

Proof. The sets K1 = {trh;h ∈ suppf} ⊂ A, K2 = {deth;h ∈ suppf} ⊂ A× are compact. It
suffices to show that the set {γ ∈ αZ ·GL(2, F ); tr γ ∈ K1, det γ ∈ K2} is a union of finitely many
conjugacy classes. Put γ = αnx for some x ∈ GL(2, F ). Then 2n = deg γ, so n lies in a finite
set. Fix n. Then trx ∈ α−nK1,detx ∈ α−2nK2. But the sets F ∩ α−nK1 and F× ∩ α−2nK2 are
finite. Hence the trace and determinant of x can take only finitely many values. As the number of
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conjugacy classes of elements in GL(2, F ) with fixed trace and determinant is at most two, we are
done. �

3.3. Central elements.

Proposition 3.6. The volume |GL(2, F ) · αZ\GL(2,A)| is finite.

Proof. This volume is equal to∑
x∈αZ GL(2,F )\GL(2,A)/GL(2,OA)

|αZ GL(2, F ) ∩ xGL(2, OA)x−1\xGL(2, OA)|

= |GL(2, OA)|
∑

x∈αZ GL(2,F )\GL(2,A)/GL(2,OA)

|αZ GL(2, F ) ∩ xGL(2, OA)x−1|−1.

For x in GL(2,A)/GL(2, OA), let E = xO2
A be the associated rank 2 locally free sheaf on X.

Then Aut(E) consists of the g ∈ GL(2,A) which map (E =)xO2
A to xO2

A and the generic fiber F 2

to itself, thus Aut E is GL(2, F ) ∩ xGL(2, OA)x−1 = αZ GL(2, F ) ∩ xGL(2, OA)x−1.
We then need to show the convergence of∑

E∈Bun2 /J

|Aut E|−1,

J being the image of αZ under the natural homomorphism A× → PicX. The number of J-orbits
on the set of stable rank two locally free sheaves on X is finite, so it remains to show that the
sum of |Aut E|−1 over the set Bunun

2 of J-orbits of unstable rank two locally free sheaves on X is
convergent.

Lemma 3.7. (1) A rank two locally free sheaf E on X is very unstable (ht(E) ≥ 2g−1) iff E ' L⊕M
where L, M are invertible sheaves with degL − degM≥ 2g − 1.

(2) If L,M∈ PicX and degL − degM≥ max(2g − 1, 1) then

|Aut(L ⊕M)| = (q − 1)2qdegL−degM+1−g.

(3) If L ⊕M ' L′ ⊕M′ with degL > degM, degL′ > degM′ then L ' L′,M'M′.

Proof. (1) If L is an invertible sheaf of E of maximal degree and M = E/L, then M is invertible,
and Ext(M,L) = H1(X,M−1L) is 0 (by Serre duality) since degM−1L = degL − degM =
2 degL − deg E = ht(E) ≥ 2g − 1

The exact sequence 0 → Hom(M,L) → Aut(L ⊕M) → AutL × AutM→ 0 implies (2) since
Hom(M,L) = H0(X,M−1L) and H1(X,M−1L) = {0}, so Riemann-Roch theorem implies that
dimH0(X,M−1L) = deg(M−1L) + 1 − g. Further, if the invertible sheaf L corrsponds to aOA,
then AutL consists of g ∈ A× which map the generic fiber F onto itself (thus g ∈ F×) and map
aOA onto itself (thus g ∈ O×A ). Then AutL = F× ∩O×A = F×q has cardinality q − 1.

For (3), put E = L⊕M ∼→ L′⊕M′. Since degL > (deg E)/2 > degM′, we have Hom(L,M′) =

{0}. Hence the image of L under the isomorphism L⊕M ∼→ L′⊕M′ lies in L′. Hence L ' L′ and
M' E/L ' E/L′ 'M′. �

Assume g ≥ 1, so that 2g − 1 ≥ 1 (the case g = 0 is similar). The lemma implies∑
E∈Bunun

2 /J

|Aut E|−1 = (q − 1)−2|Pic0(X)|
∑

n≥2g−1

qg−1−n <∞.

�
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Corollary 3.8. If the Haar measure on GL(2,A) is normalized so that
|GL(2, OA)| is a rational number, then |αZ ·GL(2, F )\GL(2,A)| ∈ Q.

This follows from the proof of the last proposition.

3.4. Elliptic elements.

Proposition 3.9. Let L be a quadratic extension of F, γ ∈ αZ · (L× − F×) ⊂ GL(2,A), and
f ∈ C∞c (GL(2,A)). Then the function x 7→ f(xγx−1) on GL(2,A)/αZ · L× has compact support.

Proof. We need to show that the map x 7→ xγx−1 on GL(2,A)/αZ · L× is proper (the preimage
of a compact is compact). Since (L ⊗F A)×/αZ · L× is compact, it suffices to show that the map
ψ(x) = xγx−1, ψ : GL(2,A)/A×L → GL(2,A), is proper (AL = L⊗F A is the ring of adèles of L).

Lemma 3.10. Let F be a local field in this lemma. Suppose γ ∈ M(2, F ) is regular, i.e. the
subalgebra E = F [γ] generated by γ is a field or is F × F . Then the map ψ : GL(2, F )/E× →
GL(2, F ), x 7→ xγx−1, is proper. Moreover, if γ ∈ GL(2, O) and the ring O[γ] is integrally closed,
then ψ−1(GL(2, O)) = GL(2, O)/E× ∩GL(2, O).

Proof. The conjugacy class C of γ is a closed subset of GL(2, F ), since γ is regular. So it suffices
to show that ψ maps GL(2, F )/E× homeomorphically onto C. It is clear that ψ is continuous,
injective and Imψ = C. It remains to show that the map ψ′ : GL(2, F )→ C, x 7→ xγx−1, is open.
For this, it suffices to show that C is the set of F -points of a smooth variety C over F , and that
ψ′ is smooth, that is its differential is everywhere onto. Since C is a homogeneous space under a
connected group G is suffices to show that the tangent map dψ′ of ψ′ at the identity is onto. When
verifying these properties of C and ψ′, we may replace F with an extension, thus we may assume
that γ is of the form diag(a, b) with a 6= b, or ( a 1

0 a ) (if E is nonseparable over F ). To compute the
tangent map dψ′ : Lie G→ Tγ(C) of ψ′(x) = xγx−1 near the identity x = 1, let Y be in Lie G, and
put x = 1+εY , where ε2 = 0. Then x−1 = 1−εY and ψ′(x) = (1+εY )γ(1−εY ) = 1+ε(Y γ−γY ),
so dψ′(Y ) = Y γ − γY is onto the tangent space Tγ(C) of C at γ, and ψ is proper.

If x ∈ GL(2, F ) and xγx−1 ∈ GL(2, O), put M = x−1O2. Then γM ⊂ M . In addition,
γ ∈ GL(2, O), so γO2 ⊂ O2. Thus M and O2 are O[γ]-submodules in F 2. Both modules are of
finite type. As F 2 is a rank one free E = F [γ]-module, and we assume that O[γ] is integrally closed,
namely it is the ring of integers in E = F [γ], both M and O2 are rank one torsion free over the
discrete valuation ring O[γ] (being rank two over O). Hence there exists a ∈ E× with M = aO2.
Thus xaO2 = O2, that is xa ∈ GL(2, O). �

Now for γ as in the proposition, for almost all closed points in X the component of α at v is 1,
γ ∈ GL(2, Ov), and the ring Ov[γ] is integrally closed. This and the lemma imply the proposition.
�

3.5. Regularization of the unipotent terms. To study the integral which occurs in S4(f), we
regularize it as

θa,f (t) =

∫
αZ·F×N(F )\GL(2,F )

f(ax−1 ( 1 1
0 1 )x)tht+(x)dx.

Proposition 3.11. (1) For every f ∈ C∞c (GL(2,A)) and a ∈ A×, the integral θa,f (t) converges as

an element of C((t)), and ζF (q−1t)−1θa,f (t) ∈ C[t, t−1], where ζF (t) =
∏
v∈|X|(1−tv)−1, tv = tdeg v.

(2) If f is the characteristic function of GL(2, OA) in GL(2,A), then

θ1,f (t) = |GL(2, OA)| · (q − 1)−1qg−1 · |Pic0(X)|ζF (q−1t).
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Proof. (1) It suffices to consider f(x) =
∏
v fv(xv), x = (xv) ∈ GL(2,A), where fv ∈ C∞c (GL(2, Fv))

for all v ∈ |X| and fv is the characteristic function f0
v of GL(2, Ov) at almost all v, since such

functions span C∞c (GL(2,A)). Normalize the measures on F×v and Fv so that |O×v | = 1 = |Ov|.
Denote by valv(xv) the valuation of xv ∈ F×v , normalized by valv(πππv) = 1. Define a function

h+
v : GL(2, Fv)→ Z by h+

v (
(
a b
0 c

)
k) = valv(a)− valv(c), k ∈ GL(2, Ov).

Then h+
v is well-defined and ht+(x) =

∑
v∈|X| h

+
v (xv) deg(v). We have

θa,f (t) = |A×/αZ · F×| · |A/F |
∏
v

∫
F×v N(Fv)\GL(2,Fv)

fv(avx
−1 ( 1 1

0 1 )x)th
+
v (x) deg vdx.

Denote the local factor here by θav ,fv(tv), where tv = tdeg(v). To compute it, note that pn,v =
diag(πππnv , 1) (n ∈ Z) make a set of representatives of the two sided coset space

F×v N(Fv)\GL(2, Fv)/GL(2, Ov).

Then

θav ,fv(tv) =
∑
n∈Z

tnv

∫
F×v N(Fv)∩p−1

n,v GL(2,Ov)pn,v\p−1
n,v GL(2,Ov)

fv(avx
−1 ( 1 1

0 1 )x)dx

=
∑
n∈Z

tnv |F×v N(Fv) ∩ p−1
n,v GL(2, Ov)pn,v|−1

∫
p−1
n,v GL(2,Ov)

fv(avx
−1 ( 1 1

0 1 )x)dx

=
∑
n∈Z

q−nv tnv

∫
GL(2,Ov)

fv(avypn,v ( 1 1
0 1 ) p−1

n,vy
−1)dy =

∑
n∈Z

τn(fv)q
−n
v tnv ,

where τn(fv) =
∫

GL(2,Ov) fv(avy
(

1 πππnv
0 1

)
y−1)dy is 0 if n << 0 and τn(fv) = fv(av) for n >> 0.

If av ∈ O×v and fv is the characteristic function of GL(2, Ov), then τn(fv) = |GL(2, Ov)| for
n ≥ 0 and un,v = 0 for n < 0, so

θav ,fv(tv) = |GL(2, Ov)|(1− tv/qv)−1.

(2) It remains to compute (note that |O×A | = 1 and |OA| = 1) :

|A×N(A)/αZF×N(F )| = (|A×/αZF×|/|O×A |)(|A/F |/|OA|).

The exact sequence 1 → F×q → O×A → A×/αZF× → PicX/αZ(= Pic0(X)) → 1 implies that the

first factor on the right is |Pic0(X)|/(q − 1). The exact sequence 0 → Fq → OA → A/F →
H1(X,OX)→ 0 implies that the second factor on the right is qg−1. �

4. Intertwining operators and Eisenstein series

4.1. Intertwining operators. Let E be an algebraically closed field of characteristic zero, and
v ∈ |X| a closed point of X. Denote by |a|v the absolute value of a ∈ F×v normalized by |πππv| = q−1

v .

It is an E×-valued character of F×v . Fix a square root
√
q = q1/2 of q in E. If E ⊂ C we

choose q1/2 > 0. For E-valued characters µ1, µ2 of F×v denote by I(µ1, µ2) both the space of right

locally constant functions φ : GL(2, Fv) → E with φ(
(
a1 b
0 a2

)
x) = |a1/a2|1/2v µ1(a1)µ2(a2)φ(x) (x ∈

GL(2, Fv); a1, a2 ∈ F×v ; b ∈ Fv), and the action of the group GL(2, Fv) by right translation on
I(µ1, µ2). The induced representation I(µ1, µ2) is admissible by the Iwasawa decomposition G =

BK. It is unitarizable when µ1, µ2 are unitary. It is possible to work with I(| · |1/2v µ1, | · |1/2v µ2),

in whose definition the factor |a1/a2|1/2v µ1(a1)µ2(a2) becomes |a1|vµ1(a1)µ2(a2), but later we shall

need to multiply back by | · |−1/2
v . The following is a standard basic result.
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Proposition 4.1. If µ1/µ2 6= | · |v, | · |−1
v , then the representations of GL(2, Fv) in I(µ1, µ2)

and I(µ2, µ1) are irreducible and isomorphic. If µ1/µ2 = | · |v or | · |−1
v then I(µ1, µ2) contains

a unique proper invariant subspace I ′(µ1, µ2) and there is a GL(2, Fv)-isomorphism I ′(µ1, µ2) '
I(µ2, µ1)/I ′(µ2, µ1). If µ2/µ1 = | · |v, the subspace I ′(µ1| · |−1/2

v , µ1| · |1/2v ) is one dimensional;

x ∈ GL(2, Fv) acts on I ′(µ1| · |−1/2
v , µ1| · |1/2v ) via multiplication by µ1(x). The subspace

I ′(µ2| · |1/2v , µ2| · |−1/2
v ) is denoted by St(µ2) = St(µ2| · |1/2v , µ2| · |−1/2

v ).

It is isomorphic to I(µ2| · |−1/2
v , µ2| · |1/2v )/I ′(µ2| · |−1/2

v , µ2| · |1/2v ). It consists of

φ ∈ I(µ2| · |1/2v , µ2| · |−1/2
v ) with

∫
GL(2,Ov)

µ2(detx)−1φ(x)dx = 0.

If I(µ1, µ2) ' I(µ′1, µ
′
2) then {µ1, µ2} = {µ′1, µ′2}, the representations I(µ1, µ2) (µ1/µ2 6= | · |v or

| · |−1
v ) and St(µ′2) are infinite dimensional and inequivalent, and St(µ1) ' St(µ2) implies µ1 = µ2.

We proceed to describe the operator intertwining I(µ1, µ2) and I(µ2, µ1).

Proposition 4.2. If |µ1(πππv)/µ2(πππv)| < 1 the integral

(Mφ)(x) =

∫
Fv

φ(
(

0 −1
1 0

) (
1 y
0 1

)
x)dy

converges for each φ ∈ I(µ1, µ2) and x ∈ GL(2, Fv), and Mφ ∈ I(µ2, µ1).

Proof. As
(

0 −1
1 0

) (
1 y
0 1

)
=
(
y−1 −1

0 y

)(
1 0
y−1 1

)
, the integrand is

µ2(y)µ1(y)−1|y|−1
v φ

((
1 0
y−1 1

)
x
)
,

which is 0 if |y|v is small, and µ2(y)µ1(y)−1|y|−1
v φ(x) if |y|v is big enough. For sufficiently large n

then the part of the integral over |y|v ≥ qnv is bounded by φ(x) times∫
|y|v≥qnv

|µ2(y)/µ1(y)| · |y|−1
v dy = |O×v |

∑
k≥n
|µ1(πππv)/µ2(πππv)|k <∞.

It is clear that (Mφ)(( 1 c
0 1 )x) = (Mφ)(x) (c ∈ Fv) and (Mφ)(

(
a 0
0 b

)
x) equals∫

Fv

φ(
(
b 0
0 a

) (
0 −1
1 0

) (
1 yb/a
0 1

)
x)dy = µ1(b)µ2(a)

∣∣∣∣ ba
∣∣∣∣1/2
v

∣∣∣a
b

∣∣∣
v

(Mφ)(x).

�

We obtained, if |µ1(πππv)/µ2(πππv)| < 1, a GL(2, Fv)-equivariant map

M = M(µ1, µ2) : I(µ1, µ2)→ I(µ2, µ1).

Let νt be the unramified character of F×v with νt(πππv) = t. Put M(µ1, µ2, t) = M(µ1νt, µ2νt−1).
It converges for any µ1, µ2, provided t ∈ C is small enough in absolute value. To define M(µ1, µ2)
as the value at t = 1 of the analytic continuation of M(µ1, µ2, t), we need these operators to be
defined on the same space, which we will take to be

I0(µ1, µ2) = {φ ∈ C∞(GL(2, Ov));φ(
(
a1 b
0 a2

)
x) = µ1(a1)µ2(a2)φ(x),

a1, a2 ∈ O×v , b ∈ Ov, x ∈ GL(2, Ov)}.
By the Iwasawa decomposition G = BK, the restriction map I(µ1νt, µ2νt−1) → I0(µ1, µ2) is bi-
jective for any t. Identifying these spaces, the operator M(µ1, µ2, t) becomes a map I0(µ1, µ2) →



20 YUVAL Z. FLICKER

I0(µ2, µ1). Write L(µ, t) for (1 − µ(πππv)t)
−1 if µ is unramified, and L(µ, t) = 1 if µ is a ramified

character of F×v .

Proposition 4.3. The operator valued function M(µ1, µ2, t) is rational in t ∈ C×. In fact the func-
tion t 7→ L(µ1/µ2, t

2)−1(M(µ1, µ2, t)φ)(x) is a polynomial in t for all φ ∈ I0(µ1, µ2), x ∈ GL(2, Ov).
If µ1, µ2 are unramified and the restrictions of φ ∈ I(µ1νt, µ2νt−1) and ψ ∈ I(µ2νt−1 , µ1νt) to

GL(2, Ov) are 1, then M(µ1, µ2, t)φ = L(µ1/µ2,t2)

L(µ1/µ2,q
−1
v t2)

ψ.

Proof. Put φt = M(µ1, µ2, t)φ and a1 =
∫
|y|v≤1 φ(

(
0 −1
1 y

)
x)dy where x ∈ GL(2, Ov). Then

φt(x) = a1 +

∫
|y|v>1

µ2(y)µ1(y)−1|y|−1
v νt(y)−2φ

((
1 0
y−1 1

)
x
)
dy.

We shall show that this is the Taylor series of a rational function.

If n is large enough, φ
((

1 0
y−1 1

)
x
)

= φ(x) for |y|v ≥ qnv . Then φt(x) = a1 + a2(t) + a3(t) with

a2(t) =

∫
1<|y|v<qnv

µ2(y)µ1(y)−1|y|−1
v νt(y)−2φ

((
1 0
y−1 1

)
x
)
dy,

a3(t) = φ(x)

∫
|y|v≥qnv

µ2(y)µ1(y)−1|y|vνt(y)−2dy.

Clearly a2(t) is a polynomial in t (since νt(πππ
−1
v )−1 = t) and a3(t) = ct2nL(µ1/µ2, t

2).
If µ1, µ2 are unramified and x ∈ GL(2, Ov), a1 = 1 and the expression for φt(x) is

φt(x) = 1 +

∫
|y|v>1

µ2(y)µ1(y)−1|y|−1
v νt(y)−2dy

= 1− (1− q−1
v )

∑
k≥1

(µ1(πππv)/µ2(πππv))
kt2k

= 1 +
(1− q−1

v )(µ1(πππv)/µ2(πππv))t
2

1− (µ1(πππv)/µ2(πππv))t2
=

L(µ1/µ2, t
2)

L(µ1/µ2, q
−1
v t2)

.

�

The operator M(µ1, µ2, t) : I(µ1νt, µ2νt−1)→ I(µ2νt−1 , µ1νt) intertwines the GL(2, Fv)-modules
for every t where it is defined. It can be regarded as a rational function of t (in fact, of t2) with
values in the set of operators I0(µ1, µ2)→ I0(µ2, µ1). Indeed,

M(µ1, µ2, t) = M(µ1νt, µ2νt−1) = M(µ1νt2 , µ2).

Define

R(µ1, µ2, t) =
L(µ1/µ2, q

−1
v t2)

L(µ1/µ2, t2)
M(µ1, µ2, t).

Corollary 4.4. Suppose µ1 and µ2 are unramified and ϕ ∈ I(µ1νt, µ2νt−1), ψ ∈ I(µ2νt−1 , µ1νt) are
the functions whose restrictions to GL(2, Ov) are one, then R(µ1, µ2, t)ϕ = ψ. �

Given characters µ1, µ2 of A×, write I(µ1, µ2) for the space of right locally constant functions φ
on GL(2,A) which satisfy

φ
((

a1 b
0 a2

)
x
)

= µ1(a1)µ2(a2)|a1/a2|1/2φ(x). Put ν(a) = qdeg(a).

Then I(µ1, µ2) is the restricted tensor product of the spaces I(µ1v, µ2v) where µiv is the component
of µi at v (the restriction of µi to F×v ↪→ A×); it is spanned by ⊗vφv with φv ∈ I(µ1v, µ2v) for all



EISENSTEIN SERIES AND THE TRACE FORMULA 21

v and φv|GL(2, Ov) = 1 for almost all v, where µiv|O×v = 1, i.e. µiv are unramified. Define the

character νt of A× by νt(a) = tdeg(a). Then the restriction of νt to F×v is νtv , the unramified character

of F×v with νtv(πππv) = tv(= tdeg(v)). As in the local case, we identify the spaces I(µ1νt, µ2νt−1) with
I0(µ1, µ2) for all t. The operator R(µ1, µ2, t) from I(µ1νt, µ2νt−1) to I(µ2νt−1 , µ1νt) defined by
R(µ1, µ2, t) = ⊗vR(µ1v, µ2v, tv) is rational in t. On any element in I(µ1νt, µ2νt−1) at most finitely
many components R(µ1v, µ2v, tv) do not act as the identity. Also write m(µ, t) for L(µ, t)/L(µ, t/q).

4.2. Eisenstein series. Write Aα = C∞(αZ ·GL(2, F )\GL(2,A)),

Ac,α = C∞c (αZ ·GL(2, F )\GL(2,A)), Y = A(F )N(A)\GL(2,A)

and Yα = Y/αZ. Normalize the Haar measure on N(A) ' A by |N(A)/N(F )| = |A/F | = 1. The
Haar measure on N(A) is invariant with respect to conjugation by the elements of A(F ) by the
product formula. So it extends to a two-sided invariant measure on the space αZ ·A(F )N(A). This,
and the two-sided Haar measure on GL(2,A) induce an invariant measure on Yα.

Let ϕ and ψ be locally constant functions on Yα, at least one of which is compactly supported.
Put (ϕ,ψ) =

∫
Yα
ϕ(x)ψ(x)dx. On αZ · GL(2, F )\GL(2,A) a scalar product is similarly defined.

Define the map E∗ : Aα → C∞(Yα) by

φ 7→ φN , φN (x) =

∫
N(F )\N(A)

φ(nx)dn, x ∈ GL(2,A).

Note that N(F )\N(A) is compact, so the integral converges. Note that kerE∗ is the space A0,α of
cusp forms invariant under α. For any f ∈ C∞c (Yα) define a function Ef on αZ ·GL(2, F )\GL(2,A)
by

(Ef)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

f(γx), x ∈ GL(2,A).

Proposition 4.5. The sum defining (Ef)(x) converges. For f ∈ C∞c (Yα) and φ ∈ Aα we have
(Ef, φ) = (f,E∗φ).

Proof. Consider the diagram

Yα
r← αZ ·A(F )N(F )\GL(2,A)

s→ αZ ·GL(2, F )\GL(2,A).

Since N(F )\N(A) is compact, the map r is proper. Hence the natural embedding r∗ maps C∞c (Yα)
to C∞c (αZ ·A(F )N(F )\GL(2,A)). Given

ψ ∈ C∞c (αZA(F )N(F )\GL(2,A)),

define a function s∗ψ on αZ GL(2, F )\GL(2,A) by

(s∗ψ)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

ψ(γx), x ∈ GL(2,A).

The sum is finite since ψ is compactly supported, and

s∗ψ ∈ C∞c (αZ GL(2, F )\GL(2,A)).

The sum which defines (Ef)(x) converges since E = s∗r
∗.

Now define E∗ = r∗s
∗, where s∗ is the natural embedding, and

r∗ : C∞(αZA(F )N(F )\GL(2,A))→ C∞(Yα)

is defined by (r∗h)(x) =
∫
N(F )\N(A) h(nx)dn, x ∈ GL(2,A). Since (r∗, r∗) and (s∗, s

∗) are adjoint

pairs, so is (E = s∗r
∗, E∗ = r∗s

∗). �
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The image AE,α of the Eisenstein map E = s∗r
∗ : C∞c (Yα) → Ac,α is called the Eisenstein part

of Ac,α. The maps E and E∗ intertwine the GL(2,A)-action; AE,α is an invariant subspace of Ac,α.

Proposition 4.6. The space Ac,α is an orthogonal direct sum of the space A0,α of cusp forms and
of AE,α.

Proof. Cusp forms are compactly supported. Since A0,α = kerE∗ and AE,α = imE, we have

A0,α ⊥ AE,α. Given a compact open subgroup U in GL(2,A), put AUα for the space of U -invariant
functions in Aα, and

AUc,α = Ac,α ∩AUα , AU0,α = A0,α ∩AUα , AUE,α = AE,α ∩AUα .

It remains to show that AU0,α +AUE,α = AUc,α. If not there exists a nonzero linear form ` : AUc,α → C
which is zero on AU0,α +AUE,α. There exists f ∈ AUα such that `(φ) = (φ, f) for every φ ∈ AUc,α. For

any U -invariant function ψ ∈ C∞c (Yα) we have (ψ,E∗f) = (Eψ, f) = `(Eψ) = 0. Hence E∗f = 0,
thus f ∈ AU0,α. This however is impossible since f is orthogonal to the space AU0,α of U -invariant
cusp forms. �

Given φ ∈ C∞c (Yα) and x ∈ GL(2,A), put (Mφ)(x) =
∫
N(A) φ(

(
0 −1
1 0

)
nx)dn. The integral

converges, by

Proposition 4.7. The map N(A)→ Yα, n 7→ αZA(F )N(A)
(

0 −1
1 0

)
nx, is proper.

Proof. It suffices to consider the case of x = 1. The function

ht+ : Yα → Z, ( a c0 b ) k 7→ deg a− deg b,

is continuous. Thus it suffices to show that the map ϕ(a) = ht+(
(

0 −1
1 0

)
( 1 a

0 1 )), ϕ : A→ Z, is proper.

But
(

0 −1
1 0

) (
1 av
0 1

)
is in GL(2, Ov) if |av|v ≤ 1; otherwise it is =

(
a−1
v −1
0 av

)(
1 0
a−1
v 1

)
. If a = (av),

then ϕ(a) = −2
∑

v max(0, logq |av|v), as logq |av|v = − valv(av) deg(v). Hence ϕ is proper. �

By definition, x 7→ (Mφ)(x) is invariant under left translation by N(A), and also by αZ · A(F ).
Indeed,

(Mφ)(
(
a 0
0 b

)
x) =

∫
A
φ(
(

0 −1
1 0

)
n
(
a 0
0 b

)
x)dy =

∣∣∣a
b

∣∣∣ ∫
N(Z)

φ(
(
b 0
0 a

) (
0 −1
1 0

)
nx)dn

and |a/b| = qdeg(a/b). Thus M maps C∞c (Yα) to C∞(Yα).

Proposition 4.8. Denote by I the natural embedding of C∞c (Yα) in C∞(Yα). Then

E∗E = I +M.

Proof. By the Bruhat decomposition, an element of GL(2, F ) outside A(F )N(F ) has a unique
decomposition n1a

(
0 −1
1 0

)
n2 with ni ∈ N(F ), a ∈ A(F ). Thus, for any φ ∈ C∞c (Yα), x ∈ GL(2,A),

we have
(Eφ)(x) =

∑
γ∈A(F )N(F )\GL(2,F )

φ(γx) = φ(x) +
∑

ν∈N(F )

φ(
(

0 −1
1 0

)
νx).

Hence

(E∗Eφ)(x) = |N(A)/N(F )|φ(x) +

∫
N(F )\N(A)

∑
ν∈N(F )

φ(
(

0 −1
1 0

)
νnx)dn

= φ(x) +

∫
N(A)

φ(
(

0 −1
1 0

)
nx)dn = φ(x) + (Mφ)(x).

�



EISENSTEIN SERIES AND THE TRACE FORMULA 23

Proposition 4.9. Let µ1, µ2 be characters of A×/F×. If t is sufficiently small, for all φ ∈
I(µ1νt, µ2νt−1) and x ∈ GL(2,A), the integral (M(µ1, µ2, t)φ)(x) =

∫
N(A) φ(

(
0 −1
1 0

)
nx)dn converges

and defines a function in I(µ2νt−1 , µ1νt). Moreover, M(µ1, µ2, t) = q1−gm(µ1/µ2, t
2)R(µ1, µ2, t).

Proof. Recall that |a| = qdeg(a) and that I(µ1, µ2) consists of the φ in C∞(GL(2,A)) with

φ(
(
a1 0
0 a2

)
x) = |a1/a2|1/2µ1(a1)µ2(a2)φ(x),

while νt(a) = tdeg a. We put tv = tdeg(v). We may assume that φ(x) =
∏
v φv(xv) with φv ∈

I(µ1vνtv , µ2vνt−1
v

). For almost all v, the restriction of φv to GL(2, Ov) is 1. We may replace
φv, µi, t by their complex absolute values to assume t > 0 and φv, µi take real nonnegative values.
Then (M(µ1, µ2, t)φ)(x) = c

∏
v τv, with τv =

∫
N(Fv) φv(

(
0 −1
1 0

)
nxv)dn =

∫
Fv
φv(
(

0 −1
1 z

)
xv)dz. The

measure dnv on N(Fv) is normalized by |N(Ov)| = 1, and c = |N(A)/N(F )| in the measure ⊗vdnv
on N(A).

We saw that for small enough t the integral which defines τv converges for all v. For almost
all v we have τv = L(µ1v/µ2v, t

2
v)/L(µ1v/µ2v, q

−1
v t2v), so the product

∏
v τv converges for small t.

Now M(µ1, µ2, t) = c
∏
vM(µ1v, µ2v, tv). Each factor here is L(µ1v/µ2v ,t2v)

L(µ1v/µ2v ,q
−1
v t2v)

R(µ1v, µ2v, tv). Put

R(µ1, µ2, t) = ⊗vR(µ1v, µ2v, tv), and m(µ, t) = L(µ,t)
L(q−1t,µ)

, where L(µ, t) =
∏
v L(µv, tv). Note that c

is |O| = q1−g, using 0→ Fq → O → A/F → H1(X,OX)→ 0. �

It follows (since L(µ, t) is a rational function of t) that after identifying the spaces I(µ1νt, µ2νt−1)
for all t, the operator

M(µ1, µ2, t) : I(µ1νt, µ2νt−1)→ I(µ2νt−1 , µ1νt)

(defined for small t) depends on t rationally. Hence M(µ1, µ2, t) is defined for almost all t, and it
commutes with the action of GL(2,A).

4.3. L-functions. Let us review the theory of L-functions for GL(2). Let E be an algebraically
closed field of characteristic zero. The valuation valv(a) of a ∈ F×v is the largest integer n with
a ∈ πππnvOv. For any character ψ : Fv → E×, ψ 6= 1, let r(ψ) be the largest n such that ψ(πππ−nv Ov) = 1.
Normalize the Haar measure on Fv by |Ov| = 1. The conductor of a character χ : F×v → E× is n = 0
if χ(O×v ) = 1, i.e., χ is unramified; otherwise it is the smallest n ≥ 1 such that χ(1 + πππnvOv) = 1.
Given χ, put L(t, χ) = (1− χ(πππv)t)

−1 if χ is unramified, L(t, χ) = 1 is χ is ramified. Given ψ 6= 1,
put

Γ(χ, ψ, t) =

∫
F×v

χ(x)−1ψ(x)t− valv(x)dx, ψ : Fv → E×.

This Γ(χ, ψ, t) is a formal power series in t which contains positive and negative powers of t. Tate’s
thesis (see [Lg94], VII, section 3-4) establishes

Proposition 4.10. The formal series Γ(χ, ψ, t) has finitely many positive powers of t. It is a
rational function of t, namely a Laurent series of a rational function of t at t =∞. Put ε(χ, ψ, t) =
L(χ,t)Γ(χ,ψ,t)

L(χ−1,q−1
v t−1)

. It has the form c(χ, ψ)tn(χ,ψ). If r(ψ) = 0 then n(χ, ψ) is the conductor of χ. If

in addition χ is unramified then ε(χ, ψ, t) is 1. If a ∈ F×v , ψa(x) = ψ(ax), then ε(χ, ψa, t) =

χ(a)(qvt)
valv(a)ε(χ, ψ, t).

Note that L and ε are usually considered, in the case where E = C, as functions of s, where

t = q−sv , rather than of t. The Haar measure on Fv is usually normalized by |Ov| = q
−r(ψ)/2
v , as

this measure is self-dual with respect to the pairing Fv × Fv → E×, (x, y) 7→ ψ(xy). This choice of
measure is not convenient if E 6= C since E has no distinguished square root of q.
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Given a character χ of A×, denote its restriction to F×v by χv. The restriction to Fv of a character
ψ of A is denoted ψv. For a closed point v of X, we write deg(v) for the dimension of the residue

field at v over Fq, and qv = qdeg(v). Given a character χ : A×/F× → E×, put L(χ, t) =
∏
v L(χv, tv),

where tv = tdeg(v); the product converges in E[[t]]. Let ψ : A/F → E× be a character 6= 1. Then
ε(χ, t) = q1−g∏

v ε(χv, ψv, tv) converges as almost all factors are 1, and ε(χ, t) is independent of ψ
by Proposition 4.10.

Proposition 4.11. For any character χ : A×/F× → E× the formal series L(χ, t) is rational in
t, and L(χ, t) = ε(χ, t)L(χ−1, q−1t−1). If the restriction of χ to the group of x ∈ A×/F× with
deg(x) = 0 is nontrivial, then L(χ, t) is a polynomial. If the restriction is trivial, χ is given by

χ(x) = udeg(x), and then L(χ, t) has precisely two poles: t = u−1 and t = q−1u−1, both poles are
simple. If χ : A×/F× → C× is a unitary character (|χ(x)| = 1 for all x) then the zeroes of L(χ, t)
lie in the doughnut {t ∈ C; q−1 < |t| < 1}.

The proof of this is also in [Lg94], Chapter VII, sections 7-8. The following is due to [W45].

Theorem 4.12. (A. Weil). For any unitary character χ : A×/F× → C×, all zeroes of L(χ, t) lie

on the circle |t| = q−1/2.

Given a character ψ : A/F → E×, ψ 6= 1, let W (ψ) be the space of locally constant functions
φ : GL(2, Fv)→ E with φ(( 1 z

0 1 )x) = ψ(z)φ(x) for all z ∈ Fv, x ∈ GL(2, Fv). The group GL(2, Fv)
acts on W (ψ) by right translation. Fix a Haar measure d×x on F×v . For any φ ∈W (ψ) put

Λφ(t) =

∫
φ(( a 0

0 1 ))(qvt)
valv(a)d×a, Λ̃φ(t) =

∫
φ(( 0 1

a 0 ))(qvt)
valv(a)d×a.

Both Λφ(t) and Λ̃π(t) are formal power series in t, containing positive and negative powers of t.
Let π be an irreducible admissible representation of GL(2, Fv) over E. Then π(( a 0

0 a )) is the
operator of multiplication by a scalar η(a) ∈ E×. The character η : F×v → E× is called the central
character of π.

Proposition 4.13. Let π be an irreducible admissible infinite dimensional representation over E
of GL(2, Fv). Let η be the central character of π. (1) There exists a unique GL(2, Fv)-invariant
subspace W (π, ψ) of W (ψ) equivalent to π. (2) If φ ∈W (π, ψ) then Λφ(t) is the Laurent series at t =

0 of a rational function, and Λ̃φ(t) is the Laurent series at t =∞ of a rational function. (3) There
exists a nonzero polynomial P ∈ E[t] such that for any φ ∈W (π, ψ) we have P (t)Λφ(t) ∈ E[t, t−1].

There exists φ ∈ W (π, ψ) with Λφ(t) 6= 0. (4) The quotient Λ̃φ(t)/Λφ(t) of rational functions in t
does not depend on the choice of φ in W (π, ψ) with Λφ(t) 6= 0. (5) The lowest degree polynomial

P ∈ E[t] which satisfies (3) and P (0) = 1 is independent of ψ. (6) Put Γ(π, ψ, t) = Λ̃φ(t)/Λφ(t)

and ε(π, ψ, t) = Γ(π,ψ,t)L(π,t)

L(π⊗η−1,q−2
v t−1)

where L(π, t) = P (t)−1 with P of (5). Then ε(π, ψ, t) has the

form c(π, ψ)tn(π,ψ), c(π, ψ) in E× and n(π, ψ) in Z. (7) If ψa(x) is ψ(ax) for a ∈ F×v , then

ε(π, ψa, t) = η(a)(qvt)
2 valv(a)ε(π, ψ, t).

This is [JL70], Theorem 2.18. Our L and ε relate to those LJL, εJL of Jacquet-Langlands by
LJL(π, s) = L(π, tv), tv = q−sv , εJL(π, ψ, s) = ε(π, ψ, tv). Note that the proof of [JL70], which
claims that Λφ(t) is a Laurent series of a meromorphic function in C − {0}, shows that Λφ(t)
is rational. In general, the meromorpic functions of s over p-adic and global function fields are
rational functions of qs. Every smooth finite dimensional irreducible representation of GL(2, Fv) is
one dimensional, of the form x 7→ χ(detx), where χ : F×v → E× is a character ([JL70], Proposition
2.7).
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Proposition 4.14. Let π, π′ be irreducible admissible infinite dimensional representations of
GL(2, Fv) with equal central characters. If there is a character ψ : Fv → E× such that for ev-
ery character ω : F×v → E× we have Γ(πω, ψ, t) = Γ(π′ω, ψ, t), then π ' π′.

For a proof see [JL70], Corollary 2.19.
The conductor of an irreducible admissible infinite dimensional representation π of GL(2, Fv) is

the integer n(π, ψ), with ψ normalized by r(ψ) = 0. It is well defined, as from (7) above, the integer
n(π, ψ) of (6) is not changed if ψ is replaced by ψa : x 7→ ψ(ax).

Proposition 4.15. The conductor of π is the least integer n such that the representation space
of π contains a nonzero vector invariant under the group Hn = {

(
a b
c d

)
∈ GL(2, Ov); c ∈ πππnvOv,

d ∈ 1 + πππnvOv}. For this n, dimE πππ
Hn = 1.

For a proof see Casselman, Math. Ann. 201 (1973), 301-314.

Proposition 4.16. Let π be an irreducible admissible infinite dimensional representation, with
central character η, of GL(2, Fv). Let ψ : Fv → E× be a nontrivial character. Then there exists an
integer mπ such that if χ : F×v → E× is any character with conductor > mπ, then L(πχ, t) = 1 and

ε(πχ, ψ, t) = ε(χ, ψ, t)ε(χη, ψ, qvt)q
−r(ψ)
v .

For a proof see [JL70], Proposition 3.8. See [JL70], Proposition 3.5, 3.6, for a proof of:

Proposition 4.17. Let µ1, µ2 be characters of F×v , and ψ 6= 1 a character of Fv. If µ1/µ2 6= | · |±1
v

then L(I(µ1, µ2), t) = L(µ1, t)L(µ2, t) and

ε(I(µ1, µ2), ψ, t) = ε(µ1, ψ, t)ε(µ2, ψ, t)q
−r(ψ)
v .

If µ2/µ1 = | · |v, then

L(St(µ1| · |−1/2
v , µ1| · |1/2v ), t) = L(µ1| · |1/2v , t),

ε(St(µ1| · |−1/2
v , µ1| · |1/2v ), ψ, t) =

L(µ−1
1 , t−1)

L(µ1, t)
ε(µ1, ψ, t)ε(µ1| · |v, ψ, t)q−r(ψ)

v .

If π is a cuspidal representation of GL(2, Fv) then L(π, t) is 1.

Recall that an irreducible admissible infinite dimensional representation π of GL(2, Fv) on a
vector space V is called unramified if its space V K of K = GL(2, Ov)-fixed vectors is nonzero. In
this case V K is one dimensional, and π = I(µ1, µ2) with unramified µ1, µ2 and µ1/µ2 6= | · |±1.

Corollary 4.18. Let π be an unramified irreducible admissible infinite dimensional representation
of GL(2, Fv) and ψ 6= 1 with r(ψ) = 0. Then ε(π, ψ, t) = 1.

Proof. Here π = I(µ1, µ2) with unramified µ1, µ2, so the claim follows from the last proposition
and Tate’s Thesis. �

Let π be an admissible irreducible representation of GL(2,A) whose local components are all

infinite dimensional. Put L(π, t) =
∏
v L(πv, tv), tv = tdeg(v); the infinite product converges in

E[[t]]. For any character ψ : A/F → E×, ψ 6= 1, put ε(π, ψ, t) =
∏
v ε(πv, ψv, tv); almost all factors

here are 1. From (7) it follows that if the central character of π is trivial on F×, then ε(π, ψ, t) is
independent of the choice of ψ : A/F → E×. We denote it in this case by ε(π, t).

Theorems 11.1, 11.3 of [JL70] assert:

Theorem 4.19. Let π be an irreducible admissible representation of GL(2,A) over E. Denote by
η : A× → E× its central character. Then π is cuspidal iff (1) η is trivial on F×; (2) all local
components of π are infinite dimensional; (3) for any character ω : A×/F× → E×, the formal
series L(πω, t) is a polynomial in t, and (4) L(πω, t) = ε(πω, t)L(πη−1ω−1, q−2t−1).
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Note that (4) makes sense due to (3). In [JL70], (3) is formulated as stating that the product∏
v L(πvωv, tv) converges absolutely for sufficiently small t, and its value has an analytic continua-

tion to a holomorphic function in C−{0}. But the argument of [JL70] can be modified to lead to (3)
in our case of E which is not C, over a function field F . Note that (4) is not

∏
v Γ(πvωv, ψv, tv) = 1;

indeed the product here does not converge.

Proposition 4.20. If π, π′ are cuspidal representations of GL(2,A) and πv ' π′v for almost all v,
then π ' π′.

Proof. Let S be a finite set of closed points of X with πv ' π′v at v 6∈ S. Let η, η′ be the central
characters of π, π′, and ηv, η

′
v their components at v (restrictions to F×v ). By our assumption,

η′v = ηv for all v 6∈ S. But the groups F×v , v 6∈ S, generate a dense subgroup of A×/F×. Hence
η′ = η. By the Theorem 4.19, of [JL70], above, fixing a character ψ : A/F → E×, ψ 6= 1, for any
character ω : A×/F× → E× one has∏

v

L(πvωv, tv) =
∏
v

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v ),∏
v

L(π′vωv, tv) =
∏
v

ε(π′vωv, ψv, tv)L(π′vη
′
v
−1ω−1

v , q−2
v t−1

v ).

Since πv ' π′v at all v 6∈ S, we conclude∏
v∈S

Γ(πvωv, ψv, tv) =
∏
v∈S

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v )

L(πvωv, tv)

=
∏
v∈S

ε(π′vωv, ψv, tv)L(π′vη
′
v
−1ω−1

v , q−2
v t−1

v )

L(π′vωv, tv)
=
∏
v∈S

Γ(π′vωv, ψv, tv).

Since η = η′, it follows from Proposition 4.16 that for each v ∈ S there exists mv > 0 such that if
χ : F×v → E× is any character whose conductor is ≥ mv, then Γ(πvχ, ψv, t) = Γ(π′vχ, ψv, t). Fix
v ∈ S and a character χ of F×v . By Proposition 4.14, it suffices to show Γ(πvχ, ψv, t) = Γ(π′vχ, ψv, t).
For this, it suffices to choose a character ω : A×/F× → E× in the last displayed equation with
ωv = χ and such that for each u ∈ S − {v}, the conductor of ωu is bigger than mu. But the group
H = F×v

∏
u∈S−{v}O

×
u maps isomorphically and homeomorphically onto its image in A×/F×. Hence

any character of H extends to a character of A×/F×. �

Proposition 4.21. Let η be a character of A×/F×, S a finite set of closed points of X,ψ 6= 1 a
character of A/F with r(ψu) = 0 for all u in S. Suppose that for any closed point v ∈ |X| − S, πv
is an irreducible admissible infinite dimensional representation of GL(2, Fv) with central character
ηv such that almost all πv are unramified, there is no pair µ1, µ2 of characters of A×/F× with
πv = π(µ1v, µ2v) for almost all v ∈ |X|−S, and for any character ω of A×/F× which is unramified
at all points of S, the formal series

∏
v 6∈S L(πvωv, tv) and

∏
v 6∈S L(πvη

−1
v ω−1

v , tv) are polynomials,

and there exists a number c ∈ E× and integers nu > 0 (u ∈ S) such that∏
v 6∈S

L(πvωv, tv) = c
∏
u∈S

(ω(πππu)tu)nu
∏
v 6∈S

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v ).

Then there exists a cuspidal representation π of GL(2,A) with central character η such that for
every v ∈ |X| − S the local component of π at v is πv.

A proof is in [JL70], Theorem 11, Corollary 11.6, proof of Theorem 12.2.
The representation π is unique by Proposition 4.20.
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4.4. Intertwining again. We can now return to the study of the intertwining operators.

Proposition 4.22. Let µ1, µ2 be characters of F×v . Let ψ 6= 1 be a character of Fv. Then

R(µ1, µ2, t)R(µ2, µ1, t
−1) = ε

(
µ1

µ2
, ψ, q−1

v t2
)
ε

(
µ2

µ1
, ψ, q−1

v t−2

)
.

Proof. By the transformation formula for the ε-factors, the right hand side does not depend on ψ.
We then choose ψ with kerψ ⊃ Ov and kerψ 6⊃ πππ−1

v Ov. We can rewrite the asserted equality as

M(µ1, µ2, t)M(µ2, µ1, t
−1) = Γ

(
µ2

µ1
, ψ, q−1

v t2
)

Γ

(
µ2

µ1
, ψ, q−1

v t−2

)
.

The restriction map I(µ1, µ2)→ I(µ1/µ2), where

I(µ) = {f ∈ C∞(SL(2, Fv)); f
((

a b
0 1/a

)
x
)

= µ(a)|a|vf(x)},

is an isomorphism (µ : F×v → E× is a character). The group SL(2, Fv) acts transitively on F 2
v −

{(0, 0)} on the right. The stabilizer of the vector (0, 1) is N(Fv). Then N(Fv)\SL(2, Fv) can be
identified with F 2

v − {(0, 0)} by
(
a b
c d

)
7→ (c, d) ∈ F 2

v − {(0, 0)}. Using this we identify I(µ) with

V (µ) = {f ∈ C∞(F 2
v − {(0, 0)}); f(ax) = µ(a)−1|a|−1

v f(x), a ∈ F×v , x ∈ F 2
v − {(0, 0)}},

so I(µ1, µ2) with V (µ1/µ2). The operator M(µ1, µ2, t) corresponds to the operator M(µ1/µ2, t
2)

where

M(µ, s) : V (µνs)→ V (µ−1νs−1), (M(µ, s)f)(x) =

∫
{y;x∧y=1}

f(y)dy.

Here ∧ denotes the symplectic form (a, b) ∧ (c, d) = ad − bc on F 2
v . The measure on the line

`x = {y ∈ F 2
v ;x ∧ y = 1} is transferred from the Haar measure on Fv via the map Fv → `x given

by a 7→ y0 + ax where y0 is a fixed point on `x. So we need to show:

M(µ, s)M(µ−1, s−1) = Γ(µ, ψ, q−1
v s)Γ(µ−1, ψ, q−1

v s−1).

For sufficiently small s ∈ C× define operators As : C∞c (F 2
v ) → V (µνs) and Bs : C∞c (F 2

v ) →
V (µ−1νs) by

(Asf)(x) =

∫
Fv

f(ax)µ(a)νs(a)da, (Bsf)(x) =

∫
Fv

f(ax)µ(a)−1νs(a)da.

Restriction defines an isomorphism V (µνs)→ V0(µ), where

V0(µ) = {f ∈ C∞(O2
v − {(0, 0)}); f(ax) = µ(a)−1f(x), x ∈ O2

v − {(0, 0)}, a ∈ O×v },

so we can identify the spaces V (µνs) as s varies.
The operators As and Bs, defined above for small s, depend rationally on s. Hence they can be

extended to all s.
Consider the Fourier transform

F : C∞c (F 2
v )→ C∞c (F 2

v ), (Ff)(y) =

∫
F 2
v

f(x)ψ(x ∧ y)dx.

Lemma 4.23. We have M(µ, s)As = Γ(µ−1, ψ, q−1
v s−1)Bs−1F ,

M(µ−1, s−1)Bs−1 = Γ(µ, ψ, q−1
v s)AsF.
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Proof. Given f ∈ C∞c (F 2
v ), x ∈ F 2

v − {(0, 0)}, we first show

Γ(µ−1, ψ, q−1
v s−1)(Bs−1Ff)(x) = (M(µ, s)Asf)(x).

The operators F , As, Bs commute with the action of SL(2, Fv). This action is transitive on
F 2
v − {(0, 0)}, so we may assume x = (0, 1). We compute

(Bs−1Ff)((0, 1)) =

∫
Fv

(Ff)((0, a))µ(a)−1νs−1(a)da,

(Ff)((0, a)) =

∫
F 2
v

f(y, z)ψ(ya)dydz = ϕ̂(−a),

ϕ̂(a) =

∫
ϕ(y)ψ(−ya)dy, ϕ(y) =

∫
f(y, z)dz.

Tate’s functional equation (see [L], VII, section 3-4) is

Γ(µ−1, ψ, q−1
v s−1)

∫
ϕ̂(a)µ−1(a)νs−1(a)da =

∫
ϕ(y)µ(y)νs(y)

dy

|y|
.

(Formally this can be deduced from the definition of the Γ-function and the inversion formula
ϕ(y) =

∫
ϕ̂(a)ψ(ay)da. However the left side converges for large |s|, while the right for small |s|,

so one has to show both sides are rational in s).
We conclude that the left side of the equation to be shown is∫

ϕ(y)µ(−y)νs(y)|y|−1dy =

∫ ∫
f(y, z)µ(−y)νs(y)|y|−1dydz

while the right side is (recall: x = (0, 1), so (0, 1) ∧ (y, z) = −y)∫
(Asf)(−1, z)dz =

∫ ∫
f(−y, yz)µ(y)νs(y)dydz.

The proof of the second identity of the lemma is similar. �

The inverse Fourier transform coincides with F since the form (x, y) 7→ x∧ y in the definition of
F is skew-symmetric. Hence F 2 = 1, and it follows from the Lemma that

M(µ, s)M(µ−1, s−1)Bs−1 = Γ(µ, ψ, q−1
v s)Γ(µ−1, ψ, q−1

v s−1)Bs−1 .

However, the operator Bs−1 is onto for those s where it is defined (even its restriction to C∞c (F 2
v −

{(0, 0)}) is onto), as V (µνs) is irreducible, so the proposition follows. �

Proposition 4.24. For any characters µ1, µ2 of A×/F× we have

M(µ1, µ2, t)M(µ2, µ1, t
−1) = 1.

Proof. From Proposition 4.21, M(µ1, µ2, t)M(µ2, µ2, t
−1) is equal to

q2−2gm(µ1/µ2, t
2)m(µ2/µ1, t

−2)R(µ1, µ2, t)R(µ2, µ1, t
−1),

while Proposition 4.22 implies, for any character ψ 6= 1 of A/F , that

R(µ1, µ2, t)R(µ2, µ1, t
−1)

is ∏
v

[ε(µ1v/µ2v, ψv, q
−1
v t2v)ε(µ2v/µ1v, ψv, q

−1
v t−2

v )]

= q2g−2ε(µ1/µ2, q
−1t2)ε(µ2/µ1, q

−1t−2).
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As ε(χ, t) = q1−g∏
v ε(χv, ψv, tv) satisfies the functional equation L(χ, t) = ε(χ, t)L(χ−1, q−1t−1),

we have that

ε(µ1/µ2, q
−1t2)ε(µ2/µ1, q

−1t−2)m(µ1/µ2, t
2)m(µ2/µ1, t

−2),

which is equal to

ε(µ1/µ2, q
−1t2)L(µ2/µ1, t

2)

L(µ1/µ2, q−1t2)
· ε(µ1/µ2, q

−1t−2)L(µ1/µ2, t
2)

L(µ2/µ1, q−1t−2)

is equal to 1. �

4.5. M2 = 1 via Mellin transform. We shall next study the relationship between M : C∞c (Yα)→
C∞(Yα) and M(µ1, µ2, t) : I(µ1ν

t, µ2ν
−t) → I(µ2ν

−t, µ1ν
t), and conclude that M2 = 1. Both

are defined by the same integral formula. Here µ1, µ2 are characters of A×/F× · αZ. Put

η(
(
a 0
0 b

)
) = µ1(a)µ2(b)|a/b|1/2νt(a/b), η : A(A)/A(F ) · αZ → E×, it is a character. Recall that

Yα = αZN(A)A(F )\GL(2,A) and (Mf)(x) =
∫
N(A) f(

(
0 −1
1 0

)
nx)dn. Suppose that f ∈ C∞c (Yα),

and t ∈ E×. Define a function T (f, µ1, µ2, t) : GL(2,A)→ C by

T (f, µ1, µ2, t)(x) =

∫
αZA(F )\A(A)

f(a−1x)η(a)d×a.

Then T (f, µ1, µ2, t) ∈ I(µ1νt, µ2ν−t) is called the Mellin transform of f . The notation T can be
used also when f ∈ C∞(Yα) is not compactly supported, whenever the integral converges.

Proposition 4.25. For ϕ ∈ C∞c (Yα), characters µ1, µ2 : A×/F× · αZ → E× and large enough
t ∈ C×, the integral defining T converges, and T (Mϕ,µ1, µ2, t) = M(µ2, µ1, t

−1)T (ϕ, µ2, µ1, t
−1).

Proof. By definition,

T (f, µ1, µ2, t)(x) =

∫∫
f(
(
a 0
0 b

)−1
x)µ1(a)µ2(b)|a/b|1/2νt(a/b)d×ad×b.

Put f = Mϕ, so f(
(
a 0
0 b

)−1
x) = |b/a|

∫
N(A) ϕ(

(
b 0
0 a

)−1 ( 0 −1
1 0

)
nx)dn. Hence T (f, µ1, µ2, t)(x) equals∫ ∫ ∫

ϕ(
(
b 0
0 a

)−1 ( 0 −1
1 0

)
nx)µ1(a)µ2(b)|b/a|1/2νt(a/b)d×ad×bdn

=

∫
N(A)

T (ϕ, µ2, µ1, t
−1)(

(
0 −1
1 0

)
nx)dn = (M(µ2, µ1, t

−1)T (ϕ, µ2, µ1, t
−1))(x).

If t is large enough, the integral which defines M(µ2, µ1, t
−1) converges, and so is the integral which

defines T (f, µ1, µ2, t), which justifies the computation. �

Proposition 4.26. If ϕ ∈ C∞c (Yα) then Mϕ ∈ C∞(Yα). If Mϕ ∈ C∞c (Yα) then M2ϕ = ϕ.

Proof. Put f = Mϕ and h = Mf = M2ϕ (h is defined if f ∈ C∞c (Yα)). By Proposition 4.25,

T (h, µ1, µ2, t) = M(µ2, µ1, t
−1)T (f, µ2, µ1, t

−1),

T (f, µ2, µ1, t
−1) = M(µ1, µ2, t)T (ϕ, µ1, µ2, t).

The first equation holds only for large enough t, and the second only for small enough t. However,
both sides of the second equality depend rationally on t (for the left side, this is true since f = Mϕ
is compactly supported), hence it holds for all t in C×. Hence for large enough t, by Proposition
4.24 T (h, µ1, µ2, t) = T (ϕ, µ1, µ2, t) for all µ1, µ2. This implies h = ϕ. �
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4.6. Poles, zeroes and values of R and M . Recall that νt(x) = tdeg(x) is a character of A×/F×
with νt(πππv) = tv (= tdeg(v)), and locally we write νt for the unramified character of F×v with
νt(πππv) = t.

Let µ1, µ2 be characters of F×v . Recall: R(µ1, µ2, t) = L(µ1/µ2,q
−1
v t2)

L(µ1/µ2,t2)
M(µ1, µ2, t).

Proposition 4.27. (1) The function R(µ1, µ2, t) is regular at t = 0.
It has a pole at τ ∈ C× iff µ2ντ−1/µ1ντ = ν (with ν(πππv) = q−1

v ). This pole has order 1.
The function R(µ1, µ2, t)

−1 has a pole at τ ∈ C× iff µ1ντ/µ2ντ−1 = ν. This pole has order 1.
(2) Suppose R(µ1, µ2, t)

−1 has a pole at τ ∈ C×. Then the function R(µ1, µ2, t) is regular at t = τ .
Put L = limt→τ (t − τ)R(µ1, µ2, t)

−1 and Q = R(µ1, µ2, τ). The operators Q : I(µ1ντ , µ2ντ−1) →
I(µ2ντ−1 , µ1ντ ) and L : I(µ2ντ−1 , µ1ντ ) → I(µ1ντ , µ2ντ−1) intertwine the GL(2, Fv)-action. The
representations of GL(2, Fv) in the spaces kerQ, cokerQ, imL are isomorphic to the square inte-
grable St(µ1ντ , µ2ντ−1). The representations of GL(2, Fv) in the spaces kerL, cokerL, imQ are
isomorphic to the one dimensional x 7→ µ2(x)(νντ−1)(x) = µ1(x)ντ (x).
(3) The statement (2) remains true with R(µ1, µ2, t) replaced by R(µ1, µ2, t)

−1.

Proof. From the first part of the proof of Proposition 4.3 it follows that

M(µ1, µ2, t)/L(µ1/µ2, t
2) = R(µ1, µ2, t)/L(µ1/µ2, q

−1
v t2)

is regular. So R(µ1, µ2, t) could have a pole at t ∈ C× only if L(µ1/µ2, q
−1
v t2) is ∞, that is

µ2ντ−1/µ1ντ = ν (recall: ν(x) = |x|), and the order of the pole is at most 1.

A similar statement holds for R(µ1, µ2, t)
−1 = c(µ1, µ2)tn(µ1,µ2)R(µ2, µ1, t

−1). (The last equality
follows from Proposition 4.22. In fact n(µ1, µ2) = 0, but we do not need this.) Namely R(µ1, µ2, t)

−1

has a pole at τ ∈ C× iff µ1ντ/µ2ντ−1 = ν. This pole has order 1.
Suppose µ1ντ/µ2ντ−1 = ν. Then µ2ντ−1/µ1ντ 6= ν so that R(µ1, µ2, t)

−1 is regular at t = τ .
With L, Q defined as in the proposition, it is clear they commute with the GL(2, Fv)-action. If
L = 0 then Q = R(µ1, µ2, τ) has no pole, in fact it is an isomorphism. If Q = 0 then L would be
an isomorphism, as the operator limt→τ R(µ1, µ2, t)/(t − τ) would be the inverse of L. However,
the representations of GL(2, Fv) in I(µ1ντ , µ2ντ−1) and I(µ2ντ−1 , µ1ντ ) are not equivalent, hence
L 6= 0, Q 6= 0. As L 6= 0, the function R(µ1, µ2, t)

−1 does have a pole at t = τ . From the description
of the invariant subspaces of I(µ1ντ , µ2ντ−1) and I(µ2ντ−1 , µ1ντ ) the claims in the proposition on
the description of the action of GL(2, Fv) follow. The regularity of R(µ1, µ2, t) at t = 0 follows
from that of L(µ1/µ2, q

−1
v t2)−1R(µ1, µ2, t). �

In conclusion, the representation of GL(2, Fv) in I(µ1νt, µ2νt−1) is reducible iff R(µ1, µ2, t) or
R(µ1, µ2, t)

−1 has a pole at t = τ . These last operators are regular at t ∈ C× if µ1/µ2 is ramified. If

µ1/µ2 is unramified and (µ1/µ2)(πππv) = a, then the poles of R(µ1, µ2, t) are at ±
√
qv/a, and those

of R(µ1, µ2, t)
−1 are at ±

√
a/qv.

Corollary 4.28. Let µ1, µ2 be characters of A×/F× ·αZ. If R(µ1, µ2, t) has a pole at t = τ ∈ C×,

then |τ | = √q. If R(µ1, µ2, t)
−1 has a pole at t = τ ∈ C× then |τ | = q−1/2.

Indeed, a character of A×/F× which takes the value 1 at α is unitary, thus |a| = 1.

Proposition 4.29. Let µ1, µ2 be characters of A×/F× · αZ and τ ∈ C×, |τ | ≤ 1. If M(µ1, µ2, t)

has a pole at t = τ then µ1 = µ2 and τ = ±q−1/2. If µ1 = µ2 is denoted µ and τ = ±q−1/2 then
M(µ, µ, t) has an order 1 pole at τ . The image of the operator C = limt→τ (t− τ)M(µ, µ, t) in this
case is one dimensional and is spanned by the function f(x) = µ(detx)ντ (detx) in I(µντ−1 , µντ ).
Further, M(µ1, µ2, t) is regular at t = 0.
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Proof. Recall that M(µ1, µ2, t) = q1−gm(µ1/µ2, t
2)R(µ1, µ2, t) where m(µ, t) = L(µ, t)/L(µ, t/q).

Let τ ∈ C×, |τ | ≤ 1. By Corollary 4.28, the function R(µ1, µ2, t) is regular at τ . By Proposition

4.11, the function m(µ1/µ2, t
2) is not regular at τ only if µ1 = µ2 and τ = ±q−1/2. In these

cases it has a simple pole. Hence M(µ1, µ2, t) is regular at t = τ (0 < |τ | ≤ 1) unless µ1 = µ2

and τ = ±q−1/2 where the order of the pole is at most 1. When µ1 = µ2 = µ and τ = ±q−1/2,
the operator C = limt→τ (t − τ)M(µ, µ, t) is a scalar multiple of R(µ, µ, t) = ⊗vR(µv, µv, τv),

τv = τdeg(v).
From (1) in Proposition 4.27, the function R(µv, µv, τv)

−1 has a pole at t = τ (tv = τv). Its
statement (2) implies that the image of R(µv, µv, τv) is one dimensional and GL(2, Fv) acts on it
via the character x 7→ µv(detx)ντ (detx)deg v. This implies the proposition, except the final claim,
which follows from the regularily of R(µ1, µ2, t) at t = 0, and that of m(µ1/µ2, t

2) at t = 0. �

Let µ1, µ2 be characters of A×/F×. The operator M(µ1, µ2, t) maps I(µ1νt, µ2νt−1) into the space
I(µ2νt−1 , µ1νt), which in general is different from I(µ1νt, µ2νt−1). However, when µ1 = µ2 = µ and
t = ±1, then M(µ1, µ2, t) maps I(µ1νt, µ2νt−1) to itself; M(µ, µ, t) is regular at t = ±1. The
representation of GL(2,A) in I(µντ , µντ−1), τ = ±1, is irreducible, and hence M(µ, µ, τ) is a scalar
operator. Moreover, from Proposition 4.26, M(µ, µ, τ)2 = 1 at τ = ±1.

Proposition 4.30. If µ is a character of A×/F× and τ = ±1, then M(µ, µ, τ) = −1.

Proof. In view of the relation between M and R, it suffices to verify that

lim
t→1

L(1, t)

L(1, t/q)
= −qg−1 and R(µ, µ, τ) = 1.

In fact, for any character ω of F×v , R(ω, ω, τ) is 1 at τ = ±1. Indeed, suppose first ω is
unramified. Then there exists a function f in I(ωντ , ωντ ) whose restriction to GL(2, Ov) is 1. By
the normalization of the intertwining operator (Proposition 4.3(2)), R(ω, ω, τ)f = f . However, the
representation of GL(2, Fv) on I(ωντ , ωντ ) is irreducible, so R(ω, ω, τ) = 1 if ω is unramified. The
general case reduces to the case where ω is unramified, or even ω = 1, by the commutativity of the
diagram

I(ωντ ,ωντ )
R(ω,ω,τ)−→ I(ωντ ,ωντ )

↑ ↑

I(ντ ,ντ )⊗ω R(1,1,τ)−→ I(ντ ,ντ )⊗ω

To compute the limit of the ratio of L-functions, we use the functional equation L(1, t/q) =
ε(1, t/q)L(1, t−1). Then

lim
t→1

L(1, t)/L(1, t/q) = ε(1, 1/q)−1 lim
t→1

L(1, t)/L(1, t−1).

By the definition of the global ε-function and its properties (Proposition 6.1, 6.3), ε(1, 1/q) = q1−g.
Since L(1, t) has a pole of order one at t = 1, by L’Hôpital rule limt→1 L(1, t)/L(1, t−1) is −1. �

4.7. Global Eisenstein approach. These proofs of M2 = 1 and rationality of M(µ1, µ2, t) are
based on local computations (normalization of the intertwining operators by L-functions and ε-
factors), and the functional equation of the L-function. The following alternative proof of these
results is based on properties of the Eisenstein map.

The alternative approach of this subsection, the following subsction 4.8, and the computation
of traces in subsection 5.2 are motivated by Tate [T68]. They are the newest part of this paper,
which – as noted in the introduction – cries out for generalization from our context of GL(2), and
for further study.
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We shall use the maps ht+ : Yα → Z and ht : αZ GL(2, F )\GL(2,A) → Z. Both maps are
proper. However, ht+ is onto while the image of ht contains the positive integers but only finitely
many negatives. So in some sense Yα is less compact than αZ GL(2, F )\GL(2,A), so the map
E : C∞c (Yα) → C∞c (αZ GL(2, F )\GL(2,A)) should have a big kernel. For ϕ in kerE we have
(1 + M)ϕ = E∗Eϕ = 0. Hence M2ϕ = ϕ. Unlike M , the operator M2 commutes with the action
of A(A) on C∞c (Yα) by left translation. Hence M2ϕ = ϕ not only for ϕ ∈ kerE but also for ϕ
in the span of A(A)-translates of ϕ in kerE. The number of such linear combinations is already
sufficiently large to imply M2 = 1. We now turn to rigorous proofs.

Proposition 4.31. Let M : C[z, z−1]n → C((z))n be a C-linear map with M(zu) = z−1M(u) for
all u ∈ C[z, z−1]n. Let I denote the natural embedding C[z, z−1]n ↪→ C((z))n. Put B = I + M .
Suppose there is some k ∈ Z for which the vector space (ImB)/B(zkC[z−1]n) is finite dimensional.
Then there is some P (z) ∈ GL(n,C(z)) ⊂ GL(n,C((z))) with P (z−1) = P (z)−1 and (Mu)(z) =
P (z)u(z−1) for all u(z) ∈ C[z, z−1]n.

Proof. Denote by ei the column in Cn with nonzero entry only at the ith row, where it is 1. From
M(
∑

i(
∑

j cijz
j)ei) =

∑
i(
∑

j cijz
−j)Mei, we see that (Mu)(z) = P (z)u(z−1) where P (z) is the

n× n matrix with columns Me1, . . . ,Men whose entries are in C((z)). If u is in the kernel of B =
I +M , then P (z)u(z−1) = −u(z). Since ImB = ∪m≥1B(zmC[z−1]n) and there is some k ≥ 0 such
that B(zkC[z−1]n) has finite codimension in ImB, there is some ` with B(z`C[z−1]n) = ImB. Then
kerB+z`C[z−1]n = C[z, z−1]n. For each i (1 ≤ i ≤ n), z`+1ei ∈ kerB+z`C[z−1]n. Hence there is a
matrix W ∈M(n,C[z, z−1]) whose columnes are in kerB and W −z`+1 Id ∈ z`M(n,C[z−1]), where
Id is the identity matrix. But then W ∈ GL(n,C(z)), and since the columns of W are in kerB, we
have P (z)W (z−1) = −W (z). Then P (z) = −W (z)W (z−1)−1, and P (z−1) = −W (z−1)W (z)−1 =
P (z)−1. �

Corollary 4.32. A C-linear map M : C[z, z−1] → C[z, z−1] which satisfies the conditions of
Proposition 4.31 has M2 = Id.

Recall that Yα = αZA(F )N(A)\GL(2,A). Write C∞+ (Yα) for the space of the E-valued functions

f on Yα with (1) f(x) = 0 if ht+(x) is large enough, and (2) f is invariant under right translation
by some open subgroup U of GL(2,A).

Note that C∞c (Yα) ⊂ C∞+ (Yα) ⊂ C∞(Yα).

Proposition 4.33. The image of C∞c (Yα) under M lies in C∞+ (Yα).

Proof. For f ∈ C∞c (Yα) there exists an integer m such that f(x) = 0 if ht+(x) < −m. We shall
show that for such f , (Mf)(x) =

∫
N(A) f

((
0 −1
1 0

)
nx
)
dx is zero if ht+(x) > m. It suffices to show

then that for x ∈ GL(2,A) with ht+(x) > m, and any n ∈ N(A), we have ht+
((

0 −1
1 0

)
nx
)
< −m.

But by Lemma 2.7 we have

ht+(x) + ht+
((

0 −1
1 0

)
nx
)

= ht+(nx) + ht+
((

0 −1
1 0

)
nx
)
≤ 0.

�

Proposition 4.34. Let U be an open subgroup of GL(2, O). For every integer m ≥ 1 define

WU
m = {ϕ ∈ C∞c (Yα)U ; ϕ(x) = 0 if ht+(x) < m},

Y U
m = {ϕ ∈ C∞c (αZ ·GL(2, F )\GL(2,A))U ; ϕ(x) = 0 if ht+(x) < m}.

Then E(WU
m) = Y U

m for large enough m.
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Proof. Put ZUm = {ϕ ∈ C∞c (αZ · A(F )N(F )\GL(2,A))U ; ϕ(x) = 0 if ht+(x) < m}. Recall that
E = s∗r

∗, s∗(x) =
∑

γ ψ(γx), γ ∈ A(F )N(F )\GL(2, F ). It is clear that s∗(Z
U
m) = Y U

m . It

suffices to show that r∗(WU
m) = ZUm for sufficiently large m. In fact, we showed, as the first

claim in the proof of Proposition 2.13, that for an open subgroup U of GL(2,A), that there is
an integer m with the property that if z ∈ A, x ∈ GL(2,A), ht+(x) ≥ m, then there is u ∈ U ,
β ∈ F , with ( 1 z

0 1 )x =
(

1 β
0 1

)
xu. In other words, if x ∈ GL(2,A) and ht+(x) is large enough, then

N(A)x ⊂ N(F )xU . �

We shall now give a different proof of Proposition 4.26.

Proposition 4.35. If ϕ ∈ C∞c (Yα) and Mϕ ∈ C∞c (Yα) then M2ϕ = ϕ.

Proof. Let us introduce a structure of C[z, z−1]-module on C∞(Yα) by

(zf)(x) =
1
√
q
f (( α 0

0 1 )x) , f ∈ C∞(Yα), x ∈ GL(2,A).

From

(Mφ)
((

a 0
0 b

)
x
)

=
∣∣∣a
b

∣∣∣ ∫
N(A)

φ
((

b 0
0 a

) (
0 −1
1 0

)
nx
)
dn

it follows that M(zf) = z−1M(f); recall that |α| = q, and f is invariant under α. This is the reason
for introducing the factor

√
q. Let U be an open subgroup of GL(2, O). Put WU

c = C∞c (Yα)U ,

WU
+ = C∞+ (Yα)U . Both are C[z, z−1]-submodules in C∞(Yα). Denote by WU

0 the set of functions

f ∈ C∞(Yα)U such that f(x) = 0 if ht+(x) 6= 0. Then the natural map WU
0 ⊗C C[z, z−1] → WU

c

is an isomorphism. In the same way we have a canonical isomorphism WU
0 ⊗C C((z)) → WU

+ .

The operator M : Wc = C∞c (Yα) → W+ = C∞+ (Yα) maps WU
c into WU

+ . Hence it defines a

map M : WU
0 ⊗C C[z, z−1] → WU

0 ⊗C C((z)) satisfying the first condition of Proposition 4.31. It
remains to check the second condition of that Proposition. The space WU

m can be identified with
WU

0 ⊗C z
−mC[z−1], and then the operator B = I+M is just E∗E. Thus it suffices to show that for

some m ∈ Z, the space E∗E(WU
c )/E∗E(WU

m) is finite dimensional. Since E(WU
m) = Y U

m for large
m, and {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ m} is compact mod Z(A), it follows that the subspace
E(WU

m) ⊂ C∞c (αZ GL(2, F )\GL(2,A))U has finite codimension. Thus M satisfies both conditions
of Proposition 4.31, and our claim follows from Corollary 4.32. �

To use Proposition 4.31 to give another proof of the rationality of M(µ1, µ2, t), we take a different
view of the Mellin transform and the relationship between the operators M and M(µ1, µ2, t). Let
Ic(µ1νz−1 , µ2νz) be the space of locally constant functions f : GL(2,A)→ C[z, z−1] with

f (( a c0 b )x) = µ1(a)µ2(b)νz(b/a)|a/b|1/2f(x).

Let I+(µ1νz−1 , µ2νz) be

Ic(µ1νz−1 , µ2νz)⊗C[z,z−1] C((z)).

The group αZ ⊂ GL(2,A) acts trivially on these Ic and I+. We put

Ic = ⊕Ic(µ1νz−1 , µ2νz), I+ = ⊕I+(µ1νz−1 , µ2νz),

where the sums range over all characters µ1, µ2 of A×/F× · αZ.

Proposition 4.36. There exists an isomorphism of C((z))-modules I+
∼→ C∞+ (Yα) which is

GL(2,A)-equivariant and maps Ic to C∞c (Yα).
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Proof. Define a map F : I+ → C∞+ (Yα) by mapping ϕ = {ϕµ1,µ2} ∈ I+, ϕµ1,µ2 ∈ Ic(µ1νz−1 , µ2νz),
to (Fϕ)(x) = constant term of the formal series

∑
µ1,µ2

ϕµ1,µ2(x) ∈ C((z)), for any x ∈ GL(2,A).

The map F is well defined, commutes with the actions of C((z)) and GL(2,A). The inverse of F
exists, as follows. If ψ ∈ C∞+ (Yα) then F−1(ψ) = {ϕµ1,µ2} with ϕµ1,µ2 ∈ I+(µ1νz−1 , µ2νz) given by
ϕµ1,µ2(x) =

∫
A(A)/αZ·A(F ) ψ(h−1x)η(h)dh, where

η : A(A)→ C((z))×, η(diag(a, b)) = µ1(a)µ2(b)νz(a/b).

The last integral converges in the field C((z)). A base of the topology is given by znC[[z]], n > 0.
The map F maps Ic to C∞c (Yα). �

Put I0 = ⊕µ1,µ2I0(µ1, µ2), with I0(µ1, µ2) = {f ∈ C∞(GL(2, O)); f (( a c0 b )x) = µ1(a)µ2(b)f(x)}.
Denote by M(z) the map I0 → I0 which takes I0(µ1, µ2) to I0(µ2, µ1) via M(µ1, µ2, z). We use
the isomorphism F to identify the spaces I+ and C∞+ (Yα), as well as Ic and C∞c (Yα). The natural

isomorphism Ic(µ1νz−1 , µ2νz)
∼→ I0(µ1, µ2)⊗CC[z, z−1] and I+(µ1νz−1 , µ2νz)

∼→ I0(µ1, µ2)⊗CC((z))
permit us to identify Ic and I0 ⊗C C[z, z−1] as well as I+ and I0 ⊗C C((z)). Thus the map M :
C∞c (Yα)→ C∞+ (Yα) induces an operator M0 : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)).

Proposition 4.37. Regard the elements of I0⊗CC[z, z−1] as functions of z with values in I0 and the
elements of I0⊗CC((z)) as formal series in z with coefficients in I0. Then for any u ∈ I0⊗CC[z, z−1]
one has (M0u)(z) = M(z)u(z−1), M(z) is viewed as a formal series in z.

Proof. Write ι for the automorphism of C[z, z−1] which maps z to z−1. Given a function f :
GL(2,A) → C((z)), denote by f0 the function GL(2,A) → C such that f0(x) is the constant term
of f(x).

Define an operator M ′′ : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)) by (M ′′u)(z) = M(z)u(z−1). We claim
that M0 = M ′′. Consider M ′′ as a map Ic → I+. We have to show that for every f ∈ Ic, we

have FM ′′f = MFf , for the isomorphism F : I+
∼→ C∞+ (Yα). As Ic is the sum over µ1, µ2 of

Ic(µ1νz−1 , µ2νz), it suffices to consider f in one of these summands.
For x ∈ GL(2,A), we have (M ′′f)(x) =

∫
N(A) ιf

((
0 −1
1 0

)
nx
)
dn. Then

(FM ′′f)(x) = (M ′′f)0(x) =

∫
N(A)

f0

((
0 −1
1 0

)
nx
)
dn

(MFf)(x) =

∫
N(A)

Ff
((

0 −1
1 0

)
nx
)
dn =

∫
N(A)

f0

((
0 −1
1 0

)
nx
)
dn

are equal, as required. �

4.8. Rationality of M(µ1, µ2, t) and functional equation M(µ1, µ2, t)M(µ2, µ1, t
−1) = 1: a

second proof. Let U , WU , A be as in the proof of Proposition 4.35. Then WU = ⊕µ1,µ2W
U
µ1,µ2

,

where WU
µ1,µ2

is the space of functions f ∈WU with

f
((

a 0
0 b

)
x
)

= µ1(a)−1µ2(b)−1f(x)

whenever deg(a) = deg(b) = 0. The natural maps I0(µ2, µ1)U
∼→WU

µ1,µ2
permit one to identify WU

and the space IU0 . The map M : WU ⊗C C[z, z−1] → WU ⊗C C((z)) is induced by the operator
M0 : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)).

The proof of Proposition 4.35 implies that the operator M satisfies the conditions of Propo-
sition 4.31. Then M is given by a formula of the form (Mu)(z) = P (z)u(z−1), where P (z) is
an automorphism of V which depends on z rationally, and P (z−1) = P (z)−1. From Proposi-
tion 4.37 it follows that P (z) is just the restriction of M(z) to IU0 ⊗C C[z, z−1]. The group U
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may be arbitrarily small. Hence M(z) is a rational function of z, and M(z)M(z−1) = 1. Hence
for any characters µ1, µ2, of αZ · F×\A×, the operator M(µ1, µ2, z) depends rationally on z, and
M(µ1, µ2, z)M(µ1, µ2, z

−1) = 1. The same is true for any characters µ1, µ2 of A×/F×, which are not
necessarily trivial at α. To see this, it suffices to use the identities M(µ1νt, µ2νt, z) = M(µ1, µ2, z)
and M(µ1νt, µ2νt−1 , z) = M(µ1, µ2, tz). �

5. Proof of the trace formula

5.1. The geometric part. Our aim is to compute the trace tr r0(f), where f ∈ C∞c (GL(2,A)) and
r0 is the representation of GL(2,A) by right translation on the space A0,α of cusp forms invariant
under α. Recall that the space Ac,α of α-invariant automorphic forms is equal to the direct sum
of A0,α and AE,α = Im(E : C∞c (Yα) → Ac,α). The corresponding representations of GL(2,A) are
denoted by r and rE . Had r been admissible, we would have had tr r0(f) = tr r(f)− tr rE(f), and
the computation of tr r0(f) would have reduced to that of tr r(f) and tr rE(f). But r and rE are
not admissible, so tr r(f) and tr rE(f) make no sense.

Suppose f is right invariant under the open subgroup U of GL(2, O). Denote by AU0 , AUc , AUE the
spaces of U -invariant vectors in A0,α, Ac,α, AE,α. Since Im r0(f) ⊂ AU0 , we have tr r0(f) = tr rU0 (f),

where rU0 (f) is the restriction of r0(f) to AU0 .
Denote by χm the characteristic function of the set {x ∈ αZ · GL(2, F )\GL(2,A); ht(x) < m},

m > 0. Denote by θm the operator of multiplication by χm on Ac,α.

Proposition 5.1. (1) For any m > 0, dim θm(AUc ) <∞.
(2) If m >> 1 then (a) θm acts as the identity on AU0 , and (b) θm(AUE) ⊂ AUE.

Proof. (1) The support of χm is compact mod Z(A), the quotient by the open U is then finite. (2a)
AU0 is finite dimensional, consisting of compactly supported forms. (2b) By (2a), (1 − θm)AUE =
(1 − θm)AUc , and this lies in AUE as U -invariant cusp forms are uniformly compactly supported.
Hence θm(AUE) ⊂ AUE . �

Denote by rU (f) and rUE(f) the restrictions of r(f) to AUc and AUE . Form such that θm(AUE) ⊂ AUE ,
denote the restriction of θm to AUE again by θm. Then for m >> 1,

tr r0(f) = tr rU0 (f) = tr(θmr
U (f))− tr(θmr

U
E(f)) = tr(θmr(f))− tr(θmr

U
E(f)).

We then proceed to compute tr(θmr(f)) and tr(θmr
U
E(f)).

Proposition 5.2. There exist cf ∈ E and αm ∈ E with limn→∞ αm = 0, and

tr(θmr(f)) =
∑

1≤i≤4

Si(f) + cf (m− 1

2
) + αm.

Proof. The map θmr(f) : Ac,α → Ac,α is an integral operator with kernel χm(y)Kf (x, y), where
Kf (x, y) =

∑
γ∈αZ·GL(2,F ) f(x−1γy). Then

tr(θmr(f)) =

∫
αZ·GL(2,F )\GL(2,A)

χm(x)Kf (x, x)dx.

Lemma 5.3. There exists mf > 0 such that if x ∈ GL(2,A), γ ∈ αZ GL(2, F ), ht+(x) > mf ,

f(x−1γx) 6= 0, then γ ∈ αZA(F )N(F ).

Proof. We have γx = xy, y in supp(f). Since ht+(x) + ht+(δx) ≤ 0 for δ ∈ GL(2, F ) − B(F ), we
have that ht+(x) > 0. If in addition we had ht+(xy) > 0, we would conclude that γ ∈ αZB(F ).
The number mf = −min{ht+(z); z ∈ GL(2, O)·supp(f)} then has the property that ht+(x) > mf ,
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y ∈ supp(f), implies ht+(xy) = ht+(x)+ht+(ky) > 0, where x = bk and ky = b′k′ so that xy = bb′k
(b, b′ ∈ B(A); k, k′ ∈ GL(2,A)). �

Denote by ξm the characteristic function of the set {x ∈ GL(2,A); ht+(x) ≥ m}, by A′(F ) the
set of nonscalar diagonal matrices, and by Ell the set of elliptic matrices in GL(2, F ), namely those
whose eigenvalues are not in F . Put w = ( 0 1

1 0 ).

Lemma 5.4. If m is big enough, then χm(y)Kf (x, x) is the sum of

T1,m(x) = χm(x)
∑

γ∈αZ·F×
f(γ), T2,m(x) =

∑
γ∈αZ·Ell

f(x−1γx),

T3,m(x) =
1

2

∑
γ∈αZ·A′(F )

∑
δ∈A(F )\GL(2,F )

f(x−1δ−1γδx) · (1− ξm(δx)− ξm(wδx)),

T4,m(x) =
∑

a∈αZ·F×

∑
δ∈F×N(F )\GL(2,F )

f(x−1δ−1 ( a a0 a ) δx) · (1− ξm(δx)).

Proof. T1,m(x) is the contribution of the elements γ ∈ αZ · F× in χm(x)Kf (x, x).

We claim that the contribution of the elements γ ∈ αZ · Ell in χm(x)Kf (x, x) is T2,m(x). To

show this, we need to see that if x ∈ GL(2,A), γ ∈ αZ · Ell and Φ(x−1γx) 6= 0, then ht+(x) < m.
Indeed, if ht(x) ≥ m then there is some δ ∈ GL(2, F ) with ht+(δx) ≥ m. Lemma 5.3 then implies
that δγδ−1 ∈ αZA(F )N(F ), contradicting γ ∈ αZ · Ell.

Denote by T ′3,m(x) the contribution into χm(x)Kf (x, x) of the elements γ of the form αjγ, j ∈ Z,

γ ∈ GL(2, F ) with distinct eigenvalues in F . By T ′4,m(x) we denote the contribution of the elements

αjγ, j ∈ Z, γ ∈ GL(2, F ), γ /∈ F× but the eigenvalues of γ are equal. We have

T ′3,m(x) =
1

2
χm(x)

∑
γ∈αZ·A′(F )

∑
δ∈A(F )\GL(2,F )

f(x−1δ−1γδx).

The 1
2 appears since diag(b, a) is conjugate to diag(a, b). To show that T ′3,m(x) = T3,m(x) it suffices

to show that when f(x−1δ−1γδx) 6= 0, χm(x) = 1− ξm(δx)− ξm(wδx), namely if ht(x) ≥ m then
either ht+(δx) ≥ m or ht+(wδx) ≥ m. So if ht(x) ≥ m, then there is some η ∈ GL(2, F ) with
ht+(ηx) ≥ m. By Lemma 5.3, ηδ−1γδη−1 ∈ αZA(F )N(F ), but this implies that ηδ−1 ∈ A(F )N(F )
or ηδ−1w ∈ A(F )N(F ). Correspondingly, ht+(δx) = ht+(ηx) ≥ m or ht+(wδx) = ht+(ηx) ≥ m,
but both inequalities cannot hold simultaneously if m > 0.

Now

T ′4,m(x) = χm(x)
∑

a∈αZ·F×

∑
δ∈F×N(F )\GL(2,F )

f(x−1δ−1 ( a a0 a ) δx).

To show that this equals T4,m(x) we need to check that when f(x−1δ−1 ( a a0 a ) δx) 6= 0 and ht(x) ≥ m,
then ht+(δx) ≥ m. Suppose then that ht+(ηx) ≥ m for η ∈ GL(2, F ). Then by Lemma 5.3
ηδ−1 ( a a0 a ) δη−1 ∈ αZA(F )N(F ). Hence ηδ−1 ∈ A(F )N(F ), so that ht+(δx) = ht+(ηx) ≥ m. �

We conclude that tr θmr(f) =
∑

1≤i≤4 ti,m with

ti,m =

∫
αZ·GL(2,F )\GL(2,A)

Ti,m(x)dx.

To prove the proposition it suffices to show that ti,m = Si(f)+ci(2m−1)+βm for all i (1 ≤ i ≤ 4),
where ci does not depend on m and limβm = 0. It is clear that ti,m → S1(f) as m → ∞. As
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T2,m(x) is independent of m, t2,m = S2(f). Now

t3,m =
1

2

∑
γ∈αZ·A′(F )

∫
αZ(A(F )\GL(2,A)

f(x−1γx)(1− ξm(x)− ξm(wx))dx

=
1

2

∑
γ∈αZ·A′(F )

∫
A(A)\GL(2,A)

f(x−1γx)s(x)dx

where

s(x) =

∫
αZA(F )\A(A)

[1− ξm(yx)− ξm(wyx)]dy

= vol{y ∈ αZA(F )\A(A); ht+(yx) < n, ht+(wyx) < n}.
Note that for y ∈ A(A), ht+(yx) = ht+(y) + ht+(x) and ht+(wyx) = ht+(wx)− ht+(y). Hence

s(x) = |{y ∈ A(A)/αZ ·A(F ); ht+(wx)−m < ht+(y) < m− ht+(x)}|.
This is the number of integers between ht+(wx)−m and m−ht+(x). So s(x) = 2m− 1−ht+(x)−
ht+(wx).

Lemma 5.5. We have ht+(x)+ht+(wx) = −2r(x), where if x = a
(

1 y
0 1

)
k, a ∈ A(A), k ∈ GL(2, O)

and y ∈ A, we put r(x) =
∑

v max(0, logq |yv|v).

Proof. Note that y is determined up to a change y 7→ by+ c, b ∈ O×, c ∈ O, so r(x) is well defined.
The asserted relation does not change if x is replaced by axk, a ∈ A(A), k ∈ GL(2, O), so we

may assume x =
(

1 y
0 1

)
∈ N(A). Then ht+(x) = 0, and ( 0 1

1 0 )
(

1 y
0 1

)
=
(
− 1
y

1

0 y

)(
1 0
1
y

1

)
implies that

ht+(wx) = −2r(x). �

Lemma 5.5 implies that

t3,m = S3(f) + (m− 1

2
)

∑
γ∈αZ·A′(F )

∫
A(A)\GL(2,A)

f(x−1γx)dx.

Next

t4,m =
∑

a∈αZ·F×

∫
αZF×N(F )\GL(2,A)

f
(
x−1 ( a a0 a )x

)
(1− ξm(x))dx

=
∑

a∈αZ·F×

∫
{x∈αZF×N(F )\GL(2,A); ht+(x)<m}

f
(
x−1 ( a a0 a )x

)
dx.

Recall that θa,f (t) =
∫
αZF×N(F )\GL(2,A) f

(
x−1 ( a a0 a )x

)
tht+(x)dx is a Laurent series at t = 0 of

a rational function of t with ζF (q−1t)−1θa,f (t) ∈ C[t, t−1]. Suppose θa,f (t) =
∑

k uk(a)tk. Then
t4,m =

∑
a∈αZ·F×

∑
k<m uk(a). Since ζF (q−1t) has a simple pole at t = 1, we have that θa,f (t) =

ρ(a)
1−t + θa,f (t), with θa,f (t) without poles on 0 < |t| ≤ 1. Then

θ̃a,f (t) =
1

2
(θa,f (t) + θa,f (t−1)) =

1

2
(θa,f (t) + θa,f (t−1)) +

1

2
ρ(a),

θ̃a,f (1) = θa,f (1) +
1

2
ρ(a) =

1

2
ρ(a) +

∑
k

(uk(a)− ρ(a))

= lim
m→∞

[
∑
k<m

uk(a)− (m− 1

2
)ρ(a)].
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Then

t4,m =
∑

a∈αZ·F×
θ̃a,f (1) + (m− 1

2
)ρ(a) + βm, βm → 0 as m→∞,

and S4(f) =
∑

a∈αZ·F× θ̃a,f (1). Proposition 5.2 follows. �

Note that βm is 0 for sufficiently large m, as will be seen below.

5.2. The Eisenstein contribution. Next we turn to computing tr(θmr
U
E(f)) for large m. Put

WU
c = C∞c (Yα)U , WU

M = (1 +M)WU
c .

Proposition 5.6. The operator E∗ maps AUE isomorphically onto WU
M .

Proof. As AUE = E(WU
c ) and E∗E = 1 + M , it suffices to show that kerE∗E = kerE. For

ϕ ∈ kerE∗E we have (Eϕ,Eϕ) = (E∗Eϕ,ϕ) = 0, hence Eϕ = 0. �

Definition 1. Denote by WU
m the space of f in WU

c with f(x) = 0 if ht+(x) < m. Denote
by ξm also the operator WU

M → WU
m of multiplication by the characteristic function of the set

{x ∈ Yα; ht+(x) ≥ m}. [If m > 0 then ξm is a left inverse to the operator 1 + M : WU
m → WU

M .
Indeed, if f is in WU

m , then (Mf)(x) = 0 already when ht+(x) > −m since ht+(wnx)+ht+(nx) < 0
implies ht+(wnx) < m and so f(wnx) = 0.] Hence πm = (1 + M)ξm : WU

M → WU
M satisfies

πmπm = πm, for m > 0. Put πm = 1− πm.

Proposition 5.7. For sufficiently large m, E∗ intertwines θm with πm, thus πmE
∗ = E∗θm, namely

the diagram

AUE
E∗→ WU

M
θm↓ ↓πm
AUE

E∗→ WU
M

is commutative.

Proof. Suppose f ∈ AUE and (1 − θm)f = 0. Then f(x) = 0 for x with ht(x) ≥ m. As ξm(x) 6= 0
only on x with ht+(x) ≥ m, we have 0 = (1 + M)ξmE

∗f = (1 − πm)E∗f , the last equality as
1− πm = πm = (1 +M)ξm. For such f we have E∗θmf = E∗f and πmE

∗f = E∗f .
If f ∈ AUE and θmf = 0, then by Proposition 4.34 there is ϕ ∈ WU

m with f = Eϕ. Then
πmE

∗f = πmE
∗Eϕ = πm(1 + M)ϕ = πm(1 + M)ξmϕ = πmπ

mϕ = 0, hence E∗θmf = πmE
∗f for

such f .
Any f ∈ AUE can be written as f = f1 + f2, f1 = (1 − θm)f , f2 = θmf , thus θmf1 = 0 and

(1− θm)f2 = 0. �

Definition 2. Recall that Yα = αZA(F )N(A)\GL(2,A). Denote by σc, σ+, σM the representations
of GL(2,A) in the spaces Wc = C∞c (Yα), W+ = C∞+ (Yα), WM = (1 +M)C∞c (Yα). Consider σc(f),

σ+(f), σM (f) as operators in the spaces WU
c , WU

+ , WU
M .

Corollary 5.8. We have tr(θm · rUE(f)) = tr(πm · σM (f)).

Proof. E∗ is an isomorphism of AUE = E(WU
c ) with WU

M intertwining θm with πm. �

In the proof of Proposition 4.35 we introduced a structure of C[z, z−1]-module on WU
c and

WU
+ , as well as isomorphisms WU

c ' WU
0 ⊗C C[z, z−1] and WU

+ ' WU
0 ⊗C C((z)), where WU

0 =

{f ∈ WU
c ; f(x) = 0 if ht+(x) 6= 0}. Under these isomorphisms, the operator M : WU

c → WU
+

corresponds to the operator M : WU
0 ⊗C C[z, z−1]→WU

0 ⊗C C((z)), which satisfies the conditions
of Proposition 4.31, hence has the form (Mu)(z) = P (z)u(z−1) for u ∈ WU

0 ⊗C C[z, z−1] which is



EISENSTEIN SERIES AND THE TRACE FORMULA 39

viewed as a function of z with values in WU
0 . Here P (z) is a rational function in z with values in

AutWU
0 , and P (z−1) = P (z)−1.

Now σc(f) is an endomorphism of WU
c as a C[z, z−1]-module. The corresponding endomorphism

of the module WU
0 ⊗C C[z, z−1] is determined by a function B(z) in End(WU

0 ) ⊗C C[z, z−1]. The
endomorphism of WU

0 ⊗C C((z)) corresponding to the operator σ+(f) is determined by the same
function B(z). The relation Mσc(f) = σ+(f)M becomes P (z)B(z−1)u(z−1) = B(z)P (z)u(z−1) for
any u ∈WU

0 ⊗C C[z, z−1], thus B(z−1) = P (z)−1B(z)P (z).

Definition 3. Under the isomorphism WU
+ ' WU

0 ⊗C C((z)), the subspaces WU
M = (1 + M)WU

c

is mapped onto the subspace L consisting of all rational functions of the form u(z) + P (z)u(z−1),
with u ∈WU

0 ⊗C C[z, z−1]. Put Lm = L∩ (WU
0 ⊗C z

−m+1C[[z]]). Denote by Lm the set of rational
functions of the form u(z) + P (z)u(z−1) with u ∈ WU

0 ⊗C z
−mC[z−1]. For sufficiently large m we

have L = Lm ⊕ Lm. Under the isomorphism WU
M
∼→ L, the operator πm : WU

M →WU
M corresponds

to the idempotent operator L → L with kernel Lm and image Lm. This projection will also be
denoted by πm. Thus tr(πmσM (f)) = tr(πmB), where B : L→ L is the operator of multiplication
by B(z). On the left, πm is an operator on WU

M , on the right, on L.
Fix Q1, Q2 ∈ M(k,C[z, z−1]), k ≥ 1, such that detQi 6= 0. Suppose the function Q2(z)−1Q1(z)

is regular at z = ∞, thus Q1(z) ∈ Q2(z)M(k,C[[z−1]]), and the function Q1(z)−1Q2(z) is regular
at z = 0, thus Q2(z) ∈ Q1(z)M(k,C[[z]]). Put R = C[z, z−1]k. For m ≥ 1, put

Rm = R ∩ z1−mQ1(z)C[[z]]k ∩ zm−1Q2(z)C[[z−1]]k.

Also put Rm− = z−mQ1(z)C[z−1]k and Rm+ = zmQ2(z)C[z]k. Then dimRm is finite.

Proposition 5.9. We have R = Rm− ⊕Rm ⊕Rm+ ,

Rm ⊕Rm+ = R ∩ z1−mQ1(z)C[[z]]k

and
Rm ⊕Rm− = R ∩ zm−1Q2(z)C[[z−1]]k.

Proof. The natural map ϕ : Rm− → X− = C((z))k/z1−mQ1(z)C[[z]]k is an isomorphism (note that
C((z))/z1−mC[[z]] ' z−mC[z−1] and Q1(z) is invertible in GL(k,C((z))). The natural map ψ :
Rm+ → X+ = C((z−1))k/zm−1Q2(z)C[[z−1]]k is then too. The natural map f : R/Rm → X− ⊕X+

is injective (by definition of Rm as the intersection of R and the denominators of X−, X+) and the
composition of the natural map Rm+ ⊕Rm− → R/Rm with f is ϕ⊕ ψ. �

Definition 4. (1) Denote by prm : R → R the projection with kernel Rm+ ⊕ Rm− and image Rm.
(2) If A(z) is a matrix in M(k,C[z, z−1]), denote by A[z] also the corresponding automorphism of
R = C[z, z−1]k. Denote by A0 the constant term of A(z).

Proposition 5.10. The trace tr(prm ·A[z]) is equal to

(2m− 1) trA0 − resz=0 trA(z)Q′1(z)Q1(z)−1dz − resz=∞ trA(z)Q′2(z)Q2(z)−1dz.

Proof. Define a projection prm+ : R→ R with image Rm+ and kernel Rm−+Rm, and a projection prm− :
R→ R with image Rm− and kernel Rm+ +Rm. Analogously to the decomposition R = Rm−⊕Rm⊕Rm+ ,
consider the decomposition

R = z−mC[z−1]k ⊕ (z1−mC[z]k ∩ zm−1C[z−1]k)⊕ zmC[z]k,

namely the case where Q1 = 1 = Q2. Denote the associated projections by pm− , pm, pm+ . Since the

space z−mC[z−1]k/Rm− ∩ z−mC[z−1]k is finite dimensional, the operator prm+ −pm+ has finite rank,

and the operator prm− −pm− has finite rank since zmC[z]k/Rm+ ∩ zmC[z]k is finite dimensional.
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Lemma 5.11. We have tr(prm− ·A[z]− pm− ·A[z]) = resz=0 trA(z)Q′1(z)Q1(z)−1dz, as well as

tr(prm+ ·A[z]− pm+ ·A[z]) = resz=∞ trA(z)Q′2(z)Q2(z)−1dz.

Proof. Denote by Prm− : C((z))k → C((z))k the projection with image z−mQ1(z)C[z−1]k and kernel

z1−mQ1(z)C[[z]]k. Denote by Pm− : C((z))k → C((z))k the projection with image z−mC[z−1]k and

kernel z1−mC[[z]]k (thus the case of Q1 = 1). Denote by A((z)) the endomorphism of C((z))k

defined by multiplication by A(z). Then Prm− = Q1((z)) · Pm− · Q1((z))−1. Now Im(Prm− ·A((z)) −
Pm− ·A((z))) ⊂ C[z, z−1]k, and the restriction of the operator Prm− ·A((z))−Pm− ·A((z)) to C[z, z−1]k

(⊂ C((z))k) is equal to prm− ·A[z]− pm− ·A[z]. Hence

tr(prm− ·A[z]− pm− ·A[z]) = tr(Prm− ·A((z))− Pm− ·A((z)))

= tr(Q1((z)) · Pm− ·Q1((z))−1 ·A((z))− Pm− ·A((z)))

= tr(Q1((z)) · Pm− · C((z))− Pm− ·Q1((z)) · C((z))), C(z) = Q1(z)−1A(z).

As trA(z)Q′1(z)Q1(z)−1 = trC(z)Q′1(z), to prove the first claim of the lemma it suffices to show
that

tr(Q1((z)) · Pm− · C((z))− Pm− ·Q1((z))C((z))) = resz=0 trC(z)Q′1(z)dz

for any Q1(z) ∈ M(k,C[z, z−1]), C(z) ∈ M(k,C((z))). By linearity, it suffices to show this when
the matrices Q1(z) and C(z) have a single nonzero entry. Thus we may assume k = 1, and that
Q1(z) = zb. Thus we need to verify that for any formal power series c(z) =

∑
d cdz

d in C((z)), we

have tr[(((zb)) · Pm− − Pm− · ((zb)))c((z))] = bc−b, where the operations here are in C((z)). The left
side is equal to

tr[(((zb)) · Pm− · ((z−b))− Pm− ) · ((zb))c((z))] = tr[(Pm−b− − Pm− ) · ((zb))c((z))]

= tr

 c−b c−b+1 ... c−1
c−b−1 c−b ... c−2

...
... ...

...
c1−2b c2−2b ... c−b

 = bc−b.

The second claim of the lemma is similarly proven. �

As prm−pm = (1−prm− −prm+ )− (1− pm− − pm+ ) = (pm− −prm− ) + (pm+ −prm+ ), Lemma 5.11 implies
that tr(prm ·A[z]− pm ·A[z])

= − resz=0 tr[A(z)Q′1(z)Q1(z)−1dz]− resz=∞ tr[A(z)Q′2(z)A2(z)−1dz].

Since tr(pm ·A[z]) = (2m− 1) trA0, the proposition follows. �

Proposition 5.12. Let ι : C[z, z−1]k → C[z, z−1]k be the involution (ιu)(z) = u(z−1). For suffi-
ciently large m we have 2 tr(ι · prm ·A[z]) = trA(1) + trA(−1).

Proof. Write A(z) =
∑

k Akz
k, Ak ∈ M(k,C). Then tr(ι · pm · A[z]) =

∑
|i|<m trA2i. If m is big

enough the right side here is equal to 1
2(trA(1)+trA(−1)). It remains to show that tr(ι·prm ·A[z]) =

tr(ι · pm ·A[z]) for large enough m. As prm−pm = pm+ − prm+ +(pm− − prm− ), it suffices to show that
for large enough m

tr(ι · (pm+ − prm+ ) ·A[z]) = 0 = tr(ι · (pm− − prm− ) ·A[z]).

Note that prm+ = [zm] pr0
+[z−m] and pm+ = [zm]p0

+[z−m], where as usual [zm] here means the operator
of multiplication by zm. The operators prm+ and pm+ were defined only for m > 0, but the definition
extends to m = 0 so that the two relations above hold. Now

tr(ι · (pm+ − prm+ ) ·A[z]) = tr(ι · [zm](p0
+ − pr0

+)[z−m] ·A[z])
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= tr([z−m]ι · (p0
+ − pr0

+)[z−m] ·A[z]) = tr(ι · (p0
+ − pr0

+)[z−m] ·A[z][z−m])

= tr(ι · (p0
+ − pr0

+)[z−2m] ·A[z]).

Recall that dimV is finite, where V = im[ι(p0
+ − pr0

+)]. If m is big enough then

[z−2m] ·A[z]V ⊂ z−1C[z−1]k ∩ z−1Q2(z)C[[z−1]]k ⊂ ker p0
+ ∩ ker pr0

+ .

Hence tr(ι · (p0
+ − pr0

+)[z−2m] ·A[z]) is zero, hence tr(ι(pm+ − prm+ )A[z]) is zero.
The proof of tr(ι(pm− − prm− )A[z]) = 0 for large m is analogous. �

Definition 5. Fix P ∈ GL(k,C(z)) such that P (z) is regular at z = 0 and P (z)−1 is regular at
z =∞. Put

S = C[z, z−1]k + P · C[z, z−1]k, Sm = S ∩ z1−mC[[z]]k ∩ zm−1P · C[[z]]k,

Sm = z−mC[z−1]k+zmP ·C[z]k. Fix B in M(k,C[z, z−1]) such that P−1BP lies in M(k,C[z, z−1]).
Then BS ⊂ S. We denote by [B] or B[z] the operator S → S of multiplication by B(z).

Proposition 5.13. We have S = Sm ⊕ Sm. Denote by psm : S → S the projection with image Sm
and kernel Sm. Then

tr(psm ·[B]) = (2m− 1) trB0 − resz=∞ tr[B(z)P ′(z)P (z)−1]dz + tr([B];S/C[z, z−1]k).

Here B0 is the constant term of B = B(z), and tr([B];S/C[z, z−1]k) denotes the trace of the
endomorphism of S/C[z, z−1]k induced by multiplication by B(z).

Proof. The space S is a k-dimensional free C[z, z−1]-submodule of C(z)k. Hence there exists a
matrix D in GL(k,C(z)) such that S = D · C[z, z−1]k. Since S contains C[z, z−1]k, D−1 lies in
M(k,C[z, z−1]). Since S contains P · C[z, z−1]k we deduce that D−1P ∈ M(k,C[z, z−1]). Put
Q1 = D−1, Q2 = D−1P . The function Q1(z)−1Q2(z) = P (z) is regular at z = 0. The function
Q2(z)−1Q1(z) is regular at z =∞. Under the isomorphism S→̃C[z, z−1]k, u 7→ D−1u, the subspaces
Sm and Sm correspond to the subspaces Rm and Rm of Proposition 5.9. The multiplication
[B] : S → S corresponds to [A] : C[z, z−1]k → C[z, z−1]k, A = D−1BD. Then Proposition 5.10
implies the first part of the proposition, as well as the equality

tr(psm ·B[z]) = (2m− 1) trA0 − resz=0 trA(z)Q′1(z)Q1(z)−1dz

− resz=∞ trA(z)Q′2(z)Q2(z)−1dz.

Here A0 is the constant term of A(z). We have

tr(AQ′1Q
−1
1 ) = − tr(D−1BD′) = − tr(BD′D−1),

tr(AQ′2Q
−1
2 ) = − tr(D−1BP ′P−1D −D−1BD′) = tr(BP ′P−1)− tr(BD′D−1).

As A = D−1BD, trA = trB, and trA0 = trB0. Hence

tr(psm ·B[z]) = (2m− 1) trB0 − resz=∞ trB(z)P ′(z)P (z)−1dz

+ resz=0 trB(z)D′(z)D(z)−1dz + resz=∞ trB(z)D′(z)D(z)−1dz

+(2m− 1) trB0 − resz=∞ trB(z)P ′(z)P (z)−1dz −
∑
ζ∈C×

resz=ζ trB(z)D′(z)D(z)−1dz.

Lemma 5.14. Suppose T ∈ GL(k,C((z))), C ∈ M(k,C[[z]]) and T−1CT ∈ M(k,C[[z]]). Then
resz=0 trC(z)T ′(z)T (z)−1 = a− b, where a denotes the trace of the operator multiplication by C in
the space (C[[z]]k +TC[[z]]k)/TC[[z]]k, while b denotes the trace of multiplication by C in the space
(C[[z]]k + TC[[z]]k)/C[[z]]k.
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Proof. Both sides of the asserted equality do not change if (T,C) is replaced by (UTV,UCU−1)
where U, V ∈ GL(k,C[[z]]). We may then assume that T is a diagonal matrix, hence that k = 1.
When k = 1 both sides of the asserted relation are simply mC(0), where m is the multiplicity of
zero of T (z) at z = 0. �

It follows from the lemma that − resz=ζ tr(B(z)D′(z)D(z)−1)dz is just the trace of the operator

of multiplication by B(z) on the ζ component of the module S/C[z, z−1]k. This, and the equality
just before the lemma, implies the proposition. �

Suppose we have P (z−1) = P (z)−1. Replace the assumption P (z)−1B(z)P (z) ∈M(k,C[z, z−1])
in Proposition 5.13 with the stronger assumption P (z)−1B(z)P (z) = B(z−1). Recall that L is the
space of all rational functions of the form u(z) + P (z)u(z−1) with u ∈ C[z, z−1]m. In view of the
stronger assumption, L is invariant under multiplication by B.

Definition 6. Denote by BL the operator of multiplication by B on L. Put Lm = L∩z1−mC[[z]]k.
Denote by Lm the set of rational functions of the form u(z) +P (z)u(z−1) with u(z) ∈ z−mC[z−1]k.

Proposition 5.15. The space Lm is finite dimensional, and L = Lm⊕Lm. Denote by πm : L→ L
the projection with image Lm and kernel Lm. Suppose the function P (z) is regular at z = ±1.
Then for large enough m we have that tr(πmBL) equals

(m− 1

2
) trB0 −

1

2
resz=∞ tr(B(z)P ′(z)P (z)−1)dz

+
c

2
+

1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Here B0 is the constant term of B(z), and c is the trace of the operator of multiplication by B(z)
in the space (C[z, z−1]k + P (z)C[z, z−1]k)/C[z, z−1]k.

Proof. Let S, Sm, Sm, psm, B be as in Proposition 5.13. From P (z−1) = P (z)−1 it follows that
if u ∈ S then ũ, given by ũ(z) = P (z)u(z−1), is also in S. Define τ : S → S by τ(u) = ũ. Then
τ2 = 1, L = {u ∈ S; τ(u) = u}, Lm = Sm ∩ L, Lm = Sm ∩ L, and tr(πmBL) = 1

2 tr(psm ·B[z]) +
1
2 tr(τ · psm ·B[z]). The finite dimensionality of Sm and Proposition 5.13 then imply that Lm is
finite dimensional, and L = Lm⊕Lm. To deduce the last claim of the proposition from Proposition
5.13, it remains to show that tr(τ ·psm ·[B]) = 1

2(tr(B(1)P (1))+tr(B(−1)P (−1))) for large enough
m.

Let D, Q1, Q2 be as in Proposition 5.13. Then under the isomorphism S→̃C[z, z−1]k, u 7→ D−1u,
the operator psm : S → S translates into the operator prm (of Proposition 5.9), and multiplication
by B : S → S translates into multiplication by A = D−1BD, C[z, z−1]k → C[z, z−1]k. The map
τ : S → S translates into

[C]ι : C[z, z−1]k → C[z, z−1]k, (ιu)(z) = u(z−1), C(z) = D(z)−1P (z)D(z−1).

Hence

tr(τ · psm ·B[z]) = tr(C[z]ι · prm ·A[z]) = tr(ιprmA[z]C[z]),

which – by Proposition 5.9 – is

1

2
(trA(1)C(1) + trA(−1)C(−1)) =

1

2
tr(B(1)P (1) + trB(−1)P (−1));

note that D(z) is regular at z = ±1, since so is P (z). �

If F ∈M(k,C) and Y ⊂ Ck is an F -invariant subspace, write tr(F, Y ) for the trace of F on Y .
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Proposition 5.16. Fix P (z) ∈ GL(k,C(z)) with P (z−1) = P (z)−1. Suppose that the function
P (z) is regular on |z| = 1 and at z = 0, and that it has order 1 at all its poles ζ1, . . . , ζs inside
{z ∈ C; 0 < |z| < 1}. Denote by Yi the image of the operator limz→ζi(z − ζi)P (z) acting on Ck.
Fix B(z) ∈M(k,C[z, z−1]) and suppose B1(z) = P (z)−1B(z)P (z) ∈M(k,C[z, z−1]). Then

tr(psm ·[B]) = (2m− 1) trB0 +
1

2πi

∫
|z|=1

trB(z)P ′(z)P (z)−1dz

+
∑

1≤i≤s
tr(B(ζi) +B1(ζ−1

i ), Yi),

with B0 being the constant term of B(z).
If in addition B1(z) = B(z−1) then

tr(πmBL) = (m− 1

2
) trB0 +

1

4πi

∫
|z|=1

trB(z)P ′(z)P (z)−1dz

+
∑

1≤i≤s
tr(B(ζi), Yi) +

1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Note that the subspace Yi of Ck is invariant under B(ζi) and B1(ζ−1
i ).

Proof. In view of Propositions 5.13 and 5.15 it suffices to verify that

1

2πi

∮
|z|=1

trB(z)P ′(z)P (z)−1dz +
∑

1≤i≤s
tr(B(ζi) +B1(ζ−1

i ), Yi)

= tr([B], S/C[z, z−1]k)− resz=∞ trB(z)P ′(z)P (z)−1dz,

where S = C[z, z−1]k + P (z)C[z, z−1]k.
For any ζ 6= 0 in C denote by Mζ and Nζ the ζ-components of the C[z, z−1]-modules S/C[z, z−1]k

and S/P (z)C[z, z−1]k, respectively. From Cauchy’s formula and Lemma 5.14, it follows that

1

2πi

∮
|z|=1

trB(z)P ′(z)P (z)−1dz =
∑

1<|ζ|<∞

tr([B],Mζ)

−
∑

1<|ζ|<∞

tr([B], Nζ)− resz=∞ tr(B(z)P ′(z)P (z)−1)dz.

On the other hand, tr([B], S/C[z, z−1]k) =
∑

ζ∈C× tr([B],Mζ). Hence the required identity follows
from ∑

0<|ζ|<1

tr([B],Mζ) =
∑

1≤i≤s
tr(B(ζi), Yi),

∑
1<|ζ|<∞

tr([B], Nζ) =
∑

1≤i≤s
tr(B1(ζ−1

i ), Yi).

If P (z) is regular at ζ them Mζ = 0. At each ζi, P (z) has a pole of order one. Hence there
exists isomorphisms Mζi→̃Yi which translate the operator [B] : Mζi → Mζi to the operator of
multiplication by B(ζi) on Yi. This implies the first identity.

For the second identity, for any ζ ∈ C×, denote by N ζ the ζ-component of the module (C[z, z−1]k

+P (z)−1C[z, z−1]k)/C[z, z−1]k. Multiplication by P (z)−1 induces an isomorphism Nζ→̃N ζ . Under

this isomorphism, multiplication by B : Nζ → Nζ translates into multiplication by B1 : N ζ → N ζ ,

hence tr([B], Nζ) = tr([B1], N ζ). From P (z)−1 = P (z−1) we deduce that N ζ = 0 if P (z) is regular
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at z = ζ−1, and that tr([B1], N ζ−1
i

) = tr(B1(ζ−1
i ), Yi). This implies the second identity, hence the

proposition. �

5.3. Spectral terms. To deduce the trace formula from Proposition 5.16, we use properties of the
function M(µ1, µ2, t).

Recall that we have the projection πm : L→ L with kernel Lm and image Lm, and BL denotes
the operator of multiplication by B(z) on L. The operator P (z) is the restriction to the subspace
of U -invariant vectors of the operator M on the space I0 = ⊕I0(µ1, µ2) (µ1, µ2 range over the
characters of A×/F× · αZ), which maps I0(µ1, µ2) to I0(µ2, µ1) via M(µ1, µ2, z).

Proposition 5.17. There exists af ∈ C such that for sufficiently large m,

tr(πmBL) = (m− 1

2
)af −

∑
5≤i≤8

Si(f).

Proof. By Proposition 4.29 the function P (z) has two poles in the domain |z| ≤ 1, namely at

z = ±q−1/2, each of order 1. We have P (z−1) = P (z)−1 and P (z)−1B(z)P (z) = B(z−1). Hence
the final claim of Proposition 5.16 applies and implies that for large enough m,

tr(πm[B]) = (m− 1

2
) trB0 +

1

4πi

∮
|z|=1

trB(z)P ′(z)P (z)−1dz + tr(B(q−1/2), Y+)

+ tr(B(−q−1/2), Y−) +
1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Here B0 is the constant term of B(z) and the image of the operator limz→±q−1/2(z ∓ q−1/2)P (z) is
denoted by Y±. The proposition follows once we show that∮

|z|=1
trB(z)P ′(z)P (z)−1dz = −4πi(S5(f) + S6(f)), (1)

tr(B(q−1/2), Y+) + tr(B(−q−1/2), Y−) = −S8(f), (2)

tr(B(1)P (1)) + tr(B(−1)P (−1)) = −4S7(f). (3)

Denote by r(z) the representation of GL(2,A) by right translation in I(z) = ⊗µ1,µ2I(µ1νz−1 , µ2νz).
Here µ1, µ2 are characters of A×/F× · αZ. Let r(z, f) be the convolution operator defined by r(z)
and the compactly supported function f in C∞c (GL(2,A)). Identify, as usual, I(z) to the space I0,
and consider r(z, f) as an operator in I0. From Proposition 4.36, B(z) coincides with the restriction
of r(z, f) to IU0 . Also, P (z) coincides with the restriction of M(z) to IU0 . Hence the integral on the
left of (1) equals ∮

|z|=1
tr r(z, f)M ′(z)M(z)−1dz

=
∑
µ1,µ2

∮
|z|=1

tr I(µ2νz−1 , µ1νz, f)M ′(µ1, µ2, z)M(µ1, µ2, z)
−1dz

=
∑
µ1,µ2

∮
|z|=1

trM(µ1, µ2, z)
−1I(µ2νz−1 , µ1νz, f)M ′(µ1, µ2, z)dz

=
∑
µ1,µ2

∮
|z|=1

tr I(µ1νz, µ2νz−1 , f)M(µ1, µ2, z)
−1M ′(µ1, µ2, z)dz.

Then (1) follows from Proposition 4.9.
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For (2), it follows from Proposition 4.29 that Y+ = LU , with L = ⊕Lµ, Lµ ⊂ I(µ, µ) being

generated by the function x 7→ µ(x). The operator r(q−1/2, f) acts in Lµ as the operator of
multiplication by

∫
GL(2,A) f(x)µ(detx)dx. Hence

tr(B(q−1/2), Y+) = tr(r(q−1/2, f), L) =
∑
µ

∫
GL(2,A)

f(x)µ(detx)dx,

where µ ranges over the set of characters of A×/F× · αZ. Similarly

tr(B(q−1/2), Y−) = tr(r(−q−1/2, f), L) =
∑
µ

∫
GL(2,A)

f(x)µ(detx)ν−1(detx)dx.

Every character of A× which is trivial on F× · α2Z is either trivial on F× · αZ or its product with
ν−1 is, so (2) follows.

For (3) note that

trB(1)P (1) = tr r(1, f)M(1) =
∑
µ

tr I(µ, µ, f)M(µ, µ, 1) = −
∑
µ

tr I(µ, µ, f)

by Proposition 4.30. Similarly trB(−1)P (−1) = −
∑

µ tr I(µν−1, µν−1, f). �

This completes the proof of the trace formula.
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