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ABSTRACT

This thesis is an exposition on spectral sequences, starting with the very basics. We
present this mathematical tool in full detail with all applicable proofs included. The
reader is not expected to have any background in homological algebra; all terms
beyond basic algebra are defined. Some topics covered are limit terms, convergence,
collapsing, and boundedness. Detailed examples of spectral sequences are included.
The paper ends with a chapter dedicated to a description of another example—the

Grothendieck spectral sequence.
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INTRODUCTION

Weibel [1995], Cartan and Eilenberg [1956], and Kostrikin and Shafarevich [1994] all
agree that Jean Leray invented spectral sequences by 1945. Weibel explains that Leray
did so in order to compute the homology of a complex, while Cartan and Eilenberg
state that spectral sequences emerged from a study of fiber bundles. Consequently,
spectral sequences are an important part of homological algebra. Lang explains that
they have many applications in topology, differential geometry, and algebraic geom-
etry. Spectral sequences are mainly viewed as a tool in calculations; we will try to
show that in this paper.

In Chapter 1, we define what a spectral sequence is. Then we give three examples
of how one finds a spectral sequence. In Chapter 2, we discuss three properties of
spectral sequences. We define what it means for a spectral sequence to have a limit
term, to be bounded, and lastly what it means for a spectral sequence to converge.
These properties are referred to later in the paper. Chapter 3 covers another property
a spectral sequence may have, collapsing. In Chapter 4 we give an application of a
spectral sequence. Chapter 5 describes the Grothendieck spectral sequence, which is
a kind of spectral sequence.

Let A, B be monoids, i.e. sets with an associative operation and a zero element.
By a map we will mean an assignment f : A — B such that f(0) = 0, f is well
defined (i.e. a = o' implies f(a) = f(a')), and f(a + @) equals f(a) + f(a').



CHAPTER 1

THE SPECTRAL SEQUENCE

In this Chapter we will define a spectral sequence and give three examples of spectral

sequences.

1.1 Definition of the Spectral Sequence

We start with the definition of a spectral sequence. It involves objects from an abelian

category. For the definition of an abelian category, see Appendix A.

Definition 1.1.1 A bigraded object O = {O;;} is a collection of double indezed
objects O, 5, (i,j) € Z x Z.

Definition 1.1.2 A spectral sequence is a sequence {E",d"},r > 0, of bigraded
objects &7 = {&] .}, &, from an abelian category A, and families of morphisms
d = {d} ,},p,q € Z, where d, , € Homu(&} ., &) v 1) (See Appendiz A) and
dy_rgir—1°dy, = 0. We also require that the homology of £ 1s E™ d.e. for all p,q,

H(E ) I ker(dy )/im(dy,, . ,.1) is isomorphic to )t

We often denote Z7 ! = ker(d; ) and B! =im(d;,, , ). Since

r+1 __ r . or r
Zy. = ker(dp,q 16y, €

T
pfr,q+7"*1) C gp,q

and

r+1 __ T . or r r
Bp,q - 1m(dp+r,q—r+1 ) gp+r,q—r+1 — gp,q) S gp,q’

2



r+1 __ r+1 r+1 __ r+1 13 : :
we have that 2" = {Z]%'} and B""! = {B]'} are families of bigraded subobjects
of &" = {&,}. We say that & , has total degree p + q and that dj . has bidegree
(=r,7 —1). Then dj , decreases the total degree by one. One can think of each

bigraded object £" as a lattice:

Figure 1.1: Viewing the bigraded object £" = {£] } as a lattice

Note that the maps d;, , have lines of slope %

V-T:T‘A R ,“ fc:;—r,q—kr—l
q | y
! p,q
! I r
G S ¢ ,gp,q
p—rDp

Figure 1.2: Viewing the morphisms d" = {d}, ,}



1.2 Example 1: Obtained From an Exact Couple

In this section we introduce the notion of an exact couple and show how we construct

a spectral sequence from it.

Definition 1.2.1 An exact triangle consists of three objects A, B,C from an abelian
category, together with three morphisms A — B 25 ¢ - A such that ima = ker b,

imb = ker ¢, and im ¢ = ker a.

We call an exact triangle an ezact couple when A = B. Consider an exact couple
of bigraded objects D' = {D, ,} and &' = {£, ,} with morphisms o' = {q, }, 8" =
1Bpd: 7" = g} e

1 1
p P4 pl p+1g— Tot+lg-1 151
D p+1,q—1 gp+1 g-1 Dp,q—l’

where o', 8!, and 7! have bidegrees (1, —1), (0,0), and (-1, 0), respectively. It would

actually be more accurate to write this exact couple as

{ﬁgl;+1, —1} {’7p+1 q— 1}

{D, }—q>{ piig 1} {&p1g 1} {Dpy 1}

Better yet we can put this information in the following diagram:

1

i) " — (D!}

{ p,q}

Figure 1.3: An exact couple

Of interest in this exact couple is the map:

1
L onligl Zapt Per (1.1)

1 dfn
d p 1,9

Pq



This map decreases the total degree by one and satisfies the condition

d: odt

D,q p+1,q4 — 0,

since 7; g © ﬁ; ¢~ 0 implies dl © d119+1,q(5p+1 q) - 55—1,(1 © 7;,(1 © ;,q © 7;+1,q(51}+1,q) -
2 _1,4(0) = 0. This allows us to define £ = {£ } where
2 _ 1y /sl
gp,q - ker(dp,q)/lm(derl,q)'
Next define D* = {D; }, where

2 1
Dy = O‘p 1 q+1(Dp 1,q+1)

The morphism o' has bidegree (1, —1), hence D2 , C D, . So far, we have d', £', and

£? exactly as needed in the spectral sequence definition. Having defined D? and £2,

we are on our way to another exact couple and hence will be able to construct d?.

Define three maps

2 2
Dp,q_)Dqu 1

2 .72 2

p,q.D —>€ 1410

2 . o2 2
T 5p,q - Dp—l,q’

by
2 _ 1
Qpqg = CpqlD2
E,q(a) = [5;71,q+1(04};—1,q+1)_1(a)]
dfn

pfl,q+1(a]1)71,q+1)71(a) mod im(dzlJ,q+1)’
Tpa([M]) = 75 q(m).
Note that in the definition of 3} , we quotient out by im(d, ,,,);
52 1,g+41 = ker(dgl)—l,q—l—l)/im(d;J,q-I-l)'
To show that 3} (a) is well defined, let 7 = (ap_, ,,1) '(a) and 7' = (op_; ,11) ' (a)
and we will show that [3)_; .1 (r)] = [B,_; 441 (r)]. Since
aéfl,q—kl(r —r') = a’p 1,q+1(7°) azl)fl,q—kl(rl) =a—a=Vy,

5



we have that 7 — 7' is in ker(ap_; ,11) =1im(7, .11) = Ypgs1(Epgrr)- SO Bp_1 gia(r) —
Bpt,q41(1) = Bp_yga(r —7") isin By g 141 © Y g41(Epgr1) = im(dy 1), and hence
[ﬂpl—l,qﬂ(r)] = [5;_1,q+1(7°')]-

To show that 42 ([m]) is well defined, let [m] = [n] and we will show that v, (m) =

’Y:;,q(n)' Since m —n € im(d113+1,q) = d113+1,q(gz}+1,q) = 5;,11 © ’Y;Jrl,q(gz}ﬂ,q)’ we have that

m —mn = f,0%,14(r) for some rin £, . So v, (m)—",,(n) =7, ,(m—n) =
Voa © Bpg © Vpi1,4(r) = 0, since 7, o B, = 0, and hence ~, (m) = v, ,(n). Let us
verify the exactness at each point (see Figure 1.4) and then we will have another

exact couple. We need to check three things:
. . 2 _ 2
i. ima;, =kerf,,,, i,

.o . 2 _ 2
ii. img; =kervy, ; .4,

iii. im~2, =kera)_, .

To prove these equalities, we will show containment in both directions.

: : 2 2 a2 2 2y

i.a. First let us show that ima;  Cker37,, ;. Let x be inima; = a7 (D, )=
1 ()2 _ ol i )2 - 2 _ 1 1

o, (D; ). So z = ay (s), where s is in D; . Since D} = o, 1,1 (Dy 1 ,11), W

have s = o}

P—1,Q+1

Pt i 2 ()2 2
(u), forwin D, , .. Note that z isin o7 (D2 ) C Dy, 1,50 x

is in the domain of 42, ., and all we need to show is that 37, ,_,(z) =0.

o 1,01(2) = [Byq(0 )7 H(2)];
gl (a1 \=1 1 _
- wp,q(ap,q) © O‘p,q(s)]’
= [ﬁ;q(s)], since we already saw that 3? is well defined;
= [Bpq 0 %1411 (W)];

. 1 1
= [0], since 8,00, |, =0.



i.b. Now let us check that ker 37,, ., Cimaj . Let z bein

ﬂgzj 1,g—1 ﬂ% 1,g—1 .
ker 53+1,q—1 = ker(DQH,q_1 EaLN 513,(1) = ker(oz;,q(D}),q) AN ker(dil,’q)/ 1m(d11)+1,q)).

p
Then 37, ,_1(z) = 0, which means that 8, (o, )" (z)/im(d},, ) = 0. So

;,q(a}),q)_l(x) C d117+1,q(51}+1,q) = Ppg © '7;+1,q(gz}+1,q)' (1'2)

Let a be in (o, ) *(x). Then by (1.2), B, ,(a) = B, ,0 75,1 ,(e) for some e in £, .

So ;,q(a - ’Y;H,q(e)) = 0, which means that
a— ’Y;H,q(e) € ker ﬂ;’q =im a}kl’qﬂ = alllfl,q-f—l(D;fl,q-{—l)-

So then

a;’aq(a) - a;)aq © ry;'f'l;q(e) E a;)aq © a111—1,4+1(D117—1,Q+1)'

— 0= ricin ol 1 1 — 1 2\ — 2 20\ —; 2
Soz —0=uzisin Qp,g © O‘p—l,q+1(Dp—1,q+1) - ap,q(Dp,q) - O‘p,q(Dp,q) = 10y

ii.a. Let us show that im 32 C kerv? | . . Let

z/im dzl),q+1 € im 55,(1 = ﬁ;—l,qﬂ(O‘;—Lqﬂ)*l(Dp%,q)/im dzla,q+1v

_ 4l 1 -1 D2 R BT
where x = 8, ; 1 1(qy_1 441) 7 (n) for some n in Dy . We show that z/imd,, ., is in

the domain of ker~y}_, ., =

71%—1, 1 .
ker(g;g—l,q—f—l == D127—2,q+1) = ker(ker(d;la—l,qﬂ)/1m(dzla,q+1) - D]21—2,q+1):

and that v2_, . (z/imd} ;) = 0. To show the first thing, we need to show that

x/imdy ., is in ker(d} | ,.,)/im(d} ,.,). So we will show that z is in ker(d} , ,,):

g+ p

d;;f1,q+1(x) = ﬂ;72,q+1 © 7;71,q+1(x);

1 1 1 1 1,3,

= Bp-2,4+1 © Vp—1,4+1 © Bp—1,41(¥p_1,441) " (R);
. 1 1

=0, since 1441 0 Bpo1441 = 0.

The second thing holds because
2 im dl _ )
7p—1,q+1(x/ m p,q—|—1) - pr—l,q-H(x)’

= 7;71,(14'1 © ﬂ;*LCI-H(aIl)—Lq—H)_l(n)a

— : 1 1 —
=0, since ,_y 4410 Bp_1,441 = 0.



.o 2 . 2 . 1 . 2

ii.b Now let us show that ker+, ; ., Cimp3; . Let /imd; ., be in kervy; ; ..

S0 Yp_14+1(z) = 0. This implies that = is in kervy, , ., = imf3, ; ,, so that
_ Bl Pl 1 —1( )2 i al

T =B, 41(m), forsome min D, ; ..y C (ap_y441)" (D,,)- Hencezisin 8, ; .40

(a;ll)*l,qﬂ)_l(DIQJ,q)’ and thus z/im dzli,q+1 is in ﬂgfl,q+1 © (aéquH)_l(Dz,q)/ im d:tli,q+1 -

im ﬁg,q.

iii.a. First let us check that im~? C kero? Let z be in im~2 =~ (E} ) =

—-Lg- Dyq

v kerd) Jimd,,, )=, (kerd) ). So z =, (w), for some w in kerd} ,. Then
a/p%—l,q(‘r) = a/zlJ—l,q(a:);

= azl)fl,q © ’Y;,q(w)’

— ; 1 1
=0, since oy_y ,07,,=0.

So z is in kera_, .. Note that indeed z isin 72 (E2 ) C D?_, , the domain of o2,

_11Q’ q°

iii.b Lastly, we will check that kera;

1 L )2
ker(ozp_l,q)\Dg_l,q. Then z is in D,_,

C im~., Let z be in kero? =

_laq _laq

and o?

2 1 4() = 0, which means that z is

in ay y,.1(Dp_9,41) and a,_; () = 0, respectively. So we have that for some v in

p—1,q
Dl

p—2,g+1»
T =0y 5,04 (V). (1.3)

Now z in ker a/zl, implies that x is in im 7;,(1, by the exactness of Figure 1.3. So we

—1,(]

have that = = -, ,(m), for some m in E} . So

m e (o) (@). (1.4)

We want to show that z is in

im 75#1 - 7§,q(E§,q) = Vz,q(ker dill,q/ im d;tlv+1,q) = 7;,q(ker dzli,q)‘



Since z = 1, ,(m), we only have left to show that m is in kerd} .

dpg(m) € dyg0 (15,)7 (@), by (1.4);
=B} 14°%.4° (V) ' (x), by definition of d} ;
= /8;_1#1(35);
= /3;—1,(1 © 0‘;1;—2,q+1(v)a by (1.3);
= 0, since 51;*1,(1 o ozll,,Q,qH =0.

So we have shown the exactnes at all three points in Figure 1.4.:

o2
— 2 _ (2
D* ={D;, D* ={D,,}

& =1{&}

Figure 1.4: The exact couple derived from the original exact couple
Then just as before, we can define d*> = {d  }, where

a2 dfn 9 Vo D2 gzz—lsq £2
p—2=11+1'

2 2
prnd o) N
Dyq p—1,4 © Tp,g 5p,q p—1,q

This will allow us to construct £2, D3, then d*, and so on. Doing this over and over,

we have in general Figure 1.5:



D= D;,q} D ={ p,q}

(—1,0) (I—-rr—1)
={&}

Figure 1.5: The general exact couple shown with bidegrees
More specifically we have bigraded objects:
g; = keI‘(dT 1)/ lm(dr—f—r 1,q— r+2)

T r—1 r—1
Dp,q O‘ ,q+1(Dp 1q+1) cD

Dyq
and maps:
T . T T
Opyg - D g " Dp+1q 1
T . T T
D,q Dp,q = Cptiorgtr—1s
'S T T
T, gp,q — D p—1,q°
T —1
T . T D, 2: T P ;q r
d p 1,4 © Tpyg * Dp 1,9 p—r,g+r—1>
such that
T —
Opg = p,q |Dp q’

;,q(a) = [ ;:iq—l—l(a; iq—i—l) l(a)]’
df —
= ;f1l,q+1(a; }q-f—l) Y(a) mod im(dj %)

'p,q+1
Tpa([M]) = 755" (m),

where o, 37, 4", and d" have bidegrees (1,—-1), (1—r,7—1), (—1,0), and (—r,r —1)
respectively. Therefore we have constructed a sequence {€",d"} which satisfies all the

requirements to be a spectral sequence.

10



Remark. The numeration here begins at r = 1; the numeration in the definition of

a spectral sequence begins at r = 0.

1.3 Example 2: Obtained from a Filtration of a Complex

In this Section we introduce the notion of a filtration of a complex and show how to

construct a spectral sequence from it.

1.3.1 Preliminary Definitions and the Construction of the First Two Bi-

graded Objects

Let A be an abelian category. Refer to Appendix A for the definition of an abelian

category.

Definition 1.3.1 A complex C in A is a sequence of objects from A with morphisms

s C; LN Ci1 4y where d;odiy1 =0, i.e. im(d;1q1) C ker(d;).

The " spot is called eract if im(d; 1) = ker(d;). The homology of the " spot,

ker(d;)/im(d;;1), measures the deviation from exactness at the i* spot.

Definition 1.3.2 Let F be an object with a morphism d : F — F such that d*> = 0.
A filtration of F is a tower,

o CFn1 CFaCFppr1 Coe e

of subobjects of F, such that d,(F,) C Fp,, where d, = d|z,.

An example of a filtration. A tower of subcomplexes is a filtration. Suppose we
have a complex C with family of morphisms d = {d;}, and a tower of subcomplexes

{F,.C}, of the complex C:

o CFpnilCCF,CCFppilCCoee (1.5)

11



Let d,, = {d,.;} be the family of morphisms corresponding to the subcomplex F,,C,
dn i dn i dn i—
M G S G M

Since F,,C; C C;, we define the morphisms of a subcomplex to be d,; = d;| Fats" This
is precisely d,, = d|£,c. We have d,(F,C) C F,C and since d*> = 0, i.e. d;od;y; =0
because C is a complex, we get that the tower of subcomplexes of C, (1.5), is a filtration

of C.

Definition 1.3.3 A subquotient of an object A is an object of the form A'JA",
where A" C A" are subobjects of A.

Now we will show that a filtration {F,C} of a complex C gives rise to a spectral

sequence. We will need to construct £ = {&]  }, (r > 0), as in Definition 1.1.2. Let
g;r?,q = FCp+a/ Fp-1Cptas (1.6)

a subquotient of C,,, (see Figure 1.6). This object Sg,q is the object in the p + ¢ spot
of the complex F,C/F, 1C.

\L dp—l,p+q+1 \L dp,p+q+1 \L dp+1,p+q+1

- C Fp-1Cptq C Fplpiq C Fpt1Cprg C -

\L dpfl,p+q \L dp,p+q \L dp+1,p+q

- C Fp-1Cpig-1 C Fplprg1 C FpiCpig1 C -

\L dp—l,p+q—1 \L dp,p+q—1 \L dp+1,p+q—1

Figure 1.6: Tower of subcomplexes of C

Note that 519,* represents the complex

_)60

0 0
pyq+1 - gp,q — gp,qfl — ’

12



which by (1.6) is the complex

dpptqt1
g chp+q+1/]:pflcp+q+1

dpp+:
]:pcp+q/'7'—p—1cp+q = fpcp+q—1/-7:p—lcp+q—1 e (1.7)
The maps in (1.7) are just the maps induced by the maps of the complex
d d d
PR Chigi1 ST FpCpig 2

which is found as a column in Figure 1.6. So now we can define our second bigraded

object in the spectral sequence, which we denote £! = {Ez},q}, as

51;,q = Hp+q(5;?,*) = ker(dp,p+q)/ im(dp,p+q+1)- (1.8)

This second object, &

. . 0
¢ 18 just the homology at the p + ¢ spot of the complex & ,.

1.3.2 Useful Notation

Next we need to make some definitions. Let n, be the surjection

np * FpCprgri = Fplprqri/ Fp-1Cprgri (= gz()),q+i) (1.9)

from the object in the p+ g+ spot of the complex F,C to the object in the p+¢g+:
spot of the complex F,C/F, 1C. Define

A =1c€ Flpiq i dppiglc) € FpiCpig1} C FiCpiq (1.10)
and define
Z) = 1p(Ay ) C Folpig/ FpiCpig = Epy- (1.11)
Next define
B}y = mp(dpsr—1pea(Apir 14 41)) (1.12)

which is contained in n,(Fpir—1)--1)Cprq—1) = Mp(FpCpiqg—1) by (1.10), and this
equals F,Cpiq 1/Fp 1Cpiq 1 by (1.9), which is £) .

13



Let us look closer at these objects.

By (1.10) we have
r+1 r r—1 1 0 _
Y CAp,q C ‘Ap,q C ‘Ap,q C--C Ap,q C Ap,q = FpCpiq-
So then
+1 1 1
- C np(-A;,q ) C np(A;,q) C np(-A;r),q )C -+ C np(-Ap,q) C np(j:pcp+q):
which is
r+1 T r—1 1 0 _ ¢0
e C Zp,q C Zp,q C Zp,q C-C Zp,q C Zp,q - gp,q'
Now let us show that B} ., C By!},, where
_ -1 +1 _
:z,q+1 = np(dp'f'T*l,P‘HH-l(A;J+r—1,q—r+2)) and B:Z,q+1 = ”p(dp+T,p+q+1(A;+r,q—r+1))-

Let z € B) 1. S0 © = np(dpyr—1p1441(a)), where

ac A;T;J_r}«—l,q—rw ={c € Fprr1Cpiqi1 : dppr—1prgr1(c) € FipCpyg}- (1.13)

Since ny(dpir—1,p1q+1(a)) = Np(dptrprqr1(a)), all we have to show is that

a€ A gy = {c € FotrCoigr1 t dptrprar1(c) € FypCpig}-

This is true because: first, a € Fpir—1Cptq+1 C FprCpigi1, and second, dpiypiqr1(a)

= dp+r—1pt+q+1(a) € FyCpiq- S0 By

r—+1 . r—1
T ool C Bty Consider the set dpyr 1 pyqr1(Apir 14 ria) C

Pyt

FCpiq- For any r,

pr—1prgr1 (A1 g-ry2) C Apy (1.14)

since

r—1 _ r—1 _
dp,ptq © p+r—1,p+q+1(Ap+r—1,q_r+2) = dptr—1,p+¢ © P+T—1=p+q+1(Ap—H‘—l,q—r—l—Q) =0.

Apply n, to (1.14) and we obtain ny,(dpr—1p+q+1(Ahsr_1.9-rs2)) C Np(AD ), which is

T T
BP;CI‘H C Zpaq
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for any r. Also notice that

Bz()],q+1 = np(dp—1,pq+1( ;—11,q+2));

= np(dp-1p+qr1({c € Fp-1Cprqt1 : dp-1p1q11(c) € FpCpiq}));

= dp1prg+1({¢ € Fp1Cpigr : dp1p4g11(c) € FpCpigl})/
(dp-1prgr1({c € Fp1Cprgi1 : dp1pyqri(c) € FpCpig}) ﬂ Fp-1Cp+q),
by definition of n,;

= dp—1p+qr1({c € Fpo1Cpigr1 : dp-1p4g11(c) € FpCpiq})/
dp—1,p1q+1({¢ € Fp-1Cprgi1 : dp—1p1q+1(c) € FpCpig}),
since dy 1p1g51({6 € By 1Cprars + dy 110:1(0) € FyCpig))
C dp—1,p+¢+1(Fp-1Cpiqs1) C Fp-1Cpigs

=0.
So we have a tower of sets

_ 10 1 T r+1
0= Bp,q+1 C Bp,q+1 C---C Bp,q+1 C Bp,q+1 -

r+1 T 1 0 _ ¢0
T CZp,q C Zp,q C---C Zp,q C Zp,q - gp,q‘

1.3.3 Constructing the Maps and the Remaining Bigraded Objects

We will frequently use the fact that

A ﬂ Fp-1Cpiq = A;Jj,qﬂ’ (1.15)

which immediately follows from (1.10). Also we will want to use the following iso-

morphism:

T~ r r—1
Zp,q - Ap,q/Ap—l,qH' (1-16)

15



This isomorphism holds because

2} . = np(A}) by definition of Z] ;
~ AL /(AL m Fp-1Cpiq), by the first isomorphism theorem applied to
Mplag, + Apg = FoCora/ Fp-1Cpiqi
~ A /A L ge1s by (1.15).

See Appendix B for a description of the first, second, and third isomorphism theorems.
Let us now define &;:

r dfn /
Pug+17

=27 [ (np(dpsr—1prqs1 (Al G114 r42))), by definition of B) . 1;
= (AT /Ap 1 q+1)/(np(dp+7"—1,]1+q+1(A;);}"—l,q—r—ﬂ)))7 by (1.16);
= (A o/ (A o [ Fr-1Co1a))/ ({1 prari(Apr_14—rs2))), Dy (1.15);
= (A 0/ (A [ Fo-1Cor0))
/(e —1prae1 (A E 1y ri0)/ (otr—1prar1(Aner g i) [ Fo-1Cota)),
by definition of n, since

dp+r*1,p+Q+1('A +r—1,q— r+2) - fpflcp-f-q;
= ((-A;,q + Fp-1Cpiq) | Fp-1Cpiyq)

/((dp-H”—l,IH—(H-l(A;';l?l"—l,q—H—Q) + fp—lcp+q)/fp—lcp+q)a

by the second isomorphism theorem;

~ (A + Fp-1Cpra) [ (dprr—1,p1q41( ;;i_l,q_ﬂrg) + Fp1Cpiyg),

by the third isomorphism theorem;

= A;,q/(Ar m( p+r— 1,p+q+1( ;171"71,(177"—1—2) + fp,16p+q)),

by the second isomorphism theorem since dpir_1p4q+1( ;;ifl,qug) C A,
= Ay o/ (A [ Nptr1prar1 (At 1g r42)) + (Ap o[ ) Fo1Cpia));

= ‘A;,q/( p+r— 1,p+q+1(Ap+r 1,q— 7"+2) Ap 1q+1)

since dpyr—1piqr1(Appr_1 g_rpa) C Aj , and by (1.15).
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So now we can define

51:‘1 = A;),q/(dp-l-'l‘—l,p—f—q—i—l( ;—_|—71“—1,q—r—|—2) + ;:%,(H_l)- (117)

We are on our way to having a spectral sequence. So far we have constructed the

bigraded objects. Consider the map dj, 14 : FpCptrq = FpCpiq—1- It induces a map
d;):q : g;;,q — g;_ryq+7'_1’
ie.

d;,q:A;,q/( (Ap—H" 1,q— r—|—2)+"4 1q—|—1) _)AT —7r,q+r— 1/( ( p— 1q—|—1)_i_"‘l —r— 1q—|—r)

which takes [c] — [dpp+4(c)]-

Next we will prove that B,*, ., /B ~ Zr /254!, an isomorphism which will

p—r,q+T D,q

be useful in finding the image of d’, ,, which in turn is used to prove that H(E") = £+,

P,q’
Notice that

B;Tn :"p(dp+r—1,p+q(~’4;jr}«—1,q—r+1));
— Yptr— 1,p+(I(‘Ap+r 1,g— r+1)/(dp+r LIH‘Q(Ap—H" l,g—r+1 mfp—lcm—q—l)a

by definition of ny;

— Yptr— 1,p+q(-’4p+r l,g— 7'+1)/dP+T—1aP+¢I(A;+r7L(1*T+1)7 by a check of definitions.

(1.18)

And similarly that

Byt s gir = Mpr(dppra(A}0));
~ dppiq(Apg)/ (dppiq(Apg) ﬂ Fp-r-1Cptq—1), by definition of np_;

~ dypiq( AL )/ dpprg(Antt), by a check of definitions. (1.19)

It will also be useful to show that
T r+ 1
dpfl,p+q(~’4p—1,q+1) p,p+q -A ﬂ dp 1,p+q p 1,q+1) (1-20)
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Let us prove that (1.20) is true. First we will show that the left hand side is contained
in the right hand side. Since

T r—1
‘Ap—l,q-l-l C ‘Ap—l,q+1

implies that dy 1p4q(A5_1 411) C dp1p+q(Ap_7 441), all we have left to show is that

dpfl,p+q(A;71,q+1) - dp,p+q(-/4;j21)- Let

T € dpfl,p+q(-’4;fl,q+1) C Fpr1Cpig1- (1.21)

Then z = dy_1p14(e), where e is in A} | ., C Fp1Cpyq C FpCpyq- Now 1 =
dp—1p+q(€) = dppiq(e), by definition of a subcomplex, and this is in F,_,_1Cpyq—1 by
(1.21). Hence e is in A7t!, and so z is in dppqq(AnE).

Now we need to show that the right hand side is contained in the left hand side. Let
y be in the right hand side. Then y in dp_1p4q(A]Z] ,41) implies that y = dy_y1p4q(u),

: r—1
for some v in A7"; 1 C Fp1Cpiq- SO

Y = dp1piq(u);
= dp piq(u), by definition of a subcomplex;

€ Fp_,,-_lcp+q_1, since Yy < d ’p+q(A;;;1) C Fp_',-_lcp+q_1.

e - ,
Therefore u is in A}, ., and hence y is in dp_1p14(A} 1 ,11)-
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Using the above isomorphisms, we obtain:

BT+1 / r

P—T,q+T P—Tyq+T

= (dppra(Ap g/ dopral Ay ) [ (dp-rpg(Ap 1 g 11)/dp-1p4a(Af_1 g41))
by (1.18) and (1.19);
~ (dpp+a(Apg) /dppra(Apy'))/
(dp—1,p+a( A1 g41)/ (dpprq(Ap ) ﬂdp Lota(ApT1441)))s by (1.20);
~ (dpp+a(Apg) /dp.pra( Ay ) [ (dppia( A5 + o1 pra(Ap1 g41)) /dopra(Ap),

by the second isomorphism theorem;

= p,p+q(A;,q)/(dp,pﬂ('A;?;l) + dp—l,p+q(~’4p 1,q+1))
by the third isomorphism theorem:;

= dp,p+q(~’4;,q)/dp,p+q(~’4;,+l Ap 1q—|—1)

Similarly,

Zg,q/ZIC,—gl ( / p— 1q+1)/("4;:;1 ;_1,q+1), by (1.16);
= (AT /-Ap 1q—|—1)/("4;1—11 (-/4;,1;1 ﬂ.Ap 1q+1)), by (1.15);
( / P— -1 q+1)/((Ar+1 + A -1 q+1)/ P— 1,q+1)

by the second isomorphism theorem;

~ A J(ATE+ AT 75 1), by the third isomorphism theorem.
Now we will prove that

Br—|—1 / ;7

g ~ Z7 |2 (1.22)

7,q+T P.q

Define f : A} /(A5 + A;7) q+1) — dppiqlay (A;,q)/dp,p+q|A;,q(-’4pj}1 + A7 q+1) by

[a] = [dppsqlar (a)]. Since ATt' C A7 and A7) C A7

.o We will define f using

the restriction d,, | Az - 1t follows immediately that f is surjective. Let us show
that f is injective. Let [dppiqlar, (a)] = 0. Then dppyglar (a) € dppiglag (Aph' +

Ap~ 4+1)- This implies that a is in (dppiqlay, )" 0 dppiglag (AL + AT 1)), which
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implies that a is in A5ft + A7 | + ker( p,p+q|A;,q) Artt+ AT L+ ker(dp g
Ar = FprCpig—1). Thisis just ATt +AT77 . because: if a is in ker(dppiq : A5, —
Fp-1Cpiq-1), then dppiq(a) = 0 and so a is in A7*! and hence ker(dp,pﬂ\A;q) C
Artt ¢ Artt 4+ AT L. Therefore a is in A7t 4+ A7) ) and so [a] = 0. So we
have shown that f is injective, hence f is an isomorphism and (1.22) is true.

Consider again the map

r . or r
dpaq ) gP,q — gp

—r,q+r—1>

q/( ( p—H‘ 1,q— 7‘—|—2)+A 1q—|—1)_)"4 —r,q+r— 1/( ( n— 1q+1)+"4 —r— 1,q—|—7‘)

For the kernel of d”

g We have

ker(d;’ )={z¢€ A dppiq(2) € dp- 1,p+q(-’4 1q+1) p r— 1q+r}/
(dptr—1 p+q+1(~’4r+r 1g—r+2) T AT q—|—1)

(-AT 1q+1+-A;:zl)/( p+r— 1,p+q+1("4p+r 1,q— 1'+2) ‘Ap 1q+1)

by a lengthy check of definitions ;
((AT 1,q+1 + A;LI)/Ap 1,q+1)/

((dp+T*1,P+£I+1( ;;i—l,q—r—fﬂ) p— 1q+1)/ p— 1,q+1)

by the third isomorphism theorem:;

(Ar+1 1 ot ﬂA;:zl
(dp+7‘—1,p+q+1(Azra—_k}*—l,q—rw)/(dp+r—1,p+q+1(A;:-}«—Lq—ru) m ‘Ap 1,q+1))

by the second isomorphism theorem;

(A;I(l ;—1,q+1)/(dp+7‘—1yp+q+1(A;—_|—11"—1,q—r—|—2)/dp+7“—1’1’+q+1(A;)—H"—l,q—r—k?))7

by a check of definitions;

= Zrt /By L, by (1.16) and (1.18).

So
ker(dy ) = Z, 51 /B 401 (1.23)
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Computing the image of d; , we obtain

p,q’

im(d;, ) ~ &,/ ker(d ), by the first isomorphism theorem;
~ & /(254 /By 411); by (1.23);

q

~ (Z;,Q/B;,q+1)/(Z;ZI/B;,(I+1), by the definition of & ;
~ T r+1,

- Zpaq/Zp;q ’

~ Bt /B, e by (1.22).

Replace p with p + r and ¢ with ¢ — r + 1 and obtain

im(d;—l—r,q—r—}-l) = B;:I‘;}I-I/B;,(I-l-l' (124)
Finally,

5;,;'1 = Z;;;I/B;j}frl, by definition;
~ (254" /By q10)] (B i1/ By i)
~ ker(d, ,)/im(d;,, , ,1), by (1.23) and (1.24);

= H(E).

Pq

r+1 /Rr r+1 r ; ; ; r+1 pRr+1
Remark. Z/%'/B; .., B\ 1/B} .1 in this section correspond to Z;*%, Byt', re-

spectively, in the definition of a spectral sequence.

1.4 Example 3: Obtained From a Double Complex

In this section we define the notions of a double complex and a total complex and

show how to obtain a spectral sequence from the filtration of the total complex.

Definition 1.4.1 A double complex is a family {C,,} of objects of an abelian
category together with maps d* = {d} } and d* = {d ,} where

dZ,q :Cpg = Cprg and d, , : Cpg = Cp g1,
such that d" od" = 0,d" o d* = 0, and d*d" + d"d* = 0.
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Each row and each column of the double complex C,, is a complex. The last property

d’U

h _ _ h v . . -
p—1,4© Gy g = —dp, .y ©dy  means that each square as in Figure 1.7 anti-commutes.

A double complex is called bounded if each diagonal line p + ¢ = n has only finitely
many nonzero terms. Since p,q € Z, we can view C,, as a lattice. Figure 1.7 shows a

portion of the lattice C,,.

Figure 1.7: Viewing the double complex C,,

Definition 1.4.2 We define the complex associated with the double complex C,, to
be the total complex Tot(C). Here, Tot(C) = {Tot(C),}, n € Z, where Tot(C), =
[, gz Coa- We define d = [](d” + d") : Tot(C)n — Tot(C)n 1.

The total complex is easily viewed to be a complex of objects, each object is just the
direct product of objects of C,, along a diagonal. See Figure 1.8.
The map

d=[](d +d") : Tot(C)n = Tot(C)n1

is really a family of maps {d,, = dy .+ dZH,q,l}, each map taking an element of
Cpq X Cpi14-1 t0 Cpy_1. See Figure 1.9. (Note that the maps are without their

subscripts).
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e G
T
° ° .Cp+1,q_1
Co14-1Cpgn,
° ° ° °
n—1 n

Figure 1.8: In the total complex, view the cross product along each diagonal

Cp1g11 X Cpg Cprig-1 X Cpiag2 X

\/ /\/

p l,q pq 1 p+1q 2
Figure 1.9: Viewing Tot(C),, LN Tot(C)p-1 SN Tot(C)p—2

Let us verify that Tot(C) with the map d described above is a complex. Notice
that

d=[]d,+db )

means

d= H p+i,q— Z+dh+z+1q i— 1)

€L
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So

dod= H(dZ+z~,q—z~ +dpiigigoic1) © H( piig—i + ppitig-ic1)i

i€z i€z
=[x (dy_i,+ dz,q—l) X (dp 41 + dZ+1,q—2) X (dpy1,g-2 + dz+2,q—3) X o]
O [+ X (dy 1 g1+ dpg) X (dpg+dpiag 1) X (dpyigr +dpiag o) X s
= xdy oy g(dy g gy dpg) Ty 1 (dy g+ g ) X

() v h h () h .

dp,qfl(dp,q + dp+1,q71) + dp+1,q72(dp+1,q71 + dp+2,q72) X )
.. v v v h h v h h .
- X dp,q—ldp—l,qﬂ + dp—l,qdp,q + dp,q—ldp,q + dp,q—lderl,q—l X ’

=0+ dZ—l,qdz,q + dz’q_ldz’q + 0, since each column and row of C,, is a complex;

=0, by the anti-commutativity of the double complex.

So Tot(C) is indeed a complex. Recall from Example 2 of this Chapter that if we have
a filtration of a complex, we can construct a spectral sequence. We will associate two
different filtrations with the total complex.

But let us restrict ourselves to the case of the total complex Tot(M), where M is
a first quadrant double compler. The reason for this restriction will be explained in
the next Chapter. A first quadrant double complex M = {M, .} is one where M, ,
is zero if p or ¢ < 0. We will construct a filtration of Tot(M),

0C---C Fp1Tot(M) C F, Tot(M) C Fpy1 Tot(M) C --- C Tot(M),

that will include the subcomplexes 0 and Tot(M). Describe the subcomplex
F, Tot(M) by
(F, Tot(M))n = [ [ Min—s.

1<p
This subcomplex F, Tot(M) is a complex of objects, each object a direct product of
particular objects of M along a diagonal p + ¢ = n. See Figure 1.10.
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n¢0,m 0 p 0
.1 n — n o ’F n‘ ’n
) ,n—1 1,n—1
p | *P—Ln-p+l *J2,n 2 *J2,n 2
oD —p
—92.2 .
“er =11 en—1,1
L g @ .
p n n=p n p

Figure 1.10: Viewing (F, Tot(M)),, an object in the subcomplex F, Tot(M)

The map from (F, Tot(M)),, to (F, Tot(M)),_, is the restriction of the map from
Tot(M),, to Tot(M),_1, so we indeed have a tower of subcomplexes. This is made
clear by diagram (1.25):

0C - C (Fpo1Tot(M)), C (FpTot(M)), C ---C Tot(M),
(1.25)
0C:-C (Fpo1Tot(M))p_1C (Fp Tot(M))p—1 C- -+ C Tot(M),_1.

Indeed we have a filtration of Tot(M) since we already saw that d? = 0 for a total
complex. Hence by the previous section, this filtration of a complex gives a spectral

sequence. We call this filtration the first filtration.

Remark. We could also define another filtration of Tot(M), which we call the

second filtration, by
(Fp Tot(M))n = [ [ Mn—js-

Ji<p
1.5 A Filtration of a Complex Gives an Exact Couple

In this section, we will show that given any complex with a filtration, we obtain an

exact couple.
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Definition 1.5.1 A morphism of complexes f : A — B is a sequence of mor-

phisms {fn : An — By} such that each square

A, %Bn

J J

Ap1 — Bu
fn+1
commutes. Similarly, in a sequence of complezes

all squares will commute.

Definition 1.5.2 In an exact sequence of complexes --- — A B2 C—

T,

15 exact for all n.

Take a filtration of C

- CF,CCFLCCFpCC---

Then we obtain a short exact sequence (of complexes) for each p,

0 — Fp_iC — F,C = F,C/Fp_1C — 0,

(1.26)

since F,_1C — F,C is the inclusion map. Hence we obtain the following diagram

26

0 —— fp_lci — .7-",,CZ — pri/fp_lci

0 — .7-",,_1C,~_1 — pri_l — pri_l/fp_lci_l — 0

— 0

(1.27)



which leads us to the corresponding long exact homology sequence (see Appendix C

for a proof of this):

o= Hy (FpoiC) = Hypyo(FC) = Hpyo(FpC/Fp—1C)
— Hp+q—1(}—p—1c) — Hp+q—1(-7:pc) — Hp+q—1(-7:pc/-7:p—lc) e (1.28)

The maps in this long exact sequence are induced by the obvious maps from the
corresponding short exact sequence. For example, the map F, ;C SN F,C from the
short exact sequence (1.26), which is really a family {i,} of inclusion maps where
in : Fp_1C,, — F,C,, induces a map from H,,(F,_,C) to H,,(F,C) in the long
exact sequence (1.28). At this point it is extremely helpful to consult Figure 1.6 on
page 12.

Let us define

Dy, = Hypig(F,C) and &, 4 = Hpio(FpC/Fp-1C). (1.29)

Then the particular induced map we are using as an example goes from D,_; 441 to
D, We will conveniently label this map a;,_1441. Doing the replacements from

(1.29) in the long exact sequence (1.28) and inserting the induced maps gives
= Dprgn g Dy o Ep 5 Dp_1,4 ey Dpg1 Prast .

The maps «, 3,7 have bidegrees (1,—1), (0,0), (—1,0) respectively. So we recognize
that this gives us the type of exact couple that will lead us to a spectral sequence, as

in Example 1 of this Chapter.

Remark. We did not use superscripts in this exact couple of bigraded objects.
Before we use this exact couple to get a spectral sequence, we would put in the

superscript 1, i.e. rename D,  as D, .
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CHAPTER 2
LIMIT, BOUNDEDNESS, AND CONVERGENCE

OF THE SPECTRAL SEQUENCE

In this Chapter we define the limit term, boundedness and convergence of a spectral

sequence, and give some examples.

2.1 Limit Term

In this section we will define the limit term.

Definition 2.1.1 Consider a spectral sequence {E",d"}. Suppose for each p,q there

is some r = r(p,q) such that

r _ eor+l _ eor+2 _ |
gp,q_gp,q _gp,q -

We call this stable value £55, and say that the spectral sequence abuts to £ = {£;%}.

psq’

The bigraded object £ is called the limit term of the sequence. (So €55 = ,’,",((f”Q).)

In order to give an example of a spectral sequence that has a limit term, it will be

helpful to define the notion of a bounded filtration.

Definition 2.1.2 A filtration F,C of a complex C is called bounded if for each n,
there is s = s(n) < t = t(n) such that

FCn =0 and FC, = C,.
Here are some examples of spectral sequences that have a limit term.

28



Example 1. If we make the assumption that the filtration in Example 2 of Chapter
1 is bounded, then we will have a limit term. Take any p,q. We want to find an
o such that £ = 5;;;1 for 7 > ry. Let us first look at £, for any r. We get
dp (&) C & 4 since d  has bidegree (—r,7 —1). Now choose 7 such that

p—r < s(n), where n =p+¢—1. Then Fyn)Cpig—1 = 0, so for p —r < s(n),
= Fpr—1Cprg-1 = Fp—1Cpig—1 = 0. (2.1)
Therefore we have

EI}—r,rH—r—l = Hp+q—1(E3_r,*) by (1-8);
= homology at the spot F,_,Cpiq—1/Fp—r—1Cpiq-1, by (1.7);

=0, by (2.1).

Since &£

»—r.qtr—1 15 @ subquotient of £l we have that £ ., =0. (Suppose

p—r,q+r—1 D
&y =0. Then &2 = (subobject of &£ ,)/(subobject of £ ) = 0. Do this 7 — 2 more

times to get £, =0.) So d} (&) ) C & ,,1r 1 = 0and hence & = ker(d] ).

Next look at £F'. We have £7*' = ker(d} ,)/im(d],, . ..,). Make 7 even larger
if necessary so that p +r > ¢(n), where n = p+ ¢ + 1. Then Fy;,)Cpygt1 = C, so for
p+r—1>t(n),

Fotr-1Cprqi1 = FpirCpigr1 = --- =C. (2.2)

Then

gzg-l—nq—r—i—l = Hp+q+1(gp?+r,*)a by (1.8);
= FptrCorat1/ Fpr—1Cpiq+1, by (1.7);
=0, by (2.2).

. r . . 1 r
Since &, .41 1 a subquotient of £, ., ., we have £

pirg—r+1 = 0. Therefore

im(d;+r,q—r—|—1) = d;+r,q—r—|—1(g;—|—'r,q—r+1);

= d;)+r,qfr—|—1 (0) )

=0.

29



Then £ = kerd] /0 = kerd; .. So for r larger than t(n) — p,

&, =ker(d) = &L

P,q

So Example 2 of Chapter 1, with the assumption that the filtration is bounded, has

a limit term.

Example 2. Here we show that Example 3 of Chapter 1 with M a first quadrant
double complex has a limit term. The assumption that M is a first quadrant double
complex implies that both filtrations mentioned in the example under consideration
are bounded: Let n be given. Use s(n) = —1 and ¢(n) = n for both filtrations in the
definition of a bounded filtration. This gives (F_; Tot(M)), = 0 and (F, Tot(M)), =
Tot(M),,. This satisfies the conditions in Example 1 of this Section and thus we obtain

a spectral sequence with a limit term.

Example 3. Let us consider again Example 2 of Chapter 1, the example of a

spectral sequence obtained from a filtration of a complex. Recall we had defined

objects {Z; } and {B; ,} such that & = 27 /B .\, ker(d] )= Z;+1 /By ., and
im(dp g py1) = ;?;L/ S Then we had proven that we had a tower of sets

0 1
0=B), 1 CBy 1 C---CBy, . CBL, C-

. r+1 T 1 0 _ ¢0
CZp,q C Zp,q C C Zp,q C Zp,q - gp,q'
Let

22 = (2, and B, = U a1 (2.3)
r=1

and let
/ p,q+1°

Suppose that

p,q ﬂ andB pg+1l — U p,q+1
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for some numbers Ny, Ny. Let r = max{Ny, No}. Then

roo_ r+1 __ ., oo T _ R+l _ .. _ R
Zp,q - Zp,q - - Zp,q and Bp,q+1 = pgtl T - *pgtl-

oo o0 (o] - T T - T - 3 T —_
So £, = Zp,q/ ol = Zp’q/Bp,qu1 =&, forr = max{N, No}, we obtain &g =

5;;;1 = .. = &), and hence we have shown that the spectral sequence has a limit

term.

2.2 Boundedness

In this section we will define boundedness of a spectral sequence and give two exam-

ples. Also, we will see that a bounded spectral sequence has a limit term.

Definition 2.2.1 A spectral sequence is called bounded if for each n, the number of

nonzero terms of total degree n in E2, is finite for each a.

This means if one looks at the lattice £, for any a, along the diagonal p + ¢ = n for

any n one will see only finitely many terms that are not equal to zero.

Example 4. A first quadrant spectral sequence is a spectral sequence with £ =0
if p or ¢ < 0. This is clearly a bounded spectral sequence since in any lattice £2,, for

k%)

each n the number of nonzero terms of total degree n is at most n + 1.

Example 5. Example 2 of Chapter 1 with the filtration bounded will produce a
bounded spectral sequence. To check it, take n = p+¢. The filtration being bounded
implies that for this n there exist s(n),#(n) such that F;,)C, = 0 and Fy)Cp, = C,,.
Now consider £2,. Recall that &), = F,Cpiq/Fp-1Cpiq, 50 the objects along the

diagonal p+ ¢ = n in £2, are:

0 0
e ’gpfl,q+1’ gp,q’

0
gp-l—l,q*l’ “ e ey
which is

S afpflcpﬂ/}—pﬂcpﬂ’ fpcpﬂ/}—p*lcpﬂa fp+lcp+q/‘7:pcp+q’ s
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Now F,Cptq = 0 for p < s(n) implies that F,Cpiq/Fp-1Cptq = 0 for p < s(n). And
FoCpiq = Cpiq for p > t(n) implies that Fpy1Cpiq/FpCpiq = 0 for p > t(n). So along
the diagonal n = p+gq in £2,, there are no more than ¢(n) —s(n) nonzero terms. Hence

along the diagonal n = p 4 ¢ in &2, for any a, there are no more than t(n) — s(n)

nonzero terms, according to the following lemma:

Lemma 2.2.2 If in 2, there are no more than N nonzero terms along p + q = n,

then in £ there are no more than N nonzero terms along p + q = n.

Proof Consider the diagonal n = p + ¢ in £4:

a+1 a+1 a+1
e ’gp—l,q+1’ gp,q ’£p+1,q—1’ Tt

which is
) H( ;—LIH—I)’ H(gg,q)a H( g—l—l,q—l)a s

There are only finitely many nonzero terms in this sequence, since there were only

finitely many nonzero terms along the £¢, diagonaln=p+q. W

2.2.1 A Bounded Spectral Sequence has a Limit Term
We will look at two methods to show that a bounded spectral sequence has a limit

term.

Method 1. Take p,q. For a bounded spectral sequence, along the diagonal p +

q — 1 = n, there is a finite number of nonzero terms. This implies that there exists

S(n) such that for all a, £, , = 0 for all p < S(n). Similarly, for p + ¢ +1 = m,
there exists 7'(m) such that for all a, £;,_, , = 0 for all ¢ < T'(m). We can find such

numbers S(n) and T(m) by Lemma 2.2.2.
Choose

r > max{p — S(n),q+1—T(m)}. (2.4)
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Then

r > p— S(n) implies p — r < S(n) implies &), ., ;=0
implies d;, (€ ,) = 0 implies ker(d; ) = &, , (2.5)

and

r>q+1—T(m) implies ¢ — r +1 < T'(m) implies &, , .1 =0

implies d, . . ,11(Ep1rq r+1) = 0 implies im(dy,, . ..;) = 0. (2.6)

So &4t =ker(dy )/ im(dy,, , 1) = ker(d; )/0 =&  for r from (2.4).

Method 2. Suppose the spectral sequence is bounded. Let us use the notation

zZrt =ker(dy ) and Bt =im(d,, . ..,). Using S(n) from (2.5), we have

: : r—1\ _ er—1: : r _ er—1

r—1>p—S(n) implies ker(d, ;') = &, implies Z) =&

and
r>p— S(n) implies ker(d] ) =&,  implies ZJ1' =£)
Using T'(m) from (2.6), we have
r—1>gq+1—T(m) implies im(d};, 1, ,4) =0 implies B, , =0

and

r>q+1—T(m) implies im(d_, ,_,,,) =0 implies B} = 0.

So for r from (2.4), By , = B,*', and therefore

r+1 _ or __ T ro_ T _ T
Zp,q o gp,q o Zp,q/Bp,q o Zp,q/o o Zp

'

— +1 — — +1 —
Then 2/ = 277" =-.-= 27 and B, = B> = --- = B, and so the spectral

sequence has a limit term since £55 = 2> /B> = Z7 /B] =&  for r from (2.4).
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Remark. An unbounded spectral sequence (of objects from an abelian category),
does not have to have a limit term in general. But one could of course restrict oneself
to objects from an abelian category with additional properties to ensure that the
spectral sequence will have a limit term. These properties are listed at the end of

Appendix A.

2.3 Convergence

In this Section, we will define convergence and discuss when a spectral sequence

converges.

Definition 2.3.1 We say that a spectral sequence {E",d"} converges to a graded ob-
ject H, and write £ , = M. if €55 = FpHpyq/ Fp 1Hp1q for all p, q, where {FpH, },
is a bounded filtration of H,. (i.e. there would be a bounded filtration {F,Hy}, for
each H,.)

We will look at two examples of spectral sequences which converge, by looking closely

at the construction of the spectral sequence examples from the previous Chapter.

Example 6. Example 2 of Chapter 1 with the bounded filtration assumption con-

verges. Take a complex C and a bounded filtration of it:
{0}Cc---CFiCCFLCC---CC.

We will show that the spectral sequence associated to this filtration converges to
H,.(C) = {H,(C)},, the homology of C.

In the bounded filtration above, we have the inclusion map F,C — C. Hence we
have a map for each n, H,(F,C) — H,(C). Now define ®,H,(C) to be the image of
H,(F,C) in H,(C). Then we obtain a filtration of the graded object H,(C),

0oc.---c®,1H.(C)C®,H.(C) C---C H.(C),
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where ®,H,(C) is the graded subobject {®,H,(C)},. The filtration {F,C}, of C is
bounded, so the filtration {®,H,(C)}, of H.(C) is bounded. We saw at the end of the

previous Chapter that the filtration {F,C}, gives an exact couple with exact sequence
T Dp—l,q+1 %ﬂﬂ Dp,q M gp,q M Dp—l,q ap;1$q Dp,q—l 62)1 T
Then we get the r'* derived couple of that exact couple with exact sequence

ot o Bl AT
r pt+r—2,9—7+2 r p+r—1,g—7+1 ~p D, r
I Dp+r—2,q—r—|—2 — Dp+r—1,q—'r—|—1 — gp,q 5 Dp — (27)

_lﬂq
Notice that

T r—1 4

_ 3 2 o
ptr—1,g—r+1 — & Qpio g—90p11,4-10,qDpg, by definition;

ptr—2,g-r+2 " ¥p43,4-3
— T_l . e e 3 2 .
— Yptr—2,g—r+2 ap+2,q—2ap+1,q—1aP,qu+q(‘FPC)’ by (1'29)a

= im(Hp1(FpC) = Hpyg(Fpir-1C)).

The boundedness of {F,C}, implies that F,,,_,C = C for some r, and we obtain for
r at least this big that

Hp+g(Fpr—1C) = Hp14(C)
implies im(Hp1¢(FC) = Hpsg(Fp4r—1C)) = im(Hp4q(F,C) = Hpi4(C))
implies a;—?—i72,q71‘+2 T a2+2,q72a§+1,q71ap7qu+q(‘ch) = 0, H,14(C)
implies a;—T—:'—Q,q—r+2 o ‘O‘3+2,q—204;2)+1,q—104p,qpp,q = O, Hy44(C) by (1.29)
implies D, . 11 = P Hp4(C).
Similarly,
Dy iy 94 rio = Pp1Hp4(C) for r at least this big.
Also note that

T _ r—1 R 2 .
Dp—l,q - Ckp—2,q—|—1 ap—r+2,q+r—3ap—r+1,q+r—2ap—7",11+7“—IDP—T,Q‘H'—l’

_ -1 3 2 )
=0y 2441 'ap—r+2,q—|—7“—3ap—r—|—1,q+r—2ap—"‘alI+7‘—1Hp+q—1(fP—TC)a by (1-29),

_ . r—1 ) 2 : .
=0 9011 Yy piogir 3% ri1gir 20 rgtr—1Hpyq 1(0) for 7 big enough;
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Then (2.7) becomes
= @y Hyy(C) = Q@ Hp g (C) = &, — 0 — - - - (2.8)
This sequence is exact and ®,_1H,,,(C) = ®,H,.,(C) is an injection, so

Dy Hp14(C)/Pp—1Hpq(C) = &

p,q°

(2.9)

Also, &) , = &5, by the previous section since we are working with a bounded filtration.

Therefore we have satisfied all the requirements to claim that
&g = H. (C),

since ®,Hy,y4(C)/®p 1Hyyo(C) =~ &5 for all p, ¢ and {®,H,(C)}, is a bounded filtra-
tion of H,(C).

Example 7. Example 3 of Chapter 1 with M a first quadrant double complex
converges to H,(Tot(M)). Recall that both filtrations associated to the complex
Tot(M) were bounded by letting s(n) = —1 and ¢(n) = n. This is precisely the case
of Example 6 of this Chapter, hence we have that both spectral sequences (one for

each filtration) in Example 3 of Chapter 1 converge to the graded object H,(Tot(M)).
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CHAPTER 3

PRELIMINARIES TO AN APPLICATION

In this Chapter we look more closely at the terms 537(1 in Example 3 of Chapter 1,
which is the spectral sequence that we obtained from a double complex. Then we

define the notion of collapsing.

3.1 A More Detailed Look at the Second Term of a Certain

Type of Spectral Sequence

In this Section, we will see more explicitely what the terms 5§,q look like in the spectral
sequence that arises from a first quadrant double complex M = M,,. Recall that we

had a filtration of Tot(M),
0C:---C FpqTot(M) C F, Tot(M) C --- C Tot(M),

where (F, Tot(M)), = [[;c, Min—i- We called this filtration the first filtration.

1<p

Consider
(F, Tot(M)/Fp—1 Tot(M)),, = (F, Tot(M))n/(Fp—1 Tot(M))p.

Since n = p+ ¢, we must have p < n. A look at Figure 3.1 shows that all one has left
in (F, Tot(M)),/(Fp-1 Tot(M)), is the term M, ,_, = M, ,. So we have that

(Fp Tot(M)/Fp—1 Tot(M)), = M, ,. (3.1)
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Figure 3.1: What the object (F, Tot(M)/F,-1 Tot(M)), looks like

Now notice:
&pq = Hprq=n(Fp Tot(M)/Fp_y Tot(M)), by (1.8);

= ker((F, Tot(M)/F,—1 Tot(M)),, — (F, Tot(M)/F,—1 Tot(M))n-1)/
im((F, Tot(M)/Fp—1 Tot(M)) i1 — (F, Tot(M)/Fp—1 Tot(M)),);

ker(Mp , = My 1)/ im(Myp 441 = M, ), by (3.1);

H,(M,.) = the homology at the ¢"" spot of the p”* column of M,,.

(Note: The p* column of M,, is denoted by M, ..) So we obtain the new lattice
£l.. The maps in the lattice £, have slope (r —1)/(—r); in our case r = 1, hence the
maps are horizontal. So £, = H(E, ) = Hp(E},), where £, , = {&) }, denotes the

g™ row of £} ,. H,(E!,) is the horizontal homology at the p spot of the row

e _> 5;_17(1 _) gp}vq _) £p1+17q _) e
or
v Hy(Mp_1s) = Hy(My.) = Hy(Mpias) — -
Therefore

Epq = Hy({Hy(Myp) 1) (3.2)
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in the spectral sequence resulting from the first filtration. Similarly

gziq = Hy({H(M.p)}p) (3.3)

in the spectral sequence resulting from the second filtration.

3.2 Collapsing

In this Section, we give the definition of collapsing, and show some consequences of
it.
Definition 3.2.1 A spectral sequence {E"} collapses at £ if there is exactly one

nonzero row or column in the lattice EZ,.

Remark. Suppose a spectral sequence collapses at £2, with the nonzero terms lying

o)

only on the p axis. We will show that Sﬁ,q = &,y for all p,q. Having nonzero terms
only on the p axis in £2, means having nonzero terms only on the p axis in £2, for all
a > 2. Sofor all 7 > 2, either £} , =0o0r & _, .. 1 =0. And hence dj , = 0 for all

r>2.So

&gt = H(Eq) =er(dy,)/im(dyyr g rin);
= ker(d;, ,)/0 for r > 2, since d}, , = 0;
= ker(d, ,);
_gr

r r _ . ro_
0. because d (€] ) = 0 since d , = 0.

So we have that
2 _ e3 _ .. _
Epg=Epg == 51?31' (3.4)
Lemma 3.2.2 If the spectral sequence collapses at £2, then

Hy(Tot(M)) = &

in Example 3 of Chapter 1, the spectral sequence we obtained from a double complex,

assuming that M is first quadrant.
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Proof. Let the spectral sequence collapse at £%, i.e. £2 = 0 for ¢ # 0. Fix some
n. Recall that since M is first quadrant, both filtrations of Tot(M) are bounded.
Then the filtration of H,(Tot(M)) corresponding to the first filtration of Tot(M) is

bounded. And so for our fixed n, we have a finite tower
0=®_H,(Tot(M)) C --- C ®,H,(Tot(M)) = H,(Tot(M)). (3.5)
Recall from Example 7 of Chapter 2 that

@, Hy(Tot (M) /1 H(Tot (M)) = 2

m,n—m=q-

(3.6)

And this equals £2, , by (3.4). Consider m < n. This implies n —m = ¢ > 0, which
implies that £2, , = 0 since &2, , for ¢ # 0. So @, Hy(Tot(M)) = @y Hy(Tot(M))

for m < n. So considering all m < n, we obtain

@y Ho (Tot (M) = Bpyoy Ho(Tot (M) = -+
e — (I)oHn(TOt(M)) = (I)—lHn(TOt(M)) =0. (3.7)

Now consider m = n. Then

€2, = ©,Hy(Tot(M))/®,_1 H,(Tot(M)), by (3.4) and (3.6);
= ®,H,(Tot(M))/0, by (3.7) since n — 1 < n;
= H,(Tot(M)), by (3.5).

Hence for ¢ =0, n = m+ q¢ = m, and

E2y = Hy(Tot(M)). W (3.8)
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CHAPTER 4

AN APPLICATION

To show an application of spectral sequences, we will use spectral sequences as the
main element of a proof. This will be done using the two results found at the end of

the previous two sections.

4.1 Some Needed Definitions

In this Section, we will introduce some definitions that will be useful in the application.
Definition 4.1.1 A (left) resolution of an R-module A is an exact sequence
o= P—>P 4> P P —A—0.
(Hence the sequence is a complex, too.) We denote
Py=---—>PFP—+F 1—---—P —-F—0.

Definition 4.1.2 An R-module F is flat if given an exact sequence E' — E — E",
then the sequence FQ E' - FQ FE — F ® E" is exact.

Now we define the tensor product of two complexes.

Definition 4.1.3 The tensor product of P and () is a complex P ® (Q, where

(PRQ)n= @ P, ® Qq.

p+g=n

We have maps d = {d,},d,, : (PR Q)n — (P ® Q)n_1-
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To see the map d,, in more detail, let us take an element of (P ® Q),,

(ZTO®807ZT1®51;ZT2®827"' 7zrn®5n>:

with r;, ® s; € P; ® Q,—;. The map d,, takes this element to the following element of
(P® Q)n—l:

D (=1)’ro ®d(s0) + d(r1) @ 51, Y (=1)'r1 @ d(s1) + d(r2) ® 53, --),

where (—1)'r; @ d(s;) + d(riz1) ® Sit1 € B ® Qu_1-

4.2 Using the Spectral Sequence in a Proof
In this Section, we will prove the following lemma.

Lemma 4.2.1 Let A be a right R-module, and B be a left R-module. Let P and Q)
be the resolutions

o> PP Py — A— 0,
= Q> Q1 > Qo — B—0,

respectively, where P and Q° are flat for all i. Let P4 represent --- — Py — P, —

Py — 0 and Qg represent - - - — Q2 — Q1 — Qo — 0. Then
H,(Py®B) ~ H,(P4® Qp) ~ H,(A® Qp). (4.1)

Proof If we define {M, ,} = {P, ® Q,}, then by the definition of tensor product of

complexes given above, we immediately see that
Py ® Qp = Tot(M). (4.2)

Notice that this double complex { M, ,} is a first quadrant double complex. Also,
(4.2) gives us

H(Py® Qp) = H(Tot(M)). (4.3)
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Recall from (3.8) that if the spectral sequence collapses at £? with nonzero terms

lying only on the p axis, then
H,(Tot(M)) = &2,
Let us show that
82’0 = H,(P4 ® B) and 52,0 =H,(A®Qp).

The proofs of these two equalities are the same, so we will just show the first equality.

Case 1: ¢=0.

Hy(M,,.) = the homology at the 0k spot of the pth column of M,,;
= ker(M,,0 — 0)/im(M,1 — M,y);
= ker(P, ® Qo — 0)/im(P, ® Q1 — P, ® Qo);
=P, ®Qo/im(P, ® Q1 — P, ® Qo);
=P, ® Qo/ ker(P, ® Qo — P, ® B), by the remark that follows;
~ P, ® B, by the first isomorphism theorem applied to

f:P,®Qo— P,®B.

Remark. The R-module P, is flat means that if 1 — @y — B is exact, then
P,® Q1 — P, ®Qy — P, ® B is exact. Hence,

im(P, ® Q1 — P, ® Q) = ker(P, ® Qy — P, ® B).

Case 2: ¢ > 0.

H,(M,,) = the homology at the ¢" spot of the p* column of M,,;
=ker(P,® Qq = P, ® Qu-1)/1m(P, ® Qg1 = P, ® Qy);
=im(P, ® Q11 — P, ®Q,)/im(P, ® Qu+1 — P, ® Q,) for ¢ > 0,
since P, is flat;

=0 for ¢ > 0.
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Now, H,, denotes taking the horizontal homology at the p" spot; i.e. for a fixed g,
H;)Hq(Mp,*) = ker(Hy(Mp,.) = Hy(Mp-14))/im(Hy(Mpy1,:) = Hy(M,)). (4.4)
The condition ¢ = 0 in Case 1 causes (4.4) to become
H! Hy(M,,) = ker(P, ® B — P,_ ® B)/im(P,;1 ® B — P, ® B). (4.5)

And since H,(Pa®B) = Hp(--- = P,419B — P,QB — P,_1®B — ---) = ker(P,®
B — P, 1 ® B)/im(P,;; ® B — P, ® B), we have that H H,(M,.) = H,(Px ® B)
when ¢ = 0.

The condition ¢ > 0 in Case 2 causes (4.4) to become
H! Hy(M,,.) = ker(0 — 0)/im(0 — 0) = 0. (4.6)

We saw in (3.2) that the spectral sequence associated with the first filtration has
&, = H Hy(M,,) for its second term. Since (4.5) implies that £, = H,(Ps ® B)
and (4.6) implies that Sz,q = 0 for ¢ > 0, then the spectral sequence associated with
the first filtration collapses at £2. Hence &7, = H,(Tot(M)) by (3.8).

In summary, for each n,

H,(P4® B) = 8210, by Case 1 above;

— H,(Tot(M)) by (3.8).

So H(Py ® B) = H(Tot(M)) = H(P4 ® Qp). (Again, a similar proof shows that
HA®Qp)=H([P4®Qp).) N
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CHAPTER 5

THE GROTHENDIECK SPECTRAL SEQUENCE

In this Chapter we give the necessary definitions and lemmas that enable us to de-

scribe the Grothendieck spectral sequence.

5.1 Lemmas, Proofs, and Definitions

In this Section, we prove several lemmas and define several terms applicable to the

Grothendieck Spectral Sequence.

Lemma 5.1.1 Suppose we have a commutive diagram of modules:
0 0 0

0 s AL 2 A 25 A" — 0.

0 0 0
Suppose the columns are exact and the bottom two rows are exact. Then the top row

18 eract.

Proof We need to show three things:
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i. imvy =ker(C" — 0) =",
ii. im~' =ker~,
ili. 0=1im(0 — C') =kery'.

i. Since it is clear that im~y C C”, we only need to show C” C im~. Let z be in
C". We just need to find a ¢ in C such that vy(c) = z. Since column 3 is exact and
hence r” is surjective, there exists a b’ in B” such that r”(0") = z. Since row 2 is
exact and hence [ is surjecive, there exists a b in B such that §(b) = b". So we have

x =r"(8(b)), which equals y(r(b)) since the diagram commutes. So our c is r(b).

ii.a. First let us see that im~' C ker~, i.e. that Yo' = 0. Let z be an element
in C'. Then z is in im7’ since ' is surjective. So z = r'(b) for some b in B’.
Then +'(x) = 4 o71'(b) = r o B'(b) since the diagram is commutative, so vy o y'(z) =

yorof(b)=r"opfopf(b)=7r"(0) =0. So we have shown that im ' C ker 7.

ii.b. Next, let us check that kery C im~'. First notice that

™o Bor kery)=vyoror !(kery), since the diagram commutes;

= y(kery) = 0.
Note, we can take r~! since r is surjective. So

Bor ! (kervy) C ker(r");
= im(d"), since column 3 is exact;
= im(d" o ), since row 3 is exact, « is surjective;
= im(f o d), since the diagram commutes;
= Bod(A) = B(d(A));
= B(imd).
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Therefore Sor~!(kery) C B(imd) implies 7! (kery) C (8) ' o3(imd) = im d + ker 3.
And so

ror t(kervy) C r(im(d) + ker(B));
implies ker(y) C r(imd) + r(ker 3);
= 0+ r(ker(8)), since column 2 is exact;
= r(im(3')), since row 2 is exact;
=rof'(B);
= 7' or'(B'), since the diagram commutes;
= +/(C"), since column 1 is exact, hence 7' is surjective;
= im(y').
iii. Let z bein kery’ C C’". We will show that z = 0. Since 7’ is surjective, r'(}') = z
for some b' in B'. Now 7/(z) = 0 implies that 7' o 7/(b') = 0, since z = r'(b’). This

implies that r o §'(b') = 0 since the diagram commutes. Then §'(b') is in ker r and

hence §'(b') is in imd. So
B'(b') = d(a) for some a € A. (5.1)
Then
b = (6) " od(a), (5.2)
since (' is injective. Let us notice that

d" o a(a) = B od(a), since the diagram commutes;

= [Bo V), by (5.1);
=0.
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Then a(a) = 0 since d” is injective. So a is in ker & = im /. Hence

z=7'"(t)) =710 (8)" od(a), by (5.2);
=r"od o(a') !(a), by (D.1) in Appendix D since a is in im o/;
=0, since ' od = 0.

Therefore +' is injective. W

Definition 5.1.2 A (right) resolution of an object M is an exact sequence
0—-M-—>E"sFE' - FE*— ... 5 E" - E" — ...

Definition 5.1.3 An object F is injective if given the following diagram

where the row is exact and f is a map from A to E, then f can be extended to a map

f: B — E, where foiz f.

Definition 5.1.4 A resolution is called an injective resolution if each E*,i > 0,
18 injective.

Definition 5.1.5 An abelian category A has enough injectives if given any object

M in A, there exists an injection M — I into an injective object I.

Lemma 5.1.6 Suppose we are in an abelian category with enough injectives. Then

every object M has an injective resolution.

Proof By the hypothesis, we have an injection M — I° into some injective object
I°. Let M® = ¢(M) C I°. Consider the object I°/M°. Again by the hypothesis, we
have an injection I°/M° P 11, The following diagram is helpful:

Il

/]

0 —— I9/M° —— I°.
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Since I' is injective, d° extends to d0 : I — I', where ker(cﬁ)) = M°.

Do the same procedure again, let M = d°(I°) C I'. By hypothesis, we have
an injection I'/M* 4, 12 into some injective object I2. Since I? is injective, d'
extends to d' : I' — I2, where ker(d') = M'. We continue this procedure, and get

an injective resolution of M,
0—-M—-I"->TI'">I"—-... R

Lemma 5.1.7 Suppose we have the following diagram

al, ,71
It J!
aO/ /,),0
1° JO
oe/ /7
0 s Al s A s A" —— 0
7 p
T N
0 0 0

where the row is exact and the two columns are injective resolutions. Then there exists
an injective resolution of A that fits in the middle with maps so that the diagram

commautes and each row is exact.

Proof Consider the initial diagram

0 0
I°/a(A) JO[y(A")
1° JO
« Y
0 —— Al s A S A" — 0
{ P
0 0 0



In this diagram, the columns and the row are exact, and the objects I°, J° are injec-
tive. Let K = I° @ J°. Define maps i° : I — K° by z — (z,0), and p° : K® — J°
by (z,y) = y.
Let us see that K° = I° @ JO is injective. Consider the diagram

°a Jo

] (5.3)

0—s U — B.

2

Suppose we put I° in the upper right corner of diagram (5.3), with the map I°@.J° e,
I°, (z,y) — z. Then I° injective implies that P o f extends to gpo : B — I°, such
that g0 o4 = Pp o f. Similarly, suppose we put J° in the upper right corner of
diagram (5.3), with the map I° & J° RELY J (z,y) = y. Then J° injective implies
that Pjo o f extends to gjo : B — J°, such that gjo o4 = Pjo o f. Now define
h:B — I°®J° by b — (gr0(b),gs0(b)). All we need to check is that the map
h is an extension of f, i.e. that hoi = f. Let u be an element of U. Then
hoi(u) = (gro(i(0)), 650 i(u))) = (Pro o £(u), Pro o F(w) = F(u). S0 K= 10 . i

injective. At this stage we have

« Y
(5.4)
0 s A’ s A s A" s 0
i P
0 0 0

Let us find an appropriate map from A to K°. Since I° is injective, there is a map
g:A— I° with 0 0oi=q. Define e : A — K° by a+ (d(a),y o p(a)).

Now add K°/¢(A) into diagram (5.4), along with the maps I°/a(A") — K°/e(A)
and K°/e(A) — J°/y(A") induced by i and p° respectively. Then our diagram
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becomes:

r L, g 2, p (5.5)

Now let’s check that diagram (5.5) commutes. We have four squares to check. We
will use the notation [ | to represent all quotient maps, e.g. [ | will represent the map

from I° to I°/a(A").

i. The bottom left square of diagram (5.5) commutes because

i’ o a(A") = (a(4'),0), by the definition of °
and eoi(A") = g oi(A"),y0p(i(A")), by the definition of ¢;
= (0 0i(A),0), since poi = 0;

= (a(A"),0); since oo = a.

ii. The bottom right square of diagram (5.5) commutes because

p’oe(A) = p°(a(A),y o p(A)), by the definition of ¢;

= vop(A), by the definition of p°.
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iii. The top left square of diagram (5.5) commutes because

Do [](I% = P(I°/a(A") = (I°/a(A),0)
and  []od(I%) =[](I°,0) = (I°,0)/e(A) = (I°/a(A),0).

iv. The top right square of diagram (5.5) commutes because
o [ 1(K) = pO(K°/e(A)) = J°/7(A")
and  [Jop’(K°) = [](J°) = J°/~(A").

So diagram (5.5) is commutative.
Let us verify that the three columns of diagram (5.5) are exact. The proof of the

first column will carry over to the other two columns. For the first column we have

im(0 — A’

and ker(4' % 1° by hypothesis ;

im(A" -2 1°

a(4
and ker(I° — 1°/a(A")

|I
/-\

im(I° — I°/a(A")

)
)
) )
) = o(A);
) o
and ker(I°/a(A’) — 0) o

Let us put zeroes into diagram (5.5):
0 0 0
0 —— Ia(A) —2 K°/e(A) —Z JO/y(A") —— 0
0—s 10 Iy g0 2, g0 4 (5.6)

0 — Al — A — A" — 0
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so that we can use Lemma 5.1.1. The bottom row of diagram (5.6) is exact by

hypothesis. Let us look at the second row:
0o i 50 ° 70
0—=+I"—K — J —0.

It is exact because

0
and ker(I° — K = ker(1° — (I°,0)) = 0;
im(1° -2 K°) = (1% = (1°,0)

and ker(K° LNy

Now we have satisfied all the conditions of Lemma 5.1.1. So the top row of diagram
(5.6),

0—I°a(A") — K°/e(A) — J°/v(A") — 0,
is exact. We will use the fact this top row is exact later in this proof.

Let us prove that K°/e(A) is injective. Consider the diagram
K°/e(A)

i

00— U ——V,

7

with the row exact. We want to show that f can be extended to a map f: V —
K%/€(A) such that foi=f.

Suppose we put K in the upper right hand corner of our diagram, with the map
K%/e(A) = K°,

where s is an injective inclusion map. Then K injective implies that s o f extends

tow : V — K% such that woi = so f. Now define m : V — K%/¢(A) by
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v w(v)/e(A). We just need to check that m is an extension of f i.e. that moi = f.
Let u be an element in U. Then
moi(u) = (woi(u))/e(A), by the definition of m;

= (so f(u))/e(A), since woi=so f;

(u), by the definition of s.

Let us describe this last equality in detail. The element f(u)in K°/¢(A) is a conjugacy
class. No matter which conjugacy class representative we decide to have s take f(u)
to, it in turn gets quotiented by €(A) again, and we are back with the same conjugacy
class, f(u).

So far, we have K only. (It is injective, gives the exact row 0 — I° — K% — J°,
and commutes with everything below it.) We can do the same procedure to obtain

K%, using the initial diagram

0 0
I'/a®(1°) JHA(T°)
Il Jl

As before, in this diagram, the columns and the row are exact, and the objects I',

J! are injective. We obtain K' = I' @ J! injective, we have the exact sequence
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0—I'— K!'— J' — 0, and we have that diagram (5.7)

0 0 0
0 —— I'/a0(I%) —2y K1/O(K/e(A)) 2 J/A0(J0) —— 0
0o — It _t, K! . N Jt —50 (7

R €0 S

0 —— I°%a(d) ——  K°e(A) 2 Jy(A") —— 0

[ [ [

0 0 0

commutes. The maps in the above diagram have the following properties:

1. R:I°a(A) — I' takes z/a(A") to a®(z), since I’/ kera® ~ a°(I%) C I' by
the first isomorphism theorem. S : J°/y(A") — J! takes y/v(A") to 4°(y) since
J%/ ker % ~ ~4°(J°).

2. Since I' is injective, there exists 0° : K°/e(A) — I' such that ¢° 040 = R.

3. Define € : K%/¢(A) — K! by k%/¢(A) — (ao(ko/e(A)),Soz;v()(ko/e(A))). (We
will define & : K — K to be @ = ® o [ ] : K® - K0/e(4) - K.

Let us show that the bottom two squares of diagram (5.7) indeed commute.

i. The lower left square of diagram (5.7) commutes because

i o R(z/a(A)) = (R(z/a(A))),0);

= (a’(2),0).
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and

& 0i%(z/a(A") = € (z/a(A),0), by the definition of i;

ii. The lower right square of diagram (5.7) commutes because

P o (K/e(A)) = p' (0°(K°/€(4)), S 0 PR /€(A)):
— S0 (K /€(4)).

To prove the lemma, we need these two squares commute:

-1

[N SR

| al K (5.8)

I —s K —— JO
i0 p0
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i. The left square of diagram (5.8) commutes because i* o a’(z) = (a®(z),0) and
90 i%(z) = (z, 0);
=¢'o[](z,0);
= é’(z/o(a),0), by the definition of [ ;
O(z/0(A),0),S o p°(z/5(A),0)), by the definition of €;
0% 0 i0(z/a(A")), S o pd(z/0(A),0)), by the definition of 9;
R(z/a(A"), S o pd(z/c(A),0)), since 6° 0¥ = R;
a’(x), S o p*(x/a(A),0)), since 0”00 = R;
a®(x), S(0)), by the definition of °;

= (0
= (
= (
= (
= (
= (a’(2),0).

ii. The right square of diagram (5.8) commutes because v° o p°(z,y) = 7°(y) and
p'oe(z,y) =p'oc o[](z,y);
=p'oe(x/a(A),y/yop(A)), by the definition of [ ];
=p'(0°(z/0(A),y/v o p(A)), S o p(x/a(A),y/v 0 p(A))),
by the definition of €’;
= Sop®(z/a(A),y/vop(A)), by the definition of p';
= S(y/v(A")), by the definition of p°;
=+%(y), by the definition of S.

Thus we have an appropriate K!. We can continue to get K", » > 1, and the

appropriate maps. W

Remark. As a result of this lemma, we also get that the maps ", p",n > 0, are

injective and surjective, respectively.

Definition 5.1.8 A complex is called ingective if each object in the complex is in-

jective.
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Recall that in an exact sequence of complexes -+ > A —>B —>C — ---,

o= Ay =B, > Cp— -

is exact for all » and the corresponding diagram commutes.

Definition 5.1.9 An injective resolution of a complex C is a resolution of C

made up of injective complexes.

Here is an injective resolution of a complex C' in detail:

A

0

A

c— MY — MY —— M — ..

4

fO’O

Sy MO0

— C°

0

f1,0

d0,0

Ao 0 a0

A

0

f2,0

d2,0
—) .« e (59)

In diagram (5.9), each MP? is injective, each row is a complex, and each column

is exact. Since the far left column is an exact sequence of complexes, each column

in diagram (5.9) is exact. Since a resolution of a complex is an exact sequence of

complexes, diagram (5.9) commutes. Let us make a double complex: Let e?? =

(—1)? fP4. We still have dP4 o dP~14 = () since our rows are complexes, and

Also we have

=0.

ePitl o Pl = (—1)P fP0H o (—1)P f72 by the definition of P

et o @P9 = (—1)P fP*14 o @P4, by the definition of e”;

= (—1)PTgPett o fP4) since the diagram commutes ;

(_1)(_1)pdp,q+1 o fP1

o8



and

dPitt o Pl = P9t o (—1)P f79, by the definition of eP4.

So ePt1a o P9 4 @P9t1 0 eP4 = () and we have a double complex. Remove the complex
C from diagram (5.9) (so the columns are then deleted resolutions) and label this
new double complex M™**.

Let 274 = ker(dP9), BP? = im(dP~ 1), and HP4 = ZP4/Bra. Let Zi(C) =
ker(a'), BY(C) = im(a*™'), and HY(C) = Z*(C)/B*(C). Then we obtain three dia-

grams:
Zl , ZO,l y Zl,l ; Z2,1 \
el,0|Zl,0 62’0|22,0
70 _ y 700 AT 0 s 720 0 }
Z(C) — 72°(0) % 7'(0) X 722(0) >
0 0 0 0
of kernels,
B! - B% —— B —— BE
el 0|B10 62,0|B20
BO — y  Bo0 ,  BLO o . p2o o,
B(C) — BY(C) — B'(C) 2 B2(C) >
0 0 0 0
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of images, and

H! cee sy HOL gLl ____ H/2,1 ...
H° = .—— HW _—, pgto %, g0 0, .

H(C) o —— HY(C) —— H'(C) T H(C) — -
0 0 0 0

of homologies.

In these three diagrams, the columns are no longer exact, they are complexes. Also
these three diagrams are double complexes since the rows and columns are com-
plexes and since the horizontal zero maps in all three diagrams clearly give us anti-

commutativity.

Definition 5.1.10 An injective resolution of a complex C is proper if all the columns
in the previous three diagrams are injective resolutions, i.e. all the columns are exact

and made up of injective objects.

Lemma 5.1.11 Every complex C, made up of objects from an abelian category with

enough injectives, has a proper injective resolution.

Proof We need to come up with an injective resolution M™** of C' such that when
we form the three corresponding diagrams from it, the columns of these diagrams are

injective resolutions. We will do this in reverse. Take our complex C
o a° 1 ol 9 a?
== — -
We will come up with injective resolutions of ZP(C) = ker(a?), BP(C) = im(a?™!),

and HP(C) = Z?(C)/BP(C) for all p, and hence right away have injective resolutions

of the complexes
Z(0)=---—Z°C) = Z'(C) = Z*(C) — -- -,
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B(C)=---— B°(C) = B'(C) —» B*C) = ---,

and

HC)=---— HC)— H'C) = H*(C) - - --

(Note: the horizontal zero maps ensure that the injective resolutions of these com-

plexes are made up of complezes.) Then we will define M**, which will be an injective
resolution of C', and which will correspond to our Z(C), B(C), and H(C).

For each p, we have the exact sequence
0 — BP(C) — ZP(C) — H?(C) — 0, (5.10)

since

im(0 — BP(C)
and ker(BP(C ) — ZP(C) ima?™ % ker o) = 0;

ker(
"(C)

(@)
(@)
m(B?(C) % 77(C)) = B
and ker(ZP(C) — H?(C)) = ker(Z*(C) — ZP(C)/B?(C)) = B*(C);
m(27(C) 3 HP(C)) = H"(C)
and ker(H?(C) — 0) = H?(C).
And we have the exact sequence
0— Z*(C) —» C? = B**(C) — 0, (5.11)

since

im(0 — Z?7(C)) =0

and  ker(Z°(C) — CP) = ker(ker o? 2 C?) =

and ker(C? — BP*1(C)) = ker(C? 25 im o?) = Z°(C);

im(CP surd BPYH(O)

)

)
im(27(C) 2% cr) = 2°(C)

)

) =B"(0)

)

and ker(BPtH(C) — 0) = BP*1(C).
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By Lemma 5.1.6, for each p we can find injective resolutions of H?(C) and B?(C).
Let HP* denote the injective resolution of H?(C), and BP* denote the injective res-
olution of BP(C'). Applying Lemma 5.1.7 to (5.10) with injective resolutions HP»*
and BP** we obtain an injective resolution of ZP(C') for each p; denote this injective
resolution by ZP7*. We also obtain maps BP* 27 e and zer 25 HP* [P* are
injective and gP* are surjective. These injective resolutions are shown in the following

diagram:

1 1 1 gP1 1
Brt . gzt L, gr

y ,0

0 — BP(C) —— Z?P(C) —— HP(C) —— 0.

0 0 0
Again, apply Lemma 5.1.7 to (5.11) with injective resolutions Z?* and BP™'* and
we obtain an injective resolution of C? for each p; denote it by M?*. We also obtain
maps ZP* L MP* and MP* L Brtl=* pP* are injective and kP* are surjective;

see the follwing diagram:

hP1 kP>l
zpt 2 Mpt L Bl
hP0 kP:0
zp0 2 pp0 T, prtlo (5.13)
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So we have injective resolutions of the objects Z?(C), B?(C), and H?(C) for all p,
and hence we have injective resolutions of the complexes Z(C'), B(C), and H(C). All
we have left is to check is that these resolutions indeed consist of the kernels, images,

and homologies of this injective resolution M** of C.

Let dP? : MP9 — MPT14 be defined by

kP4 pt1l.q hPt+1la
2 p+1,q p+1,q p+1.q
MP1 25 B — 7 s MPHLe

i.e. dP = pPtLe o [PT14 6 kP4, Then

ker(d”?) ~ ker(kP?), since [”* and hP* are injective;
= im(h"?) since the rows in diagram 5.13
are exact by Lemma (5.1.7);
= hPa(ZP);
~ 7P since hP? is injective.
Also, im(dP?) ~ im(kP?) = kP9(MP4) = BPtH4. So im(dP~17) = BPY. Lastly,
ker(dP?) / im(dP~14) = ZP4/BP4 which equals HP since the rows diagram (5.12) are

exact by Lemma (5.1.7). So we have constructed a proper injective resolution M**

of C. 1

5.2 Theorem due to Grothendieck

In this Section we give several definitions relating to covariant functors and then finish

with the Grothendieck spectral sequence, given in the form of a theorem.

Definition 5.2.1 Let A and B be two categories. (see Appendiz A for the definition

of a category) We call F a covariant functor from A to B if

1. To each object A in A, we get an object F(A) in B.
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2. To each morphism f : A — A’ in A, we get a morphism F(f) : F(A) —
F(A") in B such that:

i. For each object A in A, we have F(Idx) = Idpa); i.e. F takes the identity
morphism Idy : A — A in A to the identity morphism Idp4 : F(A) —
F(A) in B.

. If f:A— A andg: A" — A" are two morphisms in A, then F(go f) =
F(g)o F(f) in B.

Definition 5.2.2 The covariant functor F is additive if the map
F : Homy(A, A") — Homg(F(A), F(A"))

is additive for all A, A" in A, i.e. F(f+g) = F(f)+ F(g) for all maps f,g in
Hom 4 (A, A).

Definition 5.2.3 A covariant additive functor F : A — B is called left exact if it

takes an exact sequence of objects from A,
0— A — A— A",
nto an exact sequence
0— F(A") — F(A) — F(A")
of objects from B.

Definition 5.2.4 Let A and B be abelian categories with enough injectives. Given a
covariant additive functor F from A to B, we can make a new functor R"F from A
to B, called the right-derived functor. Let us describe where R"F takes an object
A of A. By (5.1.6), there exists an injective resolution of A,

0—A—I"—>TI"—T1*—....
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Let I represent the complex
0— 1" —T1"——T1%*—...
called the deleted resolution of A. Apply F to get the complex F(I),
0— F(I% — FUI") — F(I*) — ---. (5.14)
We define R"F(A) to be H"(F(I)), the n'® homology of (5.14).
Remark. The definition of R"F is independent of the injective resolution that is

chosen. (This is proven in Appendix E)
Let us describe what R"F does to a morphism f : A — A’ in Hom4(A, A").

Let I be 0 — 10 2y v 0y 2 2 .-+, a deleted resolution of A, and let J be
0= Jo Ly 0 2y p 2 .-+, a deleted resolution of A’. Now by Lemma E.1I,

f:A— A leads us to a set of maps {f" : I — J"} (See Appendix E). We will have
R"F(f) : R"F(A) — R*F(A') which is R*F(f) : H*(F(I)) — H™[F(J)), i.e.

R"F(f) : ker Fi"/im Fi"~! — ker Fj"/im Fj"~". (5.15)
We define
R"F(f):z/im Fi" ' — Ff"(x)/im Fj" (5.16)

By the lemmas in Appendix E the map f is unique up to homotopy; hence R"F(f)

is unique.

Definition 5.2.5 Let F' be a covariant additive functor from A to B, where A and
B are abelian categories with enough injectives. An object A in A is called F-acyclic

if R"F(A) =0 for alln > 0.

Lemma 5.2.6 Let F be a covariant additive functor from A to B, where A and B
are abelian categories and A has enough injectives. Let A be an injective object in A.

Then A is F-acyclic.
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Proof Consider the injective resolution of A:
0A—-A—>0->0—>0—---.

Let I represent the corresponding deleted resolution. Then R"F(A) = H"(FI) =
HO0O—->FA—-0—-50—---)=0/0=0forn>0. W

Now we are prepared to prove the following theorem, which is due to Grothendieck:

Theorem 5.2.7 Let G : U — B and F : B — C be covariant additive functors, F left
exact, where U, B, and C are abelian categories. Let U and B have enough injectives.
Also assume that if A is an injective object in U then the object GA is injective in B.
Then for each object A in U,

(1) we have a spectral sequence which converges to {R"(FG)(A)},, and

(i1) this spectral sequence has & , = RPF(RIG(A)).

Proof of (i) Let A be an object in &/. By Lemma 5.1.6 we can find an injective
resolution of A,

0 A E"SE' S E> ...,

Let F be the deleted resolution of A,
0E°">FE' - E*— ...
Now apply the functor G to the complex E to get the complex GFE,
0—-GE - GE' - GE*— ---.

By Lemma 5.1.11, we have a proper injective resolution of GF,

0 — M% —— MO0 —— ...

0 —— GE° —— GE! —— --.

A
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By the definition of an exact sequence of complexes, this diagram commutes. Let

M = M™** represent:

0 — M —— MM —— ...

(5.17)
0 — M% —— MO0 —— ...

0 0.

As done on page 58, we can turn commutative diagram (5.17) into a double complex
by adjusting the vertical maps. Then apply the functor F' to obtain the double
complex FM** = FM,

0 — FM* —— FMY —— ...

0 — FM® —— FMY —— ...

0 0.

The diagram F'M remains a double complex since F' is a covariant additive functor,
ie. F(a)o F(b)+ F(c)o F(d) = F(aob)+ F(cod)=F(aob+cod) = F(0) =0, if
aob+cod=0. We can then obtain the total complex Tot(F M), where F M is first
quadrant. At this point we can obtain the spectral sequence associated with the first
filtration of Tot(F M), as in Example 3 of Chapter 1. (We call this spectral sequence
the first spectral sequence.)

Notice that in M**, the p" column is the deleted resolution of GEP. Recall that
M? is injective for all 4,j. Let us look at the vertical homology of FAM**. The
(vertical) homology at the ¢'* spot of the p* column, HI(FMP*), is

ker(F MP4 — FMPT) /im(F MPI~1 — FMP).
This is exactly (RYF)(GEP).
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Now let us show that

FG(EP)ifqg=0
HY(FMP*) =
0if ¢ > 0.

Notice that EP? injective implies that GEP is right F-acyclic by Lemma 5.2.6, hence
(RIF)(GEP) =0 for ¢ > 0. So HI(FMP*) =0 for ¢ > 0. In the case ¢ = 0 we need
to look at (R°F)(GEP), which is the homology at the 0 spot of the p'* column of
FM**,

0— FMP® — FMP' — ...

We have that (R°F)(GEP) = ker(FM?P® — FMP')/0 = ker(FMP® — FMP').
Recall that F left exact means if 0 — GE? — MP? — MP! — ... is exact, then
0 - FGEP — FMP? — FMP! — ... is exact. Hence, (R°F)(GEP) = ker(FMP® —
FMPY) = im(FGE? ™4 FMPO) ~ FGEP. We have shown that

HY(FMP*) = FG(E"). (5.18)

So doing vertical homology to F'M™**, we have zero everywhere except possibly at

g = 0; we are left with just one nonzero row in the lattice { H4(F'M?*)}, ,,

This nonzero bottom row is
0 — FG(E’) — FG(E') — FG(E?) — ---

Now we will do horizontal homology, H?({ H?(F MP?*)},), i.e. the homology at the

p* spot of
RN HQ(FMP—L*) — HY(FMP*) — Hq(FMp+1’*) ..
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This is by definition £/, by (3.2) on page 38.
For ¢ > 0, we clearly have H?({ H4(F M?*)},) = HP({0}) = 0. For ¢ =0,

HY({HO(FMP)},) = HP({FG(E)},), by (5.18);
= (RP(FQ))(A), by definition of right derived functor.

So now we have that

era _ RP(FG)(A)ifg=0 (5.19)
2 = )
0if ¢ > 0.

This means that our spectral sequence collapses at » = 2. Therefore by Lemma 3.2.2,
EXY = H™(Tot(FM**)). Recall from Section 2.3 that our spectral sequence converges
to H™(Tot(FM**)). In (5.19) with p = nand ¢ = 0, £"° = R"(FG)(A), so we proved
that our spectral sequence converges to {R"(F'G)(4)},. N

Let us have a few definitions and lemmas before doing part (ii) of the proof.

Definition 5.2.8 Let 0 — B - ¢ <15 D %5 0 be an ezact sequence. We say the

sequence s split if there exist a map h:C — B such that hoh = idp.

Lemma 5.2.9 If B is injective in the exact sequence 0 — B o Lip % 0,

then the sequence is split.

Proof Consider the diagram

&
W— W

> C.

h

Since B is injective, we obtain a map h such that hoh = dg. 1

Lemma 5.2.10 Let 0 — B -5 ¢ —L5 D 25 0 be an ezact sequence. If the sequence

18 split, then there exists a map f: D — C such that f o f: idp.
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Proof Since the sequence is exact, we certainly have the isomorphic map
D= f(C) ™ C/h(B), f(z) [,

Consider

D= f(C) = C/nB) < C,

where i takes [z] to some representative of the class [z].

Let fz iom, and let z be in D. Then z = f(c) for some ¢ in C, and f o f(x) =
foiom(z) = foiomo f(¢) = f oi([c]). Since for any representative u of [c],
u—c € h(B) =ker f and so f(u) = f(c). Therefore foi([c]) = f(u) = f(c) =z, and

hence we have f o f: dp. N

Lemma 5.2.11 Let 0 — B -5 ¢ L5 D %5 0 be an ezact sequence that s split.
Apply any functor F to obtain 0 — F'B Ihopo By pD 29 0. Then there exists
Fh:FC — FB such thatﬁLOFh:ide.

Proof We have the map h' : C — B where h' o h = idp, since the exact sequence
splits. Let Fh = Fh' : FC — FB. Then FK o Fh = F(h' o h), by the definition of a
functor. This equals F'(idg) which equals idrp, again by the definition of a functor.

Remark. Similarly, if there exists f' : D — C such that fo f' = idp, then F f' o
Ff =idpp.

Proof of (ii) As expected, the second spectral sequence is the spectral sequence
associated with the second filtration of Tot(F'M). It was explained in Example
7 of Chapter 2 that both the first and second spectral sequences converge to the
same object. Let us look at the term &7 of the second spectral sequence, which
is HP(HY(FM™*?)) by (3.3) on page 39. We will show that HP(HI(FM*P)) =
RPF(RIG(A)).
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Consider our proper injective resolution of GE, where E is the injective resolution

of A. It has ¢** row
0— M% — MY — M>7 — M7 — ...

Using the notation from pages 59-61, we have for each p injective resolutions
0— Z°(GE) — ZP° — 7Pt — 7P — ... |

0 — B*(GE) — BP® — BP! — BP? — ...

and

0 — H?(GE) — H*® — HP' — HP? — ... |

since the injective resolution of GE is proper. (These injective resolutions for each p
can be found as columns from the diagrams on pages 59-60.) From Lemma 5.1.11,
diagram (5.13) gives us an exact sequence of objects 0 — ZP¢ — MP4 — BP9 — (.

Transposing indices gives us
0— Z9? — M9 — BIt? (. (5.20)

The object Z%P is injective, so by Lemma 5.2.9, (5.20) splits. Apply F' to get the

sequence
0— Fze 2y pypor 225 ppatie (5.21)
Then we have

ker Fd?? = im ¢, since F is left exact;

= §(FZ9P) = F 7%, (5.22)

Now replace ¢ with ¢ — 1 in (5.21) to obtain

Fde—1s
—

0— Fzite 2y pppe-te P ppar g, (5.23)

We will show that im(Fd?~'?) = FB%P. In one direction, the containment is clear,

Fd1t?(FM?1?) C FB%. For the other direction, let Fx € F B9, where € BY?.
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Since d?"? is surjective, we have that z = d? “P(m), for some m € M%7 P By
the remark following Lemma 5.2.11, there exists [ : FB% — FM9% " such that
Fd?= " o | = idppe». Now since Fx is in FB%  we have that Fx = Fd? ' o [(Fx).
And since I(Fx) is in FM9 P Fz C Fdi~'"?(FM%'?). So we have shown that

im(Fd? '?) = FB%P, (5.24)

Recall, HY(F M*?) denotes taking the homology at the ¢'* spot of the row FM*P.
Therefore

HYFM*?) = ker(Fd?%")/im(Fd? '?);
= FZ% /im(Fd?"'?), by (5.22);

= FZ% |FB_ by (5.24). (5.25)
From Lemma 5.1.11, diagram (5.12) gives us an exact sequence of objects
0 — BP9 — 7P 5 HP1 5 (),
Transposing indices gives us
0 — BIP — 797 — HIP (. (5.26)

The object B%P is injective, so by Lemma 5.2.9, (5.26) is split. Apply F to (5.26) to

obtain
0— FB?™ =y pz9" 2y FH — (. (5.27)
Then we have

imn ~ FZ% /kern, by the first isomorphism theorem;
= FZ% /imm, since F is left exact;

= FZ% |m(FB) ~ FZ9/FBYP  since m is injective.

The object imn = FH?P by the exact same proof we used to show (5.24). So we
have that

FZ%%|FBY = FHP, (5.28)
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So

£y = HP({HI(FM™")}y);
= HP({FZ%[FB%"},), by (5.25);
= HP({FH%},), by (5.28). (5.29)

Recall that

RIG(A) = homology at the ¢ spot of
0—-GE—-GE'— --- - GE*— GET! — ... ;

= HY(GE). (5.30)
And (for each g) we have an injective resolution of HY(GFE),

0— HYGE) —» H® — H*' — H?” — ... (5.31)
Hence

RPF(R'G(A)) = RPF(HY(GE)), by (5.30);
= homology at the p spot of
0— FH? - FH? — FH?? — ... ;
— HY((FH"),);

=&Y by (5.29).

So it is the second spectral sequence which converges to {R"(FG(A))}, and has
EP9 = RPF(RIG(A)). W

73



APPENDIX A

CATEGORIES

The following came from Lang [1993] and Weibel [1995]:

A category C consists of objects and morphisms, where a morphism is an assign-
ment from an object to another object. The collection of all objects in C is denoted by
Ob(C). Taking two objects A, B in Ob(C), we denote the set of morphisms from A to
B by Hom¢ (A, B). Let A, B,C be any three objects from Ob(C), and take arbitrary
morphisms f € Hom¢(A4, B),g € Hom¢ (B, C),h € Hom¢(C, D), j € Hom¢(B, A). A

category must satisfy the following properties:

1. We must be able to compose f and g and obtain g o f € Hom¢ (A, C). This is

commonly viewed as

Hom¢ (B, C) x Hom¢ (A, B) — Hom¢(A,C), by g x f+— go f.

2. There exists a map Id4 in Hom¢(A, A) such that foldy = f and Id40j = j.

3. (hog)of=ho(gof).

4. Home(A, B) is disjoint from Home(C, D) unless both A = C and B = D, in

which case the two sets are equal.
There are a few types of categories that will be important to us.
The Additive Category. An additive category is a category C with the additional
properties:
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1. Every set Hom¢(A, B) is an abelian group under addition, i.e. for h,h’ in
Hom¢(A, B), h+ h' = h' + h and h + 0 = h where 0 is the zero map from A to
B.

2. The map
Hom¢ (B, C) x Hom¢ (A, B) - Hom¢(A,C), by g x f+— go f.

is bilinear, i.e. go (f+ f)=gof+gofand (9+ ¢ )of=gof+gof.

3. There exists a zero object 0 in the category such that Hom¢ (A, 0) and Hom(0, B)

each have exactly one element.

4. The product of A and B exists. Suppose we have @ € Hom¢(P, A) and § €
Hom¢ (P, B) such that when we are given any two morphisms v € Hom¢(C, A)
and § € Hom¢(C, B) there exists a unique morphism h» € Hom¢(C, P) such that
v=aoh and § = o h. Then we say the product of A and B exists and write
Ax B=(P,a,p).

The Abelian Category. An abelian category is an additive category A with the

following properties:

1. Every morphism f € Hom4(B, C) has a kernel i. (A kernel i is a morphism in
Hom 4 (A, B) such that foi =0 and given any e € Homy4(A’, B) with foe =10

then e =i o€’ for a unique ¢’ € Homy(A’, A).)

2. Every morphism f € Homy(B, C) has a cokernel p. (A cokernel p is a morphism
in Hom 4(C, D) such that pof = 0 and given any g € Hom 4(C, D’) with gof =0
then g = ¢’ o p for a unique ¢’ € Homy(D, D').)

3. Every morphism that is monic is the kernel of its cokernel. (A morphism f €
Hom (B, C) is monic if for any e;,e; € Homy(A, B), e; # ey implies f o ey #
f O 62.)
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4. Every morphism that is epi is the cokernel of its kernel. (A morphism f €

Hom (B, C) is epi if for any g1, go € Homy(C, D), g1 # go implies giof # gsof.)

Note. f0— A L5 Bis exact, f is called a monomorphism; we will refer to f as
injective. If A B 0is exact, f is called an epimorphism; we will refer to f as

surjective.

The Needed Category. The needed category is an abelian category A with the
additional four properties (the first and third were introduced by Grothendieck):

1. For every set {A;} of objects in A, the direct sum ®A; exists in 4. Then we

call A cocomplete.
2. The direct sum of monic morphisms is a monic morphism.

3. For every set {4;} of objects in A, the product [ A; exists in .A. Then we call

A complete.

4. The product of epi morphisms is an epi morphism.
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APPENDIX B

ISOMORPHISM THEOREMS

A morphism f € Homy (A, A') is called an isomorphism if there exists g € Hom4(A', A)
such that g o f equals the identity map in Homy4 (A, A) and f o g equals the identity
map in Hom4(A’, A").

Let A be an abelian category A. Let f € Hom4(A, A"), where A, A" € Ob(A).

The first isomorphism theorem states that

Alker(f) ~ f(A).

In addition, let A and A’ both be subobjects of some object G in A (A is a subobject
of Gif 0 - A — B is exact). Then we have the second isomorphism theorem, which
states that

(A+ A /A ~ AJ(A[)A).

Furthermore, assume that A C A’. The third isomorphism theorem states that
(G/A)/(A'JA) ~GJA".

See Dummit and Foote [1991] for proofs of the ismorphism theorems.
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APPENDIX C
AN EXACT SEQUENCE OF COMPLEXES

GIVES A LONG EXACT SEQUENCE

In this appendix, we will prove the following lemma in detail:
Lemma C.1 Let us be in an abelian category. Let
02A-5B-2C—0

be an exact sequence of complezes, (so 0 — A, ny B, 2% C, — 0 is ezact for all

n.) Here is the diagram corresponding to this exact sequence of complezes:

In+1 Pn+1

0 — A4,y — By —— Cppy —— 0

frnt+1 gn+1 hn+1
0—— A, —=2» B, - C, — 0
In 9n hn,
0 —s A, Y B, 2% 0, — 0.

frn—1 9n—1 hn_1

Then there is an exact sequence of objects

* *
Ppn—y

S Ho(A) 25 Hy(B) 25 HA(C) 25 Hy o PV H, (B ()
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Proof The maps i) and p}, are induced from ¢,, p,, respectively. Let us describe d,,.
Define
577. : Hn(C) — anl(A)

which is
ker hy,/im hy 1 — ker f,_1/im f,,
by
z/im by — 2;&1 o gy opgl(z)/im fns
where 2 is in ker h,,. We will show that ¢, is indeed a map by showing that it satisfies

the following properties:

1. §, takes zero to zero. Take x/im h,; in ker h,,/im h, 1, where z is in im Ay, 1.
Then z = hy,11(c) for some ¢ in Cy 41, where ¢ = p,11(b) since p, 1 is surjective. We

want to show that 4, ' o g, op-'(z) =4, ', 0 gnop, ' ohyi1(c) is in im f,. Notice that

7:nfl O agn Opnl o hn+1(c) - Z;E1 O gn op;I o hn+1 o pn+1(b);

=i ' 0g,op, ' opyogni1(b), since the diagram commutes.

Now let u be any element in the set p,' o p, o g,i1(b). Of course, g,.1(b) is in
P2t 0 pp © guyp1(b). The difference i, o gn(u) — i, ', © gu(gni1(b)) is in im f, by the
definition of 6,. So g,(u) — gn(gn+1(b)) is in i,—1 (im f,,) which implies that g, (u) is in
in_1(im f,) since g, 0 g,.1 = 0. Hence i, ', o g,(u) is in im f,,, where u is any element

in p; !t op, 0 gni1(b). Therefore

l;&l O gn Opgl O Pn © gn—H(b C imfn;
which implies 7,,*; 0 g, 0 p,, " © hyy1 0 Ppy1(b
(

)
) C im f,, since the diagram commutes;
which implies i, 0 g, 0 p> ' 0 hyyi(c) Cim fo;

)

which implies i ', 0 g, o p. ' (z) C im f,.
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I1. 6, is well defined. Since p, is surjective, we can get some element b, in B,

such that p,(b,) = z. Since

Pn—19° gn(bn) = hn Opn(bn) = hn(z) = 07

gn(by) is in kerp, | =imi, ;.

-1
n—1»

So we can apply i which is injective, to g,(b,) and get i', 0 g,(b,) = a, 1. To
complete the verification that 4, is well defined, suppose we had obtained b/ in B,
such that p,(b) = 2. Then doing as above, we would have i ', 0 g, (b) = a_,.

We need to show that a, 1/im f, =a!_,/im f,, i.e. that a, ; —a]_, is in im f,,.
Now since py, (b, — b)) = pu(bn) —pu(b) =2 — 2 =10, b, — b/ is in ker p,, = imi,. So

by, — b! =1i,(ay) for some qa, in A,. Hence

ap—1 — a;;—l = Z;EI 0 gn(bn) — Z;il © gn(b;:);

= Z;il 0 g (bn — bZ)Q
1

=1 -1 o gn o Zn(an)a

=41 04, 10 fu(a,), since the diagram commutes;

I11. §,, preserves the operation of summation.

= in21 0 gn 0Py (¢ +y)/im fo;
=i 0g,(u+v))/im f,, for any u € p.*(z)

and any v € p, ' (y) by (I1.);

= i_i1 o gn(u) + i;il o gn(v);
=i 0 g.(pr (@) + i7" 0 gu(p; (), by (I1.);

= Op(x/im hpir) + 0p(y/imhyq).
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IV. The range given for §, is appropriate. Let us verify that i, 0 g, o p;!(2)

is in ker f,,_1.

fac10dt oguoprt(2) =i, 0 gu10gnop,t(2), by Lemma D.1
since gn_1 0 gn 0,1 (2) is in imi,_;;

=0, since g, 109, =0.

To show that long sequence (C.1) is exact, it suffices to check the exactness at

three spots:

i. H,(B),
ii. H,(C),
iii. H, ((A)

To prove i., ii., and iii., we will show containment in both directions.

i.a. We have ims; C kerp; since

im i, = i (H,(A) — H,(B));

=i, (ker f,/im fr,41 — ker g,/im g,41);

= in(ker f,)/im g, 1
and so

Py (imiy) = py (i, (ker f,)/im g,+1), by the above;
= pp o in(ker fr,)/im Ay iq;
= 0/im fpy1 = 0.
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i.b. To show that ker p} C im3i}, let z/im g, 1 be in ker p%. Then p}(z/im g,11) =0
which is p,(z)/imh,1 = 0, and so p,(2) is in im A,y 1. So pp(2) = hpi1(cny) for
some ¢py1 in Cpyq. The map p,y is surjective, so ¢,11 = ppi1(bny1) for some b, 11 in

Bn—|—1 . So

pn(z) = Npt1 © Pntr (bn+1)§

= Pp © gnt1(byy1), since the diagram commutes.
This implies that

pn(z) —DPno gn+1(bn+1) = 0;
which implies p,(z — gn11(bny1)) = 0;
which implies z — g,11(byy1) is in ker p, = imi,;

which implies z — g,+1(bnt1) = in(ay,) for some a, in A,.
Actually, a, is in ker f,, since
in—1° fn(@n) = gn o in(an), since the diagram commutes;

= gn(z — gnr1(bny1)), from the above;

= gn(z) —Gn© gn+1(bn+1);

=0— gn 0 gnt1(bnt1), since z is in im g, C ker g, by hypothesis;

=0, since g, o gpy1 = 0.
So we obtain that f,(a,) = 0 since i,_; is injective. Therefore

Z:z(a'n/ im.fn—H) = in(an)/imgn—{-l;
=z - gn+1(bn)/ im gn+1;

= z/im gy 1.

ii.a. Let us show that imp} C kerd,. Let p}(z/img,+1) be in imp}, which is

Pn(2)/im by, where z is in ker g,. We need to show that 9§, (p,(2)/im h,1) which

82



equals (i,', 0 g, o p;' o pn(2))/im £, is equal to zero. Le us look at g, o p;* o pn(2).
Let ¢ be any element in the set p,' o p,(z). Of course, z is in p, ! o p,(z). From the

definition of 6,,, we know that i, 0 g,(c) — i, 0 gn(2) is in im f,. This implies that

0(€) — Ga(2) S i iy (im f,);
which implies that g,(c) is in i,—1(im f,), since g,(z) = 0;

which implies that i ', o g,(c) is in im f,.

So !, 0 gnop,top,(z) is in im f, for any choice of ¢ in p,*' o p,(z). Hence (i, o

gn o Py opn(2))/im f, = 0.

ii.b. Let us show that ker d, C impj, where the domain of pj, is ker g,/ im g, 11. Let

z/imh, 1 be in ker §,, where z is in ker h,,. Then

5”(2/ m hn-l-l) = (lﬁi OC gn Opgl(z))/im Jn= 0/ im fy,

ie. i ' 0g,0p;'(z)isin im f, and so it equals f,(a) for some a in A,. Apply i,_1
to obtain
in-1 00,210 gn 0P, (2) = in 10 fn(a)
which implies
9n © Dy (2) = gn ©in(a),
since the diagram commutes. Then we have g,(p;'(z) — 4,(a)) = 0 which implies
P, (2) — in(a) is in ker g,. So the element (p,1(2) — i,(a))/im g, is in the domain

of p;. Hence we have

Po(p7(2) = 1a(@))/ i G12) = (9 © 7 (2) = P (@) im g,
by the definition of p;

=(z—0)/imh,1 = z/imh, 1.

So z/im hy,q is in im p?.
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iii.a. Let us show that im¢,, C keré ;. Let 0,(z/imh, 1) be in imd,, where z is

in ker h,. This is in kers; _, because:

im0 6n(2/imhnya) =i ((inl) © gn 0 py'(2))/im f,), by the definition of dy;
= (in_104,", 0 g oD, (2))/img,, by the definition of i\_;
= (gn oD, (2))/im gn;

=0/img,, since g, op,'(2) is in im g,,.

iii.b. Let us show that keri’_, C imd,, where the domain of §, is ker h,,/im h, 1.
Let z/im f, bein ker ¢} _,, where z isin ker f,_1. Then i} ,(z/im f,) = i,-1(2)/img,

n—1

= 0, which implies that 4,,_1(z) is in im g,, and so
i1 (2) = gal0) (€2)
for some b in B,,. Now

hpn © pp(b) = pr_1 © gn(b), since the diagram commutes;

= Pn—1 0 in—1(2), by (C.2);

=0, since the rows are exact.

So p,(b) is in ker h,. The element p,(b)/imh,, 1 is in the domain of §,. All we
have to show is that &, (p,(b)/imh,1) = z/im f,. Note that d,(p,(b)/imh, 1) =
(i, 0 gn o Pt 0 pa(b))/im f, by the definition of &,, so we only need to show that
it ognopytop,(b) — 2 isin im f,.

Consider g, o p,' o p,(b). Let ¢ be any element in p,* o p,(b), and of course b is
in p, ! o p,(b). From the definition of d,, we know that i.", o g,(c) — 4", 0 g,(b) is
in im f,, which implies that i, ', o g,(¢) — i, 0 i,_1(2) is in im f,, by (C.2). Then
i’ 0gn(c) — z is in im f, which implies that i,,*; 0 g, o p;' o p,(b) — z is in im f,,. So

for any c in p;t o p,(b), (i1, 0 g, ot o py(b))/im f, = z/im f,,.
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APPENDIX D

A COMMUTING LEMMA

The following lemma is helpful in proofs that involve commuting diagrams.

Lemma D.1 Let

0o —>» Bt 2, B

[l e

0 — Al —— A

«

be a commutative diagram with exact rows. Then d' o (a')™'(a) = (8') "' od(a) fora

in A if a is in ima! and d(a) is in im B

Proof. Since a is in ima!, we have a'(a') = a for some a! in Al. Since d(a)
is in im B!, we have $'(b') = d(a) for some b' in B'. Now since the diagram is

commutative, we have 3' o d'(a') = do a'(a'). Apply (8')~" to obtain

d'(a) = (8") 'odoa'(a));
which implies d'(a') = (8') ™" o d(a), since a = o' (a');

which implies d' o (o) 7!(a) = (8') ! o d(a), since (o!)7!(a) = a’.
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APPENDIX E

THE RIGHT DERIVED FUNCTOR IS WELL DEFINED

The following lemmas prove that the right-derived functor is well defined.

Lemma E.1 Let us have two injective resolutions of M and M', with a map from

M to M':

d# d° dt d?

0 — M y E° y B! y B2 ——
0| (E.1)
0 —— M > 10 > I! >y I? ——— -

i# i0 il i

Then there ezists { f" : E™ — I"} such that the diagram commutes.

Proof. Since I is injective in

a#
we can extend i# o ¢ to f*: E® — I° where f°o d# = i# o . Hence the first square

of diagram (E.1),
M £ g

ol
]\4-1 —> IO

i#
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commutes.

Let f0 be something which takes z/d# (M) to fO(z) (it does not necessarily take
zero to zero). Let us look at i o f0 : E0/d#(M) L% 10 5 ' This is not a

composite of maps, since ]70 is not a real map. But we will show that ° o f‘) itself is

a map by showing that it satisfies the following three properties:

I. i o f0 takes zero to zero. Let z be in d#(M), so z = d#(a). Then z/d#(M)
is zero in E°/d#(M). Then i® o fO(z/d#(M)) = i o f(z) = ® o f° o d#(a) =

i 0 i# o p(a) = 0, since i® o i# equals zero.
b

II. i o f0 is well defined. Let z/d* (M) = y/d#(M). Then z — y is in d#(M).
We need to show that i° o fo(x/d#(M)) =0 fo(y/d#(M)), which is to show that
%0 fO(x) =1%o fO(y). So we just need to show that i o fO(x — y) = 0. This is true

because we already saw that z — y is in d# (M).

I1I. %o f~0 preserves the operation of summation.
(i* 0 fO)(x/d* (M) +y/d* (M) = (i* o [O)((& + y)/d*(M));
= (1" 0 f*)(z +y);
=i°(f°(z) + f°(y)), since f° is a map;

= {O(fO(x/d* (M) + fO(y/d*(M)));
=40 fo(x/d#(M)) +1i%o fo(y/d#(M))-

Now let us do the second square. Consider the diagram with exact row
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where 670(1‘ /d#(M)) = d°(x). Let us prove that d° is a map by showing that it satisfies

the following three properties:

I. d° takes zero to zero. Let z be in d#(M). Then z = d#(a). So d°(z/d*(a)) =

d’(x) = d°(d¥(a)) = 0, since the row is exact.

II. d is well defined. Let z/d* (M) = y/d*(M). Then x — y is in d¥(M). We
need to show that d(z/d#(M)) = d°(y/d* (M)), which is to show that d°(z) = d°().
This holds since x — y in d” (M) implies that = — y is in ker d°, since the top row of
the original diagram is exact. So d’(z — y) = 0J which is d°(z) = d°(y), so we are

done.

III. d° preserves the operation of summation.

dO(z/d* (M) + y/d* (M) =

Now since I! is injective, we can extend i® o f0 to f!: E* — I', where
flod =i fo. (E.2)

Let us verify that the second square of diagram (E.1) commutes. Let z be in E°.

Then

flod(z) = f'od(z/d*(M)), by the definition of d°;
=i 0 fO(z/d*(M)), by (E.2);

=1%o f9(z), by the definition of f0.

We can repeat this procedure to get maps {f"} such that every square commutes.
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Lemma E.2 Let {f™} and {g™} be two such maps of our injective resolutions. Then

there exists {h™ : E™ — I"~'} such that
ff=g"=i""toh"+ A" od" (E.3)

for all n > —1. See the following diagram:

The maps {f™} and {g"} are then called homotopic.

Proof. Let h#* : M — 0 and A° : E° — M’ be the zero maps. Then for n = —1,
the right hand side of (E.3) is i 20 h™! + h® o d~!, where 172 : 0 — M', h~! = h#,
and d~! = d#. So we have 0o h#* + h® o d# = 0+ 0 = 0. For n = —1, the left hand
side of (E.3) is f~! —g7! = ¢ — ¢ = 0. So equation (E.3) is satisfied for n = —1.
Now for n = 0, consider the diagram
70

-

0 — E°/d#*(M) —— E",
do

In order to show that fNO— gNO : E® — I is a map we prove that if satisfies the following

three properties:

I. f0— ¢0 takes zero to zero. We need to show that (fO - J’)(x/d#(M)) = 0 for
z in d#(M).
(JO = g)(@/d* (M) = f°(x) - ¢ ();
= f%od¥(a) — ¢° o d¥(a), for some a in M;
= i" o p(a) — i o p(a), since the diagram commutes;

=0.
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IL. f0— g0 is well defined. Let z/d*(M) = y/d#(M). Then x — y is in d¥(M).
We need to show that (f — ¢0)(z/d#(M)) = (fO — ¢9)(y/d#(M)), which is to show
that (f° — ¢%)(z) = (f° — ¢°)(y). So we just need to show that (f°— ¢°)(z —y) = 0.
This is true because x — y is in d* (M), and in part (I.) we saw that (f° —¢°)(u) =0
for u in d#(M).

III1. fo — gNO preserves the operation of summation.

(f0 = ") (@/d* (M) + y/d* (M) = (O = ¢°)((z + y)/d¥ (M));
= ("= ")z +y);
= (=) =)+ (f° = ¢")(v);
= (fO = ¢O)(w/d*(M)) + (FO — ¢°)(y/d* (M)).

Since I° is injective, we can extend f° — ¢° to h! : E' — I°, where h' o d® = f0 — ¢,
For n = 0, the right hand side of (E.3) for z in E° is
(i"to A’ + At o d®)(x) = (i o B + h' 0 d°)(z);
= h' o d’(x), since h° = 0;
=h'o &Y)(x/d#(M)), by the definition of d°;
= (J° ~ ¢")(/d* (0));
= fO(w/d*(M)) — g%(x/d*(M));
= f'(z) — ¢°(a);
= the left hand side of (E.3).

So equation (E.3) is satisfied for n = 0.

Suppose equation (E.3) is satisfied for n, i.e. we have
fn _ gn — ,L-n—l o h" + hn—l—l o dm™. (E4)
We will show that equation (E.3) is true for n + 1. Consider the map

frotl _gntl _n g el ety prt (E.5)
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Let us see that for z in d"(E™) C E™, (f*t! — gntl — " o 47F1)(2) = 0.

(fn—|—1_gn+1 —i"o hn+1)($)

= (f"* — g™t —i" o ") (d"(e)), since z is in "(E™);
= (f"" = g")(d"(e) —i" o k") 0 d™(e);
= (f" =g"(d"(e)) =" (f" — g" ="t o h")(e), by (E.4);
= (f" = g"™)(d"(e)) =" (f* — g")(e), since i" 0 "' = 0;
= " od(e) — g"" o d"(e) —i" o f"(e) + 14" 0 g"(e);
= (f"tod(e) —i" o f"(e)) + (i" 0 g"(e) — g" Tt 0 d"(e));
0

+ 0, since the diagram commutes.

Now consider the diagram

In+1

fn+1,gn/4_—\1_:inohn+l]\
0 y En+1/dn (En) — s En+2’
dn+1

N

where fntl — gntl —4n o hntl takes x/d"(E™) to (f** — g™t —i" o h"1)(x). Let us

verify that frtl — gntl — 4n o b7t is a map, by showing that it satisfies the following

three properties:

I. frtl — gntl —jn o 47t takes zero to zero. We already saw above that it does.

II. frtl —gntl —no hnt! is well defined. Let z/d"(E™) = y/d"(E™). Then
x —y is in d"(E™). We need to show that fn+l — gntl —no hntl(z/d"(E™)) =
frtl — gntl —qn o pntl(y/d™(E™)), which is to show that (f"F!1—g"+t—imoh™*1)(z) =
(frtt — g™+t — " o ") (y). But this holds by the above argument because (f"*! —

gvtt —i" o A (z — y) = 0 since x — y is in d"(E™).

III. fnt+l — gntl —4n o hntl preserves the operation of summation. It does

this because it is the difference and composition of maps with this property.
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So we obtain h"*2 : E™2 — ["+1 quch that h**2odn+l = frtl — gntl —gn o pntl,
So for n + 1, the right hand side of (E.3) for z in E"*! is
(i"oh™ 4 B o grt)
= i" o () + ™2 o dvHi(z/d"(E™)), by the definition of dnt;
= " o W (@) 4 [ = g =i o b (afd (E7));
— o B (z) + (7T — g™ — i o BT (2);
= (1 ) )
= the left hand side of (E.3).

Lemma E.3 Let {f"} and {g™} be homotopic. Then H(f") = H(g™) on H"(E) for

all n.

Proof We want to show that H(f") = H(¢"): H"(E) — H"(I), which is H(f") =
H(g"):kerd"/imd" ' — kers"/im¢" '. Let x/imd" ! be in ker d"/imd" . Then
(H(f") = H(g"))(x/imd"™") = H(f")(z/imd"™") — H(¢g")(z/imd"™");

= f*(@)/imd" ™" — g"(z)/im i

= (f" = g")(@)/im"

= ("o h™ + A" od")(z)/imi" ",

by the homotopy condition;
= (" Yo h™(z))/ims™ !, since z is in ker d";
=0, since "~ (h"(x)) is in ims""'. W

Lemma E.4 R"F(M) is independent of the choice of injective resolution of M.

Proof Let E and I be two injective resolutions of M. Consider the following dia-

gram
d# d° d! d?
0 — M y E° y BT y B2 —
lMi
0 —— M y 0 y 1 y [2 —— ...
i# i0 il i2
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By Lemma E.1, there exist maps {f™ : E™ — I"} that fit in with 1, to make the
diagram commute. Apply the functor F' to obtain {Ff" : FE®™ — FI"} and the
induced maps {H(Ff") : H"(FE) — H"(FI)}. We only need to show that each

map H(F f™) is an isomorphism. Consider the diagram

.# .0 .1 .2
o — M "5 1% s+ g2 3
lMl
0 —— M s RO s El y B2 —— ...
d# do dl d?

Again by Lemma E.1, there exists maps {¢" : I" — E™} that fit in with 1;; to make
the diagram commute. Consider the composites {g™o f™ : E" — E"} and the identity
maps {Id" : E™ — E™}. Both these sets of maps fit in the following diagram, making

1t commute:

0 — M y E° y B! y B2 —
a# o i &
1MJ
0 — M y EO° y Bl y B2 — ...
a# o i &2

Lemma E.2 says that {¢" o f"} and {Id"} satisfy the homotopy condition. Then
Lemma E.3 says that H(¢" o f*) = H(Id") : H(E™) — H(E") for all n. So H(g") o
H(f™) = the identity map on H(E™). Similary, we can get H(f") o H(¢g") = the
identity map on H(I™). So H(f") is an isomorphism, and hence H(Ff") is an
isomorphism from H"(FE) to H*(FI). N
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