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STABLE AND LABILE BASE CHANGE FOR U(2)

YUVAL Z. FLICKER

Let E/F be a quadratic extension of local or global fields of characteristic 0,
and A, A the rings of adeles of E, F in the latter case. Denote by a bar or 6 the
nontrivial element of the galois group Gal(E/F), and let G be the quasi-split
form of GL(2) defined by the twisted galois action of Gal(F/F) (F is an
algebraic closure of F) given by 7( g) = 7(g) if the restriction of 7 (in Gal(F / F ))
to E is trivial, and 7(g) = w'F(g)~'w ™' if 7 restricts to & on E. Here w = (_!

‘g denotes the transpose of g, and 7 acts by mapping the matrix g = ( g )

(1< <2) in GLQ,F) (g, in F) to the matrix 'r(g)—(T(g,J)) Then
G(E) = GL(2 E) and G(F) is the subgroup of o-invariant g in G(E), where
o(g)=wg w L

If “upstairs” and “downstairs” refer to objects defined over £ and F, the
purpose of this work is to lift (L-packets {7} of) admissible (locaily)} and
automorphic (globally) representations = downstairs, to such representations 7t
upstairs. The image consists of o-invariant 7%, those with rf~o% where
r%(g) = w%(0(g)). Only one-half of the o-invariant #© are obtained by this
lifting, in contrast with the base change theory of GL(n) [1,4], where all
g-invariant 7 £ are obtained. More precisely, there are two distinct liftings X and X,
which inject the set of one-dimensional or discrete series L-packets {m} downstairs
into the set of w%; the images of A and \, are disjoint and their union exhausts the
set of o-invariant representations m* upstairs which are one-dimensional, discrete
series or for which °n® is equivalent, but not equal, to m* (globally and locally).
The central character of a ¢-invariant irreducible one-dimensional or discrete
series local (or global) representation 7% is trival on F* (or the group A™ of
idéles of F), not only on NE ™ (or E * NA}).

To explain these results by means of the Langlands funcioriality principle
denote by G’ the group Resg, -G obtained from G by restricting scalars from E
to F (thus G'(F) ~ G(F)), and recall that the L-groups of G and G’ are

'G=GLR,C)X Wg/p, "G'=(GL(2,C)x GL(2,C)) X W p;

the Weil group Wy r (of (z,7),z in E* or the idéle class group E “\Ag,7 in
Gal(E/ F)) acts through Gal(E/ F) by

o(g)=wg W, o((gg)=(0(g)o(g) (& g inGL2C)).
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692 YUVAL Z. FLICKER

A key role will be played by two distinct embeddings A and A, of “G in Lg’
extending the diagonal embedding of GL(2,C) X 1 in “G’, mapping each w in
W r to g(w) X w in “G’. They are defined by

ANigXzXr(g, g)XzXn1
and
AligXzX frl—)(g:c(z), gx(z)ﬁ(f)) Xz X T,

where 8(r) is 1 if r=1 and —1 if =0, and « is a unitary character of
EX/NE* or A} /E*NAJ, whose restriction to F* or A* is nontrivial. N is the
norm from E toF.

The homomorphisms A and A, induce the two liftings mentioned above, The
liftings are defined in §5, and studied in §7 by means of an identity of trace
formulae §6. These formulae are similar to those of [3,4] and given in §§1, 3. For
the comparison the twisted formula is stabilized by means of the local
calculations of §2. The comparison is based on a standard statement concerning
matching orbital integrals (§5); the techniques of [4], §§5,6, have been applied to
establish statements more difficult than the one of Lemma 5.2 and little will be
gained by recording a proof here.

In addition to proving character relations and describing the image of the
stable and labile liftings A and A,, this work establishes the multiplicity-one
theorem for the unitary group G(F), as well as its “strong form”, * results related
to G(F) alone. This study of base change for U(2) is on the one hand
introductory and on the other preparatory for the study of this problem for U(3).
Although some partial results concerning the latter problem can easily be
obtained, a formulation of a full solution [1a] requires the results of §7.

The phenomenon of splitting the o-invariant representations into two halves
already occurs in the case of U(1), and is easy to describe. Here G(E) is E ™,
G(Ay) is the group A} of ideles of E, o acts by mapping a to a-', G(F)=E'
and G(A) = AL, where E' and A} are the subgroups of E* and A} consisting of
the @ whose norm 4@ is 1. An irreducible admissible, or automorphic, g-invariant
representation of G(E) or G(Ap) is a character x® of EX/NE™, or
A% /E* NAX. Its restriction to F >, or A, is of order two. If x * is trivial on F*,
or A%, then there exists a character x of E', or AL, with x(a/@) = x%(a); x is
said to lift to x© through A. Otherwise there exists such x with x(a/a) = x*(a)
k(a) for the fixed character , and x lifts through A, to x .

This lifting is reflected by an identity of trace formulae. If ¢ = ®¢, is a
function on G(A.) whose components ¢, (indexed by all places v if F) are
smooth and compactly supported, then in the standard notations the twisted

*Note how unfortunate the name “strong multiplicity one theorem” is: it neither implies nor is
implied by “multiplicity one theorem”. A name such as “(almost-all) rigidity theorem” could have
been much better.
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trace formula for G(E) is given by

TFg p\(¢ X 6) = o(gva(g ™ 1))d
G(E)( ) YEG(E)L(E)\G(AE) (gy (g )) &
= 3 f o= SIENAL [, 900)

ENA! d
> | el NEX\NAE‘?(’C)’) y

xXEE*

ENALI [ 000 &
xEFX\Ex

S FIENALZ ) [ o(o)e(y)d

xEF*\E™

the inner sum is taken over the set {1,k} of two characters. Put
/B = [ o) dn [/ F) = 1 (x) ()R ()

for x in E, for all places v of F, and set f= ®f,, f, = ®f,,. Choosing the
global measure dy =2 ® dy, on A* we have

= 2 [ENALf)+ 3 |ENALIf(#) = TFop(f) + TFor(f)-

ue G(F) e G(F)

This equality also follows from the global relations tr x £(¢ X ) = tr x( f) and
trx 5(o X 0) = trx(f)) if x> xF through A, or through A,, which is easy to prove
if a product measure is taken on A} .

1. The trace formula. The group G(F) is essentially one of the groups of [3],
and this section will summarize the results of [3] needed below. Let S(F) be the

~group of g in GL(2, F) whose determinant lies in NE *, where F is local or global

and N denotes the norm from E to F. Denote by Z the centre of G: thus
Z(E)y~E™ and Z(F)~E'. Then G(F)Z(E)= S(F)Z(E) since each g in
G(F) can be written as

g=(a 0 )s=(ﬁ 0)”(45 O)S (sin SL(2,F), ain E*).
0 a! 0 a 0 1

Writing g = as, g’ = as’ for g, g’ in G(F), a in E*, s5,s' in S(F), it is clear that g
and g’ are (stably) conjugate if and only if s and s’ are; moreover, if g and g’ are
(stably) conjugate then they have equal determinants (in E') and there is some a
in £ so that g = as, g = as’ (5,5’ in S(F)); recall that here stable conjugacy is
conjugacy in G(F).
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For each torus T(F) of G(F) there exists a torus T¢(F) of S(F) with
T(F)Z(E)= T¢(F)Z(E), and for each T (F) there is T(F) with this property.
It now follows from the results of [3], p. 729 (1. 2), concerning S(F), that

LemMa 1. If T(F) splits over E then either it is stably conjugate hence
conjugate to the diagonal subgroup A(F), or the conjugacy classes within its stable
conjugacy class are parametrized by F X | NE*. The stable conjugacy classes of the
T(F) which do not split over E are parametrized by the set of quadratic extensions
of F other than E. Each such stable class consists of a single conjugacy class.

A set of representatives H,(F) for the conjugacy classes within the nontrivial
stable conjugacy class of tori which split over E is given by GO 'H(F Yo O (uin
F*/NE™), where i is a fixed element of EX withi+i=0,

H(F)={y=h*‘(g 2)h=(ﬁ“/i if);a,binE‘},
and
a=1(a+b), B=i(a—b), h=(i :l) (withho(h*‘)=2i((l’ (1)))

The H, (F) are nonconjugate for distinct u in £ modulo NE * since if

(1 0)“Y(1 2):671]/8 (8 in G(F)),

0 u 0
then 8(} %)~ lies in the centralizer H(E) of y in G(E), hence §="h""GDh( 0
for some a,b in E %, and from § = ¢(§) it follows that u = (ad@)~ ' = (bb)” ' lies in

NE ™.

If the splitting field L of T(F) has galois group (3> ® {7y, where & restricts to
o on E and 52 = 72 = 1, then T(F) is isomorphic to the subgroup of L* X L™
consisting of (&, da ') with ga = 7a ~'. Gal(L/F) acts on T(L) = L* X L* by
g(a,b)=(ab~",6a"") and 7(a,b)=(7b,7a). For &2 we shall find the first
cohomology group H'(F,T) = H (Gal(L/ F), T(L)). Hence we have to find all
g2(@) = (x, y), g(7) = (a, B) in T(L) with: (1) 1= g(a°) = 5(g(8)g(d) so that
g(5) = (x,3(x)). Siftce z6(z)”" = (ad(b), b5 (a)) for z = (a,b) we may assume that
g(@)y=1 up to coboundaries; (2) 1= g(7*) = 7(g(7))g(7) so ‘hat g™ = (a,
F(a)'); (3) g(a7) = g(75) implies that 5(g(7)) = g(7), hence a = 57(a), and a
lies in L, the fixed field of &7. But g(7) may be changed by a coboundary
7z~ ") = (a7(b "), b7(a™ ")) if z=(a,5(a”") so that z6(z"")=1 and the
relation g(&) = 1 will not be changed. It follows that o lies in L /N, L™, and
this last group is isomorphic to H '(F,T).

Several remarks have to be made before the trace formula is introduced. Let F
be local. If y and y’ are stably conjugate elements of G(F) then there exists g in
G(F) (F is the algebraic closure of F) with vy = g 'yg. The isomorphism




STABLE AND LABILE BASE CHANGE FOR U/(2) 695

h+> g~ 'hg from the centralizer G, of y in G to G, will be used to transport
invariant forms of highest degree from G, to G, and hence Haar measures from
G,(F) to G.(F).

Let f be a smooth function on G(F) compactly supported modulo the centre
Z(F) which transforms under Z(F) by a character w ™' of E. For any y in G(F)
put

b (y)= “lyo)dg;
A7) fG - /G(F)f(g vg) dg

implicit is a choice of invariant forms of highest degree on G, and G. Let v be
regular, write T = G,, and define

D7 () = PF°(7) = T(y)

unless the torus T(F) is stably conjugate to H(F).
If y lies in a compact torus which splits over E then its stable class contains v,
in H(F) and vy, in H (F) for a fixed u in F — NE. Put

7 (v) = D(v1) + Po(v.)

and

OF"(v) = Ak B)®(v1) + Ak ( Bu)BLv,),

where A is the constant A(E/ F,y) of [3], p. 730, 1. 3. As the notation indicates
both expressions depend only on the stable class of y, and not on the choice of
¥y, u or v,. ®'2® depends on k, and 8 was defined together with H# (F).

The trace formula can now be introduced. Then E/ F is a quadratic extension
of number fields, w is a unitary character of E'\AL, L%w) is the space of
functions Y on G(F)\G(A) which transform under Z(A) (=~AL) by w and are
square-integrable on Z(A)G(F)\G(A), r denotes the restriction to the discrete
spectrum L, of L*w) of the right regular representation of G(A) (by
r(g(h) = Y(hg)). Let f= ®f, be a function on G(A) such that (1) f, are smooth
if v is archimedean, locally constant if v is p-adic, compactly supported on G(F,)
modulo Z(F,), transform under the centre Z(F,) by the component w, ! of ™'
at v, (2) for almost all p-adic v each f, is equal to the function f° which obtains
the value 0 at g unless g = zk (z in Z(F,), k in the standard maximal compact
subgroup K, of G(F,)), when it is the quotient of w,(z)”"' by the volume |K|
of K, .

The convolution operator r(f) on L, defined by

W) = [ (8 dg

is of trace class; an explicit expression for trr( f) was essentially given in [3].
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PROPOSITION 2. The trace formula TF(f) for tr r(f) is the sum of
(M IZ(A)G(F)\G(ANI;IJZU)’

(2) {% €(T)lz(f“‘)T(F)\T(A)IEy' 127

-2 Hg S 1)

4) %Ll;glaal‘/lﬁtﬂ((v(é ’;))logll(l—(05)'1,")|Id"WLIDF(Y’fw)a

(5) D) OGO LS

ORESEIID [ e Ry Ry T £} 11 T o)

0 S IRLIOUCH)

® Nz@HENHEIS T @)

) Lrawll %i—;fpfk(((l) ‘{))Kv(a)da.

Explanation of notations. Volumes of groups are denoted by | . . . |. The first

sum in (2) is taken over a set of representatives T(F) for the stable conjugacy
classes of compact tori in G(F); (T) is § unless T splits over E where €(T) = ;
the sum over vy is taken over all regular elements in T(F). L(s,1,) is the local
factor of the Hecke—Tate L-function L(s,1), A, is the constant term in the
Laurent expansion of L(s,1)ats =1, and A _, is the residue. ff(g) = ffv(k’lgk)
dk (k in K,) in (3), (9) and (4). The sum over ¥y in (4) is taken over all v in the
diagonal subgroup 4 (F) of G(F), modulo Z(F).

The term (4) does not appear in the standard form; the term (5.3) of [3], p. 753,
has been rewritten here in the style of [1], to afford an application of the
summation formula. If v is regular with eigenvalues v,,v, put

A =l — v ymlE F(n ) =A%)

F(y, f,) extends to a smooth function on A(F) whose value at y =1 is the local
factor in the product of (3). Given g in G it can be written according to the
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decomposition G = NAK (N is the unipotent radical of the upper triangular
Borel subgroup B = NA of G) as

1 0 _
g=(0 ’11)(3 a-l)k; put H(g) = loglaaly, = logla| .

The term (4) normally appears in the form
1 'Ky —1
- = n~'yn)H (wn)dn
2 Jon o 150 Ty H o)

- %LEY'fK(n”vn)Ev)logll(l,X)lladx (”= ((1) )lc))

where ||(a,b)||, is the maximum of |a|,,|b|, in the p-adic case, and the square
root of a@ + bb in the archimedean case. The sum over vy is taken over the regular
vy in Z(FN\A(F).

Let v, be a fixed place. If all components f, of f for v # v, are fixed, then the y
are taken in a fixed finite set depending on the compact support of f, for all
v #* vy. The sum over y taken in front of the integral, log||(1,x)||, may be
replaced (for all v) by

logl|((1 — 1/a@),(1 — 1/aa@)x)||, if y=(g 501)=

since 1 — 1/ad lies in F*. Each summand in the sum over ¥y is equal to

%)\—IEDDA (Y’ fD)WI;-r&IuF(Y’ fw)’
where

A1 £,) = 8,0 [ fE (™ ym)logli((1 = 1/ ). (1 = 1/a@)x)l, dx,

because of the difference between the Tamagawa and product measures. As
A, (y)=|aa|)/*|1 — 1/aal,, a standard change of variable shows that A(y, JARE
the weighted orbital integral in (4).

Although nonsmooth the compactly supported function 4(y, f,) of y extends
continuously to y = 1; its asymptotic behavior ([1], 2.7.1) is of the type discussed
in [1], Lemma 2.8, in the p-adic case. The summation formula can therefore be
applied to the global function of (4). Note that the sum over v in (4) is taken only
over a finite set independent of v, since for almost all v we have |1 — 1/aa|, = 1
for any of the y in the finite set; if in addition f, = f° then A (y, £2) = 0. The limit
of A(y, f)yaty=1is

AL f,) =fF.va(n)log|x|dx.
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A standard calculation shows that the term of [3}, (5.11), indexed by k =1, is
given by

INB(1) + 3N _,8°(1).

where
0(5) = T10.(5) eu(s)%((—ij% [ va"(((l) “) el da

This explains the inclusion of the limit at y=1 in the sum of (4), and the
appearance of the (finite) sum over v of L'(1,1,)/L(1,1,) in (3).

For the terms (5), (6), (7), let I(n) be the representation of G(A) induced from
the character 5 of B(A) (B = AN) which obtains the value p(a) at (§ ;%). Here u
s a character of E*\AX. The family of such p is a one-dimensional analytic
manifold with infinitely many connected components; if gy is a unitary character
then any p in the connected component of p, can be expressed in the form
p(a) = po(a)lal’ (s n C), and differentiation is defined with respect to s. Recall
that M(n) = m(n) ® R(n,) [3}. For (5), (6) note that the p, are taken over a set of
representatives for the connected components of the manifold of p, their
restriction to the centre is , and the local components o, are unramified
whenever f, is spherical. The sum over v in (6) is finite since when 7, 1s
unramified the operator R(7,) is a scalar and its derivative R’(n,) is 0. A misprint
of [3] (5.6) is corrected in (9.

The sum of (7) is taken over the 7 for which wny (defined by wn(a)
= n(waw ")) is equal to n; equivalently: p(a) = p(@ '), and sopisa character
of EXNAX\AF. If p is trivial on A* there exists a character » of A such that
p(a) = v(a/a). The representation I{n) = I(»,») is irreducible, the operator
M(n) is a scalar, its value is —1 (evaluated as a limit). If the restriction of p
to A% is of order exactly 2 then L1z, u™ = L(1p, 1) and m(n)=1, M(n) =
® R(n,)-

The sum of (8) is over the regular y in Z(F)\H(F), and fH(y) is the smooth
compactly supported (modulo centre) function Au(y)tl)'fffb(y) ([3], Lemma 2.1). In
(9)  is the restriction to A™ of our carlier character k of A /E” NAj, and the
L-functions are defined with respect to F. Recall that (9) is the term of 8)
indexed by v = 1 ([3], p. 761), hence the term (9), and the prime in the sum of (8),
will be erased.

A key role will be played by the stable trace formula STF(f), defined to be

(10) STE(f) = TF(f) + 4 SURMI(n.f)

- LiHEZANHAIS T )

The sum over the 7 is taken over all p:AZ/E™ NA} - C* whose restriction to
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A is nontrivial; y ranges over Z(F)\H(F). This is the same as (1)—(6) and the
subsum over p trivial on A* in (7), of Proposition 2. Applying the summation
formula to the smooth function y — [] f”(y) of H(A), and the pair Z(F)\H(F),
Z(A)\H(A), the last term in STF( f) can be expressed as

- Suo ("),

where 6 ranges over all characters of H(F)\H(A) which transform under Z(A)
by wr .

Extend w to a character & of Z(A;), and recall that « is a character of this
group. Then each # extends to a character of H,(A)Z(A;) which transforms
under Z(A;) by &k~ '. Passing to local notations, the restriction of the local
component § to the intersection H (F) of S(F) and H, (F)Z(E) defines [3] a set
{m*(8), 77 (8)} of one or two irreducible representations of S(F) such that for

regular y
A+ 0)(Y) = Xa=(0r(¥)) = A uB)(B(v) + O(w ™~ 'yw)) or 0,

depending on whether the conjugacy class of y intersects H/(F) (uin F*/NE ™)
or not; w is a nontrivial element in the absolute Weyl group of H.. This
statement is equivalent to the identity

trd(f"y=tun* (8, fy—-ux (6, f),

by means of the Weyl integration formula. Extending 7,7~ to S(F)Z(E) and
restricting to G(F), both formulae remain valid, relating the character 8 of H(F)
to the irreducible representations = * (8),7 ~ (8) of G(F) so obtained.

If v splits in E then the set {7 *,7 } consists of a single representation = *.
When v does not split in £ both #* and #~ exist. If § does not split through the
determinant then #*, 7~ are supercuspical. Otherwise there exists a character v
~of E' so that #(g) = »(det g) (g in H,(F)), and hence a character

n(“ 0 )=V(a/5)lc(a) (ain EX)
0 a!

of A(F). The character %', where 75'(% Ol) =&(@m@E L), is of the type
considered at [3], Lemma 3.6; hence

trR(m)I(m, f)y=tra* (6, f)—trm ™ (0, f),

as representations of S(F), and therefore also of G(F). If E,/F, is unramified
then 7~ is not unramified; if f is spherical then trz— (f) = 0.

Returning to (10), the sum over 7 is cancelled by the sum over the # which
split through the determinant. The coefficient 1 can be replaced by 1 if the sum
over the remaining § is taken over equivalence classes of characters § of H(A)
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which do not split through the determinant, instead of over distinct 4, as before.
As in [3], let P(8) be the set of representations ®, of G(A), where =, is either
=} (8,) or m, (8,) for all v, and it is the unramified 7.5 (8,) for almost all v. Put
e(m) = [1&,(7,), where ¢,(m,) is 1 if w, is m," and —1if #, isw, . Then

STE(f) = Sm(muer(f) = 3 2 e

where the first sum is taken over the set of equivalence classes of discrete series
representations 7 of G (A); the second over all equivalence classes of characters
of H(F)\H(A) which transform under Z(A) by wk ! and do not split through
the determinant; the last sum is over all 7 in P(®).

Finally, an L-packet {m} of irreducible admissible representations of G(F,)
can be introduced as in [3] to be an equivalence class under the action of
GL(2, F,) on the set of representations of G(F,); the action is given by g: 7 =57,
where 37 (h) = w(g“hg). If v splits in E then G(F)= GL(2,F,) and any
L-packet consists of a single equivalence class of representations of G(F,).
Otherwise [3] an L-packet consists of one or two equivalence classes of
representations of G(F,). An L-packet consists of two classes if and only if it is
of the form {#* (8),m~ (#)} for some 6.

2. Twisted stable conjugacy. Analogous discussion has to be carried out over
the quadratic field extension E. Consider first any cyclic extension E C F of
degree [ over F, and fix a generator o of Gal(E/F). Let G be a reductive group
defined over F and denote by G” the product of G with itself ! times, regarded as
a group over F.

Let a be the automorphism

o (X Xy e s X)) (XX - e s Xr-1)
of G”(F) over F, and let Gal(F/F )_act on G”(F) through the action of
Gal(E/F) by 0" - x = a’(x) (x in G”(F), 0 < r < ). This action of Gal(F/F)

defines an element of H'(F,AutG"), and hence a group G’ = Resp G over F.
G'(F) is realized as a product of I factors of G(F) with the action

T((XI,X2, PO x,)) = Ot_r((Txl,'sz, e Txl))
(7 in Gal(F/F), 1|z = ¢"). Then G(E) is the product of / copies of G(E) and
G'(F)= {8 = (x,o*'x,o_zx, oo, 0 U ey xin G(E)}.

G(F) embeds in G'(F) via the diagonal map.

Definition 1. The elements 8,8, of G'(F) are twisted conjugate if 6,
= g7 '8,a(g) for some g in G’(F), and they are stably twisted conjugate if
8, = g '8,a(g) for some g in G'(F).
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For any 8 in G'(F) and x in G(E) put
N8 =8a(8)a’(8)...a'"}(8), N'x=xo(x)0%(x)...ao""1(x).
In our case / = 2 and we shall verify directly the following:

LemMMmA 2. The map N’ induces a bijection (“norm map Ny from the set of
stable twisted conjugacy classes of g in G(E) (= G'(F)) with regular N'g to the set
of stable conjugacy classes of regular elements in G(F).

Proof. Since g lies in G(E) the determinant z of go(g) liesin E', and go(g) is
equal to h~'(5 90k for some A in G(L) where L= E(c) is either E or a
quadratic extension of E (since go(g) lies in G(E)). We have to show that the
stable conjugacy class of go(g) intersects G(F). The lemma is easy to establish
for ¢ in E* since then c lies in E' or z = ¢ /&.

Suppose L is quadratic over E, and ¢, is an embedding of L in F whose
restriction to E is bar. Then

zo,c

—-1fc O - . 0
g h (0 Z/C)hg=g 89(8)g = o(go(g)) = oi(h) (O 01C_l)ol(h)

implies that (1) ca,c = 1 or (2) a,c = Zc. In both cases 6, stabilizes L, hence L/ F
can be seen to be galois. Let 7, denote an element of order 2 in Gal(L/ F) whose
restriction to E is trivial. Since 6%c = ¢ in both (1) and (2), L/ F is biquadratic.
The identity

T 0

-1 0 = = = B
h (8 z/c)h—go(g)'Tl(go(g))_Tl(h )(0 Z/T‘C)Tl(h)

implies that r,c = z/c; otherwise ¢ = r,c and ¢ lies in E*, contradicting the
assumption that L #= E.
In case (2) it remains to find 4 in GL(2, L) such that

0 c 0 ¢ 0
PR — -1 _ -1 7
(0 alc*‘)h 7’(” (0 olcl)h) mih )(o Tlolc“)“(h)’

that is
N N (r(h)h ") = o™ 0
! 0 o, ! 0 ¢/
and such that

ol(h)h“‘((c) 613_,)(01@ )h*‘)”'=(c 0 1).

0 o
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h a ma 2 41 g2
= a = o0.d a T4 .
a al) L 1

In case (1) we have to find A in GL(2, L) with

7,(h)h—*(8 T?C)(T,(h)h—x)—l=(7(.)c 0)

T,C
= o (h)h~ ‘(8 T(l’c)(o;(h)h—l)“‘.

Itis given by h=(; ) withj= —7j,i=—aiin L>.

It follows that go(g) is conjugate in G(L) to an element of G(F). The stable
conjugacy class of ga( g) in G(F) is uniquely determined by its eigenvalues, and
it is easy to check (see below) that each stable conjugacy class of G(F) is
obtained (this comment is implicit in the statement of Lemma 5.2 (below)). The
proof of [4], Lemma 4.2 (with a replacing o, G'(E ) replacing G(E), and & in
G'(E) on p. 33, l. —5) implies (for v,4 in G'(E)) that N'8, N’y (in G(F)) are
stably conjugate (if and) only if 8 and y are stably twisted conjugate, and the
lemma follows.

To determine the twisted conjugacy classes within the stable twisted conjugacy
class of some 8 in G'(F) with N’8 regular, let g be an element of G'(F) so that

= g~ 'N'8g lies in G(F), and put 7' =Resy, T where T is the Cartan
subgroup of G containing y. If 7~ '8a(h) lies in G'(F) for h in G'(F) then
r(h~W8a(h)) = h~'8a(h) and

(*r(h)h")t‘)‘a(fr(h)h")_l= 8  foranyrin Gal(F/F).

If 8 = g~ '8a(g) then N'8’ = y (in T(F)); hence &’ lies in T’(F) and T(F) is the
group of all x in G'(F) with x8'a(x~")=8". Thus h = g 'r(Wyh g lies in
T(F). But y is in T(F) and both § and Né = g-yg_l are in G'(F); hence fr(g")g
is in T'(F) and the map v — h_is a one-cocycle of Gal(F/F) in T(F). The map
h— {r—>h}) is easily seen to be an injection of the set of twisted conjugacy
classes in the stable twisted conjugacy class of & in G'(F) (with regular N ’8) into
HY\(F,T).

In our case G is the quasi-split unitary group in two variables and / =2. The
groups H'(F,T) are described in §1. We shall need an explicit description of a
set of representatives of the classes in a stable class.

If T splits over E it may be stably conjugate and since H!(F,A)= {1} also
conjugate to the diagonal subgroup A4 of G over F. Otherwise T(F) is stably
conjugate to H, (F) (any u in F™, see §1), and isomorphic to E' X E'. Then
H\F,T)~F*/NE* XF*/NE>. A set of representatives for the twisted
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classes within the stable class of

(Fy=1[{n (@ Oyp p2{a ' O )hl)} a,bin E*
(){( (Ob) (05—1 (#binE")

18 given by

B'T"(Fya(B)  where B=(B,,1), B/ = h"(g O)h,
v
and u,v are taken in F*/NE™ so that 8 lies in T'(E). These tori are clearly
stably twisted conjugate. They are not twisted conjugate. Indeed, if g, is an
element in G(E) such that for all a,b in £ we have

a/u 1 u/a 0
(gl,o(gl))“(hr‘( A ( " /E)hl)a(gmgl))

——1
- (h(‘(g g)hl,h{‘(“ _Ql)hl)
0 b

(u,v in F*), then g, commutes with h[ '(%%,75)h, and hence has the form &'
(% 'k, (s,¢in E£%) and the displayed equality holds only if # = s5, v = # are in
NE ™. We shall use below the fact that modulo Z'(F)~ Z(E) the classes in the
stable class of T(F) are parametrized by F*/NE ™.

It remains to deal with a CSG (Cartan subgroup) T of G which does not split
over E; it splits over a quadratic extension L of E. Adopting the notations of §1,
T’(F) is isomorphic to the group

a 0 ,011-1a‘1 0 ain <\,
0 7a 0 o2’

Take 8= (¢ °),1) with s in LY. Then 8~ 'a( B) is o,-invariant and

0 75

Tf(F)=.3_1T’(F)a([3)=[((aés 0 ),(S/"(;T‘“ 0 ));aian}

ma/ s 6,5/0,a

is stably twisted conjugate but not conjugate to T'(F) if s lies in Lg® but not in
Ny, L*. Indeed if B lies in T'(F) then B~ 'a(B)= ("5, ) (...)) with
b=aemiain N, , L.

Finally, the norm map can be extended to all stable twisted conjugacy classes
in G'(F). If x is in G(E) and xo(x) is unipotent regular in Z(E)\G(E) (and
hence the conjugacy class in Z(F)\G(F) of xa(x) intersects Z(F)\G(F)), we say
that Nx is in the stable conjugacy class of unipotent regular elements in
Z(F)\G(F). If n = xo(x) is unipotent regular in Z(F)\G(F) then x commutes
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with a(x) and hence with n, thus it is a product of z in . Z(E) and a unipotent
regular element; it follows that x lies in the unique stable twisted conjugacy class
of unipotent regular elements in Z(EN G(E). The conjugacy classes in the stable
conjugacy class of unipotent regular elements in G(F) are parametrized by
F*/Ng,rE”. However there is only one twisted conjugacy class in Z(E)N G(E)
of x such that Nx is unipotent regular in Z(F)\G(F).

If 8 lies in G(E) and z = §0(8) is in Z(E) (hence in Z(F)) write Né = z. But
z=24a/aforsomeain E * hence N(ad) =1 and the question of the description
of the stable twisted conjugacy class of 8 in G(E) with scalar norm reduces to
that of the & with N6 = 1. A § is twisted stably conjugate to 1 if there exists
g=1(g» g) in G'(E) with (8,0(8)) = ga(g = (gzgl‘l, gzgl_l), namely if
o(8) =6 . Tt is twisted conjugate to 1if 6= go(g'l) with g in G(E). Hence the
classes within a stable class here are parametrized by H (F, G). The determinant,
from G(F) to E', induces an exact sequence

(0y > SL(2,F)—>G(F)~> E'—> {0}
and hence
H'(F,SL(2))~> H'(F.G)~> H'(F,U(1)),

where U(1,E)= GL(1,E) and U(l,F)= E !. The group on the left is trivial, and
that on the right is F*/NE ™.

A set of representatives for the twisted conjugacy classes within the stable
conjugacy class of 1 is given by

= (:E' —oif)’

where f ranges over a set of representatives in F° % for F*/NE™; i is a fixed
element of E* with i +i=0. Indeed, for any g in G(E), the determinant of
g8fo(g“) lies in fNE™, and the subgroup H\(F,G) of F*/NE™ is the full
group.

The same parametrization can be obtained without mentioning H '(F,G) on
noting that if ¢(8) =8 ~' then

c a

8=(a b) (b+b—=0,c+5=0§a,b’cmE)
and
c/a —1\fa bY/(1 1 _{0 d = hee/ad
( A 1 )(C &)(0 E/&)_(C 0) (d = bec/aa +c),

when ac == 0. If ¢ =0 then 8 is twisted conjugate to 1. Note that §; is twisted
conjugate to 1 if f lies in NE ™.
The above description of conjugacy classes will now be used to introduce the




STABLE AND LABILE BASE CHANGE FOR U(2) 705

twisted orbital integrals. Let F be local and E a quadratic extension of F. If 8
and 8’ are stably conjugate elements of G'(F) then there is g in G'(F) with
8’ = a(g~ ") 8g. The isomorphism 4> g~ 'hg from the a-centralizer G;* of & in
G’ = Res;, G to G5 will be used to transport invariant forms of highest degree
from G;{* to G5* and hence Haar measures from Gz*(F) to Gg(F). If y = NS
then G3* is isomorphic to G, and Haar measures are again related by means of
this isomorphism (this last comment will be used in the comparison of §§5, 6).

Let ¢ be a smooth compactly supported function on G'(F)~ G(E). For any §
in G'(F)=~ G(E) put

= -1
®,(8) f(;éa(F)\G, (F)qb(a( g~ ')dg)dg

i -1
srcencee, (087 ) %) de:

In the first integral expression § is viewed as an element of G'(F), while in the
second as an element of G(E), and Gy is the o-centralizer of § in G. We shall
adopt the second expression.

Let § be an element of G'(F)~ G(E) with y = N§ in G(F), and let D(§) be a
set of representatives in G(E) for the twisted conjugacy classes in the stable
twisted conjugacy class of § (in G'(F)). Relating measures as above we set

V(1) =T (8) (8" in D(3)).

It depends only on the stable conjugacy class of y= N§, as the notation
indicates.
Let k be a fixed character of EX/NE* in C* whose restriction to F™ is

nontrival (as in §1). Put

PL0(y) = D k(detd)®,(8")  (8'in D(9)).

Again this depends only on the stable conjugacy class of y = N§, but not on §
itself.

The unstable orbital integrals ®* will be described in more detail for regular
v, using the explicit description of D(8) above. If the centralizer of y is conjugate
to A(F) then D(8) consists of a single element and

D7) = @y(8),  BUV(y) = K(det8)B,(8).

If the eigenvalues of y are a/a, b/b (a,b in E™) then
q)lab(hfl(a/é_'l O-)h) — b _(I) (h—l(a O)h) +& (h—l(au 0 )h)
¢ 0 b/b @) Pl" N0 b ¢ 0 bu

efi (3 Yl ly L)
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here u lies in F but not in NE, and then x(u) = — 1. For all cases note that
k(deta(g™"g) = k(xX) = 1 (x = det g) since « is trivial on NE x,

If the splitting field of the centralizer of vy is the quadratic extension L of E
then

d):fb(y)=lc(aﬁa)((l)¢((g T?a))—cbq,((%s Tl&s)))) (sin Lo— N, p,L)-

Now for tin Ny, L™, ¢yt lies in Ny jpL* C Ng,pE* and k()= 1. On the
other hand N, ,rLg is of index two in F * and distinct from N, -E ™, hence
k(s7,5) = — 1, whence the above description.

Finally, if y = 1 put

D7) = Dy(1) + Dy(d) (8= (i?l —Oif)§fin F* —-NE*,i= —iinEX)

and

B(1) = 0(1) ~ 08) = Te(detd)08)  (fEFT/NE)

The same definitions also hold when ® transforms under Z(E) by the char-
acter w; ' of E™, where wg(x) = w(x/X) (x in £ *Yy and w is a character of E'.

3. Twisted trace formula. In the notations of §2 the centre Z(Ap) of
G(A) = GL(2,Ap) is isomorphic to A% and the norm map N takes z in Z(Ap)
to z/Z in Z(A), the centre of G(A). Let w;; be the character of Z(A) defined by
wz(z) = w(Nz); its restriction to A% is trivial. Denote by L*(w;) the space of
measurable functions ¢ on G(E)\NG(Az) which transform under Z(Ap) by wg
and are square-integrable on Z(A7)G(E)\G(Ag). Under the action of G(Ay) via
r, L¥(w,) splits as a direct sum of two invariant mutually orthogonal subspaces
L, and L_ which are discrete and continuous (respectively) sums of representa-
tions. Both are invariant under the action of .

Let ¢ = ®@¢, be a function on G(A) whose properties are the same as those of
f= ®f. (§1) with E, and w,, replacing F, and w,. The restriction of the operator

= X 0)d
r(¢ X o) Z(AE)\G(AE)¢(g)r(g 0)dg,

where
r(g X o)(hy = ¥(o(h)g),

to the discrete spectrum L, is of trace class. Since G(Ay) is of rank 1 the standard
methods for GL(2) are sufficient for the analysis required in the calculation of
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the twisted trace formula, which describes the trace of the above operator on L.
This formula is a difference between two expressions.

As in the case of U(1) in §0 we choose the global measure dg = 2 ® dg, on
G(A)\G(A;), and the measure which assigns the volume I to each point in a
finite set.

The first expression in the formula is the integral over G(E)Z(A)\G(Ag) of

Se(o(s7 ) -3 3 fN(AE;#(G(Sg)”'vn@g)T(H(Sg)—T)dn

5 yEZ(EWA(E)

(8 in B(E)\G(E)). Here 7 is the characteristic function of the positive real
numbers, T is a large positive number, and H(g)=logla/b| if g=n()k
according to the Iwasawa decomposition of G(Ag). The integral breaks as a sum
of three terms. They are:

(1) ¢(o(g")8g)dg;

&) IZ(AE)GSG(E»G(AE)

the sum is taken over all e-conjugacy classes of elements of Z(E)\G(E) whose
norm is elliptic (including central) in Z(F)\G(F), and G (E) is the o-centralizer
of §in G(E)/Z(E).

(2) f[gqb(o(gl)vg)—f

N(AE)xp(o(g”l)ng) dn T(H(g) — T) dg

(g in N(E)A(F)Z(Ap)\G(A)); the sum is over all » in N(E) such that Nv is
unipotent regular in G(F).

o 35,3, e v

= | #(o(g™)ynmg)dm(H(g)~ T)|dg
N(Ag)

g in B(E)Z(A)\G(Ag), and 7 ranges over the elements of 4(E)/Z(E) whose
norm is regular.

The terms of (1) indexed by the twisted conjugacy classes {§ } with Né in Z(F)
will be taken separately. If 66(8) =z lies in Z(F) then z lies in Z(F) and

=oa(g” ‘)(S‘g (fin FX/NE ) for some g in G(E); the § were defined in §2.
The natural map F*/NE* - FJ /NE permits us to regard §; as an element
of G(E,) for all v and we can express the terms in the part of (1) under
discussion as

D, (8;)=2]]2,(8)
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in the notations of §2, by the choice of the global measure. The product is

absolutely convergent.
Using the embedding ¢ : F*/NE* — A* /NAg we can write our sum

> ®,() as > ®,(5;)-
I fEImy
The last sum is finite. It can be written in the form
1 .
3 qu)¢(8f) +2 %]K(detaf J0,(8,)  (finA"/NAY),

where «, as in §1, is a character of A} /E ™ NAF in C* whose restriction to A*is
nontrivial. Note that the index in AX /NAX of the image of F*/NE™ is 2. In
the notations of §2 our sum can now be written as

TTe5) + [T 080

The remaining 8 in (1) have regular norms, and we assume as we may that N
lies in G(F). The group Gy of g in G" with g~ 18a( g) = 4 is isomorphic over F to
the maximal torus T of G containing N8; T is not (stably) conjugate to A over F.
Choose a representative T in each conjugacy class over F of such tori. The sum
becomes

NZAT(FNT(A) .
{;} 2; [Wo(T)] st“(A)\ G[(A)¢(g ba(£))

The Weyl group W,(T) of T is the quotient by T(F) of the normalizer
N(T(F)) of T(F) in G(F). The Weyl group w(T) will also be used; it is the
quotient by T(F) of the group of g in the normalizer N (T(F)) of T(F)in G(F),
such that ad g is defined over F. If T(F) is any torus of G(F) then [W(T)] = 2.

Let T be a torus of G whose splitting field L is a quadratic extension of E. The
terms from the stable conjugacy class of T over F take the form

Z(AYT(F)\T(A
l ( Evé(jz)]( )I Ea,gq)qs(e_lsa(e))

(8 with regular N§ in Z(F)\T(F)). eis a representative in G'(F) of the elements
in the group H '(F,T)=~ Lg’ /Ny, L™ which parametrizes the twisted conjugacy
classes in the stable twisted class of & (§2).

The natural map Lg‘ /Ny /1. Lo = Lo,/ Ni, 1, L. permits us to regard € as an
element of the local group for all v, and we write

D, (e 'Ba(e)) = fcp(g_]e_'&x(fg)) = ZI;Ifqbv(g"e”lBa(eg))
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(g in G2 5, \G"); the global groups are taken over A and the local over F,. The
absolute convergence of the product of local terms (denoted in §2 by
D, (e '8a(€))) can be proved as in the non-twisted case. The factor 2 appears by
the choice of global measure on G(Aj).

Using the embedding ¢ : Ly /N, ,, L™ > Af /N, ,; Al we may write

Zfl)d,(e_lé‘a(e)) as ee%)¢q)¢(€_16a(€)).

Again, the last sum is finite. We choose the measure which assigns the volume 2
to the space A} /L' N, ,; A of two elements, and recall (§2) thatx’ =x o N, /¢
gives an isomorphism of this group with Z/2Z. In the obvious notations the last
sum can be written as

% Z(I)qb(e_'&x(e)) + % Zn'(e)q)q,(e_'&x(e));

€ ranges over a set of representatives in G'(F) for the classifying group
Ay /N, A . The part of (1) under consideration is the (finite) sum over § with
regular NS in Z(F)\T(F) of the product by [W(T)]™'|Z(A)T(F)\T(A)| of

[195(3) + [I2a°(v)

where y = N§, the local distributions are those of §2 and the dependence on the
component k, of k at v is implicit in ®;°; here we used the fact that « is trivial
on E*.

A similar calculation can be repeated for T = H in the unique stable
conjugacy class of compact tori which split over E. For § with regular N§ in
T(F) the classes in the stable twisted class of 8 are parametrized by
H\F,T)~(F*/NE>), and we take, as usual, the measure which assigns
A>/F*NAZ the volume 2. The contribution from the stable twisted class of H
is the sum over § with regular N8 in H(F) of the product by [W(H)]"'|Z(A)
H(F)\H(A)| of

P

Z Zx’(e)fbd,(e"ﬁa(e));
k' ranges over the group of (4) characters of (A™*/F*NA[), € over a set of

representatives in G'(F) of H'(A, T)/H\(F, T).
In §2 it was shown that

- . _yf[a/u O ufa 0
e (2 S 2

(B=(B,,1), B, =h~'“%h), with u,v in F*/NE*, is a set of representatives
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for the stable twisted conjugates of

o S

which are not twisted conjugate to each other. The function ¢ is assumed to be
transforming under the centre by the character w; of E ™ \AL ; w, is defined by
wy(z) = w(z/Z), and  is a character on E'/Aj. Since wg is trivial on A*, the
sum over € = 3 of x’(e)‘l)qb(e_lya(e)) can be non-zero only if «'(e) =1 for all €
such that the product uv is in NE *. Hence the sum over k' is taken over two
elements only. Noting again that « is trivial on E ™ our sum is

I esm + 5 TIek0 ).
v [5)

where y = N8, the local integrals are as in §2 and fbf;’ub depends on the component
k, of x at v. The factor  is replaced by § by the choice of global measure.

The explicit expression for the twisted trace formula TF(¢ X o) will be
recorded now, in the above notations, and those of the next section, where the
remaining calculations will be done.

PROPOSITION 1. The twisted trace formula TF(¢ X o) is given by

(a) |Z(A)G(F)\G(A)|[ 1;[@3}[(1) + I;Iqﬂ;_b(l)},

b)) I «(DIZMTENTA) X [H@:i(va@:b(v)],
(7, YET(F)Lv v
© -3 S uM@HI(%exo)

L, 1)

(d) (}\O— ; —m)—)gffquf(o(na)‘l(é ‘;)na) dzdnda,

(e) %?\_1 > 2Au(y)ffcbv’((o(an)"6an)log||(u,un)\|El dnda

y(=N§) v

IT F(v.9.),

wFo

O =S m") m(nEYwl(nF,ex o) ds,

47 <

) - ;fjltr{Ru(nf)_lRo(nf)'l(nf,¢v x a)}

47 4

x I tri(n), ¢, X o)ds.
w70
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4. Other twisted terms. The Iwasawa decomposition g = nzak of Z(Ap)\

G(A,) (with nin N(A;), z=(,% and z in A%, a= (3 5) and a in A*\AZ, kin

K(A,)) and the corresponding modular function |az| ., can be used to put (2) of
§3 in the form

[Sf[e(oea(y 1)

- K - di H(z)—-T dndad.
N(AE)¢ (o(nza)™'mnza)dm 7(H(z) )]]az|5 n da dz

(n in N(A\N(AR), $%(g) = [¢(o(k "gk)dk (k in K)). For any a and n put

F(a,n;z)=¢K(o(na)“((l) i)na)la[E (z in A).

Our integral becomes the integral over.a and n of
f [F(a,n;z)|z|F —fF(a,n;m)dm 7(log|z| < — T)}dxz.
AX A

A standard application of the summation formula shows that the constant
term in T of the last integral (over z) is equal to the value at s = 1 of the analytic
part of the integral (which converges for s with Res > 1)

f F(a,n;z)|zd ™ 2.
A)(

The constant term in T of (2) in §3 is therefore equal to the value at s = 1 of the
analytic part of the function L(s, 1)8(s), where 8(s) = [],0,(s) and

0,(s) = %%::—:% fffﬂqbf(o(na)‘l((l) i)na)|z\‘}_‘dz|a|5a'z dn

(n in N(FE)\N(E,), a=(% and a in FS\E). The infinite product is
absolutely convergent and can be differentiated term by term at a small
neighborhood of s = 1.

The value at s = 1 of the analytic part of L(s, 1)8(s) is given by

Af (L) +A_,0°(1).

The derivative of the local factor 8 (s) at s = 1 is equal to

6.(1) =fff¢v’((o(na)"((l) i)na)log|z|Fa’z|a|Eda dn

_%:((Tl”ll_:))fffq)o"(a(na)"((l) i)na)dz1a|5dadn.

It is equal to O if ¢, = ¢, namely for almost all v for any fixed ¢.
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To deal with (3) of §3 note that since Ny = (a/b,b/a) (for n =(a,b)) is
regular, the norm (from E to F) of the scalar a/b is not 1, and nm in the last
inner integral in (3) can be replaced by o(n~Ynmn (n in N(Ap)) so that we have

[z L(AE)¢(0(ng)' tang)(3 —T(H(g) — T))dndg

(g in Z(ALN(AA(ENG(AR). The sum is taken over the n in Z(E)\A(E)
whose norm Nu is regular. The integral over N(A;) can be combined with the in-
tegral over g, and the weight factor can be replaced by 1 of 1 —7(H(g)— T)
— r(H(wg) — T). The integral becomes

1 K -1
1 dad
2ff\’(»f\,s)fzmm(A)A(E)\A(Ag)zwzqb (o(am)™ nan)o () dadr

where
o(n) =LéEX\AE[1 —a(H(Z)~ T)— r(H(WZ)+ H(wn) = T)]d*z
(Z = G ,2)). Explicitly v(n) is equal to
fA};E*\AE[l — 7(loglzz|; — T) — 7(—log|zz| g + H(wn) — T)]dxz,

and since |zz|; = |z|% for any z in A% we obtain T —{ H(wn). Up to a scalar
multiple of T the term (3) of §3 is equal to

- %IE‘\A};I}T; L(Af)fqbK(o(an)'lnan)H(wn)da dn
(ain Z(ADAR)A(ENA(AR)), or
%|E1\A}5|;ffq,K(g(an)—lnan)logn(l,n)HEdnda(n=((1) ’1’))

As usual [1] we note that for any fixed place v, of F the sum over 7 is taken
over a finite set independent of ¢, . Using the product formula on F™ we may
correct (as in [1]) the last expression by replacing the weight factor with
log||(u, un)||, where u =1 — N( B/ a), for each n = (a, B) in our finite sum. This
can be written as a sum over all places v of F of the local terms log||(u, un)|,;
this sum can be taken over a fixed finite set of places v, independent of Doy
simultaneously for all 5 in our finite set. Note that da=2\E)"'®d*a, on
AL\AX ~ Z(ANA(A), that J|ENAE| = L(1,x) and A_, = L(1, KAE,, where AZ,
is the residue of L(s,1;) at s = 1. We obtain JA_, of the finite sum over v, and
the sum over 7, of the products over all w # v of F(1,9,) and

A ) = Av(Nn)ffqbv"(o(na)_'nna)logu(u,un)llEl_ dnda;
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as in §1 we put A (Ny) = |a/E|‘E/DZ|1 - Bﬁ/a&“v and F(n,¢,) is defined by the
same expression with the weight factor omitted.

We have to find the limit of A(w,¢,) as Nn approaches the singular set. If
n =(a, B) then N(a/B) = a@/BB—> 1 and we may assume that 8/a— 1, and in
particular that it lies in F,*. Hence |ul, = |2|]1 — B/a|p if |l - B/a| <.
Replacing n by n‘n with n° in N(F)) and n in N(F,)\N(E,) and changing
(nFy"'qn” to yn*, since n has entries in F.* we obtain the factor |1 — B/a|",
and A(n,$,) becomes

fff(i)f(o(an)‘lnnFan)logH(u,un +2n")| ;. dndadn®

(n"=(; 'I'F)). We have obtained the interesting part of 8/(1) of (2) of §3. Hence
the sum over 5 can be extended to include N7 in Z(F) on incorporating the term
A_,0'(1) of (2). The asymptotic behavior is of the type ([1], 3.7.1) which permits
the application of the summation formula to the function whose values at 7
appear in our sum ([1], Lemma 2.8).

In the simple case at hand the calculations of the contribution to the twisted
trace formula of GL(2, E) from the continuous spectrum are almost identical to
those in the case of the usual twisting for GL(2, E) ({4], §10), which closely
resemble the calculations for the usual trace formula for GL(2) [2]. Let

= (4, ;) be the character of 4(A;) whose value at (g'a) is pl(al),uz(az)
I(n E) the representation of G(Aj) induced from the character 7 of B(Ap),
I(n%, ¢ X o) the operator twisted by ¢ so that

I(n",¢ x oy (h) = [9(g)¥(a(h)g)dg

for ¢ in the space of I(n%), and m(n%) the normalizing factor L(1, u,/p,)/L(1,
1,/ #y)- The local normalized intertwining operators R(n’) are defined as usual
(4], §7); if n. is unramified then R(nF) is a scalar.

One contribution is

477 Noj;mm("] ) m(n YtrI(n ,¢><o)ds

Ef_mtr o) 'R L) (0S¢, X o)} H tri(nf, ¢, X o)ds.

The sum over v is clearly finite. The p, are taken over a set of representatives for
the connected components of the one-dimensional complex manifold of the n*
whose restriction to the centre is wp and whose local components g, are
unramified whenever ¢, is spherical.

The final term is

- % S trM(n5)I(n", ¢ X o).
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The sum is over the 7% for which °n%, defined by (@ 9) = n5((% 22)), is
equal to wn£; in other words the sum is over the n£ with p,(bb)p,(ag@) = 1 for all
a,bin A;. If p, = p, = p then

(5 )=o)

I(n%) is irreducible and both o and M(n %) map I(n*) to itself. Hence M(n®) is
a scalar (whose value is —1). The central character of /(n £) is wp.

5. Local theory. Let E/F be a quadratic extension of local fields, and ¢, f, f;
smooth compactly supported functions on G(E), G(F), G(F) (respectively).

Definitio? 1. Write (1) > f if ®y(y)= @}‘(y) for every regular y in G(F),
and (2) ¢— f; if ®y°(y) = @7 (y) for every regular y in G(F).

The same definition applies also to ¢, f, f; compactly supported modulo the
centre, and then if ¢ transforms under Z(E) by w; ' =« ' o N then f transforms
under Z(F) by w ™" and f, by x*& .

Suppose that E/F is unramified, and that k and w are unramified; then w = 1
and x? = 1. The Satake isomorphism between the Hecke algebra H; of spherical
functions on G(F) and the algebra of finite Laurent series on the conjugacy
classes in G of the coset of ¢ is given by

s e)-gromn

y is a regular element of A(F) with y=(§,2) and |a|=|&|"; & is a local

parameter for E. Put F(y) = A(Y)P,(v); A(y) was defined in §1.
For any regular § in G(E) with eigenvalues a,b put

2

(a-—b)z 1/2
F(8) =A(3 “log)dg,  AD)=|—7—
A0 =80) ) o8 8% (9) ‘ pr

E

this is the standard nontwisted normalized orbital integral on G(E).

The Satake isomorphism from the Hecke algebra H,. of G'(F)=~ G(E) to the
algebra of finite series on the conjugacy classes in LG’ of the coset of ¢ is given
by

ooV (L 1) X a)= D F(8)t/t;»
m

>

(t=( D) in GL(2,C)). Here 8 = (§* ;) and |4 = |8]™" (a, # ay).

The homomorphisms A and A, (of §0) from “G to "G’ induce dual maps A* and
A* from Hg. to H; defined by f = A*(¢) and f, = A}(¢) where

Y (tX 0y = 6" (A1 X 0) = ¢ ((1.1) X 0) = ¢ ((10(1).1) X o)
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and
[t xo)y=06"(N(tX0))=0¢"((1, 1) X 0)=90"((—1t0(1),1) X 0).

For any f the function F(§ ;%) of a in £ — E" extends smoothly to a in E'
and its value at @ in E' is denoted by Fy(a). The same notation will be applied to
the sn}z_)ocl)h FJ(v) = A(y)®,(3), where & = (§ %) in A(E), at the singular set of
Y= /a)-

Since existing methods (based on [4], §§5-6) can establish more complicated
results than the following, the proof will not be recorded here; see [5], Theorem

7.1 (and [4], Lemma 6.2) for the archimedean case.

LEMMA 2. For each ¢ there exist f and f, with ¢— f and qb—l) fi, and then
=951, A =90(1),  Fi(a)=x(a) 'F(a) = F(a).

For every f, f, with F (@3 2y = k(a) Fy((§ 2 (ain E™) there is a ¢ with o—>f

a a

and qb—l)fl. For every ¢ in Hg. we have ¢ > A*(¢) and q>—1>}\’,"(¢>).

A special case of the last statement follows without effort from the definitions.
A standard change of variables shows that for regular y = Né (8 in A(FE)) we
have

F()= 3 Fod)
By definition
2 E(/ ) =Y (X 0)=¢" ((t1a(1), 1) X o) = D F(8)(t,/t)" "

if f=A*(¢). Hence Fi(y) = F(y) and @}‘(y) =Q(y)= ®.(8) = @f;(y). Similarly

(X o)=Y ((—to(2), 1) X 0) = S F(8)(—t,/0)" ™
if f, =A¥(¢). Thus

F)= (1) 31 Fy(®)=r(detd)F()

—y=

and
Of(v) = @ (1) = x(detd )Dy(8) = Z°(v).

In particular f° = A*(¢°) = A¥(¢°). It is clear how to pass from the statement of
the lemma for compactly supported ¢ to the statement concerning ¢ which
transform under the centre by a character.

Suppose again that £/ F is unramified. There is an isomorphism between the
set of unramified representations of G(F) and the representations I(n) (§1) where
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p is unramified, in which each unramified representation is the unique
unramified constituent in the composition series of the corresponding /(n). The
unramified representations are parametrized by conjugacy classes in LG: that
corresponding to I(n) is the class of #(n) X o, where t(q) = (" ); & is a
uniformizing parameter of F*. A standard calculation shows that

twl(n, f)= 1" (1(n) X o)
(fin Hg).

Let 1(n%) be the induced representation of §4 whose central character is
14, by, = wg. The operator I(n%, ¢ X o) is nonzero only if 5 E is o-invariant, namely
t, fi; = 1. The manifold of unramified representations of G(E) is the same as
that of the I(n%) with unramified ¥, and the I(n%) are parametrized by
conjugacy classes in “G’: I(n*) corresponds to

(t("qE), 1)X o,  where t(nf)= ( m@ o )

0 ,u2(55)
We have
trI(T,E,q,xa)=¢V((1(nE),1)x o) (¢ in Hg),

as a result of a standard calculation.

From integrals we can now pass to local representations, always assumed to be
admissible, and irreducible, unless otherwise specified. A o-invariant representa-
tion #f of G(E) extends to a representation of G(F)X Gal(E/F) by
7£(o)o = Av for v in the space of 7%, where 4 is an operator of order 2 with
‘rE = A7wEA ~'. Any other extension is of the form 7% ® ¢ where £ is a character
of Gal(E/F). The extended representation is denoted again by = . Its character
on G(E) X Gal(E/ F) can be introduced along well-known lines; it is denioted by
xE. The character of 7 on G(F) is denoted by x,; if {7} is a finite set of
representations then x,, denotes the sum of x, over all #” in {x}. Let {7}
denote the L-packet (§1) of =.

Definition 3. A representation = of G(F) lifts to a representation 7€ of G(E)
through \ (> = ©) if

Xre(8 X 0) = X(x)(NO)
for all 8 in G(E) whose norm N§ is regular in G(F). Further, 7 lifts to w* through

A (w—]> 7 £) if for all such § we have

Xr£(8 X 0) = r(detd )x . (NJ).

The Weyl integration formula and Lemma 2 imply that 7 — 7 £ if and only if

trrf(¢ X o) =tr{w)(f) (forall¢—>f),

-
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and 7-> 7 if and only if tr#"(¢ X o) = tr{)(f,) for all $= f,. We shall also

say that {7} >« F if 7> % (same for A)). If 7>« * (resp. w,—lan) and the
central character of 7 £ is w, then w is trivial on F* and w(x/X) = w;(x) (resp.
w(x /%) = wp(X)K(x) " = wg(x)k(¥/x)), x in E*, is the central character of =
(resp. 7). The character x,,of {7} depends only on the stable conjugacy class
of N8. Note that {7} lifts to 7€ ® « through A,.

Several cases of the local lifting are easy to establish. Let p be a character of
E*. The characters of the induced representations 7 = I(n) (§1) and = £ = I(,
") (§4) can be found by standard techniques, and we have

Lemva 4. I(n)=> I(p E=") and I(q) > I(p, B~ ") ® & for all .

LemMa 5. If @ is the lift of w through X and of m| through X, then ©* is of the
form 1(p, B~") for some p.

Proof. The identity
X(n) (V&) = K(detd)xn,(N9)

implies that x,,, vanishes on all compact tori, since (§2) the stable twisted
conjugacy class of any & (such that the centralizer of N§ is a compact torus)
contains elements whose determinants lie in distinct cosets of NE™ in E ™.
Hence {«} is the set of components of an induced representation, and the lemma
follows from Lemma 4.

A character x of E! defines a one-dimensional representation «(n) which is a
constituent in the composition series (of length two) of I(%), where g = an‘/ 2,
here a(x) = |x| and xz(x) = x(x/X) (x in E£). The one-dimensional subquo-
tient of I(pm, B~ ') is denoted by #(p, G~ '); note that i~ '= xza /2 The
complement of w(q) (resp. #(u, &~ Y) in I(y) (resp. I(p, g~ ") is the
square-integrable special representation sp(n) (resp. sp(p, i~ ")) of G(F) (resp.
G(E)).

LeMMa 6. For all x we have w(n)—>7(p, B~ "), sp(n)—>sp(p, g~ h,
1 1
w(m>sm(p, B~ Ok, sp(m)>sp(p, i) O«

Proof. By virtue of Lemma 4 it suffices to prove only the statements
concerning the one-dimensional «(7n). But these follow at once from the
definition.

It follows that all ¢-invariant one-dimensional or special representations are
obtained by the lifting either through A (if = = #(pa'/?, pa~'/?), p a character of
E*/F*), or through A, (if p is a character of E*/NE ™ whose restriction to
F>* is nontrivial). Indeed, if 7= #(pa'/?, pa~'/?) is a o-invariant one-
dimensional representation then p is a character of E*/NE ™ and the central
character of # is trivial on F™.

A global definition is also needed. Let F be global; by a representation we
mean an automorphic (irreducible) one.
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Definition 7. A representation 7 = ®m, of G(A) [quasi-] lifts to nf=Q®afF of
G(A[) through A (resp. A)) if =, lifts to o through A (resp. \)) for [almost] all v.
The liftings are denoted by 7 — = * and 7>k,

Note that # (quasi-) lifts to 7% if and only if 7 ® x (quasi-) lifts to 75 ® xp,

where x;(a) = x(a/a) (a in A}). Further, a—>a% if and only if 7r—l~> 7 @ k.
Lemma 5 implies:

LEMMA 8. The one-dimensional representation x = ®x, of G(A) lifts to the
one-dimensional representation xz(x) = x(x/X) of G(A) through N andtoxt ®«
through \,. All o-invariant one-dimensional representations of G(Ap) are so
obtained.

As noted after Lemma 6, all o-invariant one-dimensional representations of
G(A,) have central character whose restriction to A™ is trivial. '

If v is a place of F which splits in E then E, = F,® F,, G(F,)= GL(,F)),
and ¢ f, q>—1—>f1 can be defined as in [1] §1.5 (with / = 2 and our o). Note that
now F = NE* and F, embeds in E, through the diagonal. The character « of
E” is trivial on F,* and consists of two components (k,,k, Y. Anticipating the
current work, [1], §1.5, was written in a sufficiently general fashion so as to
establish Lemma 2 here, that # > (7° #7) and qr—1>(w®rc,"w®x_1), for any
(local) representation 7 of G(F,). In the sequel we shall therefore be able to
discuss only the case of v where E_ is a field, without further comment about the
split v.

6. Main identity. Let ¢ = ®¢,, = ®f,, f; = ®f,, be functions on G(Ag),
G(A), G(A) (respectively), such that ¢, f., f;, are smooth, compactly supported
modulo Z(E,), Z(F,), Z(F,), on G(E,), G(F,), G(F,) which transform under the
centre by w; ', w 0

L w; ke, s for almost all v we have ¢, = % =12 fio =1
The key identity of trace formulae is given by the following:

PROPOSITION 1. If &, = f, and &, > f,, for all v then
1 E E =
TF(¢ X 0) + 5 StrR(n®)I(n*, ¢ X o) = STF(f) + STE(f).

The sum is taken over all unordered pairs n° = (p,, p,) of distinct characters p; of
A /EXNAZ with p, py = g

Proof. STF(f) is described by (1), .. ., (6) and part of (7) in §1. STF(f)) 1s
similarly described by (1),, . . ., (7);, obtained from (1), ..., (7) on replacing f
by f,. TF(¢ X o) is given by (a), . . .. (g) in §3.

We have (a) = (1) + (1), (b) = (2) + (2), and (d) = (3) + (3), by Lemma 5.2.
The remaining terms of (c) are indexed by the nf with p; = u,. The I(n°®) is




STABLE AND LABILE BASE CHANGE FOR U(2) 719

irreducible and the scalar M(n*) is equal to — 1 (evaluated as a limit). For the
terms of (7) with u trivial on A™ the representation I(n) of G(A) is irreducible
and M(n) is again — 1. It follows from Lemma 5.4 that the terms of (c) indexed
by £ with p, = p, trivial on A* cancel those of (7), while the terms with u, = u,
non-trivial on A* cancel those of (7),. To show that (f) = (5) + (5), note that
m(n®) = m(n)m(n,), where

oy esrmn oy 2o g &)=

since
L(l, p e E/F)= L(1, p)L(1,&'p).

The prime indicates restriction to A™. Taking logarithmic derivatives it follows
that

m(n®) " 'm(nEY = m(n) "' m(ny + m(m) " 'm(n,.

and the equality follows from Lemma 5.4.

Consider the difference between (e) and (4) + (4),. The sums over y in the
three terms are taken over the same group Z(F)\A(F), including the singular
class. The sums over v are taken over a finite set of places of F. Let v, be a fixed
place of F which splits in E, and assume that ¢, (as well as f, and f,, ) are

spherical, and that ¢, (g) = f, ( gl)ﬁg)( &) (g =(g, g); see [1}, §1.5). Then «, is
trivial on FU: ; for w # v, we have

Fon )= =s@ F 0 (v=( 2 )ainEr)

and

ffxpvlg(o(an)_18an)log||(u, un)|| g, dnda

=f D’(f(n”yn)log”(u, un)|| dn+ nvo(a)ffllio(n‘]yn)log||(u, un)|| dn,

where u =1 — (aa@)™', n=(; 7). It follows that the index v = v, can be deleted
from the sums over v in the difference (e) — (4) —(4),, and the factor
F(y,¢,), F(v, f,), F(v, f,,) always appear in the product over w there.

By virtue of [1], Lemma 2.8, the summation formula can be applied to the pair
Z(FN\NA(F),Z(A)\NA(A) and the nonsmooth functions described by the finite
sums over v (taken over sets independent of ¢, and excluding v,), whose values
at y appear in (¢), (4) and (4),. The Fourier transforms of F(y, b,
F(y, f.)» F(v, f1,,) are the traces trI(n%, ¢, X o), trI(n,, f,), tr I(ny,, fis,)- The
product over w in (g), (6) and (6), always contains v, since ¢, is spherical. Tt
follows that the difference between the two sides of the identity to be proved in
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the proposition, which is some discrete sum in the values of fDZ , is equal to an
integral obtained as above from (e} + (g) — (4) — (6) — (4), — (6),, of values of
fD;/. A standard argument ([4],[1]) shows that this equality of discrete and
continuous measures is impossible unless both are 0, and the proposition follows.

The trace formulae are sums of traces of representations. The identity of
Proposition 1 takes the form

ZtrﬂE(¢xu)+% > trR(nE)](nE’¢Xo)+; > trR(n)(nf .9 X o)
aE 17t 17 U2

= Sm(mtrn(f) - ] 3 Semun(f

+ Sm(myra(f) - 5 S Semun(h):

The sums over 7 £ and = are taken over all equivalence classes of representations
which appear discretely in the spectrum of G(A;) and G(A). The multiplicity of
in the discrete spectrum of G(A) is denoted by m(m); the multiplicity of 7% is 1
by multiplicity one theorem for GL(2). The second sum in the first row is over all
unordered pairs n° with ju; % p,, where g, are characters of AXE*\Aj, and the
third sum is over the n£ with p, # , and p, are characters of E “NAZ\AL
whose restrictions to A* are non-trivial. The # are taken over all representations
of H(F)\H(A) which do not factor through the determinant, and the = in the
inner sums are taken over P(#) (§1).

A simplified version of the argument referred to at the end of proof of
Proposition 1 establishes (as in [1]) the following.

PROPOSITION 2. Let &, f, f, be as in Proposition 1, denote by V a set of places
of F containing the infinite places and those which ramify in E, such that ¢, f,, fi,
are spherical for v & V. For each v @ V choose a class t, X o in “G. Then we have
(1) = (2) where

(1) S Tlurnfs, x o)+ 5 3 T R(AS)I(10 9, X 0)

'ﬂ'E

+ 2 STTeR(@i)I(1 ¢, % 0)
and

ORI CXUBEE DIDWCIICLAGD

+ ST (f,) - 3 3 Zen Tom(h),

The products are taken over all v in V; the sums are over the w,7%,8 for which
trrf (¢, X 0) (resp. wRMEHIME, ¢, % 0), RO, X o) w7 (fio)
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tra,(f,)) is equal to f,’(t, X o) for all v outside V in the 1st (resp. 2nd, 3rd, 4th,
and 5th, 6th, and Tth) sum.

There is at most one nonzero entry in the sums of (1), by virtue of strong
multiplicity one theorem for GL(2).

7. The lifting. Let # be a character of the torus H(F)\H(A) (§1) whose
restriction to Z(A) is wx ~'. Denote by 3 = (p,, u,) the character of 4(A,) given

by
s[4 OV - fa/a 0 Kk(a a,bin A}
oG )= (5 e womes

(h as in §1). The restriction of 5 to Z(Ap) is wy=wo Ng,p. Analogous
notations (#, and n[.) will be employed in the local case. The representation
I(n{) extends to a representation I'(nf) of the semidirect product G(A;) X
Gal(E/ F) by setting [1,4]

I'(a,nf) = R("n{ ) (o,nf).

PROPOSITION 1. Let E/F be a quadratic extension of local fields, and 6 a
character of H(F). Then the L-packet {«™ (8),n~ (8)) lifts to I'(n{’) through X.

Proof. If § splits through the determinant the claim follows from Lemma 5.4
and the fact that #%(8),7 (#) are the irreducible components in the
composition series of the I(n) (§1) which lifts to I(n[); note that here I(nf) is
irreducible and R(nf) = 1.

It suiffices to consider # which do not factor through the determinant. The
local field can be assumed to be the completion F, of a global field F at u, where
F=Q and E is a quadratic imaginary extension of F if F, =R, or F is totally
imaginary if ¥, is nonarchimedean. Extend 8, to a character § of H(A) trivial on
H(F) and H(F,) for all v # u which split in E, unramified for almost all v and
invariant under a small compact subgroup for all v. Its restriction to Z(A)
defines a character w by w(a) = 8¢ k(a); the global nf is defined as above.

Let {¢,; 0 & V'} be a sequence of elements in GL(2, C) so that the only entry in
the sums of (1) (in §6) is the one corresponding to the above 5 in the third sum.
Then # makes a nonzero contribution to the last sum of (2). Indeed for v & V
where E, is a field and ¢,, f, are spherical, one has (in local notations)

() ta* (@, =tui(n fy=ul(nf, éXa)=tR(n)(n],¢X o)
(by Lemma 5.4), as n(§ ,2)=«(a), nf=(k,x) and R(nf)=1. The same

identity holds for v split in E. It is the only contribution by [2], Lemma 12.3.
The second sum in (2) (of §6) vanishes since for v & V where E, is a field

trﬂ+(0,f1)=tr1(nE,¢>< o), nE=(l,1),
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and I(n%),I(nE) are inequivalent. In the notations of Proposition 6.2 we now
have

2) [Tt R(nE)I(ni 9, X 0) = X 2m(m) [T (f,)
- 2 «m]lum(f)

nEP(F)

+ 2 2m(m) [Ttr7,(fio)-

The finite products of (2) are taken over a set  which does not include any v
which splits in E. We shall first show that (2) remains valid if the products are
taken over a set ¥ which consists of the single place u alone.

For any v # u in the product of (2), as in (1) one has

tr R(ni ) (i, 9, X 0) = tra (8, f,) + trm, (6, f,).
In the obvious notations (f= f,, etc.), (2) can be put in the form
) a(trr® (f)+ 7™ (f))
- 2 2a(mra(f) + B (f) —twr” (f))
= 2B(m)trm( f).

For any square integrable # we have a(w) =0 = fB(=). Indeed for such 7 we
may take f to be compactly supported (modulo the centre) function whose stable
orbital integrals are equal to those of a matrix coefficient of = (take the matrix
coefficient itself if o is supercuspidal). We may still take f; = 0; evaluating (3) the
identity a(7) = 0 is obtained.

For any 8 we have B(#* )= B(r ). Indeed x,+ is the average of x, + +x,-
and x,+ —x,- - If B(=w* )+ B(7 ) we could choose f, whose orbital integrals on
A(F) are 0, with tr8,(f{") = 8(8,,9). The last symbol is either 1 or 0, depending
on whether §, and # are equivalent or not. We may still choose f = 0, and obtain
a contradiction.

Hence we may assume that all = on the right of (3) are of the form /(n}) and

write 8(n)) for B(=). If

n,(a 0 )=K(a)n,(a 0)
0 a! o a '/

as
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we have
@ wl(n, f) (= [ni(a)Fy(a)da= [v/(a)Fy(a)da) = tr (', f).
Linear independence of characters [2] applied to (3) implies that
2a(n )= B=2a(7" )+ B
and
a=2a(n" )= B+2B(m).

Repeating this argument to all v # « in ¥V we obtain (2) where the product is
taken over the singleton {u} only.

To complete the proof let w # u be a place of F which does not split in E, and
6, a character which does not factor through the determinant. In the same way
as above we may obtain (2) where the product is taken over the set {u,w} only.
Choose f, to be a matrix coefficient of the supercuspidal #,;'. We may choose
fiw =0, and dropping u we obtain

(5) ctrR(n,E)I(mE,qu o)

=>2m(mjtro(f) —tra* (f) + tra ™ (f).

The constant ¢ is nonzero by linear independence as m(w) are integers. The =
here are not necessarily the same as the = of (2). The right side of (2) is now
equal to the product of ¢ ~! and the right side of (5). The arguments of the two
paragraphs following (3) imply that the 7, of the last sum in (2) can be assumed
to be of the form I(n). It follows from (2) and (4) that (5) holds with ¢ = 1 (and
new integers m(m)).

The value v(a) of 5{ at a diagonal matrix (§ ® ) (¢ in £*) depends only on
the image of a in E ></FX, since the value of nf on Z(E) is given by wg. Hence
there is a character »" of E' with »(a)= »'(a/a) (a in E*). Extend »" to a
character 7 of E*, and consider the representation I(n*) of GL(2, E), where

=(%,7) and V(a) = 7(a). Then [4] there exists a representation =(#) of
GL(2 F) such that whenever ¢ — f in the sense of [4] we have

(6) tr R(GEV(FE, ¢ X &) = tra (5, [).

The restriction of 7 () to SL(2, F) consists of 1, 2 or 4 irreducible inequivalent
representations [3]. We shall apply (5) and (6) with ¢ and & supported on
SL(2, E). Then fI)lab = d)“ Lemma 5.2 and {4], Lemma 6.2, imply that there exists
qb on G(E) such that s 1s supported on SL(2, E), and the orbital integrals ®; of
&, twisted with respect to &, at & with y = N8 regular in SL(2,F), is equal to
®3(y). In particular the stable orbital integrals of f on G(F) are equal to those of
f~ on GL(2, F); both are supported on SL(2, F). Since the left sides of (5) and (6)
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depend only on @ and ®; (for our ¢), both /(7 Ey and I(nE) restrict to the same
L-packet (of one or two elements) of SL(2,E), and 6 = ¢ on SL(2,E), it follows
that

Ei:tr'zr,-(f) =S om(myra(f)y—teat (f) +rr” (f).

The right side is as in (5); on the left (1 < i< ji j=1, 2 or 4) the =, are the
irreducible components of the restriction of 7(¥) to SL(2, F). On the left appears
f, not f, since 3, tram( f) depends only on the stable orbital integrals [3] of f
regarded as a function on SL(2, F), and these are equal to @;‘.

By linear independence of characters on SL(2) we obtain that j=2 and
m(=*) =1, while m(z) =0 for all 7 inequivalent to #*. The proposition now
follows from (35).

Let 8 be a character of H(F) (local F) whose restriction to Z (F) is wk ™%
Denote by £ the character

f{a O _ _fa/a 0 . )
! ((0 b)) e(h ( 0 b/E)h) (@)

of A(E). It follows from Definition 5.3 that a—> « Fif and only if 'rr—l> 7f @ k.
Hence

COROLLARY 2. The L-packet (=™ (8),7 (8)} lifts 1o I'(nE) through A,.

It is now clear (also from the global theory of [3]) that the stable trace formula
takes the form

STE(f) = Sm(mun(f) + 3 S (73 @ fo) +t0m 0o L))

The second sum is over the characters 6 of H(F)\H(A) which do not factor
through the determinant. Almost all factors in the product consist of a single
summand. The sum over 7 is taken over all discrete series representations
7 = ®m, of G(A) such that there is no § such that =, =~ 7.7 (6,) for almost all v.
In particular we have part of “strong multiplicity one theorem for L-packets of
G(A)’: if m = @, is a discrete series representation of G(A), 7' = ®m, lies in
P(#), and 7, = =, for almost all v, then = lies in P(6).

For a suitable choice of {,} there remains to explore the remaining identity

1) S Tuaf@x0)=Tm@Lur(f)+ Zn@rm i)

from Proposition 6.2. The 7, = E are taken over the discrete series of G(A), G(Ag),
but not over any 7 in P(#). By virtue of Lemma 5.8 none of the 7, 7% is
one-dimensional. Note that Lemmas 5.6 and 5.8 can also be deduced from (7)
using only Lemma 5.4.
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PrOPOSITION 3. For every supercuspidal representation = of G(F), not in any
L-packet {w(8)}, there extsts a supercuspidal o-invariant representation n* of
G(E) so that 4 lifis to =% through \. For every o-invariant supercuspidal
representation w& of G(E) whose central character is trivial on F* there exzsts a
supercuspidal representation w of G(F), not in any {w(8)}, so that either m— n £ or

1
w—)wE.

Proof. The case of {7(#)} was dealt with in Propositions 1 and 2. Suppose F
is the completion at u of a glohal F, and E, is a field. Construct, as in [1],
Lemma 6.6, an automorphic representation 7 of G(F) whose component (1) at u
is the representation of the proposition, which we now denote by #/, (2) at any
v # u in V is special, (3) at any other v is unramified. ¥ is a (finite) set consisting
of the infinite places, u, two v which split in E and all v which ram1fy in E. Since
7 does not lie in any P(#), (7) is obtained. The representation 7 on the left of
(7) does exist and it is g-invariant; otherwise the left side is 0, and arguments as
those following (3) would imply that the sum on the right is empty. Moreover, 7.°
is supercuspidal, since we know that induced or special representations of G(E,)
are lifts but not from our «,.

Lemma 6.6 of [1] affords constructing also a o-invariant representation «*
whose component at u is the above #.f, whose other components are either
unramified or special representations which are lifts through A of special
representations of G(F,). (Note that [1], Lemma 6.6, cannot construct o-invariant
7£ with components m, (i = 1,2) where E, are fields and 7, (resp. 7, ) is a lift
through A (resp. A)), since the ch01ce of flv =0and f, =0i is p0851ble) Now at
the v where E, is a field and #F is special and lifts from m, through A, we may
choose f, related as usual to a matrix coefficient of =, and fi. = 0. Hence we

have

8 trm (¢, X 0) = > n(w)trm,(f,) (n(m,) in Z).

Using some v # u in V such that E, is a field, the identity (7) obtained here
takes the form

c trqu(qSu X 0) = Zm('nu)trwu(fu)

where m(7,) # 0. Hence ¢ %0, and n(w)) = m(n.)/c is non-zero. Since the
supercuspidal 7, appears on the right of (8) a standard argument ([4], pp. 223-6)
establishes the first claim.

To prove the second claim for a o-invariant supercuspidal 7.f whose central
character is trivial on F,", let ¢, be a matrix coefficient of #,”. If all @S and @l
are O then all O, are 0 and we obtain a contrad1ct1on to the orthogonahty
relations (see e.g. [4], p. 111, /. —1; but note that / ~! there has to be replaced by
1 here since NZ(E,) = Z(F,)). It may be assumed that @3 are nonzero, and we
may obtain (8) again, arguing as above. The argument of [4], pp. 223-6, would
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apply once the existence of a square -integrable 7, on the right of (8) is shown; =,
will then be supercuspidal since =.F is not special.

If there are no square-mtegrable 7, on the right of (8) we may take ¢, = 0 and
f, with @} =0 and @¢" such that tr B(f ) = 8(8,8,) for a fixed character 6, of
H(F), as in the second paragraph following (3). It follows that all #, in (8) can
be assumed to be of the form I(x). Since #.F is supercuspidal we obtain a
contradiction by means of Lemma 5.4, and the claim follows.

PROPOSITION 4. Every o-invariant cuspidal representation w* of G(Ay) whose
central character is trivial on A* is a lift of a cuspidal = of G(A) either through \ or
through X\, (but not both!). Every cuspidal representation m of G(A) lifts to a
representation 75 of G(Ap) which is cuspidal unless m lies in a global L-packet
P(8).

Proof. The first claim was shown for other discrete series representatlons in
Propositions 1 and 2, and Lemma 5.8. Given #” we obtain (7) where 7t is the
single entry on the left. The product is taken over a finite set ¥ of places v. If af
is induced but not that of Propositions 1 or 2, then v can be deleted from V (by
the standard arguments, employed above). In particular the claim follows if all
components of #£ at v where E, is a field are induced but not those of
Proposition 1, 2. Indeed; after deletmg all v the left of (7) is equal to 1 while the
right is a sum of integers m(m). Otherwise #* has a component =, E(E, is a field)
which is the lift of an L-packet {7,} of supercuspidal or special representations.
We may assume that m,—a”. Choosing f, related as usual to a matrix
coefficient of 7, and f,, =0, the claim follows from the standard arguments
applied to the v #= u in V.

To prove the second claim take {7,} so that (7) holds and 7 defines a non-zero
entry in the first sum on the right. We assume that = is not in any P(#), a case
discussed in Proposition 1, 2. The standard arguments establish a contradiction if
no 7 £ exists on the left of (7), and that 7 —> 7 .

Clearly we have

COROLLARY 5. Each cuspidal representation m of G(A) occurs only once in the
discrete spectrum of G.

This is “multiplicity one theorem” for G; it asserts that all m(7) in Proposition
6.2 and the expression for STF(f) following Corollary 2 are equal to 1.

Let P, be an L-packet of G(F,) for all v, almost all of which contain an
unramlfled representation 7_. A global L-packet P is defined to be the set of
representations 7 of G(A) such that =, lies in P, for all v and 7, =~ 72 for almost
all v. Strong multiplicity one theorem for G(F) also follows from the above
arguments. Since it has nothing to do with multiplicity one theorem it will be less
confusing to adopt the name “rigidity theorem”. Of course in the case of G(F) we
have a rigidity theorem for L-packets; it asserts that for any finite set V the family
{P,;0@& V) specifies P uniquely if P contains a discrete series (automorphic)
representation.
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Propositions 3 and 4 assert that every g-invariant (super) cuspidal representa-
tion 7 © of (G(E) or) G(A,) whose central character is trivial on (F*or) A isa
lift, through either A or A,. In fact it is not necessary to put any condition on the
central character of 7%, and every o-invariant (super) cuspidal 7% is a lift, since
we have

ProPOSITION 6. If 7% is one-dimensional or discrete series o-invariant
representation then irs central character is trivial on F* (locally) or A* ( globally).

Proof. This was already observed for one-dimensional and special local
representations after Lemma 5.6, and in the global case for one-dimensional
representations in Lemma 5.8. All roads lead to Rome, that involving the trace
formula is the nearest to the spirit of this paper. The proof for the (super)
cuspidal representations will be based on an application of the twisted trace
formula TF(¢ X o) with functions ¢ which transform under the centre by a
character w of Af/E*NAJ, whose restriction to A* is non-trivial. It is
convenient to take w to be k.

Let E/F be a quadratic extension of local fields, and ¢ a smooth function on
G(E), compactly supported modulo Z(E), which transforms under Z(FE) by
x~!. The analysis of §2 shows that the twisted orbital integral @ (8) is equal to 0
unless N4 is a regular element in a compact torus H(F) which splits over E. As
in §2 one defines two functions on H(F)/Z(F) by

0,((a/a.b/b)) = ®,(a,b) — ®,(au,bu) + D, (au,b) — ®,(a, ub)
= 2k(b)[ @y(a, b) + @y (au,b)],

®y((a/a.6/b)) = k(a)(Dy(a,b) — B (au,bu) — ®,(au,b) + b (a, ub))
= 2k(a)[ ®y(a,b) — ®,(au,b)].

Here a, b are in £, u lies in £ but not in NE *, and D, (a,b)is @ (h™'(§ Dh)
of §2. If ¢ is supported on Z(E)SL(2, E) then D.((a/a,b/b)) = 2k(a)®,(a,b), €
in {I,k}.

The work of §§3—4 shows that all terms in the twisted trace formula TF(¢ X o)
vanish for our global function ¢ = ®¢, (with the usual properties, which
transform under the centre by k'), except two. They are the terms of the
paragraph preceeding Proposition 3.1, and that of the end of §4. Hence

TE@ X 0)= 2 ZWHENHA)] 5 (TT04(n)+ [ %)

YEZ(FN\NH(F)' v v

- 1 SuME)I(n",¢ X o).
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The last sum is taken over all unordered pairs nE = (py, ). of characters y; of
AX/E* NAL with p, p, = &

Consideration involving the Shalika germs of f;(a) = A M, (h~'G D)
and vanishing of ®,(8) unless N3 is regular (in H(F)) show that f;(a) is a regular
function on E !~ Z(F)\H(F) which vanishes at a = 1 when E, is a field. Hence
the summation formula can be applied to the function f*= ®f; and the pair
(E',A}), and one has

TR x 0) + L S M@F)I(n%9x 0) = g Z(tr w(f) +w k()

The last sum is taken over all unitary characters of E NAL.
The argument referred to in the passage from Proposition 6.1 to Proposition
6.2, applied only to the places v which split in E, implies that

9) 27: I;Itrﬂv(cpv X o) + % 22 IUItrM(nvE)I(nvE,% X o)

=%§Hﬁ%@ﬂ+%%gﬁ%ﬁﬂ

The sums are taken over discrete series representations 7 of G(E), and unordered
pairs 7% = (v,%/7), and p, such that

trm, (b, X 0) = tr M(nS)(n%, ¢, X o) =tr p,(fe)

for all v which split in E. The products are taken over the remaining v.

Let v be a place where E, is an unramified quadratic extension, «, is
unramified, and suppose that ¢, is spherical. Then =, must be unramified
principal series representation if trm (¢, X 0) # 0. That is m, = I(»,,x/»,) Where
p, is a character of F\E*. But since », and E,/ F, are unramified, », = 1, and

tra, (¢, X 0) = e M(nE)(nS 9, X 0)

where nf = (1,x,). For the same set of v one also has g, =1 and tr p.( H
= tr p,(f¥). Hence (9) remains valid if all products are taken only over a finite
set ¥ (the complement of the set of v mentioned up to now) and the right side is
multiplied by the nonzero number

a=]Ju b (f) /e M(n) L (0,97 % 0).

The last product is over the v of the first sentence in this paragraph.

Suppose 7 is a discrete series representation whose central character is k
(contrary to the assertion of the proposition); we may assume that it appears in
the first sum of (9). The vanishing of the left side of (9) contradicts “linear
independence of characters”; alternatively, “strong multiplicity one” theorem for
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GL(2, E) implies that 7 is the sole entry on the left. Hence the right of (9) is
nonzero, and there is a p such that trz (¢, X 0) = tr p.(f5) (fixed € in {I,x})
whenever v splits. Define a character » on AY/E* A* by v(a) = u(a/a), and
take 5% = (»,x/v). Then 7, is equivalent to I(nf) for almost all », and by
“strong multiplicity one” for GL(2,E) our = is not a discrete series
representation, but /(n%). Hence TF(¢ X 6) =0 for all ¢, and the proposition
follows for global 7.

To prove the claim for the supercuspidal representations, suppose 7, is one
whose central character is k,. The arguments of [1], Lemma 6.6, applied to
TF(¢ X 0), afford the construction of a global = with central character k, whose
component at u is the above 7,, and whose other components are unramified or
special (at a finite number of places which split in E). But 7 does not exist (as
above), hence 7, does not exist either, and the claim follows.
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