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CUSP SIZE BOUNDS FROM SINGULAR SURFACES
IN HYPERBOLIC 3-MANIFOLDS

C. ADAMS, A. COLESTOCK, J. FOWLER, W. GILLAM, AND E. KATERMAN

Abstract. Singular maps of surfaces into a hyperbolic 3-manifold are uti-
lized to find upper bounds on meridian length, �-curve length and maximal
cusp volume for the manifold. This allows a proof of the fact that there ex-
ist hyperbolic knots with arbitrarily small cusp density and that every closed
orientable 3-manifold contains a knot whose complement is hyperbolic with
maximal cusp volume less than or equal to 9. We also find particular up-
per bounds on meridian length, �-curve length and maximal cusp volume for
hyperbolic knots in S3 depending on crossing number. Particular improved
bounds are obtained for alternating knots.

1. Introduction

Given a knot K in a compact 3-manifold M such that M − K is hyperbolic,
there is a well-defined maximal cusp C in the 3-manifold. The interior of C is a
neighborhood of the missing knot such that the pre-image of C in hyperbolic 3-
space H

3 is a union of horoballs with disjoint interiors and such that some horoballs
in this set are tangent to one another. Hence the cusp cannot be expanded without
causing the horoballs in the cover to overlap in their interiors. There is a well-
defined meridian length |m| in the cusp boundary, corresponding to the length of
the shortest representative of a meridian in that boundary. A nontrivial curve that
crosses m once is called an �-curve, and the shortest representative of an �-curve in
the maximal cusp boundary has length denoted |�|. The volume in the maximal cusp
of a hyperbolic 3-manifold M is denoted Vc(M) and by straightforward calculations,
one can verify that Vc(M) is exactly one-half the area of ∂C. That area is bounded
above by |m||�|. Note that any nontrivial curve in the maximal cusp boundary has
length at least one and the only curve that has length exactly one is the meridian
of the figure-eight knot complement (cf. [Ada02]).

The Gromov-Thurston 2π Theorem implies that for a knot in the 3-sphere, |m| ≤
2π. This was improved by Agol [Ago00] and Lackenby [Lac00] to |m| ≤ 6. (They
proved substantially more, but this is one implication of their work.) For knots
of 10 or fewer crossings, the largest value of |m| is 2.051201, which occurs for the
10153 knot, calculations of which come from SNAPPEA (cf. [Wee]), Jeffrey Weeks’s
hyperbolic structures program. The largest values of |m| currently known appear
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in [Ago00] and come from a sequence of knots with meridian length approaching 4
from below.

In this paper, we utilize continuous maps of surfaces into knot complements to
obtain a variety of bounds on meridian length, �-curve length and maximal cusp
volume for knots. In addition, we prove that any compact orientable 3-manifold
contains a hyperbolic knot such that the complement has maximal cusp volume
at most 9. In order to obtain these results, we look at proper continuous maps of
punctured surfaces into knot complements. The ideas presented here build on work
of Zheng-Xu He [He98], where the author used continuous maps of punctured disks
into knot complements to obtain lower bounds on the crossing number of satellites
of hyperbolic knots in terms of the meridian length and area of the maximal cusp
boundary of the hyperbolic knot. In [Ago00], Ian Agol generalized He’s construc-
tions and found upper bounds on slope lengths in cusp boundaries in terms of the
Euler characteristic of an essential surface punctured by the cusp. Agol also found
an upper bound on the number of slopes on the cusp that do not yield hyperbo-
like (irreducible with infinite word-hyperbolic fundamental group) 3-manifolds after
Dehn filling. One implication of Agol’s work is the upper bound of 6 on meridian
length mentioned above.

We look at the general case of proper continuous maps of surfaces into hyper-
bolic 3-manifolds with boundary. In Section 2, we review He’s construction and
introduce more general constructions which are utilized subsequently. In Section 3,
we introduce particularly interesting examples of singular surfaces to demonstrate
the utility of the above techniques. In particular, we generate hyperbolic knots
with arbitrarily small cusp density. In Section 4, we obtain various bounds for the
category of alternating knots. In Section 5 we use an immersed twice-punctured
Möbius band to prove that every closed orientable 3-manifold contains a knot whose
complement is hyperbolic with maximal cusp volume at most 9. Furthermore, this
knot can be made to have arbitrarily small cusp density.

Much of the research work for this paper was completed in the Williams SMALL
program during the summer of 2001, with support from NSF Grants DMS-9820570,
DMS-9803362, and Williams College and in the subsequent undergraduate thesis
of the last-named author.

2. Maps of surfaces

Here we introduce the terminology used in [Ago00]. Let S be a surface of finite
type (S may have both boundary and punctures), and let f : S → M be a contin-
uous map such that every puncture maps properly into a cusp. This map might
not necessarily be an embedding or an immersion. We will say that f : S → M is
incompressible if every simple closed curve c in S for which f(c) is homotopically
trivial in M bounds a disk in S. Let U = [0,∞)×R. A boundary compression of f
is a proper map b : U → M such that there is a map b′ : ∂U → S with f ◦ b′ = b|∂U ,
and b′(∂U) is a proper simple line in S which does not bound a properly embedded
half-plane in S. The map f is boundary incompressible if it has no boundary
compression. The map f : S → M is essential if it is incompressible and boundary
incompressible.

In [Thu79], Thurston introduced pleated surfaces. A map f : S → M is pleated
if the boundary components of S map to geodesics in M , and int(S) (the interior
of S) is piecewise made of triangles which map under f to subsets of M that lift to
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CUSP SIZE BOUNDS FROM SINGULAR SURFACES 729

ideal hyperbolic geodesic triangles in H
3, so that the 1-skeleton forms a lamination

in S. A pleated surface has an induced hyperbolic metric, where the lamination is
geodesic.

In [Ago00], Agol proved the following lemma.

Lemma 2.1. If S is a pleated surface that is boundary incompressible, the sum of
the lengths of the intersection curves in S ∩ ∂C is bounded above by 6|χ(S)|.

The idea is that for a pleated surface S that is boundary incompressible, the
intersection of the pleated surface with the cusps consists only of disjoint neighbor-
hoods of the punctures. For otherwise, we could find a properly embedded arc in
S that was entirely contained in the pre-image in S of the cusp. But then that arc
could be homotoped through the cusp to the boundary of M . Hence, there would
exist a boundary-compression.

Then the area in S∩C must be no more than 6
2π of the total area of the surface,

since this is the maximal density of a horocycle packing in H
2. But the total area

of S is given by 2π|χ(S)|. The area in S ∩C is equal to the length of its boundary,
yielding the lemma.

The fact that the sum of the lengths of these intersection curves is bounded
above gives upper bounds on particular curves on C as well as Vc(M), as shown in
Theorem 3.1 in Section 3.

Let K be a knot in S
3 with hyperbolic complement. Let C be a maximal cusp

corresponding to the knot. If K has an n crossing projection π(K), Z.-X. He
obtains an n-punctured disk by connecting a single point placed below the plane
of the projection to each point on the knot (see [He98]). The result is an n + 1-
punctured sphere with n meridinal punctures and a single (knotted, parallel to K)
�-curve puncture. We will refer to such a surface as S = H(π(K)).

The surfaces resulting from He’s construction may or may not be boundary
incompressible. But He shows that his results would only be improved if any
compressions or boundary-compressions are performed on S.

We now describe two methods we utilize to obtain interesting surfaces in knot
complements. The first involves a mixture of He’s construction and the Seifert
algorithm for obtaining an orientable spanning surface.

Choose an oriented projection of a given knot K. Divide the projection sphere
into finitely many different disk regions, intersecting only in their boundaries (the
boundaries of which are transverse to the knot). Within each region, construct a
link by connecting the endpoints of the knot leaving the region by arcs running
parallel to the boundary of the region in such a way as to inherit an orientation on
the link from the knot. (Two or more strands running along the boundary may be
parallel to one another.)

Now perform either He’s or Seifert’s algorithm on the link in each region. Con-
nect the resulting surfaces by bands across the region boundaries in such a way as
to obtain a single contiguous surface with boundary equal to the original link.

We shall refer to surfaces constructed in this manner as Seifert-He surfaces.
Seifert-He surfaces are not always incompressible or boundary incompressible, e.g.
adding a nugatory crossing to any link and performing He’s algorithm on the re-
gion containing this crossing will result in a boundary-compressible surface. Also,
Seifert’s algorithm does not always yield an incompressible surface when applied
to nonalternating link projections. Furthermore, when we are using Seifert’s algo-
rithm on some parts of the knot and He’s in other parts, we cannot be assured that
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Figure 1. A knot J in a handlebody bounding an immersed
Twice-punctured Möbius band.

Figure 2. An essential annulus in H − J .

compressing our surface will improve our results as He can (since our surfaces may
be of genus g ≥ 1 rather than disks). We seek to address some of these difficulties
subsequently.

A second technique we utilize involves placing the knot K and surface S inside
a genus 2 handlebody H and then showing that S is incompressible and boundary
incompressible in H − K. Then we embed H appropriately in S

3.
Let J be the knot depicted in the handlebody H appearing in Figure 1.

Lemma 2.2. H−J is hyperbolic and the immersed twice-punctured Möbius band S
is incompressible and boundary incompressible in H − J . The only essential annuli
in H − J have both boundary components on ∂H and they avoid the disk D1.

Proof. This knot in a handlebody was considered in [AR93], where it was proved
that H − J is hyperbolic. There it was also shown that the only essential annuli
in H − J have both boundary components on ∂H, and that any essential annulus
in H − J avoids the disk D1. An example from that paper of an essential annulus
that does exist appears in Figure 2.
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S

Da Db

Dc Dd

H

Figure 3. Creating a link that misses Da.

We will show that the immersed twice-punctured Möbius band S appearing in
Figure 1 is essential in H − J . Suppose not. Lift H to the genus five handlebody
H ′ appearing in Figure 3. The knot J lifts to the four component link L, and the
Möbius band S lifts to two embedded quadruply punctured annuli A1 and A2. A
compressing or ∂-compressing disk for S lifts to a compressing or ∂-compressing
disk for either one of the two annuli, say A1. By Dehn’s Lemma, there must be
an embedded disk intersecting A1 only in its boundary, or intersecting A1 and the
boundary of a neighborhood of the link only in its boundary. Suppose E were such a
disk. We prove that E can be chosen so as not to intersect any of Da, Db, Dc or Dd.
Suppose that E did intersect one of them, say Da for convenience. If E intersects
Da in a trivial curve on Da, then we can isotope to remove the intersection. If E
intersects Da in a curve that wraps once around one of the punctures, then there
would be a disk in the link complement bounded by a meridian of one of the link
components, which cannot occur. If E intersects Da in a simple closed curve that
wraps around both punctures on Da, then we can cut the link component open at
its intersection with Da and cap off each component with a straight line segment
on Da, as in Figure 3.

The resulting link complement does not intersect Da, so taking a disk on Da

with a disk on E yields a sphere that separates one of these link components from
the rest of the link. But as a link in S

3, this link is nonsplittable. Hence there are
no simple closed intersections of E with Da, or for that matter with Db, Dc or Dd.
Already, we have eliminated all possible intersections of E with Dc and Dd. We now
consider arcs of intersection of E with Da. Let µ be the arc of intersection between
A1 and Da, and let D′ be the once-punctured disk that µ cuts off A1. Let A′ be
the annulus in N(L) that is cut off from N(L) by Da and that intersects D′. Each
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arc of intersection between Da and E must then begin and end on µ ∪ (A ∩ Da).
Let x be such an arc cutting a disk E′ off E. Let g be the arc of intersection of
E′ with D′ ∪ A. If g does not loop around the puncture on D′, we can slide g
down D′ and push it through µ, eliminating this intersection of E and D′. If g
does loop around the puncture, then the union of E′, a subdisk of D′ ∪ A′ cut off
by g and a subdisk of Da cut off by µ and x, yields a once-punctured sphere, a
contradiction. Hence there are no compressing or ∂-compressing disks for A1 that
intersect Da, or for that matter any of the four disks. There can also be no such
disks that have boundary in D′ ∪ A′ or the three other disks with annuli cut off
by Db, Dc and Dd, as any such would have boundary homotopic to a meridian of
the link, which is not possible. Let L′ be the sublink of L that forms the boundary
of A1. Let D′′ be the punctured disk cut off of A1 by Db, and let A′′ be its
corresponding annulus in N(L′). The only possibility remaining is for E to lie in
A1∪N(L′)−(D′∪A′∪D′′∪A′′). But E must lie in H ′−(L∪N(Da∪Db∪Dc∪Dd)).
This is a solid torus with eight trivial arcs removed, so it is a genus nine handlebody.
Each of the generators of the fundamental group of A1 ∪ N(L′) that would yield
a loop that does not intersect Da ∪ Db ∪ Dc ∪ Dd are nontrivial generators for
this handlebody. Since the fundamental group of a handlebody is a free group
on its generators, any word in these generators would yield a nontrivial element
of π1(H ′ − (L ∪ N(Da ∪ Db ∪ Dc ∪ Dd)). Since no compression or ∂-compression
disks intersect Da ∪ Db ∪ Dc ∪ Dd, this word is also nontrivial in H ′ − L. This
completes the proof that A1 is essential in H ′ −L and therefore that S is essential
in H − J . �

3. Examples of singular surfaces

Many examples of singular surfaces occur in knot complements. In the following
examples, such surfaces will be used to find bounds on cusp volume, meridian
length, and �-curve length.

Example 1. We can utilize the He surface (see Section 2) S = H(π(K)) for a
projection π(K) of a hyperbolic knot to find bounds.

Theorem 3.1. Let K be a knot with c crossings in projection π(K), and let |m|, |�|
denote the lengths of the meridian m of the knot and the shortest �-curve on the
maximal cusp. The following bounds hold for K and its maximal cusp C:

i) |m| ≤ 6 − 7
c ,

ii) |�| ≤ 5c − 6,
iii) VC(M) ≤ 9c

2

(
1 − 1

c

)2.

If S is boundary incompressible, the argument is relatively straightforward and
appears in the proof below. If S is not boundary incompressible, performing the
corresponding boundary compression will only improve the bounds in Theorem 3.1.
However, we need the following lemma to prove this.

Lemma 3.2. Let S be the proper continuous image of a punctured disk with c
meridinal boundary components and exactly one �-curve boundary component such
that S may be boundary-compressed along an arc α ⊂ S. Then performing this
boundary compression will result in a surface S′ such that the genus of S′ remains
0, S′ has strictly fewer boundary components than S, and S′ has exactly one �-curve
boundary component.
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D

Figure 4. The boundary-compressing disk D with boundary
∂D = α ∪ β is shown here.

Proof. Since S is the image of a surface with c + 1 punctures such that exactly
one of the punctures corresponds to an � curve on the cusp and c of the punctures
correspond to meridinal curves on the cusp boundary, each possible ∂-compressing
arc α naturally falls into one of four categories:

(1) α connects a meridian to itself,
(2) α connects one meridian m1 to another m2,
(3) α connects the �-curve boundary to a meridian,
(4) α connects the �-curve boundary to itself.

We will discuss only the second possibility in detail since the arguments for each
are similar. See [Kat02] for complete details. In this case, form an annulus A by
connecting the ends of N(α) to each other by a disk in C which does not intersect
l, m1, or m2 in its interior. Define the number of half-twists in N(α) to be the
number of half-twists in A as an annulus embedded in S3. See Figure 4 for a picture
of the case that N(α) has zero half-twists.

Note that if N(α) has an even number of half-twists, then performing a boundary-
compression along it will result in a single punctured disk S′ which has one �-
curve boundary component and one fewer boundary component. In particular, one
boundary component will be trivial, which we can cap off with a disk. The resulting
surface has two fewer meridianal boundary components. But note that the result
has at least one meridianal puncture remaining, as otherwise ∂D would homotope
to � ⊂ ∂S, which is a contradiction since a nontrivial knot cannot bound a disk.

In the case that N(α) has an odd number of half-twists, the boundary-compres-
sing disk D will intersect S but we can still perform the boundary-compression, as
in Figure 5. The resulting surface will have one fewer boundary component than S
and it will have one boundary component that wraps twice around a meridian. �
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A1 A2D

Figure 5. Performing a boundary compression on a surface whose
constructed band B = N(α)∪A1∪A2 has a single half-twist. Notice
that γ′, the boundary component which replaces γ1 and γ2, is the
product γ1 ◦ γ2.

Proof of Theorem 3.1. First, we construct a He surface S in S
3−K and notice that

S has c+1 boundary components, c corresponding to meridinal punctures and one
corresponding to an �-curve. By Lemma 3.2, we know that there is a boundary in-
compressible punctured disk S with one �-curve boundary and no more meridianal
boundary than the initial surface. (We may have turned two different meridianal
boundary components into a single double meridian boundary component for in-
stance.) Taking a pleated representative of this surface, we know by Lemma 2.1
that the sum of the areas of the regions of intersection between S and N(K) will
be less than or equal to 6|χ(S)|. Hence,

c|m| + |�| ≤ 6|c − 1|.
From this, we see

|m| ≤ 6 − 6 + |�|
c

.

Since |�| ≥ 1, we know that

|m| ≤ 6 − 7
c
.

We also see
|�| ≤ (6 − |m|)c − 6.

Since |m| ≥ 1, we have
|�| ≤ 5c − 6,

and then we have that

VC(M) ≤ |m||�|
2

≤ 1
2
|m|((6 − |m|)c − 6).
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Figure 6. Two immersed surfaces.

Maximizing this with respect to |m|, we find that

VC(M) ≤ 9c

2
(1 − 1

c
)2.

�

Example 2. Let K be a twist knot, and consider the surface obtained by coning
a clasp of K to a point below the plane of the knot and then affixing a band to the
resulting pair of punctured disks as in Figure 6A. The resulting twice-punctured
disk intersects the cusp meridian twice and � once. It is boundary incompressible
as if it did boundary-compress; we would have an essential annulus in the knot
complement, which cannot occur for a hyperbolic 3-manifold. The surface has
Euler characteristic χ = −1 yielding

2|m| + |�| ≤ 6|−1|.
Maximizing |m||�| subject to the above restraint yields |m||�| ≤ 9/2 which gives

an upper bound of 9/4 on cusp volume. Note that if we knew the angle between an
|m| curve and an |�| curve on the horosphere centered at ∞ in the universal cover
of S

3 − K, then we could produce better bounds on the maximal cusp volume. It
is known that the cusp volumes of the twist knots approach 2 from below, but we
include this example as an illustration.

Example 3. By considering the embedded surface shown for the link in Figure 6B
we obtain |�| ≤ 6. The surface does not intersect the meridian of the cusp, so
no bounds on meridian length or volume are obtained. It is incompressible and
boundary incompressible since it is a Seifert surface of minimal genus for the trefoil
knot. Measurements from SNAPPEA [Wee] show that this upper bound is realized,
and |�| = 6 in this case. More generally, a genus g knot must have the length of
some �-curve bounded above by 12g − 6.

Example 4. Consider the twice-punctured Möbius band S bounded by the knot
K in the genus 2 handlebody H shown in Figure 1. Let T be the homeomorphism
given by a full twist of the disk D1 (isotoping so that the only the area of H
changed by T is the area A containing the punctures of S and bounded by the
disks D1, D2, and D3). Define another homeomorphism R similarly by performing
a full twist of D2 followed by isotopy to push all changed areas into region A and
then doing a full twist of D3 and isotoping all changes to area A again. Since
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Figure 7. Knot obtained by twisting disks in handlebody.

Figure 8. Graph representing a special handlebody.

R and T are homeomorphisms, they preserve the incompressibility and boundary
incompressibility of the Möbius band S inside H that we showed in Lemma 2.2.
By applying a transformation of the form Tn(RnTn)p, the knot K can be made to
resemble the one appearing in Figure 7. When n is large, the volume of this knot
approaches the volume of the link obtained by surrounding each of the individually
twisted parts by an additional individually trivial link component. When p is
large, this link can be made to have an arbitrarily large number of cusps so that
the resulting knot complement can be made to have arbitrarily high volume.

By embedding H in a carefully chosen handlebody (for example, the one obtained
from thickening the graph in Figure 8) in S

3 we are assured that S is incompressible
and boundary incompressible in S

3 − K (even after performing R and T as many
times as desired). Since R and T only change the way S is embedded in space but
do not affect Euler characteristic, we can obtain a bound on cusp volume.

The immersed surface formed by the twice-punctured Möbius band has Euler
characteristic χ = −2 and intersects the meridian of the cusp twice and l once to
give

2|m| + |�| ≤ 6|−2|
resulting in an upper bound on cusp volume, Vc ≤ 9. As explained above, the knot
K can be made to have arbitrarily large volume while preserving the Möbius band
S, so that K can be made to have arbitrarily low cusp density.

4. Alternating knots

In this section we provide bounds that apply to alternating knots.

Theorem 4.1. Let K be an alternating knot in S
3 with c crossings. Then:

(1) |m| ≤ 3 − 6/c,
(2) |l| ≤ 3c − 6,
(3) Vc(M) ≤ 9c

2 (1 − 2/c)2.
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The cusp volume bound can be compared with results of Lackenby [Lac01].
The twist number of an alternating knot projection is the number of maximal
chains of end-to-end bigonal regions appearing in the diagram where a crossing
that does not appear on a bigon counts as an individual twist. Lackenby (together
with an improvement of the upper bound due to Ian Agol and Dylan Thurston)
proved that if t is the twist number of a reduced alternating diagram for a prime
hyperbolic knot, then v3

2 (t − 2) ≤ Vol(S3 − K) ≤ 10v3(t − 1), where v3 is the
Gieseking constant, approximately 1.01494. An immediate consequence of this is
that Vc(K) ≤

√
3

2v3
(Vol(S3 −K) ≤ 5

√
3(t− 1). Note that as the ratio of crossings to

twist number increases, the Lackenby result gives the better bound. However, for
projections where c ≤ 2.26(t − 1), Theorem 4.1 gives the lower bound.

We can use these results to examine systole length, which is the length of the
shortest closed geodesic in a manifold.

In [AR02], it was proved that the complement of a hyperbolic knot in S
3 has sys-

tole length less than 7.35534. The following corollary is an immediate consequence
of the bound on |m| obtained above and Theorem 3.2 from that paper.

Corollary 4.2. If K is a hyperbolic alternating knot in S
3, the systole length of

S
3 − K is less than 4.5.

To prove Theorem 4.1, we will look at the so-called checkerboard surfaces cor-
responding to a given projection of a knot. These are two surfaces obtained by
coloring regions of the projection plane alternately black and white. Since four
regions meet at a crossing, two black regions and two white regions meet at each
crossing. We connect the two like-colored regions by a twisted band passing through
the crossing. The two surfaces will intersect in a vertical arc at each crossing. Note
that the boundary of each surface is the knot and the surfaces can either be ori-
entable or nonorientable. In [MT93], the authors prove that in the case of prime
alternating knots, the checkerboard surfaces corresponding to any reduced alter-
nating projection are incompressible. As they state, this proof can be extended to
prove boundary-incompressibility as well.

Proof of Theorem 4.1. Let S1 and S2 be the two checkerboard surfaces for K in a
particular reduced alternating projection. Note that the boundaries of S1 and S2

together form a diamond pattern on the boundary of the maximal cusp boundary,
which we call a harlequin tiling. See Figure 9.

The union of the the boundaries of S1 and S2 can be decomposed into 2c merid-
ians, two meridians coming from the boundary of each of the top diamonds, or it
can be decomposed into two �-curves. Notice that we allow ourselves to jump from
one surface to the other in breaking up and reconstructing these curves.

In determining the Euler characteristic of S1 and S2, we can treat the regions
in the projection plane as the faces of a decomposition, inserting vertical edges at
each crossing and vertices at the top and bottom of each of these edges. We then
have a decomposition of the two surfaces with 4c vertices, 6c edges and f faces,
where f = c + 2. Then since each has nonpositive Euler characteristic,

|χ(S1)| + |χ(S2)| = |4c − 6c + (c + 2)| = c − 2.
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Figure 9. The induced harlequin tiling on ∂C.

Thus, by Lemma 2.1, we obtain

2c|m| ≤ 6(|χ(S1)| + |χ(S2)|) ≤ 6(c − 2),

|m| ≤ 3 − 6/c

and

2|�| ≤ 6(c − 2),

|�| ≤ 3c − 6.

By maximizing f(|m|) = |m||�| as a function of |m|, we obtain

Vc(M) ≤ 9c

2
(1 − 2/c)2.

�

5. An application

In this section, we use immersed surfaces to prove the following:

Theorem 5.1. Any closed orientable 3-manifold M contains a knot K such that
M − K is hyperbolic with cusp volume no larger than 9.

Proof. Let M be a closed orientable 3-manifold. In [Mye82] (see also [Ada94] for
an alternative proof), Myers proved that every such manifold contains a knot such
that its complement in M is hyperbolic. Let J ′ be such a knot in M . Define a
vertical geodesic in M to be a geodesic that is perpendicular to the cusp boundary
at each of its ends. Note that there are infinitely many distinct vertical geodesics
in any cusped finite volume hyperbolic 3-manifold. Although a vertical geodesic
need not be embedded in the manifold, if it is not, it will intersect itself at most a
finite number of times. At those points of intersection, we can perturb the geodesic
slightly to remove the self-intersections. We will do the perturbation to avoid
introducing any local tangles. Given a particular vertical geodesic α, shrink the
cusp back until it only intersects α at its ends. If α is an unknotting tunnel for
M − J ′, replace it with a vertical geodesic that is not. By [Joh95], there are
only finitely many unknotting tunnels up to isotopy in a hyperbolic 3-manifold.
Moreover, there is only one such in each homotopy class. So we can find a vertical
geodesic α, possibly perturbed, that is not an unknotting tunnel.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CUSP SIZE BOUNDS FROM SINGULAR SURFACES 739

Let M ′ = M − N(J ′ ∪ α). Then M ′ has a genus two boundary. We will prove
that M ′ is hyperbolic. That is to say, it is irreducible, ∂-irreducible and contains
no essential tori. Note that we are not claiming there are no essential annuli.

To see irreducibility, suppose S is an essential sphere in M ′. Since M ′ ⊂ M −J ′,
and M − J ′ is hyperbolic, S bounds a ball in M − J ′. Therefore, it bounds a ball
in M ′ as well.

To see boundary irreducibility, suppose ∂M ′ is compressed. One or two tori
result from the compression. Let T be one of them. Since T sits in M − J ′,
which contains no essential tori, it must either be boundary parallel in M −N(J ′),
or it must compress. If it is boundary-parallel, then α can be homotoped into
∂(M − N(J ′)). Hence α would lift to an arc that connects one horoball to itself,
rather than one horoball to another, as we know α does. So T must compress.
In the case that the original compression yielded two tori, we can replace that
compression with this one, so we need only concern ourselves with a single torus.

As above, it is still the case that this torus T compresses. Since the sphere S
resulting from the compression of T must bound a ball B in M − J ′, we know that
T bounds either a knot exterior or a solid torus in M − J ′.

In the first case, let D be the compressing disk and let R be the knot exterior.
Then R ∪ D = B, and α must puncture D at least once, since T is incompressible
in M ′. The ball B lifts from M − J to a disjoint set of balls in H

3. Let B′

be one such ball. Then B′ must contain a homeomorphic copy of R, call it R′.
The boundary of R′ must be incompressible in H

3 − p−1N(J ′ ∪ α). Since B and
therefore B′ has finite volume, we can choose a 3-ball E ∈ H

3 − p−1N(J ′) that
contains B′ and such that any arc in p−1(α) that is intersected by E is isotopic
into ∂E ∈ E. Then the fundamental group of E − p−1(N(α)) is a free group on
a finite number of generators. But R′ is a knot exterior contained within it with
incompressible boundary. But then the fundamental group of R′ is a subgroup of
a free group, meaning it is free itself by the Nielsen-Schreier Subgroup Theorem.
However, nontrivial knot exterior groups are not free, a contradiction.

Hence T bounds a solid torus in M − J ′ and therefore in M ′. This implies that
M ′ is a handlebody, contradicting our assumption that α was not an unknotting
tunnel. So ∂M ′ is incompressible.

To see that there are no essential tori in M ′, suppose that T is such a torus. As
above, T must bound a solid torus in M − J ′. However, then it does so in M ′ as
well, a contradiction.

Let H be the handlebody that appears in Figure 1, and J the knot within it.
By Lemma 2.2, H −J is hyperbolic with an immersed incompressible boundary in-
compressible twice-punctured Möbius band contained within it. Also, any essential
annuli in H − J have both boundary components on ∂H and they do not intersect
the disk D1.

We will glue the boundary of the handlebody H to the boundary of M ′ in order
to obtain M again. Note that we can include twists in the handles when we do so,
without changing the topological type of M . The result will yield an embedding of
the knot J in M . Call that embedded knot K. Let Q be the genus two surface in
M corresponding to ∂H.

The immersed Möbius band S is essential in M −K since S is essential in H −L
and ∂M ′ is incompressible in M ′.
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We now show that M −K is hyperbolic. Irreducibility follows from irreducibility
of M ′, H − J and incompressibility of S to either side. Boundary-irreducibility
follows from the incompressibility of ∂N(J) ∈ H and the incompressibility of ∂M ′ ∈
M ′.

We must show that M −K is atoroidal. Since H −J and M ′ are each atoroidal,
any essential torus T in M −K must intersect S. By minimizing the intersections,
we can assume that T intersects M ′ and H − J in essential annuli, each of the
boundary components of which lie on Q. But the boundary components of any
essential annulus in H − J do not intersect D1. In particular, in order to construct
an essential torus with such an annulus and an annulus in M ′, it would be necessary
for the annulus in M ′ to be isotopic to an annulus that avoids ∂N(α). However,
such an annulus in M ′ then exists as an annulus in M − N(J ′). Since M − N(J ′)
is hyperbolic, the annulus must be boundary-parallel in M − N(J ′). But then α
can be homotoped to the boundary, contradicting our choice of α as an arc that
connects two distinct horoballs. Hence no essential tori can be constructed. Thus,
M − K is hyperbolic with an immersed incompressible boundary incompressible
twice-punctured Möbius band. Therefore, by results in Example 4 from Section 2,
we see that the maximal cusp volume must be at most 9. �

Corollary 5.2. Any closed orientable 3-manifold M contains a knot K such that
M − K is hyperbolic with arbitrarily low cusp density and cusp volume at most 9.

Proof. Using exactly the same argument, but twisting up the knot inside the han-
dlebody as in Example 4, before the handlebody is inserted into the manifold, yields
a hyperbolic knot in the manifold with complement of arbitrarily high volume but
cusp volume bounded by 9. �

In particular, any counterexample to the Poincaré Conjecture must come from
Dehn filling a one-cusped hyperbolic 3-manifold with cusp volume at most 9 (with
arbitrarily low cusp density).
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