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1 Motivation

Lecture 1

What facts of reality give rise to the concept “the dual of a given vector
space”? Why do we need such a concept?

I. Consider the familiar circumstance, the set of fruit inventories in a
supermarket. Designate a typical inventory of αa apples, αb bananas, αc

coconuts, · · · by

~x =αa −−−−→apples+ αb −−−−−→bananas+ αc −−−−−→coconuts+ · · · (1)

or, more succinctly, by

~x =αa ~ea + αb~eb + αc~ec + · · · (2)

Fruit inventories like these form a vector space, V , closed under addition and
scalar multiplication.
Nota bene: In this vector space there is no Pythagorean theorem, no distance
function, and no angle between any pair of inventories. This is because in
the present context apples, bananas, and coconuts are in-commensurable, i.e.
“one does not mix apples and bananas”.
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II. Next consider a particular purchase price function, $f . Its values yield
the cost of any fruit inventory ~x:

$f (~x) = $f (α
a ~ea + αb~eb + αc~ec + · · · ) (3)

= αa $f (~ea)
︸ ︷︷ ︸

purchase
price/apple

+ αb $f (~eb)
︸ ︷︷ ︸

purchase
price/banana

+ αc $f (~ec)
︸ ︷︷ ︸

purchase
price/coconut

+ · · · (4)

Also consider the cost of fruit inventory ~y:

$f (~y) = βa $f (~ea) + βb $f (~eb) + βc $f (~ec) + · · · . (5)

We see that

$f (~x+ c~y) = $f (~x) + c$f (~y) (6)

Thus
$f : V → R

~x❀ $f (~x)

is a linear function on the vector space V of fruit inventories.
III. The set of purchase price functions forms a vector space. Indeed,

consider the purchase price functions $f , $g, $h, · · · of different fruit whole-
salers, and introduce the combined purchase price function $f + $g by the
requirement that

($f + $g)(~x) = $f (~x) + $g(~x) for all ~x in V (7)

and c$f , the c-multiple of $f , by

(c$f )(~x) = c ($f (~x)) .

We infer that the set of purchase price functions forms a vector space, V ∗,
the space dual to V .

2 Linear Functions

The space of duals is variously referred to as
the space of linear functions

2



the space of linear functionals
the space of covectors
the space of duals.

The concept of a dual is a new concept. It combines two concepts into
one. It is a marriage between the concept of a function and the concept of a
vector. Such a marriage is possible only for linear functions, a fact formalized
by Theorem 1 on page 6.

In the hierarchy of concepts a dual is a derived concept, it depends on the
existence and knowledge of the entities that make up a vector space. A dual
conceptualizes a measurable property of these entities. For example, if one
introduces a basis for the vector space, then each of the associates coordinate
functions is a dual. This fact is depicted in Figure 2 on page 8. Each one
is a measurable property of a vector, with the relevant basis vector serving
as the relevant measurement standard. Properties such as these, and others,
are mathematized by means of linear functions which are identified by the
following

Definition 1 (Linear Function)
Let V be a vector space. Consider a scalar-valued linear function f defined
on V as follows:

f : V → R

x❀ f(x)

such that

f(αx+ βy) = αf(x) + βf(y) where x, y ∈ V ; α, β ∈ {scalars} .

Example 1: (Linear function as a row vector)
Let V = Rn = {(x1, x2, · · · , xn)} then

f : Rn → R





x1
...
xn




 ❀ f(x1, · · · , xn) ≡ [ξ1, · · · , ξn]






x1
...
xn






= ξ1x1 + · · ·+ ξnxn

is a linear function whose domain is V = Rn, and whose form is determined
by a given row vector [ξ1, · · · , ξn]. See Figure 1.
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Figure 1: Linear map f . Its isograms (=loci of point where f has constant
value) are parallel planes in its domain, R3, with f = 0 passing through the
origin. The image of these planes are points in R

Example 2: (Weighted Sum of Samples) Consider V = C[a, b], the vector
space of functions continuous on the closed interval [a, b]:

V = {ψ : ψ(s)is continuous on[a, b]} ≡ C[a, b] .

Consider the following linear scalar-valued functions on V:

1. For any point s1 ∈ [a, b] the “s1-evaluation map” (also known as the
“s1-sampling function”) f

V = C[a, b]
f

−→ R (reals)
ψ ❀ f(ψ) = ψ(s1)

4



The function f is linear because

f(c1ψ + c2φ) = c1f(ψ) + c2f(φ) (8)

2. Let {s1, s2, · · · , sn} ⊂ [a, b] be a specified collection of points in [a, b],
and let {k1, k2, · · · , kn} ≡ {kj}

n
j=1 be a set of scalars. Then the function

g defined by

C[a, b]
g

−→ R

ψ ❀ g(ψ) =
∑n

j=1 kjψ(sj)

is a linear function on V = C[a, b, ]

3. Similarly, the map h defined by

h(ψ) =

∫ b

a

ψ(s) ds

is also a linear map on v = C[a, b].

Example 3:

Consider the vector space of infinitely differentiable functions,

V = {ψ : ψ is C∞ on (a, b)} ≡ C(a, b)

on (a, b). Furthermore, let

djψ(s) =
djψ

dsj

∣
∣
∣
∣
x=s

be the jth derivative of ψ at x = s. Then for any fixed s ∈ (a, b),the map h
defined by

V = C[a, b]
h

−→ R

ψ ❀ h(ψ) =
∑n

j=1 ajd
jψ(s)

is a linear function on V = C∞(a, b, )

3 The Vector Space V ∗ Dual to V

Given a vector space V , the consideration of all possible linear functions
defined on V gives rise to

V ∗ = set of all linear functions on V .

These linear functions form a vector space in its own right, the dual space of
V . Indeed, we have the following
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Theorem 1

The set V ∗ is a vector space.

Comment and proof:

1. In physics the elements of the vector space V ∗ are called covectors.

2. That V ∗ does indeed form a vector space is verified by observing that
the collection of linear functions satisfies the familiar ten properties of
a vector space.

Thus, if f, g, h are linear functions and α, β ∈ R, then

(a) f + g is also a linear function defined by the formula

(f + g)(~x) = f(~x) + g(~x) ∀~x ∈ V .

Consequently, the following concomitant properties are satisfied
automatically:

(b) f + g = g + f

(c) f + (g + h) = (f + g) + h

(d) the zero element (=“additive identity”) is the constant zero func-
tion

(e) the additive inverse of f is −f .

Furthermore,

(i) αf is also a linear function defined by the formula

(αf)(~x) = αf(~x) ∀~x ∈ V and α ∈ R

In light of this formula the following properties are also satisfied
automatically:

(ii) α(βf) = (αβ)f

(iii) 1f = f

(iv) α(f + g) = αf + αg

(v) (α + β)f = αf + βf
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4 Dirac’s Bracket Notation

To emphasize the duality between the two vector spaces, one takes advan-
tage of Dirac’s bra-ket notation, which he originally introduced into quantum
mechanics.

If f is a linear function on V and f(x) is its value at x ∈ V , then one also
writes

f(x) ≡ 〈f |x〉 ≡ 〈f |~x〉 (9)

Thus the underscore under f is a reminder that f ∈ V ∗, while x, or better ~x
is an element of V. We say that f operates on the vector x and produces

〈f |x〉

To emphasize that f is a linear “machine”, we write

f =〈f | (∈ V ∗) (10)

for the covector (which Dirac called a bra) and

x =|~x〉 (∈ V ) (11)

for the vector (which Dirac called a ket). They combine to form

〈f |~x〉 (∈ R)
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5 The Duality Principle

Lecture 2

As we shall see, mathematically it is the existence and uniqueness of a vector’s
scalar coefficients relative to a chosen/given basis that makes the concept of
duality so important. Indeed, such a basis makes the introduction of V ∗

inevitable. This is because a basis determines unique scalar values for each
vector, which is to say that it determines scalar functions on V .

e3

e2

e1

ω1

ω2

ω3

Figure 2: Level surfaces (=”isograms”) of the coordinate functions, which
(i) are linear on V and (ii) are determined by the basis ~e1, ~e2, · · · , ~en. The
tip of a vector (not shown here), say, x = α1~e1 + α2~e2 + α3~e3, is located
at the intersection of three isograms. This is the point where ω1(x) = α1,
ω2(x) = α2, and ω3(x) = α3. Nota bene: The upper indeces 1, 2, and 3 are
not powers ; they are superscripts.
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The problem, therefore, is: What are these scalar functions? Are they
elements of V ∗? If so, do they form a linearly independent set? Do they span
V ∗?

The answer to these questions gives rise to

The Duality Principle:

For each ordered basis
{~e1, ~e2, · · · , ~en}

of a finite dimensional vector space V , there exists a corresponding basis

{ω1, ω2, · · · , ωn, }

for V ∗, and vice versa, such that

〈ωi|~ej〉 = δij . (12)

Warning. The evaluation, Eq.(12), is not to be confused with an inner prod-
uct. The existence of the duality between V and V ∗ by itself does not at all
imply the existence of an inner product. We shall see that the existence of
an inner product on a vector space establishes a unique basis-independent
(= “natural”) isomorphic correspondence between V and V ∗. In the absence
of an inner product such a correspondence does not exist.

The validation of the duality principle consists of the actual three-step
construction of the basis dual to the given basis, which we denote by

B = {~e1, ~e2, · · · , ~en} ⊂ V (basis for V .)

Step I.
For all vectors x and y one has the following unique expansions:

x = α1~e1 + · · ·+ αn~en (13)

y = β1~e1 + · · ·+ βn~en

x+ y = (α1 + β1)~e1 + · · ·+ (αn + βn)~en

cx = cα1~e1 + · · ·+ cαn~en (c is a scalar)

Note that

α1 is uniquely determined by x

β1 ′′ ′′ ′′ ′′ y

α1 + β1 ′′ ′′ ′′ ′′ x+ y

cα1 ′′ ′′ ′′ ′′ cx
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Step II.
These four relations determine a linear function, call it ω1. Its defining prop-
erties are

ω1(x) = α1

ω1(y) = β1

ω1(x+ y) = α1 + β1

ω1(cx) = cα1

which imply

ω1(x+ y) = ω1(x) + ω1(y)

ω1(cx) = cω1(x)

In particular, using Eq.(13) on page 9, one has

ω1(~e1) = 1

ω1(~e2) = 0

...

ω1(~en) = 0.

We conclude that ω1 is a linear function, indeed. The function ω1 is called
the first coordinate function.
Step III.
Similarly the jth coordinate function, is defined by

ωj = αj for j = 2, 3, · · · , n .

By applying ωj to the ith basis vector ~ei, and using Eq.(13) on page 9 one
obtains

ωj(~ei) ≡ 〈ωj|~ei〉 =

{
1 j = i

0 j 6= i

or in terms of the Kronecker delta,

〈ωj|~ei〉 = δ
j
i .
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This is called a duality relation or duality principle. The choice of a dif-
ferent vector basis would have resulted in a correspondingly different set of
coordinate functions, but would have again resulted in a duality relation.

Being elements in V ∗, do these coordinate functions form a basis for V ∗?
The answer to this important question is answered in the affirmative by the
following

Theorem 2 (Dual Basis)

Given: A basis B = {~e1, · · · , ~en} for V.

Conclusion: The set of linear functions B∗ = {ωj}nj=1 which satisfies the duality
relation

〈ωj|~ei〉 = δ
j
i (14)

is a basis for V ∗.

The proof of the spanning property of B∗ hinges on the spanning property
of B as follows: Let f ∈ V ∗ be some linear function on V . Evaluate f(x)
and use x =

∑

i α
i~ei. Thus

f(x) = f

(
∑

i

αi~ei

)

=
∑

i

f(~ei)α
i αi is the ith coord. of x, i.e. αi = ωi(x);

=
∑

i

f(~ei)ω
i(x) ∀x ∈ V

This holds for all x ∈ V . Consequently,

f =
∑

i

f(~ei)ω
i, (15)

which is an expansion of f in terms of the elements of B∗, which means that
B∗ is a spanning set for V ∗ indeed.
To show that B∗ has the linear independence property, we consider the equa-
tion

c1ω1 + c2ω2 + · · ·+ cnωn = 0
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where 0 is the function with constant value zero on V . By evaluating both
sides on the ith basis vector ~ei and using Eq.(14) one obtains

ci = 0 for i = 1, 2, · · · , n

Consequently, B∗ does have the linear independence property. Together with
its spanning property, this validates the claim made in the Theorem that B∗

is a basis for V ∗.
Example 1 (Column space∗=Row space)
GIVEN:
Let

B =






~e1 =





1
0
0



 ;~e2 =





1
1
0



 ;~e3 =





1
1
1











be a basis for the column space V = R3.
a) IDENTIFY V ∗, the space dual to V .
b) FIND the basis B∗ = {ω1;ω2;ω3} dual to B, i.e. exhibit elements ωj

which satisfy Eq.(14).
Solution
a) The space dual to V consists of the row space

V ∗ = {σ = [a b c] : a, b, c ∈ R}.

Indeed, for any x =





x

y

z



 ∈ R3

〈σ|x〉 ≡ σ









x

y

z









= [a b c]





x

y

z



 = ax+ by + cz

Question:
What line of reasoning led to the fact that the answer to a) is the space of
row vectors?
Answer:
A prerequisite for the course “Linear Mathematics in Finite Dimensions” is a
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knowledge of matrix theory (as, for example, in chapter 1 of Johnson, Riess,
and Arnold). One of the concepts in this chapter is that of a row vector. One
of the constitutive properties of a row vector is that it can be multiplied by
a column vector and thereby produces a scalar number. This property was
stored in our subconscious (the “hard disk” of our consciousness) where it
has been ever since.
Now part a) of the above problem, asks for linear functions on the space of
column vectors. That is the standing order, to search our subconscious for
a concept with this requisite property. The success of this search was not
immediate. In fact, we had to “sleep” on it. However, the already-known
concept “row vector” is the green light to inferring generalizations from par-
ticular instances. In particular, a row vector, when applied to column vectors,
produces scalar numbers. The generalization is “row vectors give rise to (i.e.
imply) linear functions”. This inference is mandatory for two reasons: (i) a
function is precisely the process of assigning scalar values to elements, here
column vectors in the function’s domain and (ii) the process is a linear one.

This generalization is a causal relation between row vectors and linear
functions. Like all generalizations it is new knowledge. We arrived at it
not deductively (“All men are mortal; Socrates is a man; hence Socrates
is mortal”) , but by the process of induction. This process is much more
difficult and requires much more effort because it involved all our relevant
knowledge, namely matrix theory.

To state it negatively and more generally: generalizations are not ob-
tained by “intuition”, “inspiration”, “revelation”, or by some other kind
of pseudo explanation. Instead the road to success is paved by hard work
together with by not letting ones subconscious “goof off”, but giving it a
standing order(s) consisting of valid concepts.
b) Each ωj is a row vector. They must satisfy

〈ω1|~e1〉 = [a b c]





1
0
0



 = 1

〈ω1|~e2〉 = [a b c]





1
1
0



 = 0

〈ω1|~e3〉 = [a b c]





1
1
1



 = 0







⇒ ω1 = [1−1 0] (16)
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〈ω2|~e1〉 = [d e f ]





1
0
0



 = 0

〈ω2|~e2〉 = [d e f ]





1
1
0



 = 1

〈ω2|~e3〉 = [d e f ]





1
1
1



 = 0







⇒ ω2 = [0 1−1] (17)

〈ω3|~e1〉 = [u v w]





1
0
0



 = 0

〈ω3|~e2〉 = [u v w]





1
1
0



 = 0

〈ω3|~e3〉 = [u v w]





1
1
1



 = 1







⇒ ω3 = [0 0 1] (18)

Thus the basis of duals for V ∗, the space dual to V = R3 is

B∗ = {ωj}3j=1 = { [1−1 0], [0 1−1], [0 0 1] }

Example 2
Same as Example 1 on page 12, except that

B =






~e1 =





1
0
0



 ;~e2 =





1
1
0



 ;~e3 =





1
1
2











Answer:

B∗ = {ωj}3j=1 = { [1−1 0], [0 1−
1

2
], [0 0

1

2
] }

Comment.
Note that changing only one element of B, say, ~ej → ~e′j changes several el-
ements of B∗, as in Figure 3 on page 15. This implies that there is as-yet
no basis independent correspondence between V ∗ and V . A basis indepen-
dent correspondence would have required that changing only one of the basis
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vectors in V would have produced a corresponding change in only one basis
vector in V ∗.
Summary.
There does exist a unique correspondence between ordered basis sets in V

and V ∗

{~ei}
n
i=1 ↔ {ωj}nj=1,

but not between individual vectors in V and V ∗:

{coordinate vectors} = {coordinate surfaces}

More succinctly, one says that there exists no natural (i.e. basis independent
isomorphism between V and V ∗.

However, we shall see in the next lecture that if V is endowed with an
inner product, then there is a natural isomorphism between V and V ∗.

e3

e2

e’1e1

Figure 3: Changing only one vector of a basis, for example {~e1, ~e2, ~e3} −→
{~e ,

1 , ~e2, ~e3}, changes more than one dual element as evidenced by the tilting
of their coordinate surfaces in the vector space.
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6 Metric as a Bilinear Function on a Vector

Space

Lecture 3

The vector space arenas developed so far are in skeleton form but funda-
mental to all of mathematics. In physics and engineering terminology their
linearity is captured by means of the superposition principle. In mathematics,
by means of closure under linear combination.

The bare bones attributes introduced so far are the linear (in)dependence
and the spanning property of a set of vectors. These properties are sufficient
for characterizing a vector space in terms of coordinate systems introduced
via any chosen (or given) basis. As a result every vector space V accommo-
dates its dual space V ∗, the space of linear functions. This space is a vector
space in its own right, and any basis for V determines a unique corresponding
basis for V ∗. Indeed, the dimensions of V and V ∗ are the same, a fact which
is a consequence of the duality principle

〈ωj|~ej〉 = δ
j
i

In spite of this duality, there is no natural (i.e. basis-independent) corre-
spondence between V and its dual space of covectors, V ∗.

This deficiency, as we shall see, disappears once one has identified an
inner product on the given vector space arena.

6.1 Bilinear Functional; the Metric

There is no natural isomorphism between V and V ∗. However, if the vec-
tor space has an inner product defined on it, then such an isomorphism is
determined.

Definition 2 (Bilinear Form)
Given: a vector space U and a vector space V .
A bilinear functional (or “form”) on U × V (= pairs of elements, one from
U and one from V ) is a function w,

w : U × V
w
→ scalars

(x, y) ❀ w(x, y)
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with the properties

w(α1x1 + α2x2, y) = α1w(x1, y) + α2w(x2, y)

w(x, β1y1 + β2y2) = β1w(x, y1) + β2w(x, y2);

in other words, w is linear in each argument.

In this definition U and V can be vector spaces of different dimensions. The
concept of a metric arises if the two vector spaces are one and the same and
is given by the following definition:

Definition 3 (Metric) A metric (or inner product) is a bilinear functional
g on V × V (pairs of elements in V )

g : (x, y) ❀ g(x, y)

with the property

g(x, y) = g(y, x) .

In other words, a real-valued metric is symmetric.
Comment.
If the metric were complex-valued, then the symmetry condition get replaced
by

g(x, y) = g(y, x)

The metric g( , ) is said to be an inner product whenever g is positive definite,
i.e. g(x, x) > 0 ∀x 6= 0.
Example (Basis Expansion of the Metric) Let

x = x1~e1 + x2~e2 + · · ·+ xn~en

be a representation of a vector x relative to a basis {~e1, · · · , ~en} for V . Then

g(x, y) = g(x1~e1 + x2~e2 + · · ·+ xn~en, y
1~e1 + y2~e2 + · · ·+ yn~en)

= x1y1g(~e1, ~e1) + (x1y2 + x2y1g(~e1, ~e2) + x2y2g(~e2, ~e2) + · · ·

= x1y1~e1 · ~e1 + (x1y2 + x2y1)~e1 · ~e2 + x2y2~e2 · ~e2 + · · ·

= x1y1g11 + (x1y2 + x2y1)g12 + x2y2g22 + · · ·

= xiyjgij (Einstein summation convention for pairs of repeated indeces)

The coefficients gij ≡ ~ei · ~ej ≡ g(~ei, ~ej) are the components of the metric g
relative to the given basis. They are the innerproducts of all pairs of basis
vectors.
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6.2 Metric as an Isomorphism between Vector Space

and its Space of Duals

The scalar product

g : V × V → R (19)

(x, y) ❀ g(x, y)

is a bilinear function. Consequently, it can be evaluated on only one of its
arguments, g(x, ).The result is a linear function. More precisely, a metric
establishes a natural (i.e. basis independent) isomorphism between vector
space V and its space of duals, V ∗. In order to conserve notation we shall
use the same symbol g to designate this correspondence. Its defining property
is

g : V → V ∗ (20)

x ❀ g(x, ) ≡ x (= x·)

Here x is that linear function which, when evaluated on y ∈ V , yields g(x, y):

x = x· : V
x
→ V ∗

y ❀ 〈x|y〉 = x · y ≡ g(x, y)

If g maps ~x to its image x, what is the image of the set of components of ~x?
The answer is given by the following proposition,
Proposition

Given the vector ~x = xk~ek, the numerical coefficients xj of the cor-
responding covector x = xjω

j are given explicitly by the following
computation:

x = g(~x, )

= xkg(~ek, )

Taking advantage of the spanning property of {ωj}, Eq.(15) on page
11), we find that the to-be-determined xj satisfy

xkg(~ek, ) = xjω
j
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Evaluating both side on each of the basis vectors ei, and using the
duality relation Eq.(14), we obtain

xi = xkg(~ek, ~ei)

= xkgki (21)

≡ ~x · ~ei,

the components of xjω
j, which is the image of ~x = xk~ek under g.

Although the two mappings, Eq.(19) and 20) are entirely different functions
(one bilinear, the other linear) they can be represented by a single explicit
formula,

g = gij ω
i ⊗ ωj ,

thereby capturing their similarity, once a basis has been introduced. The
meaning of this formula arises from the meaning g(~x, ~y). The bilinearity g
implies that

g(~x, ~y) = ~x · ~y (22)

= ~ei · ~ej x
iyj (23)

= gij ω
i(~x)ωj(~y) (24)

≡ gij ω
i ⊗ ωj(~x, ~y) ∀ ~x, ~y ∈ V. (25)

Consequently,
g = gij ω

i ⊗ ωj ,

Here the product symbol ⊗ establishes an ordered juxtaposition of two linear
function(al)s, thereby yielding a bi linear function(al).
On the other hand, the linearity of g = gij ω

i ⊗ ωj in each argument implies
that for a given ~x one has

gij ω
i ⊗ ωj(~x, ~y) = gijω

i(~x)ωj(~y)

= gij x
iωj(~y)

= xjω
j(~y) (as defined by Eq.(21) on page 19)

≡ x (~y) ∀y ∈ V

Consequently,

gij ω
i ⊗ ωj(~x, ) ≡ gijω

i(~x)ωj

= x
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which is to say that g = gij ω
i ⊗ ωj is a linear function(al) which assigns

~x ∈ V to x ∈ V ∗.
Implicit in the metric-induced isomorphism

V
g

−→ V ∗

~x ∼❀ x

is the existence of a vector normal to x’s isograms1 in V . In fact, this normal
is precisely the preimage of x, namely ~x itself. Moreover, each set of isograms
of each coordinate function ωi has such a normal. This circumstance gives
rise to the basis reciprocal to the originally given basis. This reciprocal
basis mathematizes the obliqueness of the given coordinate surfaces. It is
developed in the next subsection.

1An isogram (a.k.a. a level surface) of a function is the locus of points where the
function has the same constant value
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7 Mathematizing an Oblique Coordinate Sys-

tem

Lecture 4

Historically the “contravariant” components of a vector are its components
relative to a chosen/given basis. Indeed, they are “the” components relative
to this basis, regardless of what metric the vector space V is endowed with.

If V is endowed with a specific metric then there exists a second well-
defined basis, “reciprocal” to the first one. It turns out that the components
of a vector relative to this reciprocal basis are precisely the xj’s, Eq.(21),
and it is these components that historically have been called the “covariant”
components of a vector. In other words, as we shall see, the reciprocal basis
brings the geometry of the dual basis into very sharp focus.
Warning:
The appellations “contravariant vector” and “covariant vector” are invalid
concepts. They are oxymorons, examples of mixing incommensurable cat-
egories, an attempt to blend mutually exclusive ideas into a single unit.
Indeed, a vector is a basis independent concept, while “contravariant” or
“covariant” are attributes of the components of a vector and thus are rela-
tive to some basis.

The reciprocal basis and its properties arise as follows:
Start with an oblique basis {~e1, ~e2} and its coordinate system as in Fig. 4.

Next introduce a vector, ~e ∗1 , which is perpendicular to ~e2 and is “normalized”
by being reciprocal to ~e1 as in Figure 5 on page 24

~e ∗1 · ~e2 = 0

~e ∗1 · ~e1 = 1

In a similar way introduce ~e ∗2 which is perpendicular to ~e1 and reciprocal to
~e2:

~e ∗2 · ~e1 = 0

~e ∗2 · ~e2 = 1

The basis {~e ∗1 , ~e
∗

2 } ≡ R∗ constructed in this manner is reciprocal to the given
basis B = {~e1, ~e2} because it satisfies

~e ∗i · ~ej = δij.

More generally, we have the following
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Figure 4: Oblique basis and its oblique coordinate system.

Definition 4 (Reciprocal Basis)

Given (i) the metric g =′′ ·′′, a metric on v

(ii) a basis {~e1, · · · , ~en} for V ,

then the set of vectors
{~e ∗1 , ~e

∗

2 },

where

~e ∗k · ~ej = δkj, (26)

is the basis reciprocal to {~ej}
n
j=1.

This definition says that {~ek} is a vector perpendicular to the plane contain-
ing the vectors {~e1, · · · , ~ek−1, ~ek+1, · · · , ~en}, i.e.

~e ∗k · ~ej = 0 j 6= k.
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Furthermore, ~e ∗k is scaled such that

~e ∗k · ~ek = 1 (No sum over k)

It is also clear that if the basis {~e ∗k}
n
k=1 is reciprocal to {~ej}

n
j=1, then {~ej}

n
j=1

is reciprocal to {~e ∗k}
n
k=1.
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Figure 5: Oblique basis and its oblique reciprocal basis
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7.1 The Geometric Relation Between a Vector Space

and its Dual

There is a fundamental relation between

(i) the basis {~e ∗j }
n
j=1 ≡ R∗ reciprocal to the given basis B = {~ei}

n
i=1, with

~e ∗j · ~ei = δij,
and

(ii) the basis {ωj}n
j=1 = B∗ dual to B:

The respective elements of either basis are projection operators. Both yield
the coordinate components of any vector. This claim is mathematized by
means of the following proposition, which, once validated, establishes a nat-
ural isomorphism between V and V ∗.
Proposition (Projection Operators)

The dual basis as well as the reciprocal basis serve as projection oper-
ators in that they yield the coordinates of a vector:

〈ωk|~x〉 = 〈ωk|xi~ei〉 = xiδki = xk

~e ∗k · ~x = xi~e ∗k · ~ei = xiδki = xk

This proposition is the first step in mathematizing the geometrical relation
between (1) a vector space with an oblique coordinate system and
(2) its dual space.

The second step consists of taking advantage of the fact that the metric
g( , ) = “ · ” is linear in its second argument. Indeed, for each of the elements
~e ∗j of the reciprocal basis R∗ the metric implies the ~e ∗j -parametrized linear
function

g(~e ∗1 , ) = ω1( ) (27)

...

g(~e ∗n , ) = ωn( ), (28)

which, of course, are precisely the dual basis elements.
The third and final step consists of taking advantage of g’s linearity in

its first argument. Taking linear combination, one has

g

(
n∑

k=1

αk~e
∗

k ,

)

= αkω
k( ). (29)
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The significance of the cluster of equalities (27)-(29) is that they allow being
consolidated into the single function

g : V −→ V ∗

whose concrete values are given by

~e ∗1
g

∼❀ ω1

...

~e ∗n
g

∼❀ ωn

n∑

k=1

αk~e
∗

k

g
∼❀ αkω

k (30)

︸ ︷︷ ︸ ︸︷︷︸

i.e. ~a
g

∼❀ a (31)

Q: What is the geometrical meaning of Eq.(31)?
The answer is given by evaluating the covector a on a generic vector ~x:

a(~x) = 〈αkω
k|~x〉

= αkω
k(~x)

= αkx
k

=
n∑

k=1

αk~e
∗

k · ~x

= ~a · ~x (32)

Consider the a=0 isogram of the linear function a. It consists of all vectors
~x which satisfy

a(~x) = 0.

In light of Eq.(32) this means that

~a · ~x = 0.

It follows that

the vector ~a =
n∑

k=1

αk~e
∗

k is perpendicular to the displacements in the isograms of a =
n∑

k=1

αkω
k.
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To summarize:

It is easy to exhibit the vector ~a corresponding to a given linear function
a = αkω

k, even relative to an oblique coordinate basis :
From the given basis B = {~ej}

n
j=1 compute (using Eq.(26)) the elements of

the reciprocal basis R∗ = {~e ∗j }
n
j=1. The sought-after vector is simply

~x =
n∑

k=1

αk~e
∗

k .

Moreover, this vector is perpendicular to all the isograms of the given a.

7.2 Mathematization of the Law of X-ray Diffraction

by a Crystal

A beam of X-rays striking the periodic lattice of a crystal gets refracted into
discrete directions according to Bragg’s Law. For a three-dimensional crystal
this law is mathematized as follows.

The crystal consists of atoms arranged periodically into a lattice. They
are located in a 3-d vector space. Its basis vectors ~e1, ~e2, and ~e3 are the
displacements into three different directions from the origin, the location of
an arbitrarily chosen reference atom in the crystal. These displacements are
determined by the three neighboring atoms closest to the atom at the origin.

All atoms of the crystal are located at some integral multiple linear com-
bination of the basis vectors. Thus a typical atom is located at

~x = h~e1 + k~e2 + ℓ~e3 (h, k, ℓ ∈ {integers})

As is the case for an isoclinic crystal, the basis

B = {~e1, ~e2, ~e3} (33)

is oblique in general: the basis vectors need not be orthogonal nor of unit
length.

Consider a beam of electromagnetic radiation (X-rays). For a plane wave
this disturbance is characterized by its amplitude profile

ψ(~x) = Aeiφ(~x); (∇2 + k2)ψ = 0.
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Here

φ(~x) = k1x
1 + k2x

2 + k3x
3.

is the value of the phase φ at location

~x = x1~e1 + x2~e2 + x3~e3.

It follows that relative to the dual basis

B∗ = {ω1, ω2, ω3 : 〈ωj|~ei〉 = δJi },

the plane wave phase function is

φ = k1ω
1 + k2ω

2 + k3ω
3.

When such a plane wave enters a crystal, it is observed2 that emerging from
this crystal there are discrete plane wave beams. Their directions relative to
the incident beam is determined entirely by the atomic crystal basis, Eq.(33),
more precisely, by the set of parallel crystal planes. Before expressing this
deterministic relation in mathematical terms, one must first mathematize
these crystal planes.

7.2.1 Mathematized Crystal Planes

This is done by first observing that each one is one of the isograms of

f = hω1 + kω2 + ℓω3 (h, k, ℓ ∈ {integers}) (34)

The integers (h, k, l), which are understood to be relative prime (i.e. have
no common integral divisor) are the Miller indices of a given set of parallel
crystal planes. Such a linear combination of dual basis elements with relative
prime integral coefficients we shall call a Miller covector. It is an element
of the dual space and each one of its isograms passing through an integral
linear combination of basis vectors has an integral value.

There is a on-to-one correspondence between a set of parallel crystal
planes and the Miller covector corresponding to this set. The following prob-
lem illustrates this fact.

2Observed and explained by father and son W.H. Bragg and W.L. Bragg in 1913.
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Figure 6: Crystal lattice with incoming and outgoing phase fronts. The
outgoing wave is the result of a diffraction process. The difference between
the in- and outgoing wave front normals is the vector perpendicular to the
crystal planes indicated near the bottom. The basis vectors ~e1 and ~e2 are
generated by directed pairs of nearest neighbor atoms (black circles).

Problem

Find the Miller covector for the set of parallel crystal planes one of which
contains the set of linearly independent vectors S = {~e1 + ~e2, 2~e2, 3~e3}.
Solution

This is a two-step process.

Step 1: Let

g = aω1 + bω2 + cω3,

and find a, b, c so that g has an isogram , say g = 1, passing through
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~e1 + ~e2, 2~e2, and 3~e3}:

g(~e1 + ~e2) = a+ 3b+ 0 = 1

g(2~e2) = 0 + 2b+ 0 = 1

g(3~e2) = 0 + 0 + 3c = 1

Thus

g = −
1

2
ω1 +

1

2
ω2 +

1

3
ω3

Step 2: The Miller indices are mutually prime integers. Thus multiplying g by
the least common denominator yield the Miller covector,

f = −3ω1 + 3ω2 + 2ω3 (35)

The Miller indices of f are therefore

(h, k, ℓ) = (−3, 3, 2).

7.2.2 Mathematized Diffraction Law

Focus on two X-ray beams and their respective phase functions φ,

ψ(~x)incident : φinc = kinc1 ω1 + kinc2 ω2 + kinc3 ω3

ψ(~x)diffracted : φdiff = k
diff
1 ω1 + k

diff
2 ω2 + k

diff
3 ω3. (36)

To be diffracted by the set of crystal planes whose Miller covector is Eq.(34),
the phase function of the diffracted beam must satisfy

φinc − φdiff = f

∆k1ω
1 +∆k2ω

2 +∆k3ω
3 = hω1 + kω2 + ℓω3 (37)

where

∆k1 ≡ (kinc1 − k
diff
1 = h (38)

∆k2 ≡ (kinc2 − k
diff
2 ) = k (39)

∆k3 ≡ (kinc3 − k
diff
3 ) = ℓ (40)

are the components of the difference between the incident and the diffracted
phase functions (in physics, a.k.a. “propagation covectors”) φinc and φdiff .
They also equal the {~e∗1, ~e

∗

2, ~e
∗

3}-basis components of the normals to the set
of crystal planes, Eq.(37). The atoms in these planes are responsible for
the particular phase fronts, Eq.(36). The three conditions, Eq.(38)-(40), for
Bragg diffraction are known as Laue’s equations.
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7.3 Sampling Theorem as a Corollary to the Duality

Principle

All observations and measurements processed by our mind into concepts
and knowledge are finite. Concepts such as “infinity”, “limit”, “continuity”,
“derivative”, etc., are not metaphysical3 attributes of the world, but instead
are mathematical methods. They are objective in that their composite nature
reflects their nature of the world and the nature of our mind in grasping it.

One of the most ubiquitous concepts in the hierarchical network of math-
ematical methods is that of functions continuous on, say, the interval [0, 2π].
They form an infinite-dimensional vector space, which subsumes an unlim-
ited number of different kinds of finite-dimensional vector spaces. Among
them are those subspaces which are spanned by bases that reflect the partic-
ular manner of observation or measurement, specifically those those in which
a function is sampled at equal intervals, say,

xk =
2π

2N + 1
k k = 0, 1, · · · , 2N.

Recall that a chosen basis for a given vector space induces a unique set
of linear functions. They are the coordinate functions on this vector space.
These functions are also vectors. In fact, they form a basis, but for the
dual vector space, which is entirely distinct. Its dimension is the same as
that of the given vector space. The duality relation, Eq.(14) on page 11
mathematizes the duality principle. The sampling theorem is an application
of the dual space concept.
Example 1 (Sampling a Band-Limited Function)
GIVEN:

a) The vector space of band-limited functions of period 2π,

V = {f : f(x) =
N∑

m=0

am cosmx+
N∑

m=1

sinmx} ≡ BN .

This is a (2N + 1)-dimensional space with its standard trigonometric
basis

Btrig = {1, cosmx, sinmx : m = 1, · · · , N}, (41)

3in the Greek sense, pertaining to the nature of reality.
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or its exponential basis

Bexp = {eimx}Nm=−N . (42)

b) The values f(xk) of f at the sampling points {xk = 2π
2N+1

k with k =
0, 1, · · · , 2N}

FIND:

The function f(x) for all x in terms of its known sampled values
{f(xk)}

2N
k=0.

SOLUTION:
The task at hand consists of answering the following question: Can one
reconstruct f over the whole x-domain from one’s knowledge of the f -values
at the 2N + 1 sample points xk only? If, yes, HOW?
COMMENT:

This question cannot be answered without specifying a particular (2N+
1)-dimensional subspace of C[0, 2π], the infinite-dimensional subspace
of functions continuous on [0, 2π].

There are many such subspaces, and V = BN , the above space of band
limited 2π-periodic functions of the present Example 1, is only one
of them. Another one, considered in Example 2, below, on page 36,
is V = CPL[0, 2π], the (2N + 1)-dimensional subspace of continuous
functions piecewise linear on the closed interval [0, 2π].

In both subspaces a vector is specified by the same 2N + 1 values of
the sampled function. However, inbetween its sampling points, the
function is interpolated in entirely different ways. The two subspaces
are entirely different, but their dimensions are the same.

The answer to the posed question is that for sampling purposes the bases
(41) or (42) on page 31 do not give good representations of elements in V .
Instead, we construct xk-localized functions by means of the following linear
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superpositions

~ek(x) =
1

2N + 1

N∑

m=−N

eim(x−xk), where xk =
2π

2N + 1
k with k = 0, 1, · · · , 2N ;

(43)

= 1 +
1

2N + 1

N∑

m=1

cosm(x− xk) (44)

These are also band-limited functions, vectors in V . In fact, being mere
geometrical series, their summed values are

~ek(x) =
1

2N + 1

sin
(
N + 1

2

)
(x− xk)

sin

(
x− xk

2

) . (45)

These functions are xℓ-localized. They satisfy

~ek(xℓ) = δkℓ ≡

{

0 ℓ 6= k

1 ℓ = k
.

Their graphs are exhibited in Figure 7 and they form a basis for V ,

C = {~e0, ~e1, · · · , ~e2N}.

The reason for introducing this basis is that (i) sampling a function at a
particular point

xℓ =
2π

2N + 1
ℓ ℓ = 0, 1, · · · , 2N + 1

constitutes a linear map on the space of functions f ∈ V = BN :

ωℓ(f) = f(xℓ),

and that (ii) these linear maps, which comprise the set

{ωℓ}2Nℓ=0,
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Figure 7: Graphs of xk-localized functions ~ek(x). The set {~ek}
2N
k=0 ≡ B forms

an alternative linearly independent spanning set (basis) for V .

have the property that

ωℓ(ek) = ek(xℓ) = δℓk.

This is the duality relation. Thus the set of sampling maps

{ω0, ω1, ω2, · · · , ω2N}

are precisely the basis elements dual to the constructed xk-localized basis

{e0, e1, e2, · · · , e2N}

as given by Eq.(45).
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The reason for introducing this particular basis comes from our goal to
characterize an arbitrary band-limited f ∈ V = BN in terms of its sampled
values at x = xk, k = 0, 1, · · · , 2N :

f
BN

❀








f(x0)
f(x1)

...
f(x2N)








BN

There are 2N+1 sampled values for each and every f ∈ V . This circumstance
is mathematized by means of 2N +1 sample-valued maps ω0, ω1, · · · , ω2N on
V , namely

ω0(f) = f(x0)
ω1(f) = f(x1)

...
ωℓ(f) = f(xℓ)

...
ω2N(f) = f(x2N).

These linear maps are precisely the coordinate functionals {ωℓ}2Nℓ=0 induced
by the vector basis C = {~ek}

2N
k=0. This claim is validated by the fact that,

according to Eq.(45) on page 33, the sampled values of the ~ek’s are

~ek(xℓ) = δkℓ ≡

{

0 ℓ 6= k

1 ℓ = k
,

in other words,

ωℓ(~ek) ≡ 〈ωℓ|~ek〉 = δℓk

This is the duality relation: the basis C = {~ek}
2N
k=0 has as its dual the set of

basis (linear) functionals C∗ = {ωℓ}2Nℓ=0 ⊂ V ∗.

1. This set has two distinguishing properties:

(a) On one hand each ωℓ samples any f(x) ∈ V at x = xℓ, and thereby
yields ωℓ(f) = f(xℓ), the ℓ

th coordinate of f ∈ V relative to B;
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(b) on the other hand, and at the same time, each ωℓ is a covector
which, together with the other elements in B∗, forms that basis
for V ∗ which is dual to B.

2. The success of the sampling theorem hinges on the existence of the
above two features:

(a) The ~ek’s must form a basis for V . Consequently, one has

f(x) =
2N∑

k=0

αk~ek,

and

(b) each ~ek is a function with zero values at all equally spaced points
xℓ, except one, where its value does not vanish. Consequently,

ωℓ(f)
︸ ︷︷ ︸

f(xℓ)

=
2N∑

k=0

αk ω
ℓ(~ek)
︸ ︷︷ ︸

δℓk

=
2N∑

k=0

αk ~ek(xℓ)
︸ ︷︷ ︸

δℓk

or

f(xℓ) = αℓ

Consequently, f(x) is given by

f(x) =
2N∑

k=0

f(xk)~ek,

a mathematically 100% accurate reconstruction of f(x) in terms of its sam-
pled values. This is the sampling theorem for band-limited functions BN .
Example 2 (Piecewise Linear Function via a Sampling Sequence)
GIVEN:

1. The closed interval [x0, xn] which is partitioned by x0 < x1 < · · · < xn
into n equally spaced subintervals.

36



2. The values y0, y1, · · · , yn of a function f ∈ C[x0, xn] sampled at the
above equally spaced points:

y0 = f(x0)
y0 = f(x1)

...
yk = f(xk)

...
yn = f(xn)

(46)

3. The set

CPL({x0, x1, · · · , xn}) = {ψ : ψ ∈ C[x0, xn] and

ψ is linear on each subinterval [xk−1, xk]},

which, being closed under addition and multiplication by scalars, is a
subspace of C[x0, xn].

Figure 8: Graph of a CPL-function, an element of the vector space CPL ⊆
C[x0, xn]

EXHIBIT:

1. A basis for CPL whose elements ψk(x) (like those of Eq.(45)) are xℓ-
localized:

ψk(xℓ) = δkℓ ≡

{

0 ℓ 6= k

1 ℓ = k
.

37



2. The dual basis {ωj}nj=1 for CPL∗

3. For the given sampling sequence, Eq.(46) of the function f ∈ C[x0, xn],
the function ψ(x) ∈ CPL such that

ψ(x0) = y0
...

ψ(xn) = yn

SOLUTION:
1-2:

Figure 9: Graphs of the xk-localized unit roof functions. They comprise a
basis for CPL.
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Figure 10: Graph of CPL-interpolation of sampled data y0, y1, · · · , yn.

8 PROBLEMS

1. (DUAL BASIS AS A SET OF MULTIVARIABLE FUNCTIONS)
Let B = {~v1, ~v2, ~v3} be a basis for R3 defined by

~v1 = (1, 0, 1)t

~v2 = (1, 1, 1)t

~v3 = (2, 2, 0)t

a) FIND the basis {f, g, h} of linear functions (i.e. row vectors) dual
to B.
b) EXHIBIT

f(~x) = f(x, y, z)

g(~x) = g(x, y, z)

h(~x) = h(x, y, z)

2. (VECTOR BASES AND THEIR DUAL BASES)
Consider 3-dimensional vector space spanned by

~e1 =~i+~j + ~k

~e2 = −~i+~j + ~k

~e3 = −~i−~j + ~k
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where ~i,~j,~k are the usual orthogonal basis vectors.

(a) If {τ 1, τ 2, τ 3} is the basis dual to {i, j, k}, i.e.

〈τ 1|~i〉 = 1 〈τ 1|~j〉 = 0 〈τ 1|~k〉 = 0

〈τ 2|~i〉 = 0 〈τ 2|~j〉 = 1 〈τ 2|~k〉 = 0

〈τ 3|~i〉 = 0 〈τ 3|~j〉 = 0 〈τ 3|~k〉 = 1

FIND the basis {ω1, ω2, ω3} dual to {~e1, ~e2, ~e3}.

(b) Let h, k, ℓ be three scalars.
FIND that linear function, call it f , which has the value 1 at each

of the three points
~e1

h
,
~e2

k
,
~e3

ℓ
.

Thus write down this function in terms of {τ 1, τ 2, τ 3} and in terms
of {ω1, ω2, ω3}.

(c) FIND the set of reciprocal basis vectors (e∗1, e
∗

2, e
∗

3), which satisfy

~ei · ~e
∗

j = δij .

(Here “·” is the familiar inner product obtained from ~i ·~i = 1,
~i ·~j = 0, ~i · ~k = 0, etc.)

(d) What relation, if any, does there exist between these basis vectors
~e∗1, ~e

∗

2, and ~e
∗

3 and the level surfaces of ω1, ω2, and ω3?

(e) FIND the unit vector perpendicular to the level surface f = 1.

(f) Write down the distance from the origin to f = 1.
REMINDER: If you get bogged down in detailed computation,
you are not making optimal use of the nature of the dual basis!

Comment: The components of f found in (b) relative to {ωi} are the
Miller indices of a set of parallel planes in a crystal whose primitive
translation vectors are ~e1, ~e2, ~e3.
SEE C. KITTEL, Introduction to SOLID STATE PHYSICS.

3. (DEFINITE INTEGRALS DUALS ON THE SPACE OF POLYNO-
MIALS) Let V = P2 be the vector space of all polynomial functions p
from R into R which have degree 2 or less:

p(x) = a0 + a1x+ a2x
2 .
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Define the following linear functionals on V by

〈f1 | p〉 ≡ f1(p) =

∫ 1

0

p(x)dx

〈f2 | p〉 ≡ f2(p) =

∫ 2

0

p(x)dx

〈f3 | p〉 ≡ f3(p) =

∫
−1

0

p(x)dx .

SHOW that {f1, f2, f3} is a basis for V ∗ by exhibiting the basis for V
of which it is the dual.
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