next up previous
Next: Radiated Momentum Up: APPENDIX: POTENTIAL, FIELD AND Previous: Vector Potential

Field Components

In compliance with the table of derivatives in Section IVD1, the relevant non-zero component of the electric field is

$\displaystyle \hat E_\theta$ $\textstyle \equiv$ $\displaystyle \hat F_{\theta\xi}=\frac{1}{r}\left(
\frac{\partial A_\xi}{\partial \theta}-\frac{\partial
A_\theta}{\partial \xi} \right)$  
  $\textstyle =$ $\displaystyle -\frac{\partial}{\partial \xi}\frac{\partial\psi_F}{\partial r}~,$ (80)

which with the help of Eq.(79) becomes
$\displaystyle \hat E_\theta$ $\textstyle =$ $\displaystyle -(\mp ) 4\pi a^2~~r\frac{\partial}{\partial \xi}
\left[ \frac{1}{...
...ac{u}{(u^2+1)^{3/2}}\dot q \mp \frac{1}{u^2+1} \stackrel{..}{q}
\right)
\right]$  
  $\textstyle =$ $\displaystyle 2\pi a^2 (\alpha \dot q +\beta \ddot q +\gamma \stackrel{...}{q})~,$ (81)

where
$\displaystyle \alpha$ $\textstyle =$ $\displaystyle \frac{\mp 2r}{(2\xi\xi')^2}
\left(
\frac{-3}{\xi}\frac{u}{(u^2+1)^{5/2}}+\frac{1}{\xi'}\frac{1-2u^2}{(u^2+1)^{5/2}}
\right)$  
$\displaystyle \beta$ $\textstyle =$ $\displaystyle \frac{-2r}{(2\xi\xi')^2}
\left(
\frac{1}{\xi}\frac{2-u^2}{(u^2+1)^2}
+\frac{3}{\xi'}\frac{u}{(u^2+1)^2}
\right)$  
$\displaystyle \gamma$ $\textstyle =$ $\displaystyle \frac{\mp 2r}{(2\xi\xi')^2}
\left(
\frac{1}{\xi}\frac{u}{(u^2+1)^{3/2}}-\frac{1}{\xi'}\frac{1}{(u^2+1)^{3/2}}
\right) ~.$ (82)

Similarly the relevant non-zero magnetic field component is
$\displaystyle \hat B_r \equiv \hat F_{\theta\tau}$ $\textstyle =$ $\displaystyle \frac{1}{r\xi}\left(
\frac{\partial A_\tau}{\partial \theta}-\frac{\partial A_\theta}{\partial \tau}
\right)$  
  $\textstyle =$ $\displaystyle -\frac{1}{r\xi}\frac{\partial}{\partial\tau}
\left( r \frac{\part...
...-\frac{1}{\xi}\frac{\partial}{\partial\tau} \frac{\partial\psi_F}{\partial r}~,$ (83)

which with the help of Eq.(79) becomes
\begin{displaymath}
\hat B_r= 2\pi a^2(\delta \ddot q +\epsilon \stackrel{...}{q}) ~,
\end{displaymath} (84)

where
$\displaystyle \delta$ $\textstyle =$ $\displaystyle \frac{\mp 2r}{(2\xi\xi')^2}\frac{1}{\xi}\frac{u}{(u^2+1)^{3/2}}$  
$\displaystyle \epsilon$ $\textstyle =$ $\displaystyle \frac{2r}{(2\xi\xi')^2}\frac{1}{\xi}\frac{1}{u^2+1}~.$ (85)


next up previous
Next: Radiated Momentum Up: APPENDIX: POTENTIAL, FIELD AND Previous: Vector Potential
Ulrich Gerlach 2001-10-09