Large values and Random Matrices

Ghaith Hiary

Warning: This presentation contains explicit material.

$$
\zeta(s):=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots, \quad \Re(s)>1 .
$$

Initial zeros as poles of $1 / \zeta(s)$

$$
\zeta(s):=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots, \quad \Re(s)>1
$$

--- critical line

- non-trivial zeros
- trivial zeros
- pole

The critical strip \longrightarrow

RH: All non-trivial zeros lie on the critical line.

Explicit/trace formula

spectrum using the first $\mathbf{1 0 0 , 0 0 0}$ zeros

Euler product:

$$
\zeta(s)=\prod_{\text {primes }} \frac{1}{1-p^{-s}} .
$$

Landau: $x>1, T \rightarrow \infty$,
$\frac{2 \pi}{T} \sum_{0<\Im(\rho) \leq T} x^{\rho} \sim-\Lambda(x)$
where $\Lambda(x)=\log p$ if $x=p^{m}$, and 0 otherwise.

A model for the primes

$$
\pi(x)=\{\# \text { primes } \leq x\} \sim x / \log x .
$$

Primes deterministic.
Correlations via Hardy-Littlewood k-tuple conjecture.
Cramér's model: z_{2}, z_{3}, \ldots, indp. Bernoulli var.

$$
\operatorname{Prob}\left(z_{n}=1\right)=1 / \log n
$$

Consequence of Cramér's model:

$$
\pi(N+H)-\pi(N) \sim H / \log N \quad \text { for } H=\log ^{k} N, k>2
$$

disproved by Maier 1985. Primes in short intervals: more subtle.
Complicated behvaior due to zeros.

The Hilbert-Pólya conjecture and spectral interpretation

1-st page of Pólya's response to Odlyzko's letter

STANFORD UNIVERSITY

 STANFORD, CALIFORNIA sigiL ane, S,

Hilbert-Pólya conjecture: Zeroes of zeta are the eigenvalues of a selfadjoint operator.

Dyson and Montgomery, IAS 1972.
" ... it looks like the differences between zeros of the zeta function have a distribution with a density $1-\sin ^{2}(\pi r) /(\pi r)^{2}$. Freeman immediately responded that this is the pair correlation density of random maricss."

Asymptotic behavior of the form factor still only proven in restricted ranges.

Pair correlation $R_{2}(x)$

$R_{2}(x)$ compared with numerics from near $T=10^{28}$

GUE Pair-correlation:
$1-\sin ^{2}(\pi x) /(\pi x)^{2}$

Plotted points:
$\mid\left\{T+H_{1} \leq \gamma, \gamma^{\prime} \leq T+H_{2}\right.$,
$\left.\tilde{\gamma}-\tilde{\gamma}^{\prime} \in[r \delta,(r+1) \delta)\right\} \mid / \delta M$
$M=\left|\left\{\gamma-T \in\left[H_{1}, H_{2}\right]\right\}\right|$
$\delta=0.01, T=10^{28}, 14$ random $H_{1}<H_{2}<10^{21}$ spanning $\approx 3.7 \times 10^{8}$ zeros.

Tail of $R_{2}(x)$

Random Matrix Theory (RMT)

RMT developed to interpret the energy levels; doesn't describe an individual nucleus, but general appearance of levels in complicated ones.

Dyson:
we picture a complex nucleus as a black box in which a large number of particles are interacting according to unknown laws. The problem then is to define in a mathematically precise way an ensemble of systems in which all possible laws of interaction are equally probable.

Appropriate ensemble depends on symmetries of the system.
Initially, zeta connected to GUE, but statistical equivalence with eigenphases of random unitary matrices $(U(N)$ or CUE).

Identify local zero densities: $N \longleftrightarrow \log (T / 2 \pi)$
Models large but finite heights.
Nearest-neighbour spacing functions: $p(0, s), p(1, s), \ldots$

Value distribution

$$
\frac{\log Z\left(A_{N}, \theta\right)}{\sqrt{(1 / 2) \log N}} \sim \mathcal{C N}(0,1) \quad \frac{\log \zeta(1 / 2+i T+i t)}{\sqrt{(1 / 2) \log \log T}} \sim \mathcal{C N}(0,1)
$$

The Keating-Snaith constant:

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{2 k} d t \sim \frac{g(k) a(k)}{k^{2}!} \log ^{k^{2}} T
$$

Conrey-Ghosh: $g(3)=42$
Conrey-Gonek: $g(4)=24024$
Keating-Snaith: $g(k)=\Gamma\left(k^{2}+1\right) G^{2}(k+1) / G(2 k+1)$
Deviations from asypmtotic value distribution of $\Re \log \zeta(1 / 2+i t)$ using data near $t=10^{22}$ explained.

Another example: Number-variance

$\mathrm{V}_{\mathrm{T}}(\mathrm{L})$ compared with data near $\mathrm{T}=10^{28}$

$$
\begin{aligned}
V_{T}(L)= & \langle(N(T+L / d)- \\
& \left.N(T)-L)^{2}\right\rangle
\end{aligned}
$$

Berry-Keating prediction computed with $\tau=0.15$

Short and long range predictions: $V_{T}(L)=U(L)+$ $B_{T}(L)$.

Low zeros appear in unfolded Gram scaling.

RMT and Maximum size of $\zeta(1 / 2+i t)$

Typical size of $\log |\zeta(1 / 2+i t)|$ on order of $\sqrt{\log \log t}$.

Maximum size? Difficult to control, large values rare.

- Lindelöf hypothesis: $\log |\zeta(1 / 2+i t)|=o(\log t)$.
- Assuming the RH: $\log |\zeta(1 / 2+i t)|=O(\log t / \log \log t)$.
- Farmer, Gonek, and Hughes' conjecture:

$$
\max _{t \in[0, T]} \log |\zeta(1 / 2+i t)|=(1+o(1)) \sqrt{\frac{1}{2} \log T \log \log T} .
$$

- Soundararajan's conjecture: For $T>1000$, without any further restriction,

$$
\int_{0}^{T}|\zeta(1 / 2+i t)|^{2 k} d t \leq T(\log T)^{k^{2}}
$$

Large values via moments

Large values: Need uniformity in tail of value distribution.
The CFKRS conjecture:

$$
\begin{gathered}
\int_{0}^{T}|\zeta(1 / 2+i t)|^{2 k} d t \sim \int_{0}^{T} P_{k}(\log t / 2 \pi) d t \\
P_{k}(x)=c_{0}(k) x^{k^{2}}+c_{1}(k) x^{k^{2}-1}+\cdots+c_{k^{2}}(k) . \\
P_{k}(x)=\frac{(-1)^{k}}{k!^{2}} \frac{1}{(2 \pi i)^{2 k}} \oint \cdots \oint \quad \frac{G\left(z_{1}, \ldots, z_{2 k}\right) \Delta^{2}\left(z_{1}, \ldots, z_{2 k}\right)}{\prod_{i=1}^{2 k} z_{i}^{2 k}} \\
\quad \times e^{\frac{x}{2} \sum_{i=1}^{k} z_{i}-z_{k+i}} d z_{1} \ldots d z_{2 k}
\end{gathered}
$$

$$
\begin{gathered}
P_{k}(x)=c_{0}(k) x^{k^{2}}+\cdots+c_{1}(k) x^{k^{2}-1}+\cdots+c_{k^{2}}(k) . \\
c_{0}(k)=\frac{a(k) g(k)}{k^{2}!},
\end{gathered}
$$

where

$$
\begin{gathered}
a(k):=\prod_{p}(1-1 / p)^{k^{2}} F(k, k ; 1 ; 1 / p) \\
g(k):=k^{2}!\prod_{j=0}^{k-1} \frac{j!}{(j+k)!}
\end{gathered}
$$

Theorem (H-Rubinstein): $c_{r}(k) \sim(4 k \log k)^{r}\binom{k^{2}}{r} c_{0}(k)$ uniformly in $r<k^{1-\epsilon}$.

Suggests an identical upper bound to Farmer, Gonek, and Hughes.

$$
|\zeta(1 / 2+i t)| \ll \exp \left(\left(\left(\frac{1}{2}+o(1)\right) \log T \log \log T\right)^{1 / 2}\right)
$$

Another approach: Large values via computations

New algorithms enabled computation ~ 10 orders of magnitude higher than before. Used to compute near large values.

Will enable computing at several orders of magnitude more.

Generalized to Degree $1 L$-functions in t and q aspects.

Interesting analogies between methods to compute zeta and methods to bound it.

Largest value found so far:
$\left|\zeta\left(1 / 2+i 3.9246764589894309155251169284104050622201 \times 10^{31}\right)\right|=16244.86526 \ldots$

Empirical lower bound

Large values of zeta found

If $\sqrt{ }$, large values numerous enough, so LLL can capture a representative sample after a few hundred tries?

Only "typical large values"?

LLL application similar to proof under the RH of Ω-results.

Third approach: Max over short ranges

Local maxima of $|\zeta(1 / 2+i t)|$ statistically independent? A good approximation. However, for suitable $H \ll T$

$$
\begin{aligned}
& \int_{T-H}^{T+H} \log \left|\zeta\left(1 / 2+i t+i x_{1}\right)\right| \log \mid \zeta\left(1 / 2+i t+i x_{2}\right) d t= \\
& \left\{\begin{array}{r}
-(1 / 2) \log \left|x_{1}-x_{2}\right|, \text { for } \frac{1}{\log t} \ll\left|x_{1}-x_{2}\right| \ll 1 \\
2 \log \log t, \text { for } \quad\left|x_{1}-x_{2}\right| \ll \frac{1}{\log t}
\end{array}\right.
\end{aligned}
$$

Logarithmic correlations exist.

Distribution of $\log |\zeta(1 / 2+i t)|-$ expected max in a short interval

Tail of $\log (p(x))$ decays linearly

Thank you!

