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Partial information

Given an integer d , we would like “partial information” about it.

Examples.

Certify the compositeness of d without knowing its factors.

– Solved in poly-log time by Agrawal-Kayal-Saxena (AKS).

d has an odd or even number of (distinct) prime factors?

– Doable in d1/3+o(1) time: AKS + check for factors ≤ d1/3.

– Can be improved to d1/6+o(1) time (Pollard-Strassen).

– However, in practice, faster to simply factor d using
heuristically subexponential time algorithms.

Does d have a simple (i.e. multiplicity one) prime factor?

... etc.



Testing square-freeness
Question. How fast can the square-freeness of d be checked? Can
it be done in subexponential time without having to factor?

Besides trial division, here’s what’s available:

The Pollard-Strassen algorithm: Can find all factors of d less
than B in B1/2do(1) time/space. =⇒ d1/6+o(1) time/space.

But slow, large memory requirements.

Subexponential factoring algorithms; e.g. The General
number field sieve (GNFS) expected to work in
exp((log d)1/3+o(1)) time (fastest available in this class).

Very successeful in practice. Best bet to learn about d .

Unfortunately, GNFS does not yield partial information about
d . Either find a factor or no info.

Is there a more economical fast way?



Framing the question in terms of a lower bound

d = m2∆, where ∆ is square-free. How good a lower bound L on log ∆

can be obtained in time X?
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Would like a method such

that L = (logX )η for

some η > 1.

Then, a lower bound L for

log |∆| costs exp(L1/η)

time to obtain if true.

This is subexp if η > 1.

Notice that GNFS takes

takes exp((log d)1/3+o(1))

time regardless of the

desired lower bound L.



Using the explicit formula

Let χ be a primitive Dirichlet character of conductor ∆.

Explicit formula for L(s, χ): Let g(x) be a real even continuous
piecewise differentiable compactly supported, and let
h(x) =

∫
R g(y)e ixy dx , then

g(0) log |∆| =
∑
γ

h(γ)+2<
∑
n≥1

χ(n)Λ(n)g(log n)√
n

+ Gamma contrib︸ ︷︷ ︸
can be computed easily

• Explicit formula

relates the zeros,

the coefficients,

and the conductor.

• Proved using the

Euler product and

the func. equation.

zeros sum prime sum

conductor of χ

Explicit formula

for L(s, χ)



Real characters and positivity

Let ∆ be a fundamental discriminant. Apply the explicit formula
with χ(.) the Kronecker symbol

(
∆
.

)
, so

g(0) log |∆| =
∑
γ

h(γ)+2
∑
n≥1

(
∆

n

)
Λ(n)g(log n)√

n
+ Gamma contrib︸ ︷︷ ︸

can be computed easily

Assume the generalized Riemann hypothesis for L(s, (∆|.)).

Use a test Fourier-pair (g , h) such that h(x) ≥ 0. For example,

g(y) =
1|y |<Y

Y

(
1− |y |

Y

)
, h(x) =

∫
R
g(y)e ixy dx =

sin(xY /2)2

(xY /2)2
.

Since h(x) ≥ 0, zeros contribution
∑

γ h(γ) ≥ 0.

So can simply drop
∑

γ h(γ), and still get a lower bound on |∆|.

Therefore, we can get a lower bound without knowing the zeros γ.



A lower bound from the prime sum

If g(x) is supported on [−X ,X ], we therefore have

g(0) log |∆| ≥ 2
∑

1≤n≤X

(
∆

n

)
Λ(n)g(log n)√

n
+ Gamma contrib.

Now, let d = m2∆, where ∆ is square-free. Assume d ≡ 1 mod 4,
so d is a fundamental discriminant. Assume

(
d
n

)
6= 0, 1 ≤ n ≤ eX ,

so
(
d
n

)
=
(
m2

n

) (
∆
n

)
=
(

∆
n

)
. (If

(
d
n

)
= 0, then it’s even better, we

find a factor!) Then we have

g(0) log |∆| ≥ 2
∑

1≤n≤X

(
d

n

)
Λ(n)g(log n)√

n
+ Gamma contrib.

Last, use quadratic reciprocity or Euler’s criterion for fast
computation of

(
d
n

)
for n = pk .

That is, we can compute
(
d
n

)
fast without knowing its conductor.



Good and bad news

Explicit formula yields a lower bound on the least period of
(
d
n

)
:

g(0) log |∆| ≥ 2
∑

1≤n≤X

(
d

n

)
Λ(n)g(log n)√

n
+ Gamma contribution

where g(x) is supported on [−X ,X ].

Is this a good lower bound? In general no!

Zeros sum typically dominates, roughly∑
γ

h(γ) ≈ log |∆|
2π

∫
R
h(x) dx = g(0) log |∆|

(view it as Monte Carlo integration.)

Unless possibly if big zero gap.

L(s, (1548889|.))
zeros around the
origin.

h(x) = sin(xX/2)2

(xX/2)2

X = 4
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Example of a big zero gap



Large zero gaps

If there is a large zero gap, then we have a chance.

Center h(x) around the big zero gap =⇒
∑

γ h(γ) is likely small.
This can be quantified as

Theorem. Assume the GRH, and let χ be a real character of
conductor |∆|. Suppose that L(1/2 + it, χ) has no zeros with
imaginary part (t0, t0 + δ) for some t0 ≥ 1 and δ > 0. Then there
is a Fourier pair g(x) and h(x) such that h(x) ≥ 0, g(x) is
supported on |x | ≤ δ−1 log log |t∆|, and∑

γ

h(γ)� g(0)

δ
√

log log |t∆|
.

(So the larger the zero gap δ ⇒ the shorter the prime sum that we
need to evaluate.)



Looking for large gaps by twisting

Let F := F(X ) be the set of fundamental discriminants |q| ≤ X .
Assume X = ∆o(1) as ∆→∞.

Consider the following family of Dirichlet L-functions
{L(s, (q∆|.), q ∈ F}.

Let γ1(q∆) be the first zero of L(1/2 + it, (q∆|.)).

What do we expect the size of

max
q∈F

γ1(q∆)?

Note, on average, the zeros of L(1/2 + it, (q∆|.)), with t � 1 say,
are spaced 1

2π log(q|∆|) ∼ 1
2π log(|∆|) apart.



Random matrix theory (RMT) and zero spacings

Suitably normalized zeros of an L-function, or a family of
L-functions, have the same statistics (to leading order) as
normalized eigenphases of random matrices from a compact matrix
group (or matrix ensemble) for large but finite parameter; e.g.
A ∈ U(N)←→ {ζ(1/2 + it), T ≤ t ≤ T + 2π}, N ↔ log(T/2π).
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gen. element of U(17)



How large a zero gap does RMT suggest?

Let USp(2N) be the compact group of 2N × 2N unitary matrices

A satisfying AtJA = J, where J =

(
0 IN
−IN 0

)
. Let

A ∈ USp(2N). The eigenvalues of A are e±iθ1 , . . . , e±iθN .

The random matrix philosophy suggests that the lowest zero
γ1(q∆), q ∈ F(X ), X = ∆o(1), is modeled by the lowest
eigenphase θ1 of matrices from USp(2N) with 2N = log(|∆|).

Theorem. Fix δ > 0, Let δ < β < 2− δ, M =
⌊
exp(Nβ)

⌋
. Suppose

A1, . . . ,AM ∈ USp(2N) are chosen indpendently and uniformly
with respect to the Haar probability measure on USp(2N). Let
θ1(m) denote the first eigenphase of Am. Then for any ε > 0, we
have

PN

(
max

1≤m≤M
θ1(m) ≥ (2− ε)Nβ/2−1

)
→ 1 , as N →∞ .



Heuristic running time

Conjecture. Fix 0 ≤ β < 1. Let γ1(q∆) be the first zero of

L(1/2 + it, (q∆|.)), X = exp(log ∆)β, and F := F(X ) be the set
of fundamental discriminants |q| ≤ X . Then

log max
q∈F

γ1(q∆)/ log log |∆| ∼ β/2− 1 ,

as |∆| → ∞ through fundamental discriminants.

So if we sample the fundamental discriminants
|q| ≤ exp((log |∆|)β), then by the conjecture we expect to find at
least one q where there is a gap of size (log |∆|)β/2−1.

Want to ensure that h(x) decays quickly outside of zero gap =⇒
take g(y) to be supported on roughly |y | ≤ (log |∆|)1−β/2.

Optimizing: sampling time = prime sum computation time, so
β = 1− β/2 =⇒ β = 2/3. So by putting in effort X = eY , we
expect a lower bound like Y 3/2.
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RSA−210: Lower bound L for log|∆| obtained using the primes < eY

Y

L
Trial division

Pollard−Strassen

f(Y) = Y Y 2

Best twist in each range

of Y is color−coded

The best performing twist

was −48529352408325307



Example application

RSA challenge number RSA-210 has 210 decimal digits (696 bits):

2452466449002782119765176635730880184670267876783327597434144517150616008300

3858721695220839933207154910362682719167986407977672324300560059203563124656

1218465817904100131859299619933817012149335034875870551067

The GNFS has so far not been able to tell us any information
about RSA-210 (as it remains unfactored), but using the method I
described we proved

Theorem. Assume the GRH for quadratic Dirichlet L-functions.
Then the RSA challenge number RSA-210 is not square-full; i.e. it
has at least one prime factor of multiplicity 1.



Can we rescue part of the zeros contribution?

Using the primes < 1e7 and -65123121667 twist

v point w[v]

-----------------------------------------

45 0.3560000 4.0000000

46 0.3640000 1.0000000

71 0.5640000 1.0000000

98 0.7800000 1.5156296

99 0.7880000 2.5486078

146 1.1640000 4.4663347

-----------------------------------------

prime contr : 44.65870

zeros contr : 2.49460

improvement : 5.59 %

logd lbound : 47.15330

-----------------------------------------

# variables : 500

# integer vars : 45

interval covered : 4.00000

grid spacing : 0.00800


