Detecting square-free numbers via the explicit formula

Ghaith Hiary
(with Andrew Booker and Jon Keating)

Partial information

Given an integer d, we would like "partial information" about it. Examples.

- Certify the compositeness of d without knowing its factors.
- Solved in poly-log time by Agrawal-Kayal-Saxena (AKS).
- d has an odd or even number of (distinct) prime factors?
- Doable in $d^{1 / 3+o(1)}$ time: AKS + check for factors $\leq d^{1 / 3}$.
- Can be improved to $d^{1 / 6+o(1)}$ time (Pollard-Strassen).
- However, in practice, faster to simply factor d using heuristically subexponential time algorithms.
- Does d have a simple (i.e. multiplicity one) prime factor?
... etc.

Testing square-freeness

Question. How fast can the square-freeness of d be checked? Can it be done in subexponential time without having to factor?

Besides trial division, here's what's available:

- The Pollard-Strassen algorithm: Can find all factors of d less than B in $B^{1 / 2} d^{o(1)}$ time/space. $\Longrightarrow d^{1 / 6+o(1)}$ time/space.

But slow, large memory requirements.

- Subexponential factoring algorithms; e.g. The General number field sieve (GNFS) expected to work in $\exp \left((\log d)^{1 / 3+o(1)}\right)$ time (fastest available in this class).

Very successeful in practice. Best bet to learn about d.
Unfortunately, GNFS does not yield partial information about d. Either find a factor or no info.

Is there a more economical fast way?

Framing the question in terms of a lower bound

$d=m^{2} \Delta$, where Δ is square-free. How good a lower bound L on $\log \Delta$ can be obtained in time X ?

Lower bound L for $\log \Delta$ obtained in X time (plotted in logarthmic scale)

Would like a method such that $L=(\log X)^{\eta}$ for some $\eta>1$.

Then, a lower bound L for $\log |\Delta|$ costs $\exp \left(L^{1 / \eta}\right)$ time to obtain if true.
This is subexp if $\eta>1$.
Notice that GNFS takes takes $\exp \left((\log d)^{1 / 3+o(1)}\right)$ time regardless of the desired lower bound L.

Using the explicit formula

Let χ be a primitive Dirichlet character of conductor Δ.
Explicit formula for $L(s, \chi)$: Let $g(x)$ be a real even continuous piecewise differentiable compactly supported, and let $h(x)=\int_{\mathbb{R}} g(y) e^{i x y} d x$, then
$g(0) \log |\Delta|=\sum_{\gamma} h(\gamma)+2 \Re \sum_{n \geq 1} \frac{\chi(n) \wedge(n) g(\log n)}{\sqrt{n}}+\underbrace{\text { Gamma contrib }}_{\text {can be computed easily }}$

- Explicit formula relates the zeros, the coefficients, and the conductor.
- Proved using the Euler product and the func. equation.

Real characters and positivity

Let Δ be a fundamental discriminant. Apply the explicit formula with $\chi($.$) the Kronecker symbol (\underline{\Delta})$, so
$g(0) \log |\Delta|=\sum_{\gamma} h(\gamma)+2 \sum_{n \geq 1}\left(\frac{\Delta}{n}\right) \frac{\Lambda(n) g(\log n)}{\sqrt{n}}+\underbrace{\text { Gamma contrib }}_{\text {can be computed easily }}$
Assume the generalized Riemann hypothesis for $L(s,(\Delta \mid)$.$) .$ Use a test Fourier-pair (g, h) such that $h(x) \geq 0$. For example,
$g(y)=\frac{1_{|y|<Y}}{Y}\left(1-\frac{|y|}{Y}\right), \quad h(x)=\int_{\mathbb{R}} g(y) e^{i x y} d x=\frac{\sin (x Y / 2)^{2}}{(x Y / 2)^{2}}$.
Since $h(x) \geq 0$, zeros contribution $\sum_{\gamma} h(\gamma) \geq 0$.
So can simply drop $\sum_{\gamma} h(\gamma)$, and still get a lower bound on $|\Delta|$.
Therefore, we can get a lower bound without knowing the zeros γ.

A lower bound from the prime sum

If $g(x)$ is supported on $[-X, X]$, we therefore have

$$
g(0) \log |\Delta| \geq 2 \sum_{1 \leq n \leq X}\left(\frac{\Delta}{n}\right) \frac{\Lambda(n) g(\log n)}{\sqrt{n}}+\text { Gamma contrib. }
$$

Now, let $d=m^{2} \Delta$, where Δ is square-free. Assume $d \equiv 1 \bmod 4$, so d is a fundamental discriminant. Assume $\left(\frac{d}{n}\right) \neq 0,1 \leq n \leq e^{X}$, so $\left(\frac{d}{n}\right)=\left(\frac{m^{2}}{n}\right)\left(\frac{\Delta}{n}\right)=\left(\frac{\Delta}{n}\right)$. (If $\left(\frac{d}{n}\right)=0$, then it's even better, we find a factor!) Then we have

$$
g(0) \log |\Delta| \geq 2 \sum_{1 \leq n \leq x}\left(\frac{d}{n}\right) \frac{\Lambda(n) g(\log n)}{\sqrt{n}}+\text { Gamma contrib. }
$$

Last, use quadratic reciprocity or Euler's criterion for fast computation of $\left(\frac{d}{n}\right)$ for $n=p^{k}$.
That is, we can compute $\left(\frac{d}{n}\right)$ fast without knowing its conductor.

Good and bad news

Explicit formula yields a lower bound on the least period of $\left(\frac{d}{n}\right)$:

$$
g(0) \log |\Delta| \geq 2 \sum_{1 \leq n \leq X}\left(\frac{d}{n}\right) \frac{\Lambda(n) g(\log n)}{\sqrt{n}}+\text { Gamma contribution }
$$

Example of a big zero gap
where $g(x)$ is supported on $[-X, X]$.
Is this a good lower bound? In general no!
Zeros sum typically dominates, roughly

$$
\sum_{\gamma} h(\gamma) \approx \frac{\log |\Delta|}{2 \pi} \int_{\mathbb{R}} h(x) d x=g(0) \log |\Delta|
$$

(view it as Monte Carlo integration.)
Unless possibly if big zero gap.

$L(s,(1548889 \mid)$. zeros around the origin.
$h(x)=\frac{\sin (x X / 2)^{2}}{(x X / 2)^{2}}$
$X=4$

Large zero gaps

If there is a large zero gap, then we have a chance.
Center $h(x)$ around the big zero gap $\Longrightarrow \sum_{\gamma} h(\gamma)$ is likely small. This can be quantified as
Theorem. Assume the GRH, and let χ be a real character of conductor $|\Delta|$. Suppose that $L(1 / 2+i t, \chi)$ has no zeros with imaginary part $\left(t_{0}, t_{0}+\delta\right)$ for some $t_{0} \geq 1$ and $\delta>0$. Then there is a Fourier pair $g(x)$ and $h(x)$ such that $h(x) \geq 0, g(x)$ is supported on $|x| \leq \delta^{-1} \log \log |t \Delta|$, and

$$
\sum_{\gamma} h(\gamma) \ll \frac{g(0)}{\delta \sqrt{\log \log |t \Delta|}}
$$

(So the larger the zero gap $\delta \Rightarrow$ the shorter the prime sum that we need to evaluate.)

Looking for large gaps by twisting

Let $\mathcal{F}:=\mathcal{F}(X)$ be the set of fundamental discriminants $|q| \leq X$. Assume $X=\Delta^{o(1)}$ as $\Delta \rightarrow \infty$.

Consider the following family of Dirichlet L-functions $\{L(s,(q \Delta \mid),. q \in \mathcal{F}\}$.

Let $\gamma_{1}(q \Delta)$ be the first zero of $L(1 / 2+i t,(q \Delta \mid)$.$) .$
What do we expect the size of

$$
\max _{q \in \mathcal{F}} \gamma_{1}(q \Delta) ?
$$

Note, on average, the zeros of $L(1 / 2+i t,(q \Delta \mid)$.$) , with t \ll 1$ say, are spaced $\frac{1}{2 \pi} \log (q|\Delta|) \sim \frac{1}{2 \pi} \log (|\Delta|)$ apart.

Random matrix theory (RMT) and zero spacings

Suitably normalized zeros of an L-function, or a family of L-functions, have the same statistics (to leading order) as normalized eigenphases of random matrices from a compact matrix group (or matrix ensemble) for large but finite parameter; e.g.

$$
A \in U(N) \longleftrightarrow\{\zeta(1 / 2+i t), T \leq t \leq T+2 \pi\}, N \leftrightarrow \log (T / 2 \pi)
$$

How large a zero gap does RMT suggest?

Let $\operatorname{USp}(2 N)$ be the compact group of $2 N \times 2 N$ unitary matrices A satisfying $A^{t} J A=J$, where $J=\left(\begin{array}{cc}0 & I_{N} \\ -I_{N} & 0\end{array}\right)$. Let $A \in U S p(2 N)$. The eigenvalues of A are $e^{ \pm i \theta_{1}}, \ldots, e^{ \pm i \theta_{N}}$.

The random matrix philosophy suggests that the lowest zero $\gamma_{1}(q \Delta), q \in \mathcal{F}(X), X=\Delta^{o(1)}$, is modeled by the lowest eigenphase θ_{1} of matrices from $U S p(2 N)$ with $2 N=\log (|\Delta|)$.

Theorem. Fix $\delta>0$, Let $\delta<\beta<2-\delta, M=\left\lfloor\exp \left(N^{\beta}\right)\right\rfloor$. Suppose $A_{1}, \ldots, A_{M} \in U S p(2 N)$ are chosen indpendently and uniformly with respect to the Haar probability measure on $\operatorname{USp}(2 N)$. Let $\theta_{1}(m)$ denote the first eigenphase of A_{m}. Then for any $\epsilon>0$, we have

$$
\mathbb{P}_{N}\left(\max _{1 \leq m \leq M} \theta_{1}(m) \geq(2-\epsilon) N^{\beta / 2-1}\right) \rightarrow 1, \quad \text { as } N \rightarrow \infty
$$

Heuristic running time

Conjecture. Fix $0 \leq \beta<1$. Let $\gamma_{1}(q \Delta)$ be the first zero of $L(1 / 2+i t,(q \Delta \mid)),. X=\exp (\log \Delta)^{\beta}$, and $\mathcal{F}:=\mathcal{F}(X)$ be the set of fundamental discriminants $|q| \leq X$. Then

$$
\log \max _{q \in \mathcal{F}} \gamma_{1}(q \Delta) / \log \log |\Delta| \sim \beta / 2-1
$$

as $|\Delta| \rightarrow \infty$ through fundamental discriminants.
So if we sample the fundamental discriminants $|q| \leq \exp \left((\log |\Delta|)^{\beta}\right)$, then by the conjecture we expect to find at least one q where there is a gap of size $(\log |\Delta|)^{\beta / 2-1}$.

Want to ensure that $h(x)$ decays quickly outside of zero gap \Longrightarrow take $g(y)$ to be supported on roughly $|y| \leq(\log |\Delta|)^{1-\beta / 2}$.

Optimizing: sampling time $=$ prime sum computation time, so $\beta=1-\beta / 2 \Longrightarrow \beta=2 / 3$. So by putting in effort $X=e^{Y}$, we expect a lower bound like $Y^{3 / 2}$.

RSA-210: Lower bound L for $\log |\Delta|$ obtained using the primes $<e^{Y}$

Example application

RSA challenge number RSA-210 has 210 decimal digits (696 bits):

2452466449002782119765176635730880184670267876783327597434144517150616008300 3858721695220839933207154910362682719167986407977672324300560059203563124656 1218465817904100131859299619933817012149335034875870551067

The GNFS has so far not been able to tell us any information about RSA-210 (as it remains unfactored), but using the method I described we proved

Theorem. Assume the GRH for quadratic Dirichlet L-functions. Then the RSA challenge number RSA-210 is not square-full; i.e. it has at least one prime factor of multiplicity 1.

Can we rescue part of the zeros contribution?

```
Using the primes < 1e7 and -65123121667 twist
```

v	point	w [v]
45	0.3560000	4.0000000
46	0.3640000	1.0000000
71	0.5640000	1.0000000
98	0.7800000	1.5156296
99	0.7880000	2.5486078
146	1.1640000	4.4663347

prime contr	$:$	44.65870
zeros contr	$:$	2.49460
improvement	$:$	5.59%
logd lbound	$:$	47.15330

\# variables	$:$	500
\# integer vars	$:$	45
interval covered	$:$	4.00000
grid spacing	$:$	0.00800

