# Detecting square-free numbers via the explicit formula

Ghaith Hiary (with Andrew Booker and Jon Keating)

# Partial information

Given an integer d, we would like "partial information" about it. Examples.

- Certify the compositeness of *d* without knowing its factors.
  - Solved in poly-log time by Agrawal-Kayal-Saxena (AKS).
- *d* has an odd or even number of (distinct) prime factors?
  - Doable in  $d^{1/3+o(1)}$  time: AKS + check for factors  $\leq d^{1/3}$ .
  - Can be improved to  $d^{1/6+o(1)}$  time (Pollard-Strassen).
  - However, in practice, faster to simply factor *d* using heuristically subexponential time algorithms.
- Does *d* have a simple (i.e. multiplicity one) prime factor? ... etc.

## Testing square-freeness

<u>Question</u>. How fast can the square-freeness of d be checked? Can it be done in subexponential time without having to factor?

Besides trial division, here's what's available:

• The Pollard-Strassen algorithm: Can find all factors of d less than B in  $B^{1/2}d^{o(1)}$  time/space.  $\implies d^{1/6+o(1)}$  time/space.

But slow, large memory requirements.

 Subexponential factoring algorithms; e.g. The General number field sieve (GNFS) expected to work in exp((log d)<sup>1/3+o(1)</sup>) time (fastest available in this class).

Very successeful in practice. Best bet to learn about d.

Unfortunately, GNFS does not yield partial information about d. Either find a factor or no info.

Is there a more economical fast way?

## Framing the question in terms of a lower bound $d = m^2 \Delta$ , where $\Delta$ is square-free. How good a lower bound *L* on log $\Delta$ can be obtained in time *X*?

Lower bound L for log  $\Delta$  obtained in X time (plotted in logarthmic scale)



Would like a method such that  $L = (\log X)^{\eta}$  for some  $\eta > 1$ .

Then, a lower bound *L* for  $\log |\Delta|$  costs  $\exp(L^{1/\eta})$  time to obtain if true. This is subexp if  $\eta > 1$ .

Notice that GNFS takes takes  $exp((\log d)^{1/3+o(1)})$ time regardless of the desired lower bound *L*.

## Using the explicit formula

Let  $\chi$  be a primitive Dirichlet character of conductor  $\Delta$ .

Explicit formula for  $L(s, \chi)$ : Let g(x) be a real even continuous piecewise differentiable compactly supported, and let  $h(x) = \int_{\mathbb{R}} g(y)e^{ixy} dx$ , then





• Explicit formula relates the zeros, the coefficients, and the conductor.

• Proved using the Euler product and the func. equation.

#### Real characters and positivity

Let  $\Delta$  be a fundamental discriminant. Apply the explicit formula with  $\chi(.)$  the Kronecker symbol  $(\Delta)$ , so

$$g(0) \log |\Delta| = \sum_{\gamma} h(\gamma) + 2 \sum_{n \ge 1} \left(\frac{\Delta}{n}\right) \frac{\Lambda(n)g(\log n)}{\sqrt{n}} + \underbrace{\operatorname{Gamma \ contrib}}_{\operatorname{can \ be \ computed \ easily}}$$

Assume the generalized Riemann hypothesis for  $L(s, (\Delta|.))$ .

Use a test Fourier-pair (g, h) such that  $h(x) \ge 0$ . For example,

$$g(y) = \frac{1_{|y| < Y}}{Y} \left(1 - \frac{|y|}{Y}\right), \quad h(x) = \int_{\mathbb{R}} g(y) e^{ixy} \, dx = \frac{\sin(xY/2)^2}{(xY/2)^2}.$$

Since  $h(x) \ge 0$ , zeros contribution  $\sum_{\gamma} h(\gamma) \ge 0$ . So can simply drop  $\sum_{\gamma} h(\gamma)$ , and still get a lower bound on  $|\Delta|$ . <u>Therefore</u>, we can get a lower bound without knowing the zeros  $\gamma$ .

## A lower bound from the prime sum

If g(x) is supported on [-X, X], we therefore have

$$g(0) \log |\Delta| \ge 2 \sum_{1 \le n \le X} \left( rac{\Delta}{n} 
ight) rac{\Lambda(n) g(\log n)}{\sqrt{n}} + \textit{Gamma contrib}.$$

Now, let  $d = m^2 \Delta$ , where  $\Delta$  is square-free. Assume  $d \equiv 1 \mod 4$ , so d is a fundamental discriminant. Assume  $\left(\frac{d}{n}\right) \neq 0$ ,  $1 \leq n \leq e^X$ , so  $\left(\frac{d}{n}\right) = \left(\frac{m^2}{n}\right) \left(\frac{\Delta}{n}\right) = \left(\frac{\Delta}{n}\right)$ . (If  $\left(\frac{d}{n}\right) = 0$ , then it's even better, we find a factor!) Then we have

$$g(0)\log |\Delta| \ge 2\sum_{1\le n\le X} \left(rac{d}{n}
ight) rac{\Lambda(n)g(\log n)}{\sqrt{n}} + \textit{Gamma contrib}.$$

Last, use quadratic reciprocity or Euler's criterion for fast computation of  $\left(\frac{d}{n}\right)$  for  $n = p^k$ .

<u>That is</u>, we can compute  $\left(\frac{d}{n}\right)$  fast without knowing its conductor.

## Good and bad news

Explicit formula yields a lower bound on the *least period* of  $\left(\frac{d}{n}\right)$ :

$$g(0)\log|\Delta| \ge 2\sum_{1\le n\le X}\left(rac{d}{n}
ight)rac{\Lambda(n)g(\log n)}{\sqrt{n}} + Gamma \ contribution$$

where g(x) is supported on [-X, X].

Is this a good lower bound? In general no!

Zeros sum typically dominates, roughly

$$\sum_{\gamma} h(\gamma) pprox rac{\log |\Delta|}{2\pi} \int_{\mathbb{R}} h(x) \, dx = g(0) \log |\Delta|$$

(view it as Monte Carlo integration.)

Unless possibly if big zero gap.

L(s, (1548889|.)) zeros around the origin.

Example of a big zero gap

$$h(x) = \frac{\sin(xX/2)^2}{(xX/2)^2}$$
$$X = 4$$

#### Large zero gaps

If there is a large zero gap, then we have a chance.

Center h(x) around the big zero gap  $\implies \sum_{\gamma} h(\gamma)$  is likely small. This can be quantified as

<u>Theorem</u>. Assume the GRH, and let  $\chi$  be a real character of conductor  $|\Delta|$ . Suppose that  $L(1/2 + it, \chi)$  has no zeros with imaginary part  $(t_0, t_0 + \delta)$  for some  $t_0 \ge 1$  and  $\delta > 0$ . Then there is a Fourier pair g(x) and h(x) such that  $h(x) \ge 0$ , g(x) is supported on  $|x| \le \delta^{-1} \log \log |t\Delta|$ , and

$$\sum_{\gamma} h(\gamma) \ll \frac{g(0)}{\delta \sqrt{\log \log |t\Delta|}}.$$

(So the larger the zero gap  $\delta \Rightarrow$  the shorter the prime sum that we need to evaluate.)

# Looking for large gaps by twisting

Let  $\mathcal{F} := \mathcal{F}(X)$  be the set of fundamental discriminants  $|q| \leq X$ . Assume  $X = \Delta^{o(1)}$  as  $\Delta \to \infty$ .

Consider the following family of Dirichlet *L*-functions  $\{L(s, (q\Delta|.), q \in \mathcal{F}\}.$ 

Let  $\gamma_1(q\Delta)$  be the first zero of  $L(1/2 + it, (q\Delta|.))$ .

What do we expect the size of

$$\max_{q\in\mathcal{F}}\gamma_1(q\Delta)?$$

Note, on average, the zeros of  $L(1/2 + it, (q\Delta|.))$ , with  $t \ll 1$  say, are spaced  $\frac{1}{2\pi} \log(q|\Delta|) \sim \frac{1}{2\pi} \log(|\Delta|)$  apart.

# Random matrix theory (RMT) and zero spacings

Suitably normalized zeros of an *L*-function, or a family of *L*-functions, have the same statistics (to leading order) as normalized eigenphases of random matrices from a compact matrix group (or matrix ensemble) for large but finite parameter; e.g.  $A \in U(N) \longleftrightarrow \{\zeta(1/2 + it), T \leq t \leq T + 2\pi\}, N \leftrightarrow \log(T/2\pi).$ 



## How large a zero gap does RMT suggest?

Let USp(2N) be the compact group of  $2N \times 2N$  unitary matrices A satisfying  $A^t J A = J$ , where  $J = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix}$ . Let  $A \in USp(2N)$ . The eigenvalues of A are  $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_N}$ .

The random matrix philosophy suggests that the lowest zero  $\gamma_1(q\Delta)$ ,  $q \in \mathcal{F}(X)$ ,  $X = \Delta^{o(1)}$ , is modeled by the lowest eigenphase  $\theta_1$  of matrices from USp(2N) with  $2N = \log(|\Delta|)$ .

<u>Theorem</u>. Fix  $\delta > 0$ , Let  $\delta < \beta < 2 - \delta$ ,  $M = \lfloor \exp(N^{\beta}) \rfloor$ . Suppose  $A_1, \ldots, A_M \in USp(2N)$  are chosen indpendently and uniformly with respect to the Haar probability measure on USp(2N). Let  $\theta_1(m)$  denote the first eigenphase of  $A_m$ . Then for any  $\epsilon > 0$ , we have

$$\mathbb{P}_N\left(\max_{1\leq m\leq M} heta_1(m)\geq (2-\epsilon)\,N^{\beta/2-1}
ight)
ightarrow 1\,,\qquad as\ N
ightarrow\infty\,.$$

# Heuristic running time

Conjecture. Fix  $0 \le \beta < 1$ . Let  $\gamma_1(q\Delta)$  be the first zero of  $\overline{L(1/2 + it, (q\Delta|.))}$ ,  $X = \exp(\log \Delta)^{\beta}$ , and  $\mathcal{F} := \mathcal{F}(X)$  be the set of fundamental discriminants  $|q| \le X$ . Then

$$\log \max_{q \in \mathcal{F}} \gamma_1(q\Delta) / \log \log |\Delta| \sim \beta/2 - 1 \,,$$

as  $|\Delta| \to \infty$  through fundamental discriminants.

So if we sample the fundamental discriminants  $|q| \leq \exp((\log |\Delta|)^{\beta})$ , then by the conjecture we expect to find at least one q where there is a gap of size  $(\log |\Delta|)^{\beta/2-1}$ .

Want to ensure that h(x) decays quickly outside of zero gap  $\implies$  take g(y) to be supported on roughly  $|y| \leq (\log |\Delta|)^{1-\beta/2}$ .

Optimizing: sampling time = prime sum computation time, so  $\beta = 1 - \beta/2 \Longrightarrow \beta = 2/3$ . So by putting in effort  $X = e^{Y}$ , we expect a lower bound like  $Y^{3/2}$ .





# Example application

RSA challenge number RSA-210 has 210 decimal digits (696 bits):

2452466449002782119765176635730880184670267876783327597434144517150616008300 3858721695220839933207154910362682719167986407977672324300560059203563124656 1218465817904100131859299619933817012149335034875870551067

The GNFS has so far not been able to tell us any information about RSA-210 (as it remains unfactored), but using the method I described we proved

<u>Theorem.</u> Assume the GRH for quadratic Dirichlet *L*-functions. Then the RSA challenge number RSA-210 is not square-full; i.e. it has at least one prime factor of multiplicity 1.

## Can we rescue part of the zeros contribution?

Using the primes < 1e7 and -65123121667 twist

| v                      | point   |        | w ['    | v]        |
|------------------------|---------|--------|---------|-----------|
| 45                     | 0.35600 | <br>00 | 4       | .0000000  |
| 46                     | 0.36400 | 00     | 1       | .0000000  |
| 71                     | 0.56400 | 00     | 1       | .0000000  |
| 98                     | 0.78000 | 00     | 1       | .5156296  |
| 99                     | 0.78800 | 00     | 2       | .5486078  |
| 146                    | 1.1640  | 000    |         | 4.4663347 |
|                        |         |        |         |           |
| prime contr            | : 44    | .65870 | )       |           |
| zeros contr            | : : 2.  | 49460  |         |           |
| improvement            | : : 5.  | 59 %   |         |           |
| logd lbound            | a : 47  | .15330 | )       |           |
| <pre># variables</pre> | <br>3   | <br>:  | 500     |           |
| # integer w            | vars    | :      | 45      |           |
| interval covered       |         |        | 4.00000 |           |
| grid spacir            | ıg      | :      | 0.00800 |           |
|                        |         |        |         |           |