
Fast methods to compute the Riemann zeta
function

Ghaith Hiary

University of Bristol

A general L-function

An L-function can be represented as a Dirichlet series:

L(s) :=
∏
p

Lp(p−s)−1 =
∞∑

n=1

an

ns
, σ > 1 .

Define:

Λ(s) := γ(s)L(s) , γ(s) := Qs/2
d∏

j=1

Γ(s/2 + µj) .

For a certain choice of Q and µj , Λ(s) has:

a meromorphic continuation with a finite number of poles
(typically none),

a functional equation: Λ(s) = ωΛ(1− s).

Approximate functional equation

In computing L(s), with s = σ + it, using an approximate
functional equation, the majority of the effort is exerted on the
main sum:

N∑
n=1

an

ns
v1(n, s) + ω

N∑
n=1

an

n1−s
v2(n, 1− s) , N ≈

√
Q|t|d .

By finding faster methods to compute the main sum, one obtains
faster methods for L(s).

Q. How fast can the main sum be computed?

• Alternative approaches for computing L(s): shifted contour
integral, explicit formula.

Approximating L(s) by a single Dirichlet polynomial

Appoximating zeta under the Lindelöf hypothesis: Let ε, δ > 0,

then for σ = 1/2 + ε and N � T δ, as T →∞:

L(σ + it) =
∑
n≤N

an(N)

ns
+ N−ε+o(1) .

A result of Bombieri and Friedlander: Let ε, ε′ > 0, suppose for
σ = 1/2− ε and T ≤ t ≤ 2T , as T →∞:

L(σ + it) =
∑
n≤N

an(N)

ns
+ O(T−ε

′
) ,

then under certain natural conditions on L and an(N), we have
N � T d−o(1), where d is the “degree”.

Fast methods for the zeta function

Theorem 1. (H.)

For any λ, ζ(σ + it) can be computed to within ±|t|−λ in
t1/3+oλ(1) time.

Theorem 2. (H.)

For any λ, ζ(σ + it) can be computed to within ±|t|−λ in
t4/13+oλ(1) time. (Notice 4/13 ≈ 0.307).

Also, a method for L(s, χ) with χ a character to a highly
composite modulus.

The t1/3+oλ(1) method for ζ(σ + it) has been implemented (jointly
with J.W. Bober).

A survey and example applications

A brief survey:

Zeta: Euler-Maclaurin formula, Riemann-Siegel formula,
Odlyzko, Schönhage, Turing, Heath-Brown, Rubinstein, Paris,
Berry and Keating, ...

Dirichlet L-functions: Davies, Deuring, Hejhal, Rumely, ...

Higher degree L-function: approximate functional equation,
Rubinstein, Booker, Dokchitser, Vishe ...

Coefficients and eigenvalues: quadratic reciprocity, Schoof’s
algorithm (and generalizations), Hejhal’s algorithm, ...

Faster methods for L(s) can be used to numerically verify the
Riemann hypothesis, compute values at special points, study
empirical rate of growth of |L(1/2 + it)|, extreme behaviors of
L(s), ...

The Riemann-Siegel formula

Riemann derived a formula for computing zeta.

He used it to compute the first few complex zeta zeros.

Formula was later (1932) found by Siegel in old notes of Riemann.

On the critical line (σ = 1/2):

ϑ(t) := arg π−it/2 Γ(1/4 + it/2) ,

Z (t) := e iϑ(t)ζ(1/2 + it) .

Then Z (t) is real, |Z (t)| = |ζ(1/2 + it)|, and

Z (t) = 2
∑

1≤n≤
√

t/2π

cos(t log n − ϑ(t))√
n

+ remainder terms .

Example 1: growth of |ζ(1/2 + it)|

●

●●●
●●

●
● ● ●●

● ●
●
●●●

● ●● ●

●●
●
● ●

0 20 40 60 80

0
2

4
6

8
10

Increasing maxima of zeta

log(t)

lo
g(

ζ(
1

2
+

it)
)

●

●
●●
●
●●
●●
●●
●●
●●
●●●
●●●
●
●●●●●

●●●●●●●●
●●●
●●●
●●●
●●●
●●●●

●●
●●●

●●●●
●●
●●●●

●●●
●●●●
●●●●
●●●●

●●●

Example 2: S(t) near a large value of zeta

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
t

3

2

1

0

1

2

3
S
(T

+
t)

T=552166410009931288886808632346.50524

Some generalities

The basic idea:

1 Reduce to computing a large number of quadratic, or cubic,
exponential sums.

2 Intervene to suitably normalizes the arguments of the
quadratic, or cubic, sum.

3 Apply van der Corput iteration to obtain a shorter sum of a
similar type, and compute the resulting remainder.

4 Repeat steps 2 and 3.

The following computational model suffices:

Compute: numerically eval. to within ±|t|−λ for any λ > 0.

Complexity (time): # of required operations: +, −, ×, /.

Arithmetic : log(2 + λ+ |t|) bits ⇒ bit bound.

Main sum for ζ(σ + it): reducing to exponential sums

The main sum for ζ(σ + it) is
∑

1≤n�t1/2

n−σ−it .

The initial sum
∑

1≤n�tα

n−σ−it is evaluated directy.

The remaining sum is divided into “blocks”:

∑
tα�n�t1/2

n−σ−it =
∑
v∈Vt

v+Kv∑
n=v

n−σ−it , Kv/v ≈ t−α .

So |Vt | � tα log t.

Main sum for ζ(σ + it): reducing to exponential sums

v+K∑
n=v

n−σ−it = e−(σ+it) log v
K∑

k=0

e−(σ+it) log(1+k/v)

=
J∑

j=0

wj

K j

K∑
k=0

k je2πif (k) + εJ .

total # of blocks � tα log t.

K/v � t−α.

the degree of f (x) is d1/αe − 1.

1/3 ≤ α < 1/2 f (x) is quadratic t1/3 � # blocks � t1/2

1/4 ≤ α < 1/3 f (x) is cubic t1/3 � # blocks � t1/4

...

Want fast methods to compute such exponential sums.

The quadratic case (α = 1/3): zeta in t1/3+oλ(1)

We can write the main sum as a linear combintation of
� t1/3 log2 t quadratic (theta) sums:

F (K , j ; a, b) :=
1

K j

K∑
k=0

k je2πiak+2πibk2
,

The θ-algorithm: F (K , j ; a, b) can be computed to within ±ε in

� (j + 1)2 log2(K/ε) time.

This yields zeta in t1/3+oλ(1).

Classical: incomplete Gauss sums, partial theta sums

Define F (K ; a, b) :=
∑K

k=0 e2πiak+2πibk2
.

Partial theta sums studied extensively via Poisson summation.

Special cases:

F (K ; a, 0) is easy → Geometric Sum.

If bK � 1 → use Euler-Maclaurin summation.

If F (K ; m/K , n/K) → complete Gauss sum.

Remark: Quadratic reciprocity implies that F (K ; a, b) is
computable in poly-log time for (a, b) = (m/K , n/K). The
θ-algorithm implies F (K ; a, b) is still computable in poly-log time
for any a, b ∈ [0, 1).

The basic iteration: the case j = 0

F (K ; a, b) =
c1√
b

F

(
ba + 2bKc; a

2b
,− 1

4b

)
+R .

Intervention:

F (K ; a, b) = F (K ; a± 1; b) = F (K ; a, b ± 1)

= F (K ; a± 1/2, b ± 1/2) .

⇒ can ensure b ∈ [0, 1/4]⇒ 2bK ≤ K/2.

So with each iteration the length decreases by at least 1/2.

Computing the remainder: no saddle-points, Cauchy’s
theorem, stationary phase, exponential decline, truncate after
distance � log(K/ε), reduce to a simple type of incomplete
Gamma function. This is the time consuming part.

Numerical behavior of the θ-algorithm

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
v 1e15

0

1

2

3

4

5

6

7

8

9
Te

rm
s

pe
r s

ec
on

d
1e8 θ-algorithm timings near T=7×1031

Zeta algorithm timings

0 1 2 3 4 5 6 7 8
t 1e31

0

1

2

3

4

5

Re
la

tiv
e

cp
ut

im
e

Running time compared to t1/3 (logt)2.5 growth

Faster methods: the cubic sums algorithm

H(K , j ; a, b, c) := 1
K j

∑K
k=0 k je2πiak+2πibk2+2πick3

Still have periodicity, but not self-similarity..

Special cases:

If bK � 1 and cK 2 � 1 → Euler-Maclaurin summation.

If cK 3 � 1 → θ-algorithm.

Cubic sums algorithm. Given µ ≤ 1, then for any 0 ≤ c ≤ Kµ−3:

the cubic sum H(K , j ; a, b, c) can be computed to within ± ε
in � (j + 1)5 log5(K/ε) time,

provided a one-time precomputation costing
� (j + 1)5 log5(K/ε)K 4µ time is performed via the FFT.

The key observation is the precomputation costs ≈ K 4µ time.

A heuristic device: the case j = 0, a = 0

van der Corput iteration

f ′(x) strictly increasing in 0 ≤ x ≤ K , and xm is defined by
f ′(xm) = m for f ′(0) < m < f ′(k):

∑
0<k<K

e2πif (k) = c1

∑
f ′(0)<m<f ′(k)

e2πi(f (xm)−mxm)√
|f ′′(xm)|

+R .

Consider
∑K

k=0 e2πibk2+2πick3
.

For m ∈ (0, 2bK + 3cK 2), we have:

f (xm)−mxm =
2b3 + 9bcm − 2

(
b2 + 3cm

)3/2
27c3

.

This is not a cubic... but what if c is small?

“Approximate self-similarity”

Assuming cK 2 � 1, and bK ≥ 1, then

f (xm)−mxm = − 1

4b
m2 +

c

8b3
m3 + O

(
c2K 4

b

)
.

If c2K 4/b � 1⇒ can make new sum cubic.

Thus, the van der Corput iteration suggests:

K terms → 2bK + 3cK 2 = 2bK + O(1) terms.

bk2 + ck3 → − 1
4bm2 + c

8b3 m
3 + O

(
c2K4

b

)
.

Can ensure b ∈ [0, 1/4], so length decreases by a factor of ≤ 1/2.

But also, since c → c/(8b3) ≥ 8c , the cubic coeff. c grows.

Character sums

Let χ be a Dirichlet character mod q. Define:

S(K , χ) :=
∑K

k=1 χ(k)

Q. How fast can S(K , χ) be computed?

A.G. Postnikov, 1955
χ primitive mod pa (p odd) ⇒ χ(1 + kpb) ≡ e2πif (k), f (x) ∈ Q[x].

Lemma 1.
χ mod pa (p odd), b := da/3e, then

χ(1 + pbk) ≡ exp

(
4πiLk

pa−b
+

2πiLk2

pa−2b

)
,

and L can be determined in O(log p) time.

Twisted quadratic sums and L(s, χ)

Using lemma 1, we can write:

S(K , χ) =
∑

0<r<pda/3e

gcd(r , p) = 1

χ(r)F (K/pda/3e; ar , br) .

Via the θ-algorithm, S(K , χ) can be computed in ≈ pda/3e steps.

Example. q = p3, χ mod q ⇒ S(K , χ) in pqε = q1/3+ε steps.

Example. q = pa, χ mod q ⇒ improves on q1/2 unless a = 1, 2, 4.

Let q = pa1
1 pa2

2 . . . pah
h (p’s odd), and χ be a character mod q ⇒

S(K , χ) is computable in p
da1/3e
1 p

da2/3e
2 . . . p

dah/3e
h qε steps.

The approach generalizes to
∑K

k=1(k/K)jχ(k)e2πiak+2πibk2
. Gives

L(s, χ) in better than q1/2t1/2, best case q1/3t1/3.

