Truth Tables, Basic Equivalencies, Tautologies and Contradictions

Truth tables are not a primary focus in Math 345; however, it is important to know the truth tables of the logical connectives. It is also important to understand how a truth table can be used to determine the overall truth values of a given sentence. Since a sentence with n logical variables would require a truth table with 2^n rows, it is necessary for you to learn more refined methods of proof.

Here are the truth tables of the basic logical connectives. They are all given in one large table:

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	F	Т	Т	F
F	F	Т	Т	F	F	Т	Т

A **tautology** is a compound sentence that is always true and a **contradiction** is a compound sentence that is always false.

The some of the basic equivalencies that you should know are the following.

De Morgan's Laws:

- (a.) $\neg (P \land Q)$ is logically equivalent to $(\neg P) \lor (\neg Q)$
- (b.) $\neg (P \lor Q)$ is logically equivalent to $(\neg P) \land (\neg Q)$

Distributive Laws:

- (a.) $P \land (Q \lor R)$ is logically equivalent to $(P \land Q) \lor (P \land R)$
- (b.) $P \lor (Q \land R)$ is logically equivalent to $(P \lor Q) \land (P \lor R)$

Conditionals:

- (a.) $P \Rightarrow Q$ is logically equivalent to $\neg P \lor Q$
- (b.) $\neg(P \Rightarrow Q)$ is logically equivalent to $P \land \neg Q$

Bionditionals:

- (a.) $P \Leftrightarrow Q$ is logically equivalent to $(P \Rightarrow Q) \land (Q \Rightarrow P)$
- (b.) $P \Leftrightarrow Q$ is a tautology is the same as saying P is logically equivalent to Q