An Example of Orthogonal Bases and Least Squares Approximations

(1.) Let S be the subspace of $\mathbb{R}^{2 \times 2}$ spanned by $\mathbf{x}_{1}=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right)$ and $\mathbf{x}_{3}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$,
(a.) Verify that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal basis for S.

To answer this question, we just need to check that $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle=0$ when $i \neq j$. So:

$$
\begin{gathered}
\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle=1-4-6+9=0 \\
\left\langle\mathbf{x}_{1}, \mathbf{x}_{3}\right\rangle=-3+3=0 \\
\left\langle\mathbf{x}_{2}, \mathbf{x}_{3}\right\rangle=-3+3=0
\end{gathered}
$$

Therefore $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal basis for S.
(b.) Find the orthogonal projection \mathbf{p} (or least squares approximation) of $\mathbf{y}=\left(\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right)$ onto S.

First, $\mathbf{p}=\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}$ where \mathbf{p}_{i} is the orthogonal projection of \mathbf{y} onto the line spanned by \mathbf{x}_{i}. Also recall that:

$$
\mathbf{p}_{i}=\frac{\left\langle\mathbf{y}, \mathbf{x}_{i}\right\rangle}{\left\langle\mathbf{x}_{i}, \mathbf{x}_{i}\right\rangle} \mathbf{x}_{i}
$$

So:

$$
\begin{aligned}
& \mathbf{p}_{1}=\frac{\left\langle\mathbf{y}, \mathbf{x}_{1}\right\rangle}{\left\langle\mathbf{x}_{1}, \mathbf{x}_{1}\right\rangle} \mathbf{x}_{1}=\frac{54}{30} \mathbf{x}_{1} \\
& \mathbf{p}_{2}=\frac{\left\langle\mathbf{y}, \mathbf{x}_{2}\right\rangle}{\left\langle\mathbf{x}_{2}, \mathbf{x}_{2}\right\rangle} \mathbf{x}_{2}=\frac{4}{20} \mathbf{x}_{2} \\
& \mathbf{p}_{3}=\frac{\left\langle\mathbf{y}, \mathbf{x}_{3}\right\rangle}{\left\langle\mathbf{x}_{3}, \mathbf{x}_{3}\right\rangle} \mathbf{x}_{3}=\frac{2}{10} \mathbf{x}_{3}
\end{aligned}
$$

Therefore

$$
\mathbf{p}=\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}=\frac{54}{30} \mathbf{x}_{1}+\frac{4}{20} \mathbf{x}_{2}+\frac{2}{10} \mathbf{x}_{3}=\left(\begin{array}{cc}
1.4 & 7 \\
3 & 6.2
\end{array}\right)
$$

