
Math 572

Fourier Series, Discrete Fourier Transforms and Fast Fourier Transforms

1. Complex Numbers

We start with some basics of complex numbers:

If z = a+ bi is a complex number, then the complex conjugate of z is the complex number z = a− bi.

From Euler’s theorem, we have a relationship between ex, cosx and sinx:

eix = cosx+ i sinx

and

e−ix = cosx− i sinx

We will define ωN = e−
2πi
N for N a positive integer. ωN is called a primitive Nth root of unity. In

particular, ωN is a root of xN − 1 and is not a root of xk − 1 for k < N . Some useful properties of ωN are:

ωkN = ωM if N = kM

ω
N/2
N = −1 if N is even

ωMN = ωrN if M = kN + r

2. Fourier Series over [0, 2π]

In this section we consider the function space C[0, 2π]. Our initial goal will be to approximate a given function

f(x) in C[0, 2π] using linear combinations of functions of the form cos kx and sin kx where k is a non-negative

integer. This is obviously useful for periodic functions. Our setup is as follows:

〈f(x), g(x)〉 =
1

π

∫ 2π

0

f(x)g(x) dx

and

Sn = Span(
1√
2
, sinx, . . . , sinnx, cosx, . . . , cosnx)

We can check that the following are true:

〈1, cosαx〉 =
1

π

∫ 2π

0

cosαx dx = 0

〈1, sinβx〉 =
1

π

∫ 2π

0

sinβx dx = 0

〈cosαx, cosβx〉 =
1

π

∫ 2π

0

cosαx cosβx dx =

 1 if α = β

0 if α 6= β

〈sinαx, sinβx〉 =
1

π

∫ 2π

0

sinαx sinβx dx =

 1 if α = β

0 if α 6= β

〈cosαx, sinβx〉 =
1

π

∫ 2π

0

cosαx sinβx dx = 0

Therefore

{ 1√
2
, sinx, . . . , sin kx, cosx, . . . , cos kx}

is an orthonormal basis for Sk.
1

If we define:

a0 = 〈f(x), 1〉 =
1

π

∫ 2π

0

f(x) dx

ak = 〈f(x), cos kx〉 =
1

π

∫ 2π

0

f(x) cos kx dx

and

bk = 〈f(x), sin kx〉 =
1

π

∫ 2π

0

f(x) sin kx dx

then the least squares approximation of f(x) in Sn will be:

sn(f(x)) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

This sum is an example of a trigonometric polynomial and is known as the nth degree Fourier series for

f(x) over [0, 2π] .

It is generally convenient to write this series in exponential form, which is what we proceed to do:

Let

ck =
1

2
(ak − ibk)

and

c−k = ck

With these definitions, we have the following relations:

ak = ck + c−k

and

bk = i(ck − c−k)

So

ck =
1

2
(ak − ibk) =

1

2π

∫ 2π

0

f(x)(cos kx− i sin kx) dx

Using Euler’s theorem, we have:

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx

Finally, notice that

cke
ikx + c−ke

−ikx = ck(cos kx+ i sin kx) + c−k(cos kx− i sin kx) = (ck + c−k) cos kx+ i(ck − ck) sin kx

This gives:

cke
ikx + c−ke

−ikx = ak cos kx+ bk sin kx

Therefore the nth degree Fourier series:

sn(f(x)) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

can be rewritten as:

sn(f(x)) =

n∑
k=−n

cke
ikx

Fourier series have many applications. One of the most important is in the area of signal processing. The

Fourier series of a noisy function can be used to reduce this noise. Noise in this case refers to the terms of

sn(f(x)) where |k| is large. We can eliminate this noise by setting the corresponding ck to 0.
2

3. Discrete Fourier Transform

In applications, we often do not know f(x) explicitly, rather we have to approximate f(x) by sampling. This

will lead to an approximation of sn(f(x)).

First, we partition the interval [0, 2π] into N equal parts:

x0 = 0, x1 =
2π

N
, . . . , xN = 2π

In particular,

xj =
2πj

N

For each xj we measure the output yj and set

yj = f(xj)

Since we do not know f(x), we can not compute ck = 1
2π

∫ 2π

0
f(x)e−ikx dx. Rather we will approximate this

integral using the left endpoint Riemann sum given the partition above:

ck ≈
N−1∑
j=0

f(xj)e
−ikxj 1

N

Note that

eikxj = e−
2πikj
N = ωjkN

where ωN is the primitive Nth root of unity defined in section 1. Therefore

N−1∑
j=0

f(xj)e
−ikxj 1

N
=

1

N

N−1∑
j=0

yjω
jk
N

We define

dk =

N−1∑
j=0

yjω
jk
N

The sequence {d0, d1, . . . , dN−1} is called the discrete Fourier transform or DFT of {y0, y1, . . . , yN−1}

We will now show how to compute dk using matrix multiplication. Let FN be the N ×N matrix whose k, j

entry is ω
(j−1)(k−1)
N so that

FN =



1 1 1 1 · · · 1

1 ωN ω2
N ω3

N · · · ωN−1
N

1 ω2
N ω4

N ω6
N · · · ω

2(N−1)
N

1 ω3
N ω6

N ω9
N · · · ω

3(N−1)
N

...
...

...
...

1 ωN−1
N ω

2(N−1)
N ω

3(N−1)
N · · · ω

(N−1)(N−1)
N


Note that FN is a symmetric matrix (ie. FTN = FN).

If we define y and d by:

y =


y0

y1
...

yN−1

 and d =


d0

d1
...

dN−1


Then a direct calculation shows that

FNy = d

3

4. Fast Fourier Transform

Using the matrix calculation above to compute the discrete Fourier transform of a sequence {y0, y1, . . . , yN−1}

requires approximately 8N2 operations. There are many algorithms which can be used to speed this processes

up, they are collectively known as the fast Fourier transform or FFT. The best known of these is the Cooley-

Tukey algorithm. This algorithm was developed by Cooley and Tukey in the 1960’s, though it was later found

to be originally developed by Gauss in the early 1800’s. This algorithm works when N is even and relies upon

reordering the columns of FN .

To get started, we define two matrices as follows: Let {e1, e2, . . . , eN} be the standard basis for Rn. Then

PN is defined to be:

PN = (e1 e3 e5 · · · eN−1 e2 e4 · · · eN)

Notice that PN is a N × N permutation matrix, in particular P−1
N = PTN . We also define DN/2 to be the

N/2×N/2 diagonal matrix whose j, j entry is ωj−1
N .

Our first goal is to rearrange the columns of FN so that all of the odd numbered columns occur before all of

the even columns. This can be done by multiplying FN on the right by PN . This has the effect of arranging the

columns so that the first N/2 columns contain only even powers of ωN . We then use the relations ω2
N = ωN/2

and ω
k(N/2+1)
N/2 = ωkN/2 to reduce the entries to powers of ωN/2. These columns are now seen to consist of two

copies of FN/2. For the remaining columns, we can do a similar reduction, with the added complication that we

have a copy of DN/2FN/2 and of −DN/2FN/2. Once we do this, we have the following block decomposition of

FN :

FNPN =

FN/2 DN/2FN/2

FN/2 −DN/2FN/2


So,

FNy = (FNPN)(PTNy)

If we write

PTNy =

w1

w2


where w1 is the first half of of PTNy and w2 is the second half of this vector and use the properties of block

multiplication (see section 1.5 of Leon):

FNy =

FN/2 DN/2FN/2

FN/2 −DN/2FN/2

w1

w2

 =

FN/2w1 +DN/2FN/2w2

FN/2w1 −DN/2FN/2w2


Therefore, to compute FNy we only need to compute FN/2w1 and DN/2FN/2w2. This process can be used

recursively, in stages: one stage for each power of 2 which divides N . This algorithm is most efficient when N

is a power of 2. In this case the FFT takes approximately 5N log2N operations (as opposed to 8N2 operations

for the DFT). For example, if N = 1024 then the dft takes 223 operations whereas the FFT will take 211 ∗ 25

operations. This is speedup by a factor of 212/25.

4

Example:

Let N = 6 and y = (1, 2, 3, 4, 5, 6)T .

Then

F6 =



1 1 1 1 1 1

1 ω6 ω2
6 ω3

6 ω4
6 ω5

6

1 ω2
6 ω4

6 ω6
6 ω8

6 ω10
6

1 ω3
6 ω6

6 ω9
6 ω12

6 ω15
6

1 ω4
6 ω8

6 ω12
6 ω16

6 ω20
6

1 ω5
6 ω10

6 ω15
6 ω20

6 ω25
6


It is advantageous to reduce the various powers of ω6 to smaller powers of ω6 and powers of lower order

primitive roots of unity (also note that ω3
6 = −1, ω5

6 = −ω3 and ω6 = −ω2
3):

F6 =



1 1 1 1 1 1

1 −ω2
3 ω3 −1 ω2

3 −ω3

1 ω3 ω2
3 1 ω3 ω2

3

1 −1 1 −1 1 −1

1 ω2
3 ω3 1 ω2

3 ω3

1 −ω3 ω2
3 −1 ω3 −ω2

3



P6 =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1



F3 =


1 1 1

1 ω3 ω2
3

1 ω2
3 ω4

3

 =


1 1 1

1 ω3 ω2
3

1 ω2
3 ω3



D3 =


1 0 0

0 ω6 0

0 0 ω2
6

 =


1 0 0

0 −ω2
3 0

0 0 ω3


and

D3F3 =


1 1 1

−ω2
3 −1 −ω3

ω3 1 ω2
3



5

Now compute F6P6:

F6P6 =



1 1 1 1 1 1

1 ω3 ω2
3 −ω2

3 −1 −ω3

1 ω2
3 ω3 ω3 1 ω2

3

1 1 1 −1 −1 −1

1 ω3 ω2
3 ω2

3 1 ω3

1 ω2
3 ω3 −ω3 −1 −ω2

3


=

F3 D3F3

F3 −D3F3



Therefore

d = F6y = F6P6P
T
6 y =

F3 D3F3

F3 −D3F3





1

3

5

2

4

6


=



F3


1

3

5

 +D3F3


2

4

6



F3


1

3

5

−D3F3


2

4

6




Finally,

F3


1

3

5

 =


1 1 1

1 ω3 ω2
3

1 ω2
3 ω3




1

3

5

 =


9

1 + 3ω3 + 5ω2
3

1 + 3ω2
3 + 5ω3


and

D3F3


2

4

6

 =


1 1 1

−ω2
3 −1 −ω3

ω3 1 ω2
3




2

4

6

 =


12

−2ω2
3 − 4− 6ω3

2ω3 + 4 + 6ω2
3


So

d = F6y =
1

6



9 + 12

−3− 3ω3 + 3ω2
3

5 + 7ω3 + 9ω2
3

9− 12

5 + 9ω3 + 7ω2
3

−3 + 3ω3 − 3ω2
3


=

1

6



21

−3.0000 + 5.1962i

−3.0000 + 1.7321i

−3.0000

−3.0000− 1.7321i

−3.0000− 5.1962i



6

