Divisibility of Products

1. First Result

The following result is a weaker version of a standard result involving greatest common divisors. We will prove the stronger result at the end of these notes.

Proposition 1.1. Suppose that a and b are integers which have the property that if $d \in \mathbb{N}$ and d divides a and d divides b then $d=1$. Then there are integers x and y such that:

$$
a x+b y=1
$$

It should be pointed out that it is not the case that $a=0$ and $b=0$, otherwise every integer divides a and b. Proof: Since $a^{2}+b^{2}$ is a positive integer, the set

$$
S=\{a x+b y \mid x \in \mathbb{Z}, y \in \mathbb{Z} \text { and } a x+b y>0\}
$$

is non-empty. The well-ordering principle guarantees that there is a least element d in S. Using the division algorithm, we can write

$$
a=q d+r
$$

where $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, d-1\}$. Then

$$
a-r=q d .
$$

Since $d=a x+b y$ for some $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$,

$$
q d=q a x+q b y
$$

So

$$
\begin{gathered}
a-r=q a x+q b y \\
a-q a x-q b y=r \\
a(1-q a x)+b(-q y)=r
\end{gathered}
$$

Since $r<d$, and d is a least element of S, the only possible value for r is $r=0$. In particular, d divides a. Repeating this same argument with b in place of a shows that d divides b. Therefore, by the hypothesis, $d=1$.

Proposition 1.2. Suppose that a and b are integers which have the property that if $d \in \mathbb{N}$ and d divides a and d divides b then $d=1$. If c is an integer and a divides $b c$, then a divides c.

Proof: From the proposition above, there are integers x and y such that $a x+b y=1$. Then $a x c+b y c=c$. So $(x c) a=c-(y) b c$. In particular, a divides $c-(y) b c$. Since a divides $b c, a$ must divide c.
corollary 1.3. Suppose that x and y are integers and that p is a prime such that p divides $x y$. Then p divides x or p divides y.

Proof: If p divides x then the result is true, so we may assume that p does not divide x. Then p and x satisfy the conditions for a and b, respectively of the previous proposition. In particular, p must divide y ($y=c$ in the referenced proposition).

2. General Result

Definition 2.1. Suppose that a and b are integers. We say that the whole number d is a common divisor of a and b if d divides a and b. We say that d is the greatest common divisor of a and b if
(1.) d is a common division of a and b and
(2.) if c is any common divisor of a and b then c divides d.

At this point, there is no guarantee that $\operatorname{gcd}(a, b)$ exists for any pair of integers a and b.

Proposition 2.2. Let a and b be integers. Then
(1.) There exists a whole number $d=\operatorname{gcd}(a, b)$.
(2.) There exists integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.

The proof of this theorem is nearly identical to the first proposition in these notes, with the exception that we are working with whole numbers rather than natural numbers.
Proof: Since $a^{2}+b^{2}$ is a non-negative integer, the set

$$
S=\{a x+b y \mid x \in \mathbb{Z}, y \in \mathbb{Z} \text { and } a x+b y \geq 0\}
$$

is non-empty. The well-ordering principle guarantees that there is a least element d in S. Using the division algorithm, we can write

$$
a=q d+r
$$

where $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, d-1\}$. Then

$$
a-r=q d .
$$

Since $d=a x+b y$ for some $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$,

$$
q d=q a x+q b y
$$

So

$$
\begin{gathered}
a-r=q a x+q b y \\
a-q a x-q b y=r \\
a(1-q a x)+b(-q y)=r
\end{gathered}
$$

Since $r<d$, and d is a least element of S, the only possible value for r is $r=0$. In particular, d divides a. Repeating this same argument with b in place of a shows that d divides b. We have now shown that d is a common factor of a and b. Now suppose that c is any integer that divides both a and b. Then c divides $a x+b y$ so c divides d. Thus $d=\operatorname{gcd}(a, b)=a x+b y$.

