
Math 345

Divisibility of Products

1. First Result

The following result is a weaker version of a standard result involving greatest common divisors. We will

prove the stronger result at the end of these notes.

Proposition 1.1. Suppose that a and b are integers which have the property that if d ∈ N and d divides a and

d divides b then d = 1. Then there are integers x and y such that:

ax + by = 1

It should be pointed out that it is not the case that a = 0 and b = 0, otherwise every integer divides a and b.

Proof: Since a2 + b2 is a positive integer, the set

S = {ax + by | x ∈ Z, y ∈ Z and ax + by > 0}

is non-empty. The well-ordering principle guarantees that there is a least element d in S. Using the division

algorithm, we can write

a = qd + r

where q ∈ Z and r ∈ {0, 1, . . . , d− 1}. Then

a− r = qd.

Since d = ax + by for some x ∈ Z and y ∈ Z,

qd = qax + qby

So

a− r = qax + qby

a− qax− qby = r

a(1− qax) + b(−qy) = r

Since r < d, and d is a least element of S, the only possible value for r is r = 0. In particular, d divides a.

Repeating this same argument with b in place of a shows that d divides b. Therefore, by the hypothesis, d = 1.

�

Proposition 1.2. Suppose that a and b are integers which have the property that if d ∈ N and d divides a and

d divides b then d = 1. If c is an integer and a divides bc, then a divides c.

Proof: From the proposition above, there are integers x and y such that ax + by = 1. Then axc + byc = c. So

(xc)a = c− (y)bc. In particular, a divides c− (y)bc. Since a divides bc, a must divide c. �

corollary 1.3. Suppose that x and y are integers and that p is a prime such that p divides xy. Then p divides

x or p divides y.

Proof: If p divides x then the result is true, so we may assume that p does not divide x. Then p and x satisfy

the conditions for a and b, respectively of the previous proposition. In particular, p must divide y (y = c in the

referenced proposition). �
1



2. General Result

Definition 2.1. Suppose that a and b are integers. We say that the whole number d is a common divisor of

a and b if d divides a and b. We say that d is the greatest common divisor of a and b if

(1.) d is a common division of a and b and

(2.) if c is any common divisor of a and b then c divides d.

At this point, there is no guarantee that gcd(a, b) exists for any pair of integers a and b.

Proposition 2.2. Let a and b be integers. Then

(1.) There exists a whole number d = gcd(a, b).

(2.) There exists integers x and y such that ax + by = gcd(a, b).

The proof of this theorem is nearly identical to the first proposition in these notes, with the exception that

we are working with whole numbers rather than natural numbers.

Proof: Since a2 + b2 is a non-negative integer, the set

S = {ax + by | x ∈ Z, y ∈ Z and ax + by ≥ 0}

is non-empty. The well-ordering principle guarantees that there is a least element d in S. Using the division

algorithm, we can write

a = qd + r

where q ∈ Z and r ∈ {0, 1, . . . , d− 1}. Then

a− r = qd.

Since d = ax + by for some x ∈ Z and y ∈ Z,

qd = qax + qby

So

a− r = qax + qby

a− qax− qby = r

a(1− qax) + b(−qy) = r

Since r < d, and d is a least element of S, the only possible value for r is r = 0. In particular, d divides a.

Repeating this same argument with b in place of a shows that d divides b. We have now shown that d is a

common factor of a and b. Now suppose that c is any integer that divides both a and b. Then c divides ax+ by

so c divides d. Thus d = gcd(a, b) = ax + by. �
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