Exam 1 Review

(1.) Determine if L: V → W is a linear transformation:
(a.) L: R³ → R² and L(x) = (x₃ + x₂, x₁ + x₂)^T.
(b.) L: P₃ → R² and L(p(x)) = (p(0), p(1) + 1)^T.
(c.) L: C¹[-1,1] → P₂ and L(f(x)) = f'(0)x + f(0).

(2.) Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $L(\mathbf{x}) = (x_1 - x_2, x_2 - x_3, x_3 - x_1)^T$. Find a basis for ker(L) and $L(\mathbb{R}^3)$.

(3.) Determine the matrix representation of $L: V \to W$ with respect to the given bases (for V and W, respectively):

(a.) $L: \mathbb{R}^3 \to \mathbb{R}^2$ and $L(\mathbf{x}) = (2x_1 - x_2, x_2 - 4x_3)^T$ with respect to $[\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3]$ and $[\mathbf{e}_1, \mathbf{e}_2]$. (b.) $L: \mathbb{P}_3 \to \mathbb{P}_2$ and L(p(x)) = p(1)p'(x) + p(-1) with respect to $[x^2, x, 1]$ and [x, 1].

(4.) Let $L : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $L(\mathbf{x}) = (3x_1 + x_2, x_3 - 2x_2)^T$. Find the matrix representation of L with respect to the bases $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ (for \mathbb{R}^3) and $[\mathbf{v}_1, \mathbf{v}_2]$ (for \mathbb{R}^2) where

$$\mathbf{u}_1 = \begin{pmatrix} 5\\7\\1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 4\\2\\0 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} -6\\-5\\7 \end{pmatrix} \text{ and } \mathbf{v}_1 = \begin{pmatrix} 2\\-2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

(5.) Suppose that $L : \mathbb{P}_3 \to \mathbb{P}_3$ and that the matrix representation of L with respect to basis $[x^2, x, 1]$ for \mathbb{P}_3 is given by:

$$A = \begin{pmatrix} 2 & -7 & 1 \\ -1 & -3 & 1 \\ 3 & 1 & 0 \end{pmatrix}$$

Find the matrix representation of L with respect to the basis $[3x^2+2x+11, x^2+1, -9x^2-8x+7]$.

- (6.) Let $S = \text{Span}(1, x, 3x^2 1)$ be the subspace of C[-1, 1].
 - (a.) Verify that $[1, x, 3x^2 1]$ is an orthogonal basis for S.
 - (b.) Find the least squares approximation of $x^{4/3}$ in S.
- (7.) Find an orthonormal basis for the subspace S of \mathbb{R}^4 spanned by the vectors:

$$\mathbf{x}_{1} = \begin{pmatrix} -1 \\ -3 \\ 0 \\ -2 \end{pmatrix}, \mathbf{x}_{2} = \begin{pmatrix} -9 \\ -6 \\ 2 \\ 3 \end{pmatrix}, \mathbf{x}_{3} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -2 \end{pmatrix}, \mathbf{x}_{4} = \begin{pmatrix} -1 \\ -6 \\ 0 \\ 2 \end{pmatrix}$$

(8.) Find an orthonormal basis for the subspace S of C[0,1] spanned by the vectors $1, x, x^2$.