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In a compact geodesic metric space of topological dimension one, the minimal length
of a loop in a free homotopy class is well-defined, and provides a function l : π1(X) →
R
+ ∪ {∞} (the value ∞ being assigned to loops which are not freely homotopic to any

rectifiable loops). This function is the marked length spectrum. We introduce a subset
Conv(X), which is the union of all non-constant minimal loops of finite length. We show
that if X is a compact, non-contractible, geodesic space of topological dimension one,
then X deformation retracts to Conv(X). Moreover, Conv(X) can be characterized
as the minimal subset of X to which X deformation retracts. Let X1,X2 be a pair
of compact, non-contractible, geodesic metric spaces of topological dimension one, and
set Yi = Conv (Xi). We prove that any isomorphism φ : π1(X1) → π1(X2) satisfying
l2 ◦ φ = l1, forces the existence of an isometry Φ : Y1 → Y2 which induces the map φ on
the level of fundamental groups. Thus, for compact, non-contractible, geodesic spaces
of topological dimension one, the marked length spectrum completely determines the
subset Conv(X) up to isometry.
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1. Introduction

This paper is motivated by a long-standing conjecture concerning negatively curved

manifolds: that the length of closed geodesics on a closed negatively curved Rie-

mannian manifold determines the space up to isometry. More precisely, in a closed

negatively curved manifold (Mn, g), there are unique geodesics in free homotopy
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classes of loops. Assigning to each element in π1(M
n) the length of the correspond-

ing minimal geodesic yields the function l : π1(M
n) → R

+, which is called the

marked length spectrum. The marked length spectrum conjecture states that, if we

have a pair of negatively curved Riemannian metrics on Mn which yield the same

length function l, then they are in fact isometric. In full generality, the conjecture

is only known to hold for closed surfaces, which was independently established by

Croke [10] and Otal [22] (see also Hersonsky and Paulin [19] for some extensions

to singular metrics on surfaces). In the special case where one of the Riemannian

metrics is locally symmetric, this result is due to Hamenstädt [18] (see also Dal’bo

and Kim [14] for analogous results in the higher rank case).

In this paper, we consider compact geodesic spaces of topological dimension

one. The starting observation is that these spaces share a lot of the properties

of closed negatively curved manifolds. In particular, they are aspherical (see Cur-

tis and Fort [12]), and they have unique minimal length representatives in each

free homotopy class of loops (by Curtis and Fort [13], also shown by Cannon and

Conner [5]). As such, it is reasonable to ask whether the marked length spectrum

conjecture holds in the setting of compact geodesic spaces of topological dimension

one. We define a subset Conv (X) of any compact geodesic space X of topological

dimension one. When X is non-contractible, we show that X deformation retracts

to Conv (X) (and the latter is the minimal subset with this property). We establish:

Main Theorem. Let X1, X2 be a pair of compact, non-contractible, geodesic spaces

of topological dimension one, and set Yi = Conv (Xi). Assume the two spaces have

the same marked length spectrum, that is to say, there exists an isomorphism φ :

π1(X1) → π1(X2) such that the following diagram commutes :

π1(Y1) ∼= π1(X1)
φ ��

l1
����

���
���

���
�

π1(X2) ∼= π1(Y2)

l2
�����

���
���

���

R

Then Y1 is isometric to Y2, and the isometry induces (up to change of basepoints)

the isomorphism φ.

Let us provide an outline of the proof, with reference to the next section for

appropriate definitions. The idea behind the argument is to look at a certain subset

of Conv(X1) consisting of branch points. For a pair of branch points, we consider

a minimal geodesic joining them, and construct a pair of geodesic loops with the

property that they intersect precisely in the given minimal geodesic. Now using the

isomorphism of fundamental groups, we obtain a corresponding pair of geodesic

loops in Conv (X2). Using the fact that the lengths are preserved, we show that

the corresponding pair in Conv(X2) likewise intersects in a geodesic segment, and

that furthermore, the length of the intersection is exactly equal to the length of

the original geodesic segment. We then proceed to show that this correspondence

is well-defined (i.e. does not depend on the pair of geodesic loops one constructs),
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and preserves concatenations of geodesic segments. This is used to construct an

isometry between the sets of branch points. Using completeness, we extend this to

an isometry between the closures of the sets of branch points. Finally, we consider

points in Conv(X1) which are not in the closure of the set of branch points. It is easy

to see that each of these points lies on a unique maximal geodesic segment, with

the property that the only branch points occur at the endpoints of the segment.

The correspondence between geodesic segments can be used to see that there is

a unique, well-defined, corresponding segment in Conv(X2) of precisely the same

length, allowing us to extend our isometry to all of Conv(X1).

We conclude this introduction with a few remarks. If the spacesXi are tame (i.e.

are semi-locally simply connected), then our Main Theorem can also be deduced

from some work of Culler and Morgan [11] (see also Alperin and Bass [1]). But of

course, there are numerous examples of geodesic length spaces of topological dimen-

sion one which are not semi-locally simply connected (Hawaiian Earrings, Menger

curves, Sierpinski curves, etc.), for which our result does not a priori follow from

theirs. Another nice class of examples are Laakso spaces with Hausdorff dimension

between one and two [21]. These spaces have nice analytic properties, and work

regarding the spectra of the Laplacian has been carried out on them [23]. In view

of the connections between such spectra and the length spectrum in other contexts,

this seems like a most interesting family of examples.

In the course of our proof, we develop some structure theory for compact

geodesic spaces of topological dimension one (see Sec. 3). Similar results have

recently been obtained in the broader setting of Peano continua by Conner and

Meilstrup [8, 9] (see Remarks 3.13 and 3.23). There has also been some work on

rigidity of one-dimensional Peano continua, though with an emphasis on topological

phenomena, see Eda [17] (building on the previous [15, 16]). Some of these results

were also extended to planar continua by Conner and Kent (see for instance [6, 7]).

2. Preliminaries

In this section, we will define the various terms used in this paper, as well as quote

certain results we will use in our proofs. We start by reminding the reader of a few

basic notions on length spaces (and refer to Burago, Burago and Ivanov [4] for more

details on the theory).

Definition 2.1. A path in a metric space (X, d), is a continuous map f : [a, b] → X

from a closed interval intoX . A loop inX is a path f satisfying f(a) = f(b). Observe

that we can always view a loop as a based continuous map from (S1, ∗) to (X, f(a)).

Definition 2.2. Let (X, d) be a metric space. The induced length structure is a

function on the set of paths, denoted by ld, and defined as follows:

ld(γ) := sup

n∑

i=1

d(γ(xi−1),γ(xi)),
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where γ : [a, b] → X is a path, and the supremum ranges over all finite collections

of points a = x0 < x1 < . . . < xn = b. A path γ is rectifiable provided ld(γ) < ∞.

We will often suppress the subscript and write l(γ) if the original metric d is clear

from the context.

Observe that rectifiability is preserved under finite concatenation of paths, and

under restriction to subpaths. As a convenience, we will always parametrize recti-

fiable curves by their arclength.

Definition 2.3. Let (X, d) be a metric space, and ld the induced length structure.

We define the intrinsic pseudo-metric d̂ induced by d as follows. Let p, q ∈ X be

an arbitrary pair of points, and define the d̂ distance between them to be d̂(p, q) :=

inf ld(γ), where the infimum ranges over all paths γ : [a, b] → X satisfying γ(a) = p,

γ(b) = q.

Note that the function d̂ actually maps X × X to [0,∞], where two points

p, q ∈ X have d̂(p, q) = ∞ if and only if there are no rectifiable paths joining

p to q.

Definition 2.4. Let (X, d) be a metric space, d̂ the corresponding intrinsic pseudo-

metric. We call (X, d) a length space if d = d̂ (in particular, d̂ has image in (0,∞)).

Definition 2.5. Let (X, d) be a length space. We say that (X, d) is a geodesic space

if, for every pair of points p, q ∈ X , there is a path γp,q joining p to q, and having

length precisely d(p, q). Such a path is called a distance minimizer. Note that such

a curve is clearly locally distance minimizing.

The usual terminology for such a path is geodesic. However, we will use that

term for paths which minimize length in their homotopy class (see Definition 2.9

below), even though such paths need not be locally length-minimizing. The example

following Definition 2.9 illustrates this distinction. In the literature, geodesic spaces

are also sometimes referred to as complete length spaces.

In topology, one of the most important concepts is that of dimension. While

there are many different notions of dimension, the one which will be of inter-

est to us is that of Lebesgue covering dimension. We remind the reader of the

definition.

Definition 2.6. Let X be a topological space. We say that X has topological

(Lebesgue covering) dimension ≤ n if, for any open covering {Ui} of X , there is a

refinement {Vi} with the property that every x ∈ X lies in at most n + 1 of the

Vi. We say that X is n-dimensional if X has dimension ≤ n, but does not have

dimension ≤ n− 1.

We will denote the topological dimension of a space X by dim(X). Observe that

any path connected topological space with at least two points has dim(X) ≥ 1. The

spaces we will be interested in are those satisfying dim(X) = 1. Examples of such
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spaces are plentiful. In particular, we have the following criterion (see Chap. VII in

Hurewicz and Wallman [20]):

Theorem 2.7. Let (X, d) be a metric space, with Hausdorff dimension dimH(X).

Consider the induced topology on X. One has the inequality dim(X) ≤ dimH(X).

Hence any path-connected metric space with Hausdorff dimension less than two

(and which is not a single point) has covering dimension one. We will henceforth

focus exclusively on geodesic spaces of topological dimension one. Note that, in

general, a one-dimensional geodesic space might not be negatively curved, and

indeed, might not even be locally contractible.a However, such spaces often exhibit

properties which are quite similar to those of negatively curved spaces.

Definition 2.8. Let γ : (S1, ∗) → (X, p) be a loop. We say that the loop is reducible

provided that there is an open interval I = (x, y) ⊂ S1−{∗} such that γ(x) = γ(y)

and the loop γ|[x,y] is null-homotopic relative to its endpoints. We say that γ is

cyclically reducible if the interval I is allowed to include the basepoint ∗. A loop

which is not reducible (resp. cyclically reducible) will be said to be reduced (resp.

cyclically reduced). We define a constant loop to be cyclically reduced.

Similarly, let γ : [a, b] → X be a path. We say that the path is reducible provided

that there is an open interval I = (x, y) ⊆ (a, b) such that γ(x) = γ(y) and the loop

γ|[x,y] is null-homotopic relative to its endpoints. We define a constant path to be

reduced.

Definition 2.9. Let (X, d) be a 1-dimensional geodesic space. We say that a path is

geodesic provided that it is rectifiable and minimizes the length in its homotopy class

(rel. endpoints). We say that a loop γ is a geodesic loop provided γ is rectifiable and

has minimal length in its free homotopy class. As per our convention, all geodesics

will be parametrized by arclength.

As mentioned earlier, the reader who is more familiar with the Riemannian

setting should beware that, for our highly singular spaces, geodesics might not

be locally length-minimizing (or even locally injective), as the following example

demonstrates.

Example. Let X ⊂ R
2 be the union of the line segment [−1, 1] with circles of

radius 1
2n for n ∈ N tangent to this segment at 0. Consider a path which follows

the segment from −1 to 0, then traverses the circles in order of descending radius,

then from times 1+2π to 2+2π follows the segment from 0 to 1. This is a geodesic

connecting −1 to 1, but around time 1 + 2π it is not length-minimizing.

aRecall that negatively curved metric spaces are defined by the property that their universal
cover satisfies the CAT (−δ2) condition (a metric version of negative curvature, see Bridson and
Haeflinger [3]). Naturally, the problem in our setting is that spaces which are very singular might
not have a universal cover.
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We now state Cannon and Conner’s theorem (Theorem 3.9 in [5]), which estab-

lishes the uniqueness of geodesic loops within homotopy classes:

Theorem 2.10. Let (X, d) be a compact, path-connected, 1-dimensional metric

space. Then

• every loop is homotopic to a reduced loop, which is unique up to reparametrization,

• every loop is freely homotopic to a cyclically reduced loop, which is unique up to

cyclic reparametrization.

The homotopies are taken within the image set of the loops, so that the reduced loop

(or cyclically reduced loop) always lies inside the image of the original curve.

Using this result, it is easy to show that in every free homotopy class of loops

that contains a rectifiable curve, there is a unique minimal length representative.

Note that any length space is automatically a path-connected metric space.

Corollary 2.11. Let (X, d) be a compact 1-dimensional length space, γ a loop.

Then one of the following two possibilities holds :

• there is no rectifiable loop freely homotopic to γ,

• there is a unique (up to reparametrization) minimal length rectifiable loop freely

homotopic to γ.

Proof. Let us assume that there is a rectifiable loop freely homotopic to γ. Let γ̂

denote one such loop. Applying Theorem 2.10, γ̂ is freely homotopic to a cyclically

reduced loop γ̄ whose image is contained in the image of γ̂. From this, it is easy to

see that l(γ̄) ≤ l(γ̂).

We claim that γ̄ is of minimal length in its free homotopy class. Indeed, suppose

that β is freely homotopic to γ with l(β) < l(γ̄). Applying Theorem 2.10 to β

we get β̄, the unique (up to cyclic reparametrization) cyclically reduced loop in

its free homotopy class. The uniqueness implies that β̄ and γ̄ agree, up to cyclic

reparametrization, and therefore have the same length. However, l(β̄) ≤ l(β) < l(γ̄),

a contradiction.

In view of Corollary 2.11, when looking for geodesic loops, it is sufficient to

restrict throughout to cyclically reduced loops. We can now define:

Definition 2.12. Let (X, d) be a geodesic space. Assume that, in each free homo-

topy class of curves on X , there is at most one minimal length representative. The

marked length spectrum is defined to be the function ld : π1(X) → R
+ ∪ {∞}

which assigns to each element of π1(X) the length of the corresponding minimal

length loop (and assigns ∞ to the free homotopy classes that contain no rectifiable

representatives).

For geodesic spaces of topological dimension one, Corollary 2.11 implies that

the marked length spectrum is defined.
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It is straightforward to prove an analogue of the Cannon and Conner result for

paths in a 1-dimensional metric space.

Proposition 2.13. Let (X, d) be a compact, path-connected, 1-dimensional metric

space. Then every path is homotopic (relative to the endpoints of the path) to a

reduced path, which is unique up to reparametrization. Moreover, the reduced path

has image lying within the image of the original path.

Proof. Let X be our space, p our path, and p, q the two endpoints. Consider the

space X ′, defined by X ′ = (X ∪ [0, 1])/ ∼ where p ∼ 0 and q ∼ 1 are the only

nontrivial equivalences for ∼. X ∪ [0, 1] has topological dimension 1 and quotients

can only decrease dimension. Since X ′ is still path-connected, dim(X ′) = 1. It is

compact and metric with respect to the induced length metric.

Consider the loop γ in X ′ obtained by concatenating p with the added segment

[0, 1], and parametrized by arclength. By Theorem 2.10, γ is freely homotopic to a

unique cyclically reduced loop γ̄ with image in the image of γ. Let t1 be the time

at which γ(t) passes from [0, 1] to X through p and t2 the time at which γ(t) passes

from X back to [0, 1] through q. The path γ cannot reduce on any small interval

containing t1 or t2 since γ(ti − ε) and γ(ti + ε) are distinct, the one lying in X and

the other in (0, 1). Therefore, p and q belong to γ̄. Restricting γ̄ to the reduction

of γ|[t1,t2] gives the unique (up to parametrization) reduced path homotopic to p

relative to its endpoints. Its image lies in the image of p because the image of γ̄

lies in the image of γ.

Corollary 2.14. Let (X, d) be a compact 1-dimensional length space, p a rectifiable

path joining points p and q. Then the unique reduced path joining p to q homotopic

(relative to the endpoints) to p has minimal length amongst all paths with this

property.

Proof. This argument is identical to the one for loops: assume that p is rectifiable,

but not reduced, and is a mapping from [a, b] into X . Then there is a subinterval

I = [a′, b′] ⊂ [a, b] such that p(a′) = p(b′) and the loop p1 obtained by restricting p

to I is contractible. Denoting by p2 the concatenation of p restricted to [a, a′] and
[b′, b], we see that p2 is homotopic to p via a homotopy preserving the endpoints.

Furthermore, l(p2) < l(p), which yields our claim.

Corollary 2.14 immediately yields:

Corollary 2.15. Let (X, d) be a compact 1-dimensional geodesic space, γ a distance

minimizer joining p to q. Then γ is a geodesic.

For the remainder of this section we make the standing assumption that (X, d)

is a compact 1-dimensional geodesic space.

The rest of this section will be devoted to analyzing the behavior of paths under

concatenation. We fix the following notation: given a pair of paths p and q, with
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the terminal endpoint of p coinciding with the initial endpoint of q, we will denote

by q ∗p the concatenation of the two paths (traversing p first, followed by q), and

by p−1 the path obtained by reversing p. We will denote by γn the n-fold iterated

concatenation of a loop γ. Such paths are always understood to be parametrized by

arclength. We start by proving several lemmas concerning concatenations of various

types of paths.

Lemma 2.16. Let p1,p2 be a pair of reduced paths, parametrized by arclength, in

X. Let ti = l(pi) be the length of the respective paths, and assume that p1(t1) =

p2(0) (i.e. that they have a common endpoint). Then any reduced path q homotopic

to p := p2 ∗ p1 is of the form q2 ∗ q1 where qi is a subpath of pi. Furthermore, we

have a decomposition p1 = r1 ∗ q1 and p2 = q2 ∗ r2, satisfying r1 = r−1
2 .

Proof. We start by observing that the claim is trivial if the concatenation p is

reduced (just take qi = pi). So let us assume that the concatenation p is not a

reduced path, and view it as a map from D := [0, t1+ t2] into X . Since this path is

reducible, there exist closed intervals Uj ⊂ D with the property that p restricted to

each Uj is a closed path which is null homotopic relative to the endpoints of p|Uj .

Since each of the paths p1,p2 is reduced, this forces t1 ∈ Uj .

We now claim that, under inclusion, the family of such closed intervals forms

a totally ordered set. In order to see this, we show that any such set Uj = [aj , bj ]

is a symmetric closed interval around t1 (i.e. that (aj + bj)/2 = t1). But this

is clear: one can just consider the restriction of p to the two sets [aj , t1] and

[t1, bj ]. This yields a pair of paths, parametrized by arclength, joining the point

p(aj) = p(bj) to the point p(t1). Furthermore, each of these paths is reduced

(since they are subpaths of the reduced paths p1 and p2 respectively). But we

know by Proposition 2.13 that there is a unique reduced path in each endpoint-

preserving homotopy class of paths joining a pair of points. Hence the two paths

have to coincide, and as they are parametrized by arclength, we immediately obtain

our claim.

Next, we argue that this totally ordered chain has a maximal element. Indeed,

consider the set U defined to be the union of our sets Uj. We claim that U is still

within our family. To see this, we merely note that, by our previous observation on

the Uj = [aj , bj ], the restriction of p to each symmetric (about t1) subinterval of U

consists merely of traversing some reduced path on [aj , t1], followed by backtracking

along the same path on [t1, bj ]. By continuity, the same must hold for the symmetric

closed interval Ū , so that the closure of U also lies within our family. Hence U = Ū ,

and we have found our maximal element.

It is now easy to complete our proof: if [a, b] is our maximal interval U , we can

now define our qi and ri explicitly. We set q1 := p|[0,a], r1 := p|[a,t1], r2 := p|[t1,b],
and q2 := p|[b,t1+t2]. We note that it is clear that p1 = r1 ∗ q1 and p2 = q2 ∗ r2.
From our proof, it is also immediate that r1 = r−1

2 . Finally, since U was picked to

be maximal, the path q2 ∗ q1 must be reduced, completing the proof.
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An easy inductive argument gives the following corollary, which will underpin

our consideration of more complicated paths later in the paper.

Corollary 2.17. Let pi be reduced paths and assume that pi+1 ∗ pi is reduced for

all i. Then the path pn ∗ pn−1 ∗ · · · ∗ p2 ∗ p1 is reduced.

Corollary 2.18. Let η be a reduced loop in X. Then η can be expressed as a

concatenation p−1 ∗ γ ∗ p, where p is a reduced path, and γ is a geodesic loop.

Proof. Let us view η, parametrized by arclength, as a map from [0, t] into X .

Consider the point p := η(t/2), and consider the pair of paths q1 := η|[0,t/2] and
q2 := η[t/2,t]. Observe that each of these paths is reduced (being a subpath of

η), that they have common endpoints, and that η = q2 ∗ q1. Now consider the

concatenation of paths q1 ∗ q2 and apply Lemma 2.16. Our claim immediately

follows.

For the next lemma, we need the following definition.

Definition 2.19. A path p with domain [0, t] is non-self-terminating if p(t) /∈
p([0, t)). It is non-self-originating if p(0) /∈ p((0, t]).

We now analyze the reduced loop within the homotopy class of a path-loop-path

concatenation.

Lemma 2.20. Let p be a reduced path parametrized by arclength [0, t], γ a cyclically

reduced loop based at p := p(t), parametrized by arclength [0, s] with s > 0. Then

the unique reduced loop η in the homotopy class of p−1 ∗ γ ∗p must pass through p.

Assume further that p is non-self-terminating. Then η either coincides with p

on the interval [0, t] or coincides with p−1 on the interval [l(η)− t, l(η)].

Proof. By contradiction, suppose η avoids p. First, assume that p−1 has the

(reduced) form p−1 = c−1 ∗γ−n for some maximal n > 0, where c−1 ∗p is reducible

so that it avoids p. Then p = γn ∗c (note that the non-self-terminating assumption

we will use for the second part of the lemma rules such behavior out). Then we

reduce:

p−1 ∗ γ ∗ p = c−1 ∗ γ ∗ c.
We know that c−1 does not fully cancel γ by the choice of n maximal above. We

may now replace p with c and proceed.

So we can now assume that there is no initial factor of γ−1 in p−1. Thus

γ ∗ p must be reducible as it hits p. By Lemma 2.16, (γ|[0,ε])−1 = p|[t−ε,t]. Con-

sider instead p−1 ∗ γ, again reducible as it hits p. By Lemma 2.16, γ|[s−ε′,s] =

(p−1|[0,ε′])−1 = p|[t−ε′,t]. Picking δ < ε, ε′, we conclude that

(γ|[0,δ])−1 = p|[t−δ,t] = γ|[s−δ,s].

This contradicts the assumption that γ is cyclically reduced. Thus p ∈ η, completing

the first part of the lemma.
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For the second part of the lemma, we now assume that p is non-self-terminating.

If p−1 ∗ γ ∗ p is already reduced, we are done. If not, Corollary 2.17 tells us that

there is a reduction of p−1 ∗γ ∗p around time t or t+s (as p and γ are individually

reduced). By the arguments for the first part of the lemma, if reductions at both of

these times are possible, there is a contradiction to γ being cyclically reduced.

Let us assume first that there is no reduction around time t. Then γ∗p is reduced,

and the only way η can fail to coincide with p over [0, t] is if p−1 completely cancels

γ and part of p. But this is the situation in the first part of our arguments above;

as we noted, it is ruled out by the non-self-terminating assumption. In this case, η

coincides with p over [0, t].

Finally, let us assume that p−1 ∗ γ ∗ p does not reduce around time t+ s, and

hence p−1 ∗ γ is reduced. In this case, η will coincide with p−1 over [l(η)− t, l(η)]

unless the initial segment of p−1 completely cancels γ. Again, as noted above, this

is ruled out by the non-self-terminating assumption. Thus, the final segment of η

coincides with p−1 and the second part of the lemma is proven.

Note that, in our previous lemma, we can always (by reversing γ if need be) get

the reduced loop η to coincide with p on the interval [0, t].

3. π1-Hull and Structure Theory

This section is devoted to understanding the structure of an arbitrary compact

1-dimensional geodesic space X . In the first subsection, we will introduce the π1-

hull Conv(X) of X , and see that Conv(X) is the “homotopically essential” part

of the space X . In the second subsection, we introduce the notion of branch point

of X , and use the set of branch points in Conv (X) to analyze the structure of the

π1-hull.

3.1. Structure theory : general case

Definition 3.1. Given a compact geodesic space X of topological dimension one,

we define the π1-hull of X , denoted Conv(X), as the union of (the images of) all

non-constant geodesic loops in X . A space satisfying X = Conv(X) is said to be

π1-convex.

Recall that geodesic loops are both rectifiable, and cyclically reduced (and hence

have minimal finite length in their free homotopy class, see Corollary 2.11). Note

that, in the special case whereX is contractible (e.g. ifX is an R-tree), the π1-hull is

empty. We will establish some structure theory for arbitrary compact 1-dimensional

geodesic space X , and show that all homotopy information about X is actually

carried by its π1-hull. To begin, let us show how to extend some geodesic paths to

geodesic loops.

Lemma 3.2. Let p be a non-self-terminating and non-self-originating geodesic path

whose endpoints lie in Conv(X). Then p can be extended to a geodesic loop.
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Proof. Subdivide p as p = p2 ∗ p1 meeting at p(t/2). Note that p−1
1 and p2 are

non-self-terminating. As p(0),p(t) ∈ Conv(X), there exist γ1, γ2 geodesic loops

passing through (and parametrized with basepoints at) the points p(0) and p(t),

respectively. Let η1 and η2 be the reduced loops in the homotopy classes (based at

p(t/2)) for p1 ∗ γ1 ∗ p−1
1 and p−1

2 ∗ γ2 ∗p2, respectively. After re-orienting the γi if

necessary, by Lemma 2.20 we have

η1|[l(η1)−t/2,l(η1)] = p1|[0,t/2],
η2|[0,t/2] = p2|[0,t/2].

We can write η1 = p1 ∗ c1, η2 = c2 ∗ p2; these are both cyclically reduced. We now

have a few possible cases.

Case I. c1 ∗c2 is a reduced path. Consider the closed path η2 ∗η1 = c2 ∗p2 ∗p1 ∗c1,
which extends p. It is a reduced path as ηi and p are reduced. Under the assumption

for this case, it is also cyclically reduced. This is the geodesic loop we were seeking.

Case II. c1 ∗ c2 is not reduced. We will separately consider the two cyclic permu-

tations of the path η2 ∗ η1 which might fail to be reduced paths.

Case IIa. (see Fig. 1) Suppose the cyclic permutation of η2 ∗ η1 given by c1 ∗
c2 ∗ p2 ∗ p1 reduces to a geodesic loop not containing p. This happens only if c1
totally cancels c2 and then part of p. In such a case, we can write in reduced form

c1 = a ∗ c−1
2 where a ∗ p2 is reducible. Write a = a2 ∗ a1 where a1 is the maximal

sub-path with image along p. We must have both ai nontrivial: a1 since a partially

cancels p, and a2 by the fact that p1 ∗ c1 = p1 ∗ a2 ∗ a1 ∗ c−1
2 is reduced (if a2 is

p2 p1

a1 d

a2

c2

c1

Fig. 1. Path configuration for Case IIa.
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trivial, p1 ∗a1 is reducible). Finally, let d be the geodesic sub-path of p connecting

p(t/2) to the initial point of a2.

We record the following facts: c2 ∗p2 ∗p1 is reduced. If d lies along p2, d ∗ c2 is

reduced. If d lies along p1, d ∗ c2 is still reduced, as (in this subcase) c2 coincides

with the initial segment of c1, traversed backwards, and c1∗p1 is cyclically reduced.

In addition, a2 ∗ d is reduced, by definition of a2. Finally, p1 ∗ a2 is reduced as it

is a sub-path of the reduced path p1 ∗ c1.
Consider, then, the closed loop a2 ∗ d ∗ c2 ∗ p2 ∗ p1. It is cyclically reduced, by

the remarks in the previous paragraph; hence it is a geodesic loop and it proves the

lemma.

Case IIb. Suppose the cyclic permutation of η2∗η1 given by p2∗p1∗c1∗c2 reduces
to a geodesic loop not containing p. Similarly to the case above, this happens only

if c2 = c−1
1 ∗ a in reduced form where p1 ∗ a is reducible. Write a = a2 ∗ a1 where

a2 is the maximal sub-path of a along p. By the same arguments as in the previous

case, both a1 and a2 are non-trivial. Again, let d be the geodesic sub-path of p

connecting p(t/2) to the endpoint of a1.

We record: a1∗p2∗p1 is reduced. d
−1∗a1 is reduced by definition of a1. c1∗d−1

is reduced because η1 and η2 are cyclically reduced. Finally, p1 ∗ c1 is reduced.

Consider c1 ∗ d−1 ∗ a1 ∗ p2 ∗ p1. It is a geodesic loop extending p by the facts

presented in the previous paragraph.

To illustrate the usefulness of the previous lemmas, we note the following imme-

diate corollary:

Corollary 3.3. Suppose X is a compact, 1-dimensional, geodesic metric space

with Conv (X) �= ∅. Then Conv (X) is path connected. Furthermore, Conv (X) is

a strongly convex subset of X.b

Proof. Let p, q ∈ Conv (X) be an arbitrary pair of distinct points, and let p be

a distance minimizer joining the two points. It is clearly non-self-terminating and

non-self-originating. Since p is a distance minimizer, it is geodesic (Corollary 2.15).

So by Lemma 3.2, there is a geodesic loop extending it. This immediately shows

that p itself lies in Conv (X). Both our claims follow.

We can now establish some basic properties of the π1-hull.

Proposition 3.4. Suppose X is a compact, 1-dimensional, geodesic metric space

with Conv(X) �= ∅. Then Conv (X) is also a compact, 1-dimensional, geodesic met-

ric space.c

bWe say that a subset of a geodesic space is strongly convex provided that for every pair of points
in the subset, every distance minimizer joining them also lies within the subset.
cThe authors are indebted to J. W. Cannon for suggesting this result and the main idea of its
proof.
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Proof. Corollary 3.3 covers convexity; we need only show Conv (X) is closed to

prove the result. Let p ∈ Conv (X). The proof breaks down into two cases, according

to whether there is an ε-neighborhood of p containing no geodesic loop.

Case I. For some ε > 0, the ε-neighborhood N of p contains no closed geodesic. In

this case, note that points in N are uniquely arcwise connected (by convention, arcs

will be reduced, rectifiable paths, and uniqueness is of course up to reparametriza-

tion). For if not, we can cyclically reduce the concatenation of two such arcs to

obtain a geodesic loop in N , a contradiction.

We must then have that for every i there exists a closed geodesic γi in X which

intersects the ε/i-neighborhood of p. Let αi be a component of N ∩ γi; let xi ∈ αi

be a point at minimum distance from p. This point is unique, as otherwise we could

form a simple closed curve in N by connecting two such points to p with minimizing

paths and to each other along αi. By choosing the component αi appropriately, we

may assume d(p, xi) < ε/i.

The points xi divide αi into two arcs, Ai and Bi. By passing to a subsequence,

we may assume that the arcs Ai converge to an arc A joining the exterior of N

to p, and that the Bi converge to an arc B doing the same. As N is uniquely

arc-connected, A ∩B is either p alone or some geodesic segment ending at p.

If A ∩ B = {p}, take i very large, so that Ai and A very nearly agree over

a comparatively long segment of A. As X is a geodesic space, we must then be

able to connect Ai to A with short geodesics near the end points. Unless Ai and

A in fact agree over a long segment, this contradicts unique arc-connectedness of

N . The same argument holds for B and Bi. We claim that for large i, Ai and Bi

coincide with A and B all the way to p. If not, then one can look at the short arc

along the corresponding αi where the Ai, Bi differ from A,B. This gives a short

path joining the segments A, B together. Concatenating this path with the portion

of A and B going to p provides a closed curve in N which can be shortened to a

geodesic, a contradiction. We conclude that Ai and Bi hit p, and p belongs to the

corresponding closed geodesic γi, as desired.

Similarly, if A ∩ B = I, an interval with p as an endpoint, take i very large so

that Ai and Bi coincide with I over a comparatively large interval. If they coincide

all the way to xi, then this contradicts the fact that αi was geodesic. Otherwise,

we can use the portion of αi near xi where they differ to obtain a geodesic loop in

N , again a contradiction. This completes the proof of Case I.

Case II. (see Fig. 2) For every ε > 0, the ε-neighborhood N of p contains a closed

geodesic. If p belongs to one such geodesic, we are done. If not, connect each closed

geodesic to p by a distance-minimizing path. Any two such paths must coincide

on some interval with p as an endpoint, otherwise p belongs to a closed geodesic

formed by these paths and the closed geodesics to which they connect. Thus we

may assume that p lies at the endpoint of a geodesic path p to which a sequence of

geodesic loops γi with quickly decreasing length are connected by geodesic segments

ti, also with quickly decreasing length. We build a closed geodesic on which p lies
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p

γ1

γ2

γ3

γ4 γ5

Fig. 2. The situation for Case II.

as follows. Start at p. Follow p to its intersection with t1. Follow t−1
1 ∗ γ1 ∗ t1.

Follow p to its intersection with t2 and repeat. Continue this process; picking the

sequence of paths to decrease in length sufficiently quickly gives a rectifiable curve l

approaching p, defined over times [0, t). Set l(t) = p. This loop is geodesic assuming

each ti is chosen to meet γi and p in a single point each.

Having analyzed the π1-hull Conv(X), we now turn our attention to the various

connected components of X\Conv (X).

Definition 3.5. For Z a metric space, define an equivalence relation ∼ on points

of Z by setting x ∼ y if there exists a rectifiable path in Z joining x to y. A single ∼
equivalence class is called a rectifiable component of Z, and if all points in Z are

∼ equivalent to each other, we say that Z is rectifiably connected. If every point in

Z has a neighborhood base consisting of open, rectifiably connected sets, we say

that Z is locally rectifiably connected.

For example, any length space is rectifiably connected. Since open metric balls

in a length space are obviously rectifiably connected, length spaces are also locally

rectifiably connected.

Clearly, any rectifiable component of Z is entirely contained within a single path

component of Z. But one could a priori have a path component of Z which breaks

up into several distinct rectifiable components.

Lemma 3.6. Let Z be a metric space, and consider the partition of Z into (i)

connected components, (ii) path components, and (iii) rectifiable components. If Z

is locally rectifiably connected, then these three partitions of Z coincide.

Proof. Since Z is locally rectifiably connected, it is also locally path connected.

A basic result in point set topology asserts that for locally path connected spaces,

path components coincide with connected components, giving the equivalence of

partitions (i) and (ii).

For the equivalence of (ii) and (iii), observe that since Z is locally rectifiably

connected, each rectifiable component is open. If we had a path component P of
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Z breaking up into several rectifiable components, this would give a partition of

P into pairwise disjoint open sets. But since the partitions (i) and (ii) coincide, P

is also a connected component of Z. We conclude that P must consist of a single

rectifiable component, as desired.

Corollary 3.7. Suppose X is a compact, 1-dimensional, geodesic metric space,

and let X\Conv (X) =
∐

i∈I Zi be the decomposition of X\Conv(X) into connected

components. Then each Zi is rectifiably connected, and Zi ∩ Zj = ∅ if i �= j.

Proof. X is a geodesic space, so it is locally rectifiably connected. Proposition

3.4 tells us Conv (X) ⊆ X is a closed subset. As X\Conv (X) is open, it inherits

the property of being locally rectifiably connected. Lemma 3.6 implies that the

connected components Zi are all rectifiably connected. For the second statement,

assume that i �= j, and x ∈ Zj . As Zj is open, it is itself a neighborhood of x which

is disjoint from Zi, and hence x �∈ Zi.

Proposition 3.8. Suppose X is a compact, 1-dimensional, geodesic metric space.

Then each connected component of X\Conv (X) is a strongly convex subset of X,

isometric to an R-tree.d

Proof. If Z is any connected component of X\Conv (X), Corollary 3.7 tells us Z

is rectifiably connected. Let x, y ∈ Z, and let η ⊂ X be any distance minimizer

from x to y. To show that Z is strongly convex, we need to argue that η lies in Z.

By way of contradiction, let us assume that η passes through Conv (X). As Z is

rectifiably connected, we can find a rectifiable path η◦Z ⊂ Z joining x to y. Viewing

the path η◦Z as a path in X , we can apply Proposition 2.13 to obtain a reduced

path ηZ homotopic (rel. endpoints) to η◦Z . The path ηZ has image contained within

the image of η◦Z , forcing ηZ ⊂ Z. Now concatenating the two paths η and ηZ
yields a closed, rectifiable, loop γ◦ = η ∗ ηZ . Consider the geodesic loop γ obtained

by cyclically reducing the loop γ◦. From the definition of Conv (X), we have that

γ ⊂ Conv (X). But γ was obtained by cyclically reducing the concatenation η ∗ ηZ ,
where ηZ was a reduced path contained entirely in Z ⊂ X\Conv (X). Since ηZ must

be fully cancelled in the cyclic reduction, but is itself a reduced path, it follows that

the image of ηZ must be contained in the image of η. The path η is a distance

minimizer, hence an embedded path. As ηZ has image lying within the same set,

and joins together the two endpoints, it must be a reparametrization of η. This

yields a contradiction, as ηZ ⊂ X\Conv(X), while η ∩ Conv (X) �= ∅. We conclude

that the distance minimizer η must satisfy η ⊂ Z, and hence that Z is indeed

strongly convex.

Next we note that, given any two points p, q ∈ Z, there is a unique reduced

rectifiable path pq in Z (up to reparametrization) joining p to q, i.e. Z is uniquely

dSee [2] for a reference on R-trees.
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arcwise connected. For if η, η′ were two such paths, whose images in Z did not

coincide, we could cyclically reduce η∗η′ to obtain a geodesic loop in Z, contradict-

ing Z ∩Conv (X) = ∅. It is now easy to see that Z is a 0-hyperbolic geodesic space:

given any three points x, y, z ∈ Z, consider the distance minimizers xy, yz, and xz.

Reducing the concatenation xy ∗yz gives us a reduced rectifiable path whose image

lies within the set xy ∪ yz, and joins x to z. Since xz is another reduced rectifiable

path joining these two points, the uniqueness kicks in and forces xz ⊆ xy ∪ yz.

Finally, it is a well-known result that 0-hyperbolic geodesic spaces are precisely

R-trees, concluding our proof.

An immediate application of Proposition 3.8 is:

Corollary 3.9. Suppose X is a compact, 1-dimensional, geodesic metric space.

Then the following three statements are equivalent : (i) X is contractible, (ii)

Conv (X) = ∅ and (iii) X is an R-tree.

Now that we understand the connected components of X\Conv (X), let us see

how these attach together. In view of Corollary 3.7, distinct connected components

of X\Conv(X) do not interact. We now study how they attach to Conv(X).

Proposition 3.10. Suppose X is a compact, non-contractible, 1-dimensional,

geodesic metric space (so Conv(X) �= ∅). Let X\Conv (X) =
∐

i∈I Zi be the

decomposition of X\Conv (X) into connected components. Then we have that each

Zi ∩ Conv (X) consists of a single point xi, and the (metric) completion of each

Zi is precisely Zi ∪ {xi}. Moreover, the index set I is countable, and limi→∞
diam(Zi) = 0.

Proof. Let Z ′
i denote the metric completion of the space Zi. Observe that the

metric completion of an R-tree is again an R-tree (this follows easily from the 0-

hyperbolicity characterization of R-trees), so Z ′
i is a bounded, complete, R-tree.

Since Zi is a connected dense subset of the R-tree Z ′
i, we see that for each pair of

distinct points p �= q ∈ Z ′
i\Zi, the distance minimizer pq ⊂ Z ′

i joining them satisfies

pq ∩ (Z ′
i\Zi) = {p, q}, and hence pq ∩ Zi �= ∅.

Since Zi ⊂ X is strongly convex, there is a natural surjective map ρ : Z ′
i → Zi

which extends the identity map on Zi. Clearly ρ restricts to a surjection from Z ′
i\Zi

to the set Zi ∩ Conv (X). If p, q ∈ Z ′
i\Zi with p �= q satisfy ρ(p) = ρ(q), then the

ρ-image of the distance minimizer pq ⊂ Z ′
i joining p to q gives us a geodesic loop in

X which passes through points in Zi ⊂ X\Conv (X), a contradiction. We conclude

that ρ : Z ′
i\Zi → Zi ∩ Conv(X) is also an injective map, and hence a bijection.

Assume p �= q are distinct points lying in the set ρ(Z ′
i\Zi), and let p′, q′ ∈ Z ′

i

be their ρ-preimages. Since p′ �= q′, the distance minimizer η ⊂ Z ′
i joining them

satisfies η\{p′, q′} ⊂ Zi. On the other hand, the points p �= q lie in Conv (X), so

by Lemma 3.3, we can find a distance minimizer η◦ joining them within the set

Conv (X). Look at the concatenation ρ(η) ∗ η◦ of the reduced paths ρ(η) and η◦.
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These give a closed rectifiable loop, which in view of the discussion above (and of

Lemma 2.16) is cyclically reduced. So this defines a geodesic loop, which passes

through points in Zi, a contradiction. Thus ρ(Z ′
i\Zi) consists of at most one point.

But Zi\Zi must have at least one point, for otherwise Zi would be both open

and closed in the connected space X , a contradiction (as we are assuming that

Conv (X) �= ∅). We conclude that Zi\Zi = Zi ∩ Conv (X) consists of a single point

xi, as desired.

Finally, for each natural number n ∈ N, consider the set In ⊂ I of indices such

that the corresponding connected components Zi (i ∈ In) have diameter ≥ 1/n. We

claim this set is finite. For if not, one has an injection i : N ↪→ In. Choose a point

xk ∈ Zi(k) with the property that d(xk,Conv (X)) ≥ 1/n. Then the sequence {xk}
in X has no convergent subsequence, contradicting compactness. Since I =

⋃
n∈N

In
is a countable union of finite sets, it is itself countable. The statement concerning

the diameters of Zi also follows.

Summarizing what we have so far, we see that an arbitrary compact 1-

dimensional geodesic space X consists of:

• its π1-hull Conv (X), which is itself a (π1-convex) compact 1-dimensional geodesic

space, sitting as a strongly convex subset of X (see Corollary 3.3 and Proposi-

tion 3.4), and

• a countable collection of compact R-trees Zi (whose diameters are shrinking to

zero), each of which is attached to the π1-hull Conv (X) along a single terminal

vertex xi (see Propositions 3.8 and 3.10).

This structural result has a few nice consequences.

Corollary 3.11. Let X be a compact 1-dimensional geodesic space, and assume X

is not contractible (so Conv (X) �= ∅). Then X deformation retracts onto its π1-

hull Conv (X). In particular, the inclusion Conv(X) ↪→ X induces an isomorphism

π1(Conv (X)) ∼= π1(X).

Proof. Each compact R-tree Zi deformation retracts to the corresponding terminal

vertex xi. It is an easy exercise to check that these homotopies glue together to

define a deformation retraction of X to Conv(X); that the diam(Zi) shrink to zero

is key to the proof.

As another application, we can now provide an alternate characterization of the

π1-hull of X : it is the unique minimal deformation retract of X .

Corollary 3.12. Let X be a compact 1-dimensional geodesic space, and assume X

is not contractible (so Conv(X) �= ∅). Assume we have a subset X◦ ⊆ X satisfying

the following two properties : (i) X deformation retracts to X◦, and (ii) if X defor-

mation retracts to some subset Y ⊆ X, then X◦ ⊆ Y . Then X◦ coincides with the

π1-hull Conv(X).
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Proof. If a subset X◦ satisfying properties (i) and (ii) exists, it must be unique.

The fact that Conv(X) satisfies (i) is just Corollary 3.11 above. Now assume that

X deformation retracts to Y , and let us argue that Conv(X) ⊆ Y . Let γ ⊂ X be an

arbitrary geodesic loop. Under the deformation retraction ρt : X → Y , the geodesic

loop γ maps to a loop ρ1(γ) which is freely homotopic to γ (via the homotopy ρt).

By Theorem 2.10, we have the containments of sets γ ⊆ ρ1(γ) ⊆ Y , which gives us

γ ⊂ Y . We conclude Conv (X) ⊆ Y , showing Conv (X) satisfies (ii).

Remark 3.13. Conner and Meilstrup showed in [9, Corollary 4.4] that any Peano

continua has a core, a unique minimal strong deformation retract. In view of our

Corollary 3.12, we see that, in the case where S is a compact 1-dimensional geodesic

space, our π1-hull Conv(X) coincides with the Conner–Meilstrup core of X . They

also establish, in the case of 1-dimensional Peano continua, a structure theory (see

[9, Theorem 4.3]) that is similar to our Proposition 3.10. Our arguments rely on

the geodesic space structure, and as a result, are also suited to establishing metric

properties of the π1-hull (for instance, our Proposition 3.4), results which do not

seem accessible from Conner–Meilstrup’s techniques. Conversely, we do not know

whether our results can recover the 1-dimensional version of the Conner–Meilstrup

theorem (as we do not know whether every 1-dimensional Peano continua supports

a geodesic space structure).

3.2. Structure theory : the π1-hull

In the previous subsection, we reduced the study of general compact 1-dimensional

geodesic spaces to the study of their π1-hull. In this subsection, we focus on under-

standing the structure of the π1-hull Conv (X). Our analysis starts with the notion

of branch point.

Definition 3.14. Let X be a compact 1-dimensional geodesic space, p a point in

X . We say that X has branching at p provided there exists a triple of geodesic

paths γi : [0, ε] → X with the following properties:

• γi(0) = p for all three paths,

• each concatenated path γi ∗ γ−1
j is a reduced (and hence geodesic) path.

In other words, there are at least three distinct germs of geodesic paths originating

at the point p. If X has branching at p, we call p a branch point of X .

Away from the set of branch points, the local topology of X is fairly simple, as

indicated in the following proposition.

Proposition 3.15. Let X be a compact 1-dimensional geodesic space, and B(X) ⊂
X the subset of all branch points of X. Assume that the point p does not lie in the

closure B(X) of the set of branch points (i.e. p ∈ X\B(X)). Then for ε small
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enough, the metric ε-neighborhood of p is isometric to either :

(1) the half-open interval [0, ε), with the point p corresponding to 0, or

(2) an open interval (−ε, ε), with the point p corresponding to 0.

Proof. First, we claim that for δ small enough, the open δ-ball Bp(δ) centered at

p is isometric to an R-tree. This will follow from the fact that the δ-ball contains

no geodesic loops (see the end of the proof of Proposition 3.8). Indeed, since p

does not lie in the closure B(X), by choosing δ small, we can ensure that Bp(δ)

contains no branch points, and that the complement X\Bp(δ) is non-empty. If γ

is a geodesic loop contained in Bp(δ), take a point x outside the ball, and let η

be a distance minimizer from x to the curve γ. Let L be the length of γ, and

choose the parametrization γ : [−L/2, L/2]→ X so that γ(0) denotes the endpoint

of η on γ. Then the point γ(0) ∈ Bp(δ) is a branch point: the three geodesics

γ|[0,L/2], (γ|[−L/2,0])
−1, and η−1 satisfy the conditions of Definition 3.14. This is a

contradiction, hence Bp(δ) contains no geodesic loops, and so must be isometric to

an R-tree.

Now consider the connected components of Bp(δ)\{p}. If there were ≥ 3 such

connected components, take points x1, x2, x3 in three distinct connected compo-

nents, and let ηi be a distance minimizer from p to xi. It is immediate that the

ηi satisfy the conditions of Definition 3.14, showing that p is a branch point, a

contradiction. So we have that there are either one or two connected components

in Bp(δ)\{p}. We consider each of these cases separately.

Case 1. If there is only one connected component, then p must be a vertex of

the R-tree Bp(δ). Choose γ : [0, ε] → X a distance minimizer from p to some

point in Bp(δ)\{p}. Given any point q ∈ Bp(δ)\{p}, we can consider the distance

minimizer ηq : [0, δ′] → Bp(δ) from p to q. Since p is a vertex of the R-tree Bp(δ),

we have that ηq and γ must coincide on some neighborhood of p, i.e. there exists

a corresponding real number 0 < δq ≤ min(ε, δ′), with the property that γ ≡ ηq
on the interval [0, δq]. If δq were strictly smaller than min(ε, δ′), then the point

γ(δq) would be a branch point: the three geodesics (γ|[0,δq ])−1, γ|[δq,ε], and η|[δq,δ′]
satisfy the conditions of Definition 3.14. But the neighborhood Bp(δ) was chosen

to contain no branch points, forcing δq = min(ε, δ′). So if q is any point at distance

< ε from p, then δq = min(ε, δ′) = δ′, and we have that ηq ≡ γ|[0,δ′], i.e. the point

q lies on γ. This immediately implies that the metric ε-neighborhood of p consists

precisely of the points along the distance minimizer γ, giving the first statement in

the proposition.

Case 2. If there are two connected components, choose γ1, γ2 : [0, ε] → X to be

a pair of distance minimizers from p to points in the two distinct components of

Bp(δ)\{p}. The concatenation γ := γ1 ∗ γ−1
2 is a distance minimizer of length 2ε,

passing through the point p, and entirely contained in Bp(δ). If q is any point

at distance < ε from p, the distance minimizer ηq : [0, δ′] → X must coincide



August 20, 2019 13:54 WSPC/243-JTA 1950025

604 D. Constantine & J.-F. Lafont

with either γ1|[0,δ′], or with γ1|[0,δ′] (otherwise, as in Case 1, the first point from

which they start differing would give a branch point in Bp(δ), a contradiction). We

conclude that the metric ε-neighborhood of p consists precisely of the points along

the distance minimizer γ, giving the second statement in the proposition.

Corollary 3.16. Let X be a compact 1-dimensional geodesic space, and B(X) ⊂ X

the subset of all branch points of X. If X is π1-convex, and B(X) = ∅, then X is

isometric to the circle S1 of some radius r > 0.

Proof. From Proposition 3.15, we know that each point p ∈ X has a (metric) neigh-

borhood Bε(p) isometric to either (i) a half-open interval, or (ii) an open interval.

Since X is assumed to be π1-convex, we can rule out (i), for otherwise we could

deformation retract X onto a proper subset of itself, contradicting Corollary 3.12.

Since X is a compact geodesic space, it is second countable and Hausdorff. Hence it

is a compact connected 1-dimensional manifold, so must be homeomorphic to S1.

Finally, it is easy to see that geodesic metric space structures on S1 are completely

determined (up to isometry) by their diameter.

With this result in hand, we can now study the complement of the set of branch

points in Conv(X).

Lemma 3.17. Let X be a compact 1-dimensional geodesic space, and B(X) ⊂ X

the subset of all branch points of X. Assume γ : [0, L] → X\B(X) is a geodesic

path. Then γ is locally a distance minimizer, and γ((0, L)) ⊂ X\B(X).

Proof. Take any t ∈ (0, L), and consider the numbers sups∈[0,t] d(γ(t), γ(s)) and

sups∈[t,L] d(γ(t), γ(s)). As γ is parametrized by arclength, both these numbers are

> 0, and we can choose ε so that 2ε is smaller than both of these. Now consider

the metric ε-ball Bγ(t)(ε) centered at γ(t). We first claim that, as a set, this metric

ball is entirely contained in the image of γ. If not, we can find a point p ∈ X which

satisfies d(p, γ(t)) < ε, and which does not lie on the image of γ. Let η be a distance

minimizer from p to the image of γ (a compact set). By the choice of ε, η terminates

at a point on the image of γ which is distinct from γ(0), γ(L), so yields a branch

point on the image of γ. This contradicts the fact that γ lies in X\B(X).

Now that we know that the set Bγ(t)(ε) is contained in the image of γ, we proceed

to show that (possibly after shrinking ε) it in fact coincides with γ((t − ε, t + ε)).

Indeed, take a point x1 at distance ε from γ(0), and let η1 : [0, ε] → X be a distance

minimizer from γ(t) to x1. Since γ(t) is not a branch point, η1 must initially coincide

with one of the two geodesics γ|[t,s] and (γ|[0,t])−1. In fact, we must have either

η1 ≡ γ|[t,t+ε] or η1 ≡ (γ|[t−ε,t])
−1, for otherwise, the first point from which they

start disagreeing would be a branch point on the curve γ, a contradiction. Without

loss of generality, we may now assume that γ|[t,t+ε] is a distance minimizer.

Next, note that the metric ball Bγ(t)(ε/2) cannot consist solely of the points

on the curve γ|[t,t+ε/2], for otherwise (γ|[t−ε/2,t])
−1 would have to coincide with
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γ|[t,t+ε/2], contradicting the fact that γ is reduced. Let x2 be a point in Bγ(t)(ε/2)

which does not lie on γ|[t,t+ε/2], and let η2 be a distance minimizer from x2 to

the (compact) set γ([t, t+ ε]). If η2 terminates on a point in γ((t, t+ ε)), we would

obtain a branch point on γ, a contradiction. The triangle inequality implies that

η2 cannot terminate at the point γ(t + ε). Hence η2 must terminate at γ(t). This

gives us a distance minimizer η−1
2 which intersects the distance minimizer γ|[t,t+ε]

only at their common initial point γ(t).

Since γ(t) is not branching, the geodesic (γ|[0,t])−1 must initially coincide with

either η−1
2 or with γ|[t,t+ε]. As γ is reduced, we see that (γ|[0,t])−1 must coincide

with η−1
2 . So at the cost of further shrinking ε, we can assume that both γ|[t−ε,t] and

γ|[t,t+ε] are distance minimizers, that only intersect at the point γ(t). Finally, we

can conclude that their union γ((t− ε, t+ ε)) is exactly the metric ball Bγ(t)(ε). For

if not, then taking a distance minimizer η3 from a point x3 ∈ Bγ(t)(ε)\γ((t−ε, t+ε))

to the closest point on γ((t− ε, t+ ε)) would yield a branch point on γ.

So each point in γ((0, L)) has a metric neighborhood isometric to an open

interval contained entirely in the set γ((0, L)) ⊂ X\B(X). As this is a neighborhood

which is disjoint from B(X), we conclude that each of these points lies in the

complement of B(X), completing the proof.

Lemma 3.18. Suppose X is a π1-convex, compact, 1-dimensional, geodesic metric

space, and let X\B(X) =
∐

i∈I Wi be the decomposition of X\B(X) into connected

components. Then each Wi is rectifiably connected, and Wi ∩Wj = ∅ if i �= j.

Proof. The proof is identical to that of Corollary 3.7.

The fact that the Wi are rectifiably connected tells us that they have a well-

defined intrinsic length space structure.

Lemma 3.19. Suppose X is a π1-convex compact 1-dimensional geodesic met-

ric space, and assume B(X) �= ∅ (so X is not homeomorphic to S1). Then each

connected component W of X\B(X), equipped with the induced intrinsic geodesic

metric, is isometric to an open interval of finite length.

Proof. The argument from Corollary 3.16 applies verbatim to give that W is a

connected 1-dimensional manifold, so is either homeomorphic to S1 or to an open

interval. We can rule out S1, for otherwiseW would be both closed (being a compact

subset of the Hausdorff space X) and open (being a connected component of the

open set X\B(X)) proper subset of X (since by hypothesis B(X) �= ∅). But this

would violate the fact that X is connected.

Next, note that Lemma 3.18 tells us that each W inherits a well-defined intrin-

sic length space structure. Since W is homeomorphic to an open interval, this

is actually a geodesic metric space: given any two points, there is a unique (up

to reparametrization) embedded path joining them, which must be rectifiable (by

Lemma 3.18) and is of minimal length amongst all rectifiable paths joining the two
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points. To conclude, we merely observe that a geodesic metric space structure on

an open interval is completely determined (up to isometry) by the diameter of the

interval. In the case of W , this diameter must be finite, for if W were isometric to

R, then there would be no rectifiable path joining the point corresponding to 0 ∈ R

with a point in B(X), contradicting the fact that X is a geodesic space.

Proposition 3.20. Suppose X is a π1-convex compact 1-dimensional geodesic

metric space, and assume B(X) �= ∅ (so X is not homeomorphic to S1). Let

X\B(X) =
∐

i∈J Wi be the decomposition of X\B(X) into connected components.

Then we have that each Wi ∩ B(X) consists of at most two points. Moreover, the

index set J is countable, and limi→∞ diam(Wi) = 0.

Proof. The metric completion W ′
i of an open interval of finite length is a closed

interval of the same length. There is a natural surjective map W ′
i → Wi extending

the identity map on Wi. Since W ′
i\Wi consists of two points, and maps to Wi ∩

B(X), the first claim follows. The argument in the last paragraph of the proof

of Proposition 3.10 applies almost verbatim to give the statement concerning the

cardinality of the indexing set and the limit of the diameters.

Lemma 3.21. Suppose X is a π1-convex compact 1-dimensional geodesic metric

space, and assume B(X) �= ∅ (so X is not homeomorphic to S1). Let W be a

component of X\B(X) which is attached along one of its endpoints to a point

p ∈ B(X)\B(X). Let γ : [0, r] → X coincide with W, parametrized by arclength,

and satisfying γ(0) = p. Assume γ̂ : [−ε, r] → X is any geodesic path extending the

geodesic γ. Then for small enough ε′, the curve γ̂|[−ε′,0] is a distance minimizer.

Moreover, there exists a strictly increasing sequence {ti}i∈N ⊂ [−ε′, 0) with the

property that lim ti = 0, and each point γ̂(ti) is a branch point.

Proof. Let d denote the maximal distance from p to a point on γ̂([−ε, 0]), and

choose ε1 so that 0 < ε1 < d. Since p ∈ B(X)\B(X), there exists a branching

point x1 satisfying 0 < d(p, x1) < ε1. Let η1 be a distance minimizer from p to

x1. Since p is not a branch point, η1 starts out coinciding with either (γ̂|[−ε,0])
−1

or with γ̂|[0,r] ≡ γ. If η1 lies entirely along one of these curves, then x1 lies on γ̂,

and we can let t1 satisfy γ̂(t1) = x1. Otherwise, there is a first occurrence after

which the two curves are distinct. We can then set t1 ∈ [−ε, r] to be the parameter

at which η1 diverges from the γ̂ curve. Then the point γ̂(ti) is branching, by an

argument identical to that in Proposition 3.15. Note that, in both cases, t1 must in

fact satisfy t1 < 0, as there are no branch points on γ ≡ γ̂|[0,r]. So in either case,

we have obtained a t1 < 0 with the property that γ̂(t1) is branching. Note that

setting ε′ := −t1, we have by construction that γ̂|[−ε′,0] coincides with the distance

minimizer (η1|[0,ε′])−1.

By induction, assume that we have already chosen t1, . . . , ti−1, and set εi =

− 1
2 ti−1 > 0. Let xi be a branch point satisfying 0 < d(p, xi) < εi, and let ηi be a
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distance minimizer from p to xi. Proceeding as in the last paragraph, we let −ti be

the largest positive number so that ηi|[0,−ti] ≡ (γ̂|[ti,0])−1. Then γ̂(ti) is the desired

branching point. This defines our sequence {ti}i∈N. Moreover, our inductive step

ensures that each ti satisfies |ti| < 1
2 |ti−1|, hence the increasing sequence limits to

zero.

Corollary 3.22. Suppose X is a π1-convex compact 1-dimensional geodesic metric

space, and assume B(X) �= ∅ (so X is not homeomorphic to S1). Let X\B(X) =∐
i∈I Wi be the decomposition of X\B(X) into connected components, and denote

by ρ :
∐

i∈I ∂W
′
i → B(X) the attaching map from the metric completion of the Wi

to the set B(X). Then for any point x ∈ B(X)\B(X), we have that |ρ−1(x)| ≤ 1.

Proof. If there is a point x ∈ B(X)\B(X) with |ρ−1(x)| ≥ 2, then one can concate-

nate the geodesic path γ traveling along one of the incident Wi with a small path

along the incident Wj (note that i = j could a priori happen, if both endpoints of

Wi are attached to the same point). The resulting extension γ̂ contains no branch

points, contradicting Lemma 3.21.

This gives us a fairly good picture of how a π1-convex compact 1-dimensional

geodesic metric space is built. Specifically, such an X consists of:

• its set of branch points B(X), which are points where there are ≥ 3 germs of

geodesic paths emanating from the point (see Definition 3.14),

• the set of points B(X)\B(X), consisting of points which are not branching, but

are limits of branch points (see Fig. 2 for an illustration of such a point),

• a countable collection of closed intervals W ′
i , whose lengths shrink to zero, each

of which is attached to B(X) along its endponts (see Lemma 3.19 and Proposi-

tion 3.20), and

• each point in B(X)\B(X) has at most one W ′
i attached to it (see Corollary 3.22).

Remark 3.23. A somewhat similar structure theorem in the context of Peano

continua was obtained by Conner and Meilstrup. In [8, Theorem 3.1] they show that

every Peano continuum X is homotopy equivalent to a Peano continuum Y which is

arc reduced. In the 1-dimensional setting, this means that either Y is a finite bouquet

of circles, or contains a specific subset B(Y ) with Y \B(Y ) a disjoint union of a null

sequence of open arcs (compare with our Lemma 3.19 and Proposition 3.20).

We work in the more restrictive setting of π1-convex compact 1-dimensional

geodesic metric spaces, but obtain a structure theorem on the actual space X .

Their work applies to a more general setting, but the cost is that they replace the

space X by a homotopy equivalent Y , and show Y has a certain structure theory.

4. Marked Length Spectrum Rigidity

This section is devoted to proving our Main Theorem. Let us recall the general

setup. We are given two compact 1-dimensional geodesic spaces X1, X2, and an
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isomorphism φ : π1(X1) → π1(X2) which preserves the marked length spec-

trum. Since the spaces Xi are by hypothesis not contractible, we know that

Conv (Xi) �= ∅ (see Corollary 3.9). We want to conclude that Conv (X1) is iso-

metric to Conv(X2). From the analysis in the last section, we know that the inclu-

sions ji : Conv (Xi) ↪→ Xi induce isomorphisms (ji)∗ on π1 (see Corollary 3.11).

It follows from the structure theory of these spaces that composing the isomor-

phism (ji)∗ with the length function li gives the length function on the space

Conv (Xi). We have established that, under the hypotheses of the Main Theorem,

we actually have an induced isomorphism φ : π1(Conv (X1)) → π1(Conv (X2)),

preserving the marked length spectrum of the π1-convex spaces Conv (Xi).

Thus the Main Theorem will follow immediately from the following special

case:

Theorem 4.1. Let X1, X2 be a pair of compact, geodesic spaces of topological

dimension one, and assume each Xi is π1-convex (i.e. Xi = Conv(Xi)). Assume

the two spaces have the same marked length spectrum, that is to say, there exists an

isomorphism φ : π1(X1) → π1(X2) satisfying l2 ◦ φ = l1. Then X1 is isometric to

X2, and the isometry induces (up to change of basepoints) the isomorphism φ on

π1(Xi).

The rest of this section will be devoted to establishing Theorem 4.1. We start

by introducing a few definitions and proving an important lemma.

Definition 4.2. Given a geodesic path p in a 1-dimensional geodesic space X

joining points p to q, we say that a pair of geodesic loops γ1, γ2 based at p and

parametrized by arclength are p-distinguishing provided that γ1|[0,l(p)] ≡ p ≡
γ2|[0,l(p)], where l(p) is the length of the path p (in particular, the geodesic loops

start out by respecting the orientation on p). Furthermore, we require that [0, l(p)]

be a maximal subinterval (with respect to inclusion) on which the loops γ1 and γ2
coincide.

If a geodesic path p has a pair of p-distinguishing geodesic loops, then we say

the geodesic path p is distinguished. The collection of distinguished paths inside a

1-dimensional geodesic space X will be denoted by D(X).

The importance of p-distinguishing loops lies in the fact that, if γ1 and γ2
are p distinguishing, and if we use an overline to denote the geodesic loop freely

homotopic to a given loop, then we automatically have (using Lemma 2.16):

l(γ2 ∗ γ−1
1 ) = l(γ1) + l(γ2)− 2l(p).

In particular, since the concatenated loop represents the product of the elements

corresponding to γi in π1(X,p(0)), we see that the length of the geodesic path p

can be recovered from the marked length spectrum. It is also easy to verify that

the endpoints of the path p are branching (the germs of the paths p and the
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appropriately oriented γ1, γ2 will all be distinct), showing that:

Lemma 4.3. If p ∈ D(X) joins the points p, q ∈ X, then both endpoints are branch

points, i.e. p, q ∈ B(X).

We do not know whether or not the collection D(X) of distinguished geodesics

coincides with the set of all geodesics whose endpoints are branch points. Our next

result aims at showing that geodesics which are injective near their endpoints are

indeed distinguished.

Lemma 4.4. Let X be a π1-convex compact 1-dimensional geodesic metric space,

and let p : [0, L] → X be a geodesic path joining a pair of branch points lying in

X = Conv (X). Assume that, for ε0 small enough, the set [0, ε0]∪ [L− ε0, L] lies in

the set of injectivity of the map p, i.e. for any t in this set, p−1(p(t)) = {t}. Then
there exists a pair of p-distinguishing geodesic loops, i.e. p ∈ D(X).

Proof. Since our path p joins a pair of branch points, it is easy to see that there

is a pair of geodesic paths γ1, γ2 in X which intersect precisely in p. Indeed, let us

start by considering p := p(0), and note that since this point is branching, there

exists a triple of geodesic paths γi : [0, ε] → X emanating from the point p with

the property that each concatenated path γi ∗γ−1
j is a geodesic path. Now consider

the three possible concatenations p ∗ γ−1
i . We claim that at least two of them have

to be geodesic paths. Indeed, if not, then two of these concatenations, say p ∗ γ−1
1

and p ∗ γ−1
2 have to be reducible. Using Lemma 2.16, this forces p, γ1, and γ2 to

coincide in a small enough interval [0, ε′]. But this contradicts the fact that γ2 ∗γ−1
1

is reduced. So we can extend p past p in two distinct ways, and still have a reduced

path. Similarly, we can extend p past the point q := p(L) in two distinct ways,

and still have a reduced path. This gives us a pair of geodesic segments which are

distinct, then come together and agree precisely along p, and then separate again.

Shrinking the two geodesic segments if need be, we can assume that they are

defined on [−ε, L + ε], and that the geodesic p corresponds to the image of [0, L]

in both geodesics. Now we claim that, perhaps by further shrinking the geodesic

segments γi, we can ensure that the reduced paths we find above are non-self-

terminating and non-self-originating. Without loss of generality, assume that for

our triple of geodesics γi, it is γ1 and γ2 that geodesically extend p. As p ∗ γ−1
j

(j = 1, 2) is geodesic, from Lemma 2.16 we see that there exist arbitrarily small t

for which γj(t) �= p(t). We require something slightly stronger, i.e. a small value of

t for which γj(t) /∈ p([0, L]).

By way of contradiction, suppose this were not the case. We choose a 0 < δ, with

the property that γj(t) ∈ p([0, T ]) for all t ∈ [0, δ]. But recall that, by hypothesis,

p is injective on [0, ε0], so there is a definite positive distance between p and the

image set p([ε0, T ]). So at the cost of shrinking δ, we can in fact assume that the set

γj([0, δ]) has image in the set p([0, ε0]). Then the path γj |[0,δ] has image contained

entirely in the embedded path p, and satisfies γj(0) = p(0). Since both curves



August 20, 2019 13:54 WSPC/243-JTA 1950025

610 D. Constantine & J.-F. Lafont

γj and p are geodesics parametrized by arclength, this forces γj |[0,δ] ≡ p|[0,δ],
contradicting the fact that p ∗ γ−1

j is irreducible. Thus we find arbitrarily small

values of t satisfying γj(t) /∈ p([0, T ]); let δ0 be such a value. The curve γj might

not be an embedded path, so conceivably we could have points t ∈ [0, δ0) with the

property that γj(t) = γj(δ0). But the set of such values forms a closed subset of

[0, δ0), which is bounded away from zero. Hence, there exists a smallest δ ∈ (0, δ0]

with the property that γj(δ) = γj(δ0). Then by the choice of δ, we have γj(δ) /∈
γj([0, δ)). We conclude that the concatenation p∗(γj|[0,δ])−1 is non-self-originating.

We can run a symmetric argument at the other endpoint q = p(L) of the path

p. This yields a short geodesic γ′
j |[0,δ′] originating at q, with the property that the

concatenation γ′
j |[0,δ′] ∗ p is irreducible, and non-self-terminating. Finally, consider

the concatenation γ′
j |[0,δ′] ∗ p ∗ (γj |[0,δ])−1. In view of our discussion above, the

only way this concatenation could fail to be non-self-originating (respectively, non-

self-terminating) is if γj(δ) ∈ γ′
j|[0,δ′] (resp. γ′

j(δ
′) ∈ γj |[0,δ]). But recall that δ, δ′

could be chosen arbitrarily close to zero. By the injectivity assumption, the two

endpoints p, q are at a positive distance d(p, q) > 0 apart. Now choose δ, δ′ small

enough to satisfy δ + δ′ < d(p, q). We verify the condition for non-self-originating:

if γj(δ) ∈ γ′
j |[0,δ′], then concatenating γj with a subpath of γ′

j gives us a path of

length at most δ + δ′ < d(p, q) joining the points p and q, a contradiction. The

condition for non-self-terminating is completely analogous. This confirms that the

concatenations γ′
j |[0,δ′] ∗ p ∗ (γj |[0,δ])−1 (for both j = 1, 2) are a pair of geodesic

paths which are both non-self-originating and non-self-terminating.

To finish, we want to extend these geodesic paths to closed geodesic loops.

But that is precisely what Lemma 3.2 guarantees (the hypotheses of the lemma

are satisfied because X is π1-convex). Hence we obtain a pair of p-distinguishing

geodesic loops, and we are done.

Clearly, distance minimizers are geodesic paths which are globally injective,

hence satisfy the conditions of Lemma 4.4. This immediately implies:

Corollary 4.5. Let p, q ∈ B(X) be a pair of distinct branch points, and let p be a

distance minimizer joining p to q. Then p is distinguished, i.e. p ∈ D(X).

Note that in Lemma 4.4, the local injectivity condition in particular forces the

endpoints of the curve p to be distinct. Next we consider geodesic loops based at a

branch point, and provide a condition for them to be distinguished.

Lemma 4.6. Let X be a π1-convex compact 1-dimensional geodesic metric space,

and let p : [0, L] → X be a geodesic path satisfying p(0) = p(L) = p ∈ B(X).

Viewing p instead as a map (S1, ∗) → (X, p), assume that there exists an ε0 so that

the ε0-neighborhood of the basepoint ∗ lies in the set of injectivity of the map p (in

the sense of Lemma 4.4). Then the path p is distinguished, i.e. p ∈ D(X).

Proof. One loop in our distinguishing pair is p2. For the second loop, invoke the

local injectivity condition as in the proof of Lemma 4.4 to find a geodesic γ1 leaving
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p such that γ1 ∗p is non-self-terminating. By Lemma 3.2 we may extend it to a loop

c ∗ γ1 ∗ p which is reduced, although it may not be cyclically reduced (as γ1 ∗ p is

self-originating). If c does not intersect p in any interval properly containing p, it is

cyclically reduced and forms a distinguishing pair for p with p2. If it does intersect

p in such an interval, let c′ be the sub-path of c up to its first intersection with p.

Then γ−1
1 ∗ c′−1 ∗ p ∗ c′ ∗ γ1 ∗ p forms a distinguishing pair for p with p2.

A nice consequence of the previous few results is the following:

Corollary 4.7. Let X be a π1-convex compact 1-dimensional geodesic metric space,

and let p ∈ B(X) be an arbitrary branch point. Then there exists a distinguished

geodesic p ∈ D(X) originating at p.

Proof. If |B(X)| ≥ 2, then given any branch point p ∈ B(X), we can find a branch

point q ∈ B(X) with q �= p. Let p be a distance minimizer from p to q, and apply

Corollary 4.5 to see that this p is a distinguished geodesic.

If B(X) consists of the single point p, then B(X) = B(X) = {p}, and the struc-

ture theory tells us that X\{p} consists of a countable collection of open intervals,

of diameter shrinking to zero, each of which is attached to p at both endpoints

(see Lemma 3.19 and Proposition 3.20). In other words, X is either a bouquet of

finitely many circles (with lengths attached to each loop), or a generalized Hawaiian

earring space. In either case, we can take a geodesic p in X which loops through

a single connected component of X\{p}. Lemma 4.6 tells us p is a distinguished

geodesic.

Before proving our main proposition, we give one last definition.

Definition 4.8. Let X be a compact geodesic space of topological dimension one,

and p1, p2 a pair of geodesics in the space, parametrized by the intervals [a1, b1] and

[a2, b2] respectively. We say that p1 and p2 are incident, provided that p1(b1) =

p2(a2). We say that they are geodesically incident provided that, in addition to

being incident, the concatenated path p2 ∗ p1 is geodesic.

Proposition 4.9. Let X1, X2 be a pair of π1-convex spaces. If they have the same

marked length spectrum, then there is an isometry from the set B(X1) of branch

points of X1 to the set B(X2) of branch points of X2.

Proof. We start out by defining a length preserving map from D(X1) to D(X2),

where we recall that D(X) denotes the set of distinguished geodesics in X . Let

p ∈ D(X1) be given. Then by definition, there exists a pair of p-distinguishing

geodesic loops; call them γ1 and γ2. Without loss of generality, we can assume

the base point p1 for π1(X1, p1) is the common vertex γi(0). Corresponding to the

homomorphism Φ : π1(X1, p1) → π1(X2, p2), we can find a pair of closed geodesic

paths Φ(γ1) and Φ(γ2) (i.e. reduced paths, but not necessarily cyclically reduced)
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based at p2 ∈ X2 having precisely the same lengths of minimal representatives in

their free homotopy class. We will use an overline to denote the geodesic loop (i.e.

cyclically reduced loop) in the free homotopy class of a loop. Observe that by our

choice of γ1, γ2 being p-distinguishing, we have that:

l1(γ2 ∗ γ−1
1 ) = l1(γ1) + l1(γ2)− 2l1(p).

Furthermore, since the isomorphism preserves the marked length spectrum, we have

that l2(Φ(γi)) = l1(γi) and l2(Φ(γ2) ∗ Φ(γ−1
1 )) = l1(γ2 ∗ γ−1

1 ). Let Φ(γi) = ηi, so

in particular, by Corollary 2.18, we have that Φ(γ1) = α−1 ∗ η1 ∗ α and Φ(γ2) =

β−1 ∗ η2 ∗ β where α, β are geodesic paths in X2.

Claim 1. Using the notation from the previous paragraph, we must have: α = n2∗β
or β = n1 ∗ α, where ni is a sub-path of ηi.

Consider the path Φ(γ2) ∗ Φ(γ−1
1 ) = β−1 ∗ η2 ∗ β ∗ α−1 ∗ η−1

1 ∗ α. Unless the

concatenation β ∗ α−1 completely reduces and eliminates some portion of ηi, we

have the inequalities:

l2(η1) + l2(η2) < l2(Φ(γ2) ∗ Φ(γ−1
1 )) = l1(γ2 ∗ γ−1

1 ) < l1(γ1) + l1(γ2).

But we have by the marked length spectrum being preserved, and the definition of

ηi, that l2(ηi) = l2(Φ(γi)) = l1(γi) which gives us a contradiction (see Fig. 3 for an

illustration of this phenomenon). Denote by q ∈ X2 the endpoint of whichever of α

or β contains the other. We can, without loss of generality, assume that p2 = q (by

taking a change of basepoint for π1(X2) if necessary). So we have reduced to the

image being a pair of geodesic loops η1 and η2 based at q.

Claim 2. The geodesic loops η1 and η2 intersect in a path of length precisely l1(p)

passing through the point q (i.e. η1([0, l1(p)]) = η2([0, l1(p)]), but no such relation-

ship holds for any larger interval).

γ1

γ2

η1

η2

α

β

Fig. 3. Initial segments forced to agree: minimal representative of composite curve in first picture
has shorter length than corresponding one in the second picture.
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In order to see this, let us assume that we can write ηi = σi ∗ ν, where ν is a

path corresponding to the largest interval [0, r] satisfying η1([0, r]) = η2([0, r]), and

σi is the path ηi([r, l1(γi)]) (in other words, ν is the longest path along which the

two image curves agree, and σi is the rest of the respective curves). We claim that

l2(ν) = l1(p).

By our choice of γ1, γ2 being p-distinguishing, we have the relation:

2l1(p) = l1(γ1) + l1(γ2)− l1(γ2 ∗ γ−1
1 ). (1)

Since we have that ηi are the geodesic loops in the free homotopy class of Φ(γi),

and as our isomorphism preserves lengths, we have that:

l2(ηi) = l1(γi). (2)

Furthermore, the composite γ2 ∗ γ−1
1 corresponds to the composite η2 ∗ η−1

1 , which

forces the equality l1(γ2 ∗ γ−1
1 ) = l2(η2 ∗ η−1

1 ), and the latter is freely homotopic to

the geodesic loop σ2 ∗ σ−1
1 . This gives us that:

l1(γ1 ∗ γ−1
2 ) = l2(η1 ∗ η−1

2 ) = l2(η1) + l2(η2)− 2l2(ν). (3)

Substituting Eqs. (2) and (3) into Eq. (1), we obtain 2l1(p) = 2l2(ν) which imme-

diately gives us the desired equality.

We denote the path in X2 identified in this way by Φ(γ1,γ2)p, in order to empha-

size the dependence on the pair of p-distinguishing loops (γ1, γ2). Note that we

clearly have that Φ(γ1,γ2)p lies in D(X2), as the pair of loops (η1, η2) are (Φ
(γ1,γ2)p)-

distinguishing.

Claim 3. The path Φ(γ1,γ2)p is independent of the choice of p-distinguishing

loops.

We have two possibilities, one of which is immediate: let γ1, γ2, γ3 be geodesics

based at p1 an endpoint of p which are pairwise p-distinguishing. Then the three

image geodesic loops Φ(γ1),Φ(γ2),Φ(γ3) are all based at q, and pairwise have the

property that Φ(γi)|[0,l1(p)] = Φ(γj)|[0,l1(p)]. It is now immediate that all three of

Φ(γi,γj)p must coincide.

The other possibility to account for occurs if we have two distinct pairs (γ1, γ2)

and (η1, η2) of p-distinguishing geodesics, but none of the pairs (γi, ηj) are p-

distinguishing. Since all four geodesics pass through p, this means that the intersec-

tions pi,j := γi∩ηj are all geodesic segments which extend the original p (see Fig. 4

for an illustration of two such pairs near the geodesic). In fact, this immediately

forces the geodesic loops to have a local picture near p as in Fig. 4.

Consider first Φ(η1) ∗ Φ(γ−1
1 ), the loop used as in Claim 2 to find Φ(γ1,η1)p1,1.

By Claim 1 (after fixing the basepoint for π1(X2) to be the initial point of Φ(γ1))

we must have Φ(η1) = α−1 ∗ η̂1 ∗α for a geodesic loop η̂1 and a geodesic α which lies

along Φ(γ1). By Claim 2, η̂1 intersects Φ(γ1) in a segment of length l(p1,1); note

that if α is non-trivial, η̂1 must begin by following Φ(γ1) for a distance precisely

l(p1,1).
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γ1

γ2

η1

η2

Fig. 4. Two pairs of p-distinguishing curves with no cross-pair p-distinguishing.

Now undertake the same considerations for Φ(η1) ∗ Φ(γ−1
2 ). We can maintain

the same basepoint, and we know by Claim 1 that α lies along Φ(γ2) as well, hence

is a sub-path of Φ(γ1,γ2)p. If α is non-trivial, η̂1 must begin by following Φ(γ2) for a

distance precisely l(p2,1). This, however, contradicts the corresponding fact noted

at the end of the previous paragraph, as p1,1 and p2,1 are both strictly longer than

Φ(γ1,γ2)p and Φ(γ1) branches from Φ(γ2) after traversing Φ(γ1,γ2)p. (See Fig. 5.)

We conclude then that α is trivial, i.e. that Φ(η1) is a geodesic loop based at

p2. Because of the branching of Φ(γ1) and Φ(γ2) at the end points of Φ(γ1,γ2)p,

Φ(γ1,η1)p1,1 and Φ(γ2,η1)p2,1 must be geodesic segments that extend Φ(γ1,γ2)p on

opposite sides. Applying the same arguments with η2 replacing η1 we see that Φ(η1)

and Φ(η2) agree at least along Φ(γ1,γ2)p. But by Claim 2, this is the largest segment

they can agree along, hence Φ(γ1,γ2)p = Φ(η1,η2)p, establishing Claim 3.

α

η̂1

Φ(γ1)

Φ(γ2)

Fig. 5. An arrangement ruled out by the proof of Claim 3.
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We have established that the map Φ(γ1,γ2)p depends solely on the distinguished

path p, and not on the choice of p-distinguishing loops (γ1, γ2). We can now sup-

press the superscript, and simply write Φp for the image path. This gives us a

well-defined map Φ : D(X1) → D(X2).

Claim 4. The map Φ : D(X1) → D(X2) is bijective.

Applying the same procedure to the inverse group homomorphism π1(X2) →
π1(X1) yields a corresponding map Ψ : D(X2) → D(X1). We verify that Ψ ◦ Φ is

the identity map on D(X1). Let p ∈ D(X1) be a distinguished path, and (γ1, γ2)

a pair of p-distinguishing loops. From our construction, the image path Φp ∈
D(X2) naturally comes equipped with a pair of Φp-distinguishing loops (η1, η2).

Recall from the argument in Claim 2 how each ηi is obtained: we start with the

corresponding γi, viewed as an element in π1(X1, p), and use the isomorphism

between fundamental groups to obtain a corresponding element in π1(X2, q) (where

for simplicity p, q are taken to be the initial points of p and Φp respectively). Then

ηi is the cyclically reduced loop in the free homotopy class represented by the image

element in π1(X2, q).

Reversing the argument, we see that if we start with q := Φp ∈ D(X2) and pick

(η1, η2) as the pair of q-distinguishing loops, then the image Ψq is identified via the

pair (γ1, γ2) of geodesic loops, and hence coincides with p. This verifies that Ψ ◦Φ
is the identity on D(X1), and hence that Φ is injective. But an identical argument

shows that Φ ◦Ψ is the identity on D(X2), establishing that Φ is also surjective.

Claim 5. Let p1,p2 ∈ D(X1) be a pair of geodesically incident (see Definition 4.8)

distinguished paths in X1, meeting at a common vertex q which we will take as the

basepoint for π1(X1). Then the corresponding pair of geodesic paths Φp1 and Φp2

is also geodesically incident.

Without loss of generality (by well-definedness of our map), we can assume that

one of the closed loops used to find Φp1,Φp2 passes through both p1 and p2, hence

can be used as one of both pairs of pi-distinguishing loops. We refer to Fig. 6 (top

left) to illustrate our situation. In the top left figure, we have a pair of geodesically

incident paths, with the big geodesic representing the common loop, and the two

smaller ones intersecting the large one in p1 and p2 respectively. The paths pi

are oriented counterclockwise along the common loop γ, so that p2 precedes p1

along γ.

Now consider the image loops (see Fig. 6, remaining three pictures). If the

resulting curves are not incident, we have that the two geodesic loops Φ(γ1) and

Φ(γ2), which must intersect Φ(γ) in geodesics segments of length l1(p1), l1(p2)

respectively, have an intersection which does not represent incident subpaths of the

geodesic loop Φ(γ). We have three possible cases, which we label (a), (b), (c).

Case (a). First, the intersections with γ might be entirely disjoint (as in Fig. 6,

top right). Following the construction of Claim 1, we may assume the basepoint
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γ

γ1 γ2

Φ̄(γ) (a)

Φ̄(γ) (c)Φ̄(γ) (b)

Fig. 6. Incidence relations are preserved: the three possible cases.

p2 for π1(X2) is on the intersection of Φ(γ) and Φ(γ1). Then Φ(γ2) has the form

δ−1 ∗ Φ(γ2) ∗ δ for some geodesic starting at p2. Consider Φ(γ2 ∗ γ−1). Using the

fact that the marked length spectrum is preserved, we have the inequalities:

l2(Φ(γ2 ∗ γ−1)) = l1(γ2 ∗ γ−1) < l1(γ) + l1(γ2) = l2(Φ(γ)) + l2(Φ(γ2)).

This forces δ to lie entirely along Φ(γ). Let d denote the distance along δ between

Φp1 and Φp2 and note that we have:

l2(Φ(γ1) ∗ Φ(γ2)) = l2(Φ(γ1)) + l2(Φ(γ2)) + 2d.

But observe that the geodesic loop γ1 ∗ γ2 has length which is bounded above by

l1(γ1)+ l1(γ2). Combined with the fact that the isomorphism preserves the marked

length spectrum, this gives us a contradiction if d > 0. Thus Φp1 and Φp2 are

adjacent on Φ(γ).

Finally, suppose their order is reversed, i.e. Φp1 precedes Φp2 when following

Φ(γ). In X1 we have that

l1(γ2 ∗ γ1 ∗ γ−1) = l1(γ) + l1(γ1 ∗ γ2)− 2l1(p1)− 2l1(p2).

Whereas in X2, the corresponding loop satisfies

l2(Φ(γ2) ∗ Φ(γ1) ∗ Φ(γ−1)) = l2(Φ(γ)) + l2(Φ(γ1)) + l2(Φ(γ2)),

a strictly greater length, providing a contradiction. We conclude that the paths Φp1

and Φp2 are geodesically incident in X2 in the same order that they are in X1.

Case (b). The second possibility is that Φ(γ1) and Φ(γ2) intersect in a subinterval

of the geodesic loop Φ(γ) of length d (as in Fig. 6, bottom left). As above, we may

place the basepoint for π1(X2) on Φ(γ1) and write Φ(γ2) = α−1 ∗Φ(γ2)∗α with α a
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geodesic along Φ(γ). We consider the geodesic loop corresponding to γ−1
2 ∗ γ ∗ γ−1

1 ,

and observe that it has length:

l1(γ
−1
2 ∗ γ ∗ γ−1

1 ) = l1(γ) + l1(γ2 ∗ γ1)− 2l1(p1)− 2l1(p2). (4)

Looking at the corresponding geodesic loop Φ(γ−1
2 ) ∗ Φ(γ) ∗ Φ(γ−1

1 ) in the image,

we find that it has length:

l2(Φ(γ1)) + l2(Φ(γ2)) + l2(Φ(γ))− 2l2(Φp1)− 2l2(Φp2) + 2d

if Φ(γ2) lies to the right of Φ(γ1) or

l2(Φ(γ1)) + l2(Φ(γ2)) + l2(Φ(γ))− 2d

if Φ(γ2) lies to the left of Φ(γ1). In either case, using that the isomorphism pre-

serves the marked length spectrum, and comparing with equation (4) we get a

contradiction (in the second case, because d < l1(p1) + l1(p2)).

Case (c). Finally, the third possibility is that one of Φpi lies entirely within the

other (Fig. 6, bottom right). First, assume that Φ(γ2) is the small inner loop,

while Φ(γ1) is the outer loop (so in particular Φp2 is a subpath of Φp1). If we

let 0 ≤ d < l2(Φp1) be the distance between the left endpoints of Φpi, a simple

calculation will show that:

l2(Φ(γ
−1
2 ) ∗ Φ(γ) ∗ Φ(γ−1

1 )) = l2(Φ(γ1)) + l2(Φ(γ)) + l2(Φ(γ2))− 2d− 2l2(Φp2)

which we can compare with the expression in Eq. (4) to again obtain a contradiction.

If Φ(γ1) is the inner loop, let 0 ≤ d < l2(Φp2) be the distance between the right

endpoints of Φ(pi). We calculate:

l2(Φ(γ
−1
2 ) ∗ Φ(γ) ∗ Φ(γ−1

1 )) = l2(Φ(γ1)) + l2(Φ(γ)) + l2(Φ(γ2))− 2d− 2l2(Φp1)

providing the same contradiction.

This gives us that the image paths Φp1 and Φp2 are subpaths of the geodesic

loop γ which agree at one endpoint, but not in any larger neighborhood of the

endpoint. Since γ is cyclically reduced, this immediately forces the concatenation

Φp1 ∗Φp2 to be a geodesic path, hence geodesically incident paths map to geodesi-

cally incident paths. It is now clear that if p = q2 ∗ q1 is a geodesic path written

as a concatenation of subpaths (all in D(X1)), then Φp = Φq2 ∗ Φq1 (since the qi

are geodesically incident).

Claim 6. Let p1 and p2 be a pair of incident geodesic paths in D(X1), meeting

at a common vertex q which we will take as the basepoint for π1(X). Then the

corresponding geodesic paths Φp1 and Φp2 are also incident.

To see this, note that if the incident paths are geodesically incident, we are done

by the previous claim. So let us assume not. Then by Lemma 2.16, we have that
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the reduced path corresponding to the concatenation p2 ∗ p1 is of the form r2 ∗ r1,
where ri is a subpath of pi. Furthermore, p2 = r2 ∗ q−1, while p1 = q ∗ r1. We

now argue that the geodesics q, r1, r2 all lie in D(X1). Indeed, assume that (γ1, γ2)

is a p1-distinguishing pair, and (η1, η2) is a p2-distinguishing pair. Then we can

immediately write out distinguishing pairs as follows:

• a distinguishing pair for q is given by (η−1
1 , γ1 ∗ η−1

2 ).

• a distinguishing pair for r1 is given by either (a) (γ1, γ2 ∗ η1) if γ2 ∗ η1 is not

reducible as a concatenation of paths based at q (it is cyclically reducible), or

(b) (γ1, γ2 ∗ η2) if γ2 ∗ η2 is not reducible as a concatenation of paths based at q.

(Note that these are mutually exclusive options.)

• a distinguishing pair for r2 is given by either (a) (η1, γ1 ∗ η2) if γ1 ∗ η2 is not

reducible as a concatenation of paths based at q, or (b) (η1, γ2 ∗ η2) if γ2 ∗ η2 is

not reducible as a concatenation of paths based at q. (Again, these are mutually

exclusive options.)

As usual, the overline means one should cyclically reduce. Above we have been

somewhat cavalier with the starting points of the various loops. They should all be

reparametrized so that they are based at the appropriate points (initial point of q,

r1, r2 respectively), by shifting the basepoint along the paths q, r1, and/or r2 as

needed.

Since q is geodesically incident to both r1, r2, the previous claim implies that

Φp2 = Φr2 ∗ Φq−1 and Φp1 = Φq ∗ Φr1. However, reversal of paths is preserved

under the map Φ we have constructed (since we can take the same pair of distin-

guishing loops with reversed orientations). This immediately yields our last claim.

We can now complete the proof of the proposition. We define a map f : B(X1) →
B(X2) as follows: given a point x ∈ B(X1), we consider the subset D(x) ⊂ D(X1)

consisting of all distinguished paths which originate at x. Corollary 4.7 guarantees

that D(x) �= ∅. We can apply the map Φ to all the elements in D(x), obtaining a

subset Φ(D(x)) of D(X2). In view of Claim 6, all the distinguished paths given by

the elements Φ(D(x)) originate at the same point in B(X2). We define this point to

be f(x), i.e. f(x) ∈ X2 is the unique point with the property Φ(D(x)) ⊂ D(f(x)).

Next we argue that the map f is distance non-increasing. If x �= y are a pair

of distinct points in B(X1), we let p denote a distance minimizer from x to y.

Corollary 4.5 tells us that p,p−1 ∈ D(X1). This gives us elements p ∈ D(x) and

p−1 ∈ D(y), so by definition of the map f , the image path Φp is a geodesic path

originating at f(x) and ending at f(y). But from Claim 2, we know that the map

Φ preserves the length of paths. We conclude that

d(f(x), f(y)) ≤ l2(Φp) = l1(p) = d(x, y).

Applying the same argument to the reverse isomorphism π1(X2) → π1(X1), we

have the inverse map Ψ : D(X2) → D(X1). Applying the construction described

above, we obtain an induced map g : B(X2) → B(X1). The argument in the previ-

ous paragraph tells us that g is also distance non-increasing, and by construction,
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we have that f, g are inverse maps of each other (compare with the discussion in

Claim 4). Composing the two maps, we obtain

d(x, y) = d(g(f(x)), g(f(y))) ≤ d(f(x), f(y)) ≤ d(x, y).

Hence all the inequalities are actually equalities, and the maps f, g are isometries.

This completes the proof of Proposition 4.9.

We now prove the main theorem of this section:

Proof of Theorem 4.1. Consider the set B(X1). If this set is empty, then Propo-

sition 4.9 forces the set B(X2) to likewise be empty. Lemma 3.16 tells us that each

Xi is isometric to a circle S1 of some radius ri. The function li, applied to one of

the generators of π1(Xi) ∼= Z evaluates to 2πri. Since the marked length spectrum

is preserved, we conclude 2πr1 = 2πr2, and the two circles are isometric.

So now we may assume that B(X1) �= ∅. By Proposition 4.9, we already know

that there is an isometry f : B(X1) → B(X2) between the sets of branch points. All

we need to show is that we can extend this isometry to a global isometry. Note that

since we are working with compact (hence complete) metric spaces, an isometry

between the subsets B(Xi) extends to an isometry f : B(X1) → B(X2) between

their closures. We are left with extending our map to points that do not lie in the

closure of the branch points.

Let p ∈ X1\B(X1) lie outside of the closure of the branching locus. We know

p lies in a connected component W of X1\B(X1). From Lemma 3.19, W equipped

with its intrinsic geodesic structure is isometric to an open interval of some finite

length r, with endpoints lying in the set B(X1). Let x, y ∈ B(X1) be the two points

to which the interval W gets attached. There are three possibilities, according to

whether (i) x, y ∈ B(X1), (ii) exactly one of the two points x, y lies in B(X1)\B(X1),

or (iii) both points x, y lie in B(X1)\B(X1). We present a proof that works in all

three cases, though in cases (i) and (ii) it can be simplified.

First, extend W to a slightly larger, yet still embedded, geodesic W ′ whose

endpoints x1 and y1 lie in B(X1). (In case (i) or (ii) the extension to both or one

side, respectively, can be trivial, with corresponding simplifications in the argument

to follow.) By Lemma 3.21, there exist branch points xi and yi on W ′ with xi → x,

yi → y. Let Wi denote the subpath of W ′ connecting xi and yi. As the Wi are

embedded geodesic paths, we may use the construction of Proposition 4.9 to find

corresponding paths ΦWi in X2 with lengths equal to l(Wi) connecting f(xi) and

f(yi). By continuity of f defined on B(X1), f(xi) → f(x) and f(yi) → f(y). In

addition, it is clear from the construction of Proposition 4.9 that ΦWi+1 ⊆ ΦWi

(as subpaths). Therefore, the paths ΦWi converge to a path W ∗ in X2 of length

r connecting f(x) and f(y). By Lemma 3.17, W ∗ coincides with one connected

component of X2\B(X2) and we can extend the map f to W by isometrically

sending W to W ∗.
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To ensure that this extension of f is well-defined, consider any other geodesic

extension of W , together with any other choice of the points xi, yi. Regardless of

these choices, we will still have that f(xi) → f(x) and f(yi) → f(y). Then Corol-

lary 3.22 ensures that we obtain the same W ∗ (in the case where both endpoints

are in B(X1), use Claim 3 in the proof of Proposition 4.9 instead). Therefore, the

extension of f is well-defined, and it is straightforward to check that the extension

is still an isometry onto its image.

The map f we have constructed is an isometric embedding from Y1 into Y2. But

note that we can apply the same construction to φ−1, yielding an isometric embed-

ding from Y2 into Y1. Furthermore, the composite of the two maps corresponds to

the map from Y1 to itself obtained by applying this construction to the identity

isomorphism and hence must be the identity map on Y1. This implies the map is

an isometry from Y1 to Y2. By the naturality of the construction, we see that the

map we constructed induces the isomorphism (up to change of basepoint) between

the π1(Xi). This completes the proof of Theorem 4.1.

As discussed at the beginning of this section, our Main Theorem now follows

immediately from the special case established in Theorem 4.1.
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