46

CONSTRUCTION OF CLASSIFYING SPACES WITH ISOTROPY IN PRESCRIBED FAMILIES OF SUBGROUPS

by Jean-François LAFONT

For an infinite group Γ , the Farrell–Jones isomorphism conjecture [3] states that the algebraic K-theory $K_n(\mathbf{Z}\Gamma)$ of the integral group ring of Γ coincides with $H_n^{\Gamma}(E_{\mathcal{V}C}\Gamma;\mathbf{KZ}^{-\infty})$, a certain equivariant generalized homology theory of the Γ -space $E_{\mathcal{VC}}\Gamma$. This space is a model for the classifying space for Γ with isotropy in the family of virtually cyclic subgroups, i.e. a contractible Γ -CW-complex with the property that the fixed subset of a subgroup H is contractible if H is a virtually cyclic subgroup, and is empty otherwise. Such a space is unique up to Γ -equivariant homotopy equivalence. From such a classifying space, the homology $H_n^{\Gamma}(E_{\mathcal{VC}}\Gamma;\mathbf{KZ}^{-\infty})$ can be computed via an Atiyah-Hirzebruch type spectral sequence discovered by Quinn [9]. The ingredients entering into the E^2 -term of the spectral sequence are the algebraic K-theory of the various cell-stabilizers. In particular, for computational purposes, it is interesting to have a model for $E_{VC}\Gamma$ that is as "small" as possible. Let us denote by $hdim^{\Gamma}(X)$, for a Γ -space X, the minimal dimension of a CW-complex Γ -equivariantly homotopy equivalent to X. The discussion above motivates the first:

PROBLEM 46.1. Find an efficient algebraic criterion that determines whether a finitely generated group Γ has a finite dimensional model for $E_{VC}\Gamma$, i.e. whether $hdim^{\Gamma}(E_{VC}\Gamma) < \infty$.

In particular, one can consider the following problem:

PROBLEM 46.2. For various classical families of finitely-generated groups appearing in mathematics, either (1) give a construction for a finite dimensional model for $E_{VC}\Gamma$, or (2) prove that some group within the family satisfies $hdim^{\Gamma}(E_{VC}\Gamma) = \infty$.

Achevé de composer le 6 mai 2008 à 10:42

J.-F. LAFONT

A few classes of groups are known to have finite dimensional models for $E_{VC}\Gamma$. For instance, it is clear that for virtually cyclic group, one can take a point as a model for $E_{VC}\Gamma$. Less trivial examples consist of:

- δ-hyperbolic groups (due to Juan-Pineda and Leary [4], and independently to Lück [6]),
- crystallographic groups (different finite dimensional models were given by Alves and Ontaneda [1], and by Connolly, Fehrman and Hartglass [2]),
- groups hyperbolic relative to subgroups which themselves have finite dimensional classifying spaces, for instance non-uniform lattices in SO(*n*, 1) (due to Lafont and Ortiz [5]).
- virtually poly-**Z** groups, and groups which are countable locally virtually cyclic (due to Lück and Weiermann [7]).

In general, given a family \mathcal{F} of subgroups of Γ , one can define a model for the classifying space $E_{\mathcal{F}}\Gamma$ of Γ with isotropy in the family \mathcal{F} (see the extensive survey in [6]), which will again be unique up to Γ -equivariant homotopy equivalence. For the family $\mathcal{F}IN$ consisting of finite subgroups, the classifying space $E_{\mathcal{F}IN}\Gamma$ has been extensively studied, and explicit finite dimensional models are known for various classes of groups (δ -hyperbolic groups, groups acting by isometries on finite dimensional CAT(0) spaces, Coxeter groups, etc).

In a paper with I. Ortiz [5], we defined the notion of a collection of subgroups to be *adapted* to a nested pair $\mathcal{F} \subset \overline{\mathcal{F}}$ of families of subgroups (for instance, one could take $\mathcal{F}IN \subset \mathcal{V}C$). This consists of a collection of subgroups $\{H_{\alpha}\}$ satisfying the following properties: (1) the collection is conjugacy closed, (2) the groups H_{α} are self-normalizing, (3) distinct groups in the collection intersect in elements of \mathcal{F} , and (4) every group in $\overline{\mathcal{F}} - \mathcal{F}$ is contained in one of the H_{α} .

When there exists a collection of subgroups adapted to a pair $\mathcal{F} \subset \overline{\mathcal{F}}$, we explain how to modify a model for $E_{\mathcal{F}}\Gamma$ to obtain a model for $E_{\overline{\mathcal{F}}}\Gamma$. The modifications involve the collection of classifying spaces $E_{\overline{\mathcal{F}}(H_{\alpha})}H_{\alpha}$, where $\overline{\mathcal{F}}(H_{\alpha})$ is the restriction of the family $\overline{\mathcal{F}}$ to the subgroup H_{α} . In particular, when both the $E_{\mathcal{F}}\Gamma$ and the $E_{\overline{\mathcal{F}}(H_{\alpha})}H_{\alpha}$ are finite dimensional, the construction yields a finite dimensional $E_{\overline{\mathcal{F}}}\Gamma$. This prompts the following

PROBLEM 46.3. Try to identify "natural" non-trivial collections of subgroups adapted to the pair $\mathcal{F}IN \subset \mathcal{V}C$ for various classical families of finitely-generated groups.

128

J.-F. LAFONT

In all the examples the author knows of where the minimal dimensions of models for $E_{\mathcal{F}IN}\Gamma$ and $E_{\mathcal{V}C}\Gamma$ are explicitly known, one has that both these numbers are finite. It is known that if $hdim^{\Gamma}(E_{\mathcal{F}IN}\Gamma) = \infty$, then $hdim^{\Gamma}(E_{\mathcal{V}C}\Gamma) = \infty$ (see [7], Cor. 5.4). The converse is likely to be false, and one can ask:

PROBLEM 46.4. Find examples of finitely generated groups Γ for which (1) $hdim^{\Gamma}(E_{FIN}\Gamma) < \infty$, but (2) $hdim^{\Gamma}(E_{VC}\Gamma) = \infty$.

One might think that in general, one can find families of subgroups for which the classifying spaces can be arbitrarily complicated, prompting:

PROBLEM 46.5. For Γ a (non-abelian) infinite group, does there always exist a family \mathcal{F} of subgroups, with $\mathcal{F}IN \subset \mathcal{F}$, and $hdim^{\Gamma}(E_{\mathcal{F}}\Gamma) = \infty$?

Recently, Quinn has suggested a possible refinement of the Farrell–Jones isomorphism conjecture. In his paper [8], Quinn considers *p*-hyper-elementary groups, defined to be groups G that fit into a short exact sequence:

$$1 \to C \to G \to P \to 1$$

where *P* is a finite *p*-group, and *C* is cyclic. The family $\mathcal{H}E$ of hyperelementary subgroups of a finitely generated group Γ gives rise to a classifying space $E_{\mathcal{H}E}\Gamma$, and Quinn suggests that the algebraic *K*-theory $K_n(\mathbb{Z}\Gamma)$ of the integral group ring of Γ coincides with $H_n^{\Gamma}(E_{\mathcal{H}E}\Gamma; \mathbb{K}\mathbb{Z}^{-\infty})$. Note that every hyper-elementary group is automatically virtually cyclic, hence we have a containment $\mathcal{H}E \subset \mathcal{V}C$. From the computational viewpoint, this refinement would be particularly useful if these classifying spaces $E_{\mathcal{H}E}\Gamma$ were "smaller" than $E_{\mathcal{V}C}\Gamma$. Hence it would again be of interest to obtain concrete models for the $E_{\mathcal{H}E}\Gamma$:

PROBLEM 46.6. For various classical families of groups, give a construction for a finite dimensional $E_{\mathcal{H}E}\Gamma$. In particular, find an example of a group Γ for which (1) $hdim^{\Gamma}(E_{\mathcal{H}E}\Gamma) < \infty$ but (2) $hdim^{\Gamma}(E_{\mathcal{V}C}\Gamma) = \infty$.

So far we have mostly considered families that are smaller than \mathcal{VC} . But in some cases, it is conceivable that the classifying spaces might be *easier* to construct for a *larger* family than \mathcal{VC} . One natural candidate family to consider is the family \mathcal{VA} of virtually abelian subgroups. In particular, constructing a classifying space with isotropy in \mathcal{VA} would be of interest for

129

J.-F. LAFONT

groups where one has a fairly good structure theory for the virtually abelian subgroups, and for which the Farrell–Jones isomorphism conjecture is known to hold. To give a concrete example, one can ask:

PROBLEM 46.7. Give a procedure to construct a finite-dimensional model for $E_{VA}\Gamma$, when Γ is either (1) a uniform lattice in a higher rank symmetric space, or (2) an irreducible, non-affine, infinite Coxeter group.

REFERENCES

- [1] ALVES, A. and P. ONTANEDA. A formula for the Whitehead group of a threedimensional crystallographic group. *Topology* 45 (2006), 1–25.
- [2] CONNOLLY, F., B. FEHRMAN and M. HARTGLASS. On the dimension of the virtually cyclic classifying space of a crystallographic group. Preprint arXiv: math.AT/0610387 (2006).
- [3] FARRELL, F. T. and L. E. JONES. Isomorphism conjectures in algebraic *K*-theory. *J. Amer. Math. Soc.* 6 (1993), 249–297.
- [4] JUAN-PINEDA, D. and I.J. LEARY. On classifying spaces for the family of virtually cyclic subgroups. In: *Recent Developments in Algebraic Topology*, 2003, 135–145. Contemp. Math. 407. Amer. Math. Soc., 2006.
- [5] LAFONT, J.-F. and I.J. ORTIZ. Relative hyperbolicity, classifying spaces, and lower algebraic *K*-theory. *Topology* 46 (2007), 527–553.
- [6] LÜCK, W. Survey on classifying spaces for families of subgroups. In: Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, 269–322. Progress in Mathematics 248. Birkhäuser, Basel, 2005.
- [7] LÜCK, W. and M. WEIERMANN. On the classifying space of the family of virtually cyclic subgroups. Preprint arXiv: math.AT/0702646 (2007).
- [8] QUINN, F. Hyperelementary assembly for *K*-theory of virtually abelian groups. Preprint arXiv: math.KT/0509294 (2005–2006).
- [9] Ends of maps, II. Invent. Math. 68 (1982), 353-424.
- J.-F. Lafont

Department of Mathematics The Ohio State University 231 West 18th Avenue Columbus, OH 43210-1174 USA *e-mail*: jlafont@math.ohio-state.edu

130