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Abstract
Given a triangulated closed oriented surface (M, TM ), we provide upper bounds on the
number of tetrahedra needed to construct a triangulated 3-manifold (N , TN ) which bounds
(M, TM ). Along the way, we develop a technique to translate (in all dimensions) between the
famous Riemannian systolic inequalities of Gromov and combinatorial analogues of these
inequalities.

Keywords Systolic geometry · Combinatorial systolic inequality · Fat triangulation · Nash
embedding theorem · Whitney triangulation · Bounding manifold · Efficient filling

1 Introduction

Given a closed triangulated n-dimensional manifold (M, TM ), a combinatorial filling of M
is a triangulated (n + 1)-dimensional manifold (N , TN ) with ∂N = M and TN |∂N = TM .
Sometimes we refer to a filling of (M, TM ) as an extension to a triangulation of (N , TN ). A
basic question is the following. Given a triangulated manifold (M, TM ), does such a filling
exist and, if so, can you bound |TN |, the number of facets of such a filling? The main results
of this paper are the following two solutions to this question in the case when n = 2.

Theorem 1 Let (M, TM ) be a triangulated surface of genus ≤ g. Then there exists a filling
(N , TN ) satisfying that

|TN | ≤ Cg|TM |,
where Cg depends only on g, and not on the particular triangulation.
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Fig. 1 An example of the
cut-and-cone procedure

The next Theorem removes the dependence of the coefficient on the genus, but at the cost
of inserting a higher power of |TM |.
Theorem 2 Let (M, TM ) be a triangulated surface. Then there exists (N , TN ), a filling of M,
so that

|TN | ≤ C |TM | (log |TM |)2 ,

where C does not depend on the particular surface or triangulation.

We do not know whether these results are optimal. In particular, we do not know whether
the constant in Theorem 1 can be chosen independent of g.

The proofs of both of these theorems are very similar. We first develop related combi-
natorial systolic inequalities which bound the combinatorial systole of (M, TM ) by a factor
of the combinatorial volume of (M, TM ). Then the main idea is to apply a “cut-and-cone”
procedure (compare with Gromov [11, Proof of Theorem 2C, pp. 302–305]). We begin this
procedure by cutting the surface along a short homologically nontrivial edge loop. This will
yield a surface of smaller genus with two boundary components. We then cone off the bound-
ary components to get a surface of genus one less than the original surface (See Fig.1). We
iterate this procedure until the surface is a 2-sphere, in which case we can cone off the trian-
gulated 2-sphere to get a triangulated 3-ball. By gluing the 3-ball along all of the cuts in the
reverse order, and passing to a barycentric subdivision, we obtain a triangulated 3-manifold
with the desired properties.

As we mentioned, our approach to proving these results relies on developing relevant
combinatorial systolic inequalities. For a closed Riemannian manifold (M, g), the systole is
the minimal length of a homotopically non-trivial loop, denoted Sysg(M), while the volume
of (M, g) is denoted Volg(M). Systolic inequalities are (curvature free) expressions which
relate the systole with other geometric quantities, typically the volume.

We view smooth triangulations of a manifold M as a combinatorial model for M . For
such a triangulation (M, T ), we define the combinatorial systole SysT (M) to be the minimal
number of edges for a combinatorial loop in the 1-skeleton of T which is homotopically
non-trivial in M . The combinatorial volume VolT (M) is just the number of top-dimensional
simplices in the triangulationT . Themechanismwhich allows us to develop the combinatorial
systolic inequalities necessary to prove the above results is the following.
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Theorem 3 LetMbea class of closed smooth n-manifolds. Then the following two statements
are equivalent:

(1) for every Riemannian metric (M, g) on a manifold M ∈ M, we have

Sysg(M) ≤ C n
√
Volg(M),

where C is a constant which depends solely on the class M.
(2) for every smooth triangulation (M, T ) of a manifold M ∈ M, we have

SysT (M) ≤ C ′ n
√
VolT (M),

where C ′ is a constant which depends solely on the class M.

Theorem 3 allows us to convert Riemannian systolic inequalities developed in [11] into
combinatorial systolic inequalities, which are then used to prove Theorems 1 and 2 .

The argument for our proofs “build” the bounding 3-manifold from the triangulation on
the surface �. One might wonder whether this is really necessary. Indeed, if one takes the
genus g handlebody Hg embedded inR3, any triangulation of the boundary surface�g can be
extended to a triangulation of Hg . Our next theorem establishes a general criterion, showing
such an extension is in general not the most efficient filling for �g .

Theorem 4 Let Wn be a smooth compact n-manifold with boundary ∂W = M. The inclusion
induces a homomorphism � : MCG(W ) → MCG(M) between the topological mapping
class groups. If the image of � has infinite index in MCG(M), then there exists a sequence
of triangulations Ti of the boundary M with a fixed number of simplices |Ti |, and with the
property that any extension to a triangulation T̂i of W satisfies |T̂i | → ∞.

Notice that in the case where W = Hg and ∂W = �g , the morphism � is well known to
have infinite index (indeed, the image is known to be distorted in the mapping class group
when g ≥ 2, see Hamenstädt and Hensel [12]). Thus the previous theorem applies to the
case of surfaces.

Let us briefly describe the layout of our paper. In Sect. 2, we establish some basic def-
initions, and prove Theorem 4. In Sect. 3 we discuss how to covert between Riemannian
metrics and smooth triangulations in a manner where the geometry of the Riemannian metric
is “related” to the combinatorics of the triangulation (and vice versa). Rigorous statements
are formally recorded as Propositions 5 and 6 , but the proofs mostly follow from results
already in the literature. These results are then used to prove Theorem 3 in Sect. 4, where we
also develop the combinatorial systolic inequalities needed to prove the main results. Finally,
we establish Theorems 1 and 2 in Sect. 5. We conclude with Sect. 6 where we give a brief but
technical sketch of Whitney’s triangulation procedure in [25]—this is needed in the proof of
Lemma 7 from Sect. 3.

Remark Many of the results in this paper were developed in the Ph.D. Thesis of Kowalick
[17]. Results similar to Theorem 3 were independently obtained by de Verdière et al. [9].
Their results are focused on the 2-dimensional closed surfaces case (and includes other
applications), but they include an Appendix where they discuss analogous results in higher
dimensions.

2 Filling triangulatedmanifolds

Let us first establish some terminology for this paper. A triangulated manifold is a tuple
(M, T ) where M is a manifold and T : KT → M is a homeomorphism from a simplicial
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complex KT to M . If the link of every simplex in KT is a piecewise-linear sphere then we
call this triangulation a PL-triangulation. If M is a smooth manifold, and the restriction of T
to each simplex of KT is smooth, then we call the triangulation (M, T ) smooth. A facet of a
triangulation is a simplex of maximal dimension. For any triangulation (M, T ), the notation
|T | will refer to the number of facets in the simplicial complex KT . For a triangulated
manifold, this will be used as a combinatorial analogue of volume.

Given a triangulated n-dimensional manifold (M, T ), a combinatorial filling is a triangu-
lated (n+1)-manifold (W , T̂ )with non-empty boundary, along with commutative diagram:

KM

��

T �� M

��
KW

T̂ �� W

(2.1)

where the vertical map M → W is a homeomorphism onto ∂W , and the vertical map
KM → KW is a linear isomorphism onto a simplicial subcomplex of KW . Of course, a
combinatorial filling will only exist if the manifold M bounds. We are interested in the
following.
Question: In each dimension n, estimate the function F with the property that, if (M, T )

is a triangulated n-manifold which bounds, then there exists a combinatorial filling (W , T̂ )

satisfying |T̂ | ≤ F(|T |). We call this F the filling function in dimension n.
If one knows that M bounds a manifold W , then it is reasonable to ask whether optimal

fillings can always be obtained that extend a given triangulation of M . In other words, in
the commutative diagram (2.1), we are fixing the right hand vertical arrow, varying the
triangulation (M, T ), and asking whether the bottom left corner of the diagram can be
completed with good control on |T̂ |. Theorem 4, which we now prove, shows that this is in
general not the case.

Proof of Theorem 4 Recall that we are given a fixed smooth compact manifoldW with ∂W =
M , where themap� : MCG(W ) → MCG(M) induced by the inclusion has image of infinite
index. We want to construct a sequence of smooth triangulations of M with a fixed number
of simplices, but whose extensions to W require an increasing number of simplices.

Let us argue by way of contradiction. Start with a fixed smooth triangulation T of M ,
which we view as a homeomorphism T : L → M from a simplicial complex L , which is
smooth when restricted to each simplex. Now for each element φ ∈ MCG(M), consider
the triangulation Tφ := φ ◦ T : L → M , and observe that this produces infinitely many
triangulations with the same fixed number |T | of top-dimensional simplices.

Now to argue by contradiction, assume that each of these triangulations of M extends to
a triangulation T̂φ : Kφ → W , with the simplicial complex Kφ having ≤ s top dimensional
simplices. Since there are only finitely many simplicial complexes that have ≤ s simplices,
each Kφ is isomorphic to a simplicial complex from a finite list K1, . . . , KN . Moreover, the
group of combinatorial automorphisms of the complex L is finite, so there are only finitely
many identifications of L with the boundary of each Ki .

Now consider any two elements φ,ψ ∈ MCG(M), and assume that the corresponding
extensions toW arise from the same pair (Ki , L). Then we obtain the following commutative
diagram
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M

��

L

��

Tφ ��Tψ�� M

��
W Ki

T̂φ ��T̂ψ�� W

Observe that the composite map T̂ψ ◦ T̂ −1
φ ∈ Homeo(W ) gives a self-homeomorphism ofW ,

which extends the self-homeomorphism Tψ ◦ T −1
φ = ψ ◦ φ−1 ∈ Homeo(M). It follows that

the elements ψ, φ ∈ MCG(M) lie in the same left coset of � (MCG(W )). Thus the number
of cosets is bounded above by N , the cardinality of the finite set of possible pairs (Ki , L).
This contradiction completes the proof. 	


Since the topological mapping class group of the genus g handlebody Hg has infinite index
in the mapping class group of the surface �g , we see that some care must be taken when
constructing efficient fillings of triangulated surfaces. Indeed, how the filling 3-manifold
attaches to the surface will have to depend on the chosen triangulation of the surface.

Remark Some variations of our notion of filling function have previously been considered
in the literature. For example, Hass et al. [15] have considered unknotted polygonal curves
in R

3, and studied the minimal number of triangles in a PL spanning disk for the curve.
They give an exponential lower bound for the corresponding filling function, with an upper
bound subsequently obtained by Hass et al. [14]. The corresponding question for knotted
polygonal curves bounding PL surfaces was considered by Hass and Lagarias [13]. In a
somewhat different direction, Costantino and Thurston [8] considered a similar question for
3-manifolds—but did not require the optimal triangulation on the filling 4-manifold to restrict
to the original triangulation on the 3-manifold.

3 Translating between Riemannianmetrics and smooth triangulations

In this section, we establish some results allowing us to translate between Riemannian met-
rics and smooth triangulations, with a view towards obtaining combinatorial analogues of
Riemannian systolic inequalities.

Proposition 5 (Encoding a triangulation) There exists a constant κn depending solely on the
dimension n, with the property that for any smooth triangulation (M, T ) of a smooth compact
manifold M, and for any ε > 0, there exists a smooth Riemannian metric g on M which
satisfies the following:

(1) |Volg(M) − VolT (M)| < ε

(2) If γ is a closed path on M, then there exists a closed edge loop p, freely homotopic to γ ,
so that

�T (p) ≤ κn�g(γ ).

By an edge loop p we mean a closed simplicial path in the 1-skeleton of T , and the
notation �T (p) denotes the number of edges traversed by the path p. Also, recall from
the Introduction that the combinatorial volume VolT (M) is the number of top-dimensional
simplices in the triangulation T . As was pointed out to the authors by an anonymous referee,
this result was essentially proved by Babenko in [1, Sections 2 and 8, specifically see the
proofs of Proposition 2.2 and Lemma 2.3]. So what follows is just a short outline of the proof,
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but the interested reader may also consult the original version of this paper on the arXiv [18]
for complete details.

The idea behind the proof is to put a piecewise Euclidean metric on M , by making each n-
dimensional simplex in the triangulation T isometric to a Euclidean simplex with all edges of
equal length, and of volume equal to one. This metric has singularities along the codimension
two strata, which can be inductively smoothed out. This gives a metric g satisfying property
(1). For property (2), one can easily reduce to the case that γ is a g-geodesic which is not
null-homotopic. From there, we remove the sections of γ near the codimension 2 skeleton
and, in a Lipschitz manner, replace them with geodesic segments in the singular metric. This
results in a loop of roughly comparable length in the singular metric, and property (2) is easy
to establish for the singular metrics.

Proposition 5 will be used to translate Riemannian systolic inequalities into discrete sys-
tolic inequalities. For the reverse direction, we will need the following result.

Proposition 6 (Encoding a Riemannian metric) There exists a constant δn depending solely
on the dimension n, with the property that for any closed Riemannian n-manifold (M, g),
there exists a smooth triangulation T with the property that

supe⊂T {�g(e)}
infσ⊂T { n

√
Volg(σ )} ≤ δn,

where the volume of the top-dimensional simplices σ , and the lengths of the edges e, are
measured in the ambient g-metric.

Remark Roughly speaking, the triangulation T produced in the proposition has no simplices
that are “long and thin” (as measured in the Riemannian metric g). Such fat triangulations
have been considered before, as they can be used to produce quasi-meromorphic mappings
(see for instance Peltonen [20], as well as Saucan [22–24]). In those papers, the authors
showed that the triangulations obtained via Cairns’ method [5–7] could be arranged to be fat.
We give a new proof of this result, by appealing instead to Whitney’s triangulation method
[25]. Our proof also leads to Lemma 7 and Proposition 8 below.

Another approach to constructing fat triangulations comes via Delaunay triangulations.
The Delaunay triangulations associated to sets of points inRn avoid long skinny simplices—
though of course there is no guarantee that the resulting simplicial complex is a manifold.
There has been a substantial amount of recent work on obtaining Delaunay triangulations
on Riemannian manifolds, see for instance [2,21], though in higher dimensions whether or
not a Delaunay complex triangulates a manifold is a subtle question, see [3]. For the case
of hyperbolic manifolds, Delaunay triangulations have been constructed with control on the
geometry of the simplices, see [4].

Let us now work toward proving Proposition 6. Let (M, g) be an n-dimensional Rieman-
nian manifold. By the Nash Isometric Embedding theorem [19], M embeds smoothly and
isometrically into R

m , where m depends only on n. Thus we may consider the case where
M is a smooth Riemannian submanifold of Rm . We then apply the following Lemma to
M , which follows almost directly from work of Whitney in ([25], Chapter IV Part B, pp.
124–135).

Lemma 7 Let M be a compact n-dimensional smooth Riemannian submanifold of Rm. Then
for any tubulur neighborhood U of M there exists an n-dimensional simplicial complex
T ⊂ R

m with the following properties:

(1) Each simplex of T is a secant simplex of M.
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(2) T is contained in U, and the projection π∗ : U → M induces a homeomorphism
π∗ : T → M.

(3) If σ is a simplex of T (of any dimension), then its fatness is bounded below by �n,m,
which depends only on the dimensions of the submanifold and the ambient space.

(4) For any n-simplex σ of T , point q ∈ σ , and tangent vector v ∈ Tqσ , we have that

|ππ∗(q)(v)| ≥ 1

2
|v|, (3.1)

where ππ∗(q) is the orthogonal projection onto the tangent plane Tπ∗(q)M.
(5) If L is the length of an edge in T , then

Cn,m L̄ ≤ L ≤ L̄ (3.2)

for some positive constant L̄ which depends only on T (but not on L), and some positive
constant Cn,m depending only on n and m.

In part (1) of the Lemma, a secant simplex of M is just a simplex σ in the ambient Rm

such that all of the vertices of σ lie on M , and such that the interior of σ is the convex hull
of these vertices (in Rm). For σ an n-simplex in Rm , the fatness (referred to in part (3) of the
Lemma) is defined to be

�(σ) = Voln(σ )

(diamσ)n
,

where Voln denotes the n-dimensional Hausdorff volume in R
m . This scale invariant quan-

tity distinguishes long and skinny Euclidean simplices from others. Finally, recall that the
dimension m of the ambient space is a function of n. So all of the constants in the above
Lemma really only depend on n.

Lemma 7 follows directly from Whitney’s proof in [25] that every Riemannian subman-
ifold of Rm admits a smooth triangulation. Unfortunately, Whitney’s arguments are very
technical and rather difficult to read. In order to not distract from the main argument, we
postpone the proof of Lemma 7 to the end of our paper (see Sect. 6).

Proof of Proposition 6 Using the notation of Lemma 7, the projection map π∗ : U → M is a
Riemannian submersion (for a sufficiently small neighborhood U ). So TU ∼= TUh ⊕ TUv

where TUh is canonically isomorphic to the tangent bundle T M ofM , and TUv is canonically
isomorphic to the normal bundle of M in R

m . For q ∈ U and w ∈ TqU , we will write
w = wh + wv where wh ∈ TqUh and wv ∈ TqUv . Also note that for any point q ∈ U , the
space TqUv is equal to the kernel of the derivative of the projection map Dππ∗(q) = ππ∗(q).
So if w ∈ TqU and w = wh + wv , we have that

|wh | = |ππ∗(q)(w)|. (3.3)

Now, for any p ∈ M , the map

Dπ∗∣∣
TpUh

: TpUh → TpM

is the identity. Thus, if the tubular neighborhoodU is chosen sufficiently small, then for any
q ∈ U , the map Dπ∗∣∣

TqUh
has the property that for any w ∈ TqUh ,

1

λ
|w| ≤ |Dπ∗(w)| ≤ λ|w| (3.4)

where λ > 1 is an arbitrarily chosen constant.
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From here, we show that π∗ : T → M is a 2λ bi-Lipschitz homeomorphism. Then since
T satisfies Proposition 6 due to (3) of Lemma 7, we have thatM also satisfies the Proposition.

Let q ∈ σ and σ ∈ T . Then for all v ∈ Tqσ , inequalities (3.3) and (3.4) give us that

|Dπ∗(v)| = |Dπ∗(vh)| ≤ λ|vh | ≤ λ|v|.
On the other hand, combining the same two inequalities with inequality (3.1) yields

|v| ≤ 2|ππ∗(q)(v)| = 2|vh | ≤ 2λ|Dπ∗(v)|.
	


Notice that we have proven that T is bi-Lipschitz homeomorphic toM , which by Lemma 7
implies Proposition 6. We record this as the following Proposition, which may be of inde-
pendent interest.

Proposition 8 Let (M, g) be an n-dimensional Riemannian manifold. Then there exists a
piecewise-flat metric on M which is Cn bi-Lipschitz to (M, g), where the constant Cn depends
only on the dimension of M.

4 Combinatorial analogues of Riemannian systolic inequalities

Let us briefly recall some definitions. The systole of a Riemannian manifold (M, g), denoted
Sysg(M), is the length of the shortest non-contractible loop in M . The homological systole of
aRiemannianmanifold (M, g), denoted SysHg (M), is the length of the shortest homologically
nontrivial loop in M .

If p is an edge path in the triangulated manifold (M, T ), the combinatorial length of p,
denoted �T (p), will be the number of edges in p. The combinatorial systole of a triangulated
manifold T , denoted SysT (M), will refer to the combinatorial length of the shortest non-
contractible edge loop in T . The combinatorial homological systole, denoted SysHT (M), is
defined analogously.

With this terminology, we are now ready to prove Theorem 3.

Proof of Theorem 3 (⇒) Assume you have a classM of smooth n-manifolds satisfying con-
dition (1) of the theorem, i.e. satisfying a Riemannian systolic inequality. Let T be a smooth
triangulation of a manifold M ∈ M lying within the class, and ε > 0 an arbitrary positive
constant. Let g be the Riemannian metric on M whose existence is given by Proposition 5,
γ the closed g-geodesic whose length realizes the Riemannian systole of (M, g), and p the
edge path freely homotopic to γ provided by Proposition 5. Then we have the sequence of
inequalities:

SysT (M) ≤ �T (p) ≤ κn�g(γ ) = κn · Sysg(M)

≤ κn · C n
√
Volg(M) ≤ (κn · C)

n
√
VolT (M) + ε

Letting ε tend to zero, we see that the class M satisfies condition (2) of the theorem (i.e.
satisfies a combinatorial systolic inequality), with constant C ′ = κn · C .
(⇐) Conversely, let us assume that you have a class M of smooth n-manifolds satisfying
condition (2) of the theorem, i.e. satisfying a combinatorial systolic inequality. Let g be an
arbitrary Riemannian metric on one of the manifolds M ∈ M lying within the class. Let
T be the smooth triangulation of M obtained by applying Proposition 6. We denote by E
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the supremum of the g-lengths of edges in T , and by v the infimum of the volume of top
dimensional simplices in T . So by Proposition 6, we have that E

v1/n
≤ δn . Let p be an edge

path in the triangulation T which realizes the combinatorial systole. Then we have the series
of inequalities:

Sysg(M) ≤ �g(p) ≤ E · �T (p) = E · SysT (M)

≤ C ′ · E · n
√
VolT (M) ≤ C ′ · E · n

√
Volg(M)

v
= δnC

′ · n
√
Volg(M)

Thus,we see that the classM satisfies condition (1) of the theorem (i.e. satisfies aRiemannian
systolic inequality), with constant C = δn · C ′. This concludes the proof of our Corollary. 	


In [10] Gromov proved that the class of closed smooth essential Riemannian manifolds
satisfies the above Riemannian systolic inequality. So an immediate consequence is the
following.

Corollary 9 Let M denote the class of closed smooth essential n-manifolds. Then for every
smooth triangulation (M, T ) of a manifold M ∈ M, we have

SysT (M) ≤ C n
√
VolT (M),

where C is a constant which depends solely on the dimension n.

In [10, Appendix B] Gromov develops analogous systolic inequalities for closed smooth
essential manifolds endowed with a polyhedral metric. The above Corollary 9 could also be
easily deduced from the polyhedral metric version of the systolic inequality.

The anonymous referee pointed out to us that Corollaries 12 and 11 below were proven
by Hutchinson in [16]. We give an alternative proof of these results. The key ingredient in
our argument is the following Lemma, which follows directly from Proposition 5 (and uses
all the same notation).

Lemma 10 Let (M, T ) be a closed triangulated n-dimensional manifold and let P1, . . . , PN
be free-homotopy-invariant properties a loop in M can satisfy. Suppose that, for each ε > 0,
there is a closed geodesic γε on the Riemannian manifold (M, g) (where g is the metric from
Theorem 5) so that γε satisfies properties P1, . . . , PN and

�h(γε) ≤ C
√
Volg(M). (4.1)

Then there is an edge loop p on M so that p satisfies properties P1, . . . , PN and

�T (p) ≤ κnC
√
VolT (M). (4.2)

Combining Lemma 10 and [10, Corollary 5.2.B] immediately gives us:

Corollary 11 Let (M, T ) be a triangulated surface with infinite fundamental group. Then the
combinatorial systole is bounded by

SysT (M) ≤ 2√
3
κ2

√
VolT (M).

Instead of focusing on homotopically non-trivial loops, one can look instead at homolog-
ically non-trivial loops. In a Riemannian manifold, the minimal length of such a loop is the
homological systole. In the case of a smoothly triangulated manifold (M, T ), the minimal
number of edges traversed by a homologically non-trivial loop contained in the 1-skeleton
similarly defines the combinatorial homological systole SysHT (M). Combining Lemma 10
and [11, Theorem 2.C] yields:
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Corollary 12 Let (M, T ) be a triangulated surface of genus g > 0. Then the combinatorial
homological systole is bounded by

SysHT (M) ≤ K
log g√

g

√
VolT (M).

where K is a universal constant.

5 Filling triangulated surfaces

We now focus on the special case of triangulated surfaces. We discuss the cut and cone
procedure, and establish a proof of Theorems 1 and 2 .

5.1 The cut-and-cone procedure

Suppose that (M, T ) is a triangulated surface with genus g ≥ 2. The g = 0, 1 cases will be
dealt with individually later. In order to simplify notation, wewill use |T | to denoteVolT (M),
the number of triangles in the triangulation T . Set (M(0), T(0)) := (M, T ). By Corollary 12,
there exists a homologically nontrivial edge loop p so that

�T (p) ≤ K
log g√

g

√|T |. (5.1)

By reducing the loop p, if necessary, we may assume that p is simple and still satisfies
Eq. (5.1). Cutting M along p yields a connected surface of genus g − 1 with two boundary
components. We then cone off the two boundary components to obtain a triangulated surface
(M(1), T(1)) with genus g − 1. Note that

|T(1)| ≤ |T | + 2�T (p) ≤ |T | + 2K
log g√

g

√|T | ≤
(√|T | + K

log g√
g

)2

.

Suppose, inductively, that we have triangulated surfaces

T = T(0), T(1), . . . , T(n)

where n ≤ g − 1, T(i) is obtained from T(i−1) by the above cut-and-cone procedure, and we
have

|T(i)| ≤
⎛
⎝√|T | + K

g∑
k=g−(i−1)

log k√
k

⎞
⎠

2

.

If n < g−1, thenT(n) has genus g−n ≥ 2, so byCorollary 12, there exists a homologically
nontrivial edge loop p(n) so that

�T(n)

(
p(n)

) ≤ K
log(g − n)√

g − n

√|T(n)|.

We may cut T(n) along this path and cone off the boundaries to get a triangulated surface
T(n+1) with genus one less than the genus of T(n) so that
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|T(n+1)| ≤ |T(n)| + 2K
log(g − n)√

g − n

√|T(n)|

≤
⎛
⎝√|T | + K

g∑
k=g−(n−1)

log k√
k

⎞
⎠

2

+ 2K
log(g − n)√

g − n

⎛
⎝√|T | + K

g∑
k=g−(n−1)

log k√
k

⎞
⎠

≤
⎛
⎝√|T | + K

g∑
k=g−n

log k√
k

⎞
⎠

2

.

If n = g − 1, then T(n) = T(g−1) is a torus and we may apply Corollary 11 to get a
noncontractible edge loop p so that

�T(g−1) (p) ≤ 2√
3
κ2

√|T(g−1)|. (5.2)

Cutting and coning along p gives us a triangulated 2-sphere T(g) such that

|T(g)| = |T(g−1)| + 2�Tg−1(p)

≤ |T(g−1)| + 2

(
2√
3
κ2

) √|T(g−1)|

≤
(√|T | + K

g∑
k=2

log k√
k

)2

+ 4√
3
κ2

(√|T | + K
g∑

k=2

log k√
k

)

≤ 5κ2

(√|T | + K
g∑

k=2

log k√
k

)2

.

If n = g, then T(n) = T(g) is a 2-sphere. We cone off T(g) to obtain a triangulated 3-ball
B3. By gluing together B3 along the cuts in the reverse order, we obtain a “triangulated”
3-manifold (N , T ′) which is a filling of (M, T ). This “triangulation” T ′ will generally not
be simplicial: various tetrahedra could intersect at both the cone point and in their opposite
face. To fix this issue, we pass to the first barycentric subdivision of T ′, which always yields a
legitimate simplicial complex. By abuse of notation we continue to call this triangulation T ′.
Performing the barycentric subdivision multiplies the number of tetrahedra by 24. Therefore,
we have that

|T ′| = 24|T(g)| ≤ 5 · 24κ2
(√|T | + K

g∑
k=2

log k√
k

)2

= κ

(√|T | + K
7∑

k=2

log k√
k

+ K
g∑

k=8

log k√
k

)2

≤ κ

(√|T | + C ′ +
∫ g

7

log x√
x

dx

)2

≤ κ
(√|T | + C ′ + 2

√
g log g

)2

where κ = 120κ2.
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5.2 Proofs of theorems

Proof of Theorem 1 Suppose (M, TM ) is a triangulated surface of genus at most g. After
performing the above cut-and-cone procedure we obtain (N , TN ), a filling of M , so that

|TN | ≤ κ
(√|TM | + C ′ + 2

√
g log g

)2 ≤ κ
(√|TM | + C ′

g

)2 ≤ Cg|TM |
for a suitable constant Cg . 	

Proof of Theorem 2 Suppose (M, TM ) is a triangulated surface of genus g. After performing
the above cut-and-cone procedure we obtain (N , TN ), a filling of M , so that

|TN | ≤ κ
(√|TM | + C ′ + 2

√
g log g

)2
. (5.3)

Since M is closed, the number of edges in TM is (3/2)|TM |. Thus if |v(TM )| is the number
of vertices of TM , we know that the Euler characteristic χ(TM ) satisfies

2 − 2g = χ(TM ) = |v(TM )| − |TM |
2

.

Solving for g then gives that

g = −|v(TM )|
2

+ |TM |
4

+ 1 ≤ |TM |
4

. (5.4)

Combining (5.3) and (5.4), we can conclude that

|TN | ≤ κ
(√|TM | + C ′ + 2

√
g log g

)2 ≤ κ
(√|TM | (1 + log |TM |) + C ′′)2

= κ
(
|TM | (1 + log |TM |)2 + 2C ′′√|TM |(1 + log |TM |) + (

C ′′)2)

≤ C |TM | (log |TM |)2
for some suitable C . 	


6 Whitney’s triangulation procedure

In this Section we give a short, high-level sketch of Whitney’s triangulation procedure from
[25] in order to justify Lemma 7 from Sect. 3.

We begin with a Riemannian submanifold Mn of Rm . By the smooth Nash isometric
embedding theorem [19] we know that the dimensionm of the ambient space can be reduced,
if necessary, to a quantitywhich is a function of n (on the order of n2).Define L0 to be a cubical
subdivision ofRm with cubes of side length h, and let L be the barycentric subdivision of L0.
Whitney recursively constructs a new triangulation of Rm , L∗, whose (m − n − 1)-skeleton
is sufficiently far away from M .

Whitney then defines the simplicial complex K to be the poset of intersections of sim-
plices of L∗ of dimensions (m − n), . . . ,m with M . For h small, this gives us a simplicial
complex that sits inside a tubular neighborhood of M . Whitney then proves that the tubular
neighborhood projection induces a diffeomorphism of K onto M .

This last remark is for the reader who attempts to tackle Whitney’s work in [25]. On pp.
133–134, Whitney defines complexes named Kp , L∗

p , and Rp . These are just small regions
in either K or L∗ near the point p ∈ M , and their only purpose is in proving that K is
diffeomorphic to M .
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Proof of Lemma 7 Let us first remind the reader that all Lemmas and equations in this proof
reference Whitney’s paper [25].

Whitney proves thatπ∗ : K → M is a diffeomorphism (pp. 134–135). Now, usingLemma
21a on p. 132, Eq. (21.2) on p. 132, and the fact that 4λξ < λξ/α (since 0 < α << 1, see
Eqs. (17.2) on p. 128 and (21.2) on p. 132), we see that the simplicial complex in Rm whose
vertices are π∗(v) for each vertex v of K is still homeomorphic to M via π∗. Call this
simplicial complex T . Every simplex of T is a secant simplex of M . We have that every
simplex of T has fatness at least �n,m := �1/2 (see Eq. (17.3) on p. 128 for the definition
of �1), a number which depends only on n and m [see the proof of Lemma 21a on p. 132,
between Eqs. (21.3) and (21.4)]. This proves parts (1), (2), and (3) of Lemma 7.

Let v ∈ Tqσ for q ∈ σ with σ a simplex of T . Then

|ππ∗(q)(v)| ≥ |v| − |v − ππ∗(q)(v)| ≥ |v| − 1

2
|v| = 1

2
|v|

where the second inequality follows from the last inequality on p. 132 (beginning with
|u − πpu|). This proves part (4) of the Lemma. Lastly, via the second-to-last equation on p.
132 (beginning with |p′

i − p′
0|) and Eq. (21.2) on p. 132, we have that

βδ

2
= b

2
≤ length of an edge in T ≤ 2δ + 8λξ ≤ 3δ.

If L̄ = 3δ and Cn,m = β/6, we have that Cn,m depends only on n and m which proves part
(5) of Lemma 7.

Let us note that β, δ, and b are defined on pp. 128–129 in Eqs. (17.3), (17.5), and (17.6),
respectively. The parameters λ and ξ are likewise defined in Eqs. (17.4) and (17.5). The
quantity β depends only on m and h, which in turn both only depend on n. This concludes
the proof of Lemma 7. 	
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