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Abstract

We compute the equivariant K-homology of the classifying space for proper actions, for cocom-
pact 3-dimensional hyperbolic reflection groups. This coincides, via the Baum-Connes
Conjecture, with the topological K-theory of the reduced C*-algebra associated to the group. We
show that for any such reflection group, the associated K-theory groups are torsion-free. As a
result we can promote previous rational computations to integral computations. Our proof relies
on a new efficient algebraic criterion for checking torsion-freeness of K-theory groups, which
could be applied to many other classes of groups.

1. Introduction

For a discrete group G, a general problem is to compute ( G)K Cr*
* , the topological K -theory of the

reduced C*-algebra of G. The Baum–Connes Conjecture predicts that this functor can be deter-
mined, in a homological manner, from the complex representation rings of the finite subgroups of
G. This viewpoint led to general recipes for computing the rational topological K -theory

( G) Ä K Cr*
* of groups, through the use of Chern characters (see for instance Lück and Oliver
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[17] and Lück [14, 16], as well as related earlier work of Adem [1]). When G has small homological
dimension, one can sometimes even give completely explicit formulas for the rational topological
K -theory, see for instance Lafont et al. [12] for the case where G is a 3-orbifold group.

On the other hand, performing integral calculations for these K -theory groups is much harder.
For 2-dimensional crystallographic groups, such calculations have been done in M. Yang’s thesis
[26]. This was subsequently extended to the class of cocompact planar groups by Lück and Stamm
[19], and to certain higher dimensional crystallographic groups by Davis and Lück [5] (see also
Langer and Lück [13]). For 3-dimensional groups, Lück [15] completed this calculation for the
semidirect product ( )  CHei3 4 of the 3-dimensional integral Heisenberg group with a specific
action of the cyclic group C4. Some further computations were completed by Isely [8] for groups
of the form  2 ; by Rahm [23] for the class of Bianchi groups; by Pooya and Valette [22] for
solvable Baumslag–Solitar groups; and by Flores et al. [6] for lamplighter groups of finite groups.

Our present paper has two main goals. Our first goal is to add to the list of examples, by provid-
ing a formula for the integral K -theory groups of cocompact 3-dimensional hyperbolic reflection
groups. The study of hyperbolic reflection groups has a long history, and is motivated for instance
in Davis’ book [4].

MAIN THEOREM. Let G be a cocompact 3-dimensional hyperbolic reflection group, generated by
reflections in the sides of a hyperbolic polyhedron Ì 3. Then

( (G)) @ ( (G)) @ c(G) (G)- ( ) K C K Cand ,r
cf

r
cf

0 1* *

where the integers c(G) ( )cf , can be explicitly computed from the combinatorics of the poly-
hedron  .

Here, (G)cf denotes the number of conjugacy classes of elements of finite order in G, and c ( )
denotes the Euler characteristic of the Bredon chain complex. By a celebrated result of Andreev
[2], there is a simple algorithm that inputs a Coxeter group G, and decides whether or not there
exists a hyperbolic polyhedron ÌG P 3 which generates G. In particular, given an arbitrary
Coxeter group, one can easily verify if it satisfies the hypotheses of our Main Theorem.

Note that the lack of torsion in the K -theory is not a property shared by all discrete groups
acting on hyperbolic 3-space. For example, 2-torsion occurs in ( (G))K Cr0 * whenever G is a
Bianchi group containing a 2-dihedral subgroup ´C C2 2 (see [23]). In fact, the key difficulty in
the proof of our Main Theorem lies in showing that these K -theory groups are torsion-free. Some
previous integral computations yielded K -theory groups that are torsion-free, though in those
papers the torsion-freeness was a consequence of ad-hoc computations. Our second goal is to give
a general criterion which explains the lack of torsion, and can be efficiently checked. This allows a
systematic, algorithmic approach to the question of whether a K -theory group is torsion-free.

Let us briefly describe the contents of the paper. In Section 2, we provide background material
on hyperbolic reflection groups, topological K -theory, and the Baum–Connes Conjecture. We also
introduce our main tool, the Atiyah–Hirzebruch type spectral sequence. In Section 3, we use the
spectral sequence to show that the K -theory groups we are interested in coincide with the Bredon
homology groups (G )RH ;0

Fin and (G )RH ;1
Fin , respectively. We also explain, using the

G-action on 3, why the homology group (G )RH ;1
Fin is torsion-free. In contrast, showing that

(G )RH ;0
Fin is torsion-free is much more difficult. In Section 4, we give a geometric proof for

this fact in a restricted setting. In Section 5, we give a linear algebraic proof in the general case,
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inspired by the ‘representation ring splitting’ technique of [23]. In particular, we establish a novel cri-
terion (Theorem 5.2) for verifying that (G )RH ;0

Fin is torsion-free, for any collection of groups G
with prescribed types of finite subgroups. In Sections 6.1 and 6.2 , we further illustrate this criterion
by applying it to the Heisenberg semidirect product group of [15] and to the crystallographic groups
of [5], respectively. As the rank of the K -theory groups can be easily computed, this gives an alter-
nate proof of the integral K -theoretic computations in [5, 15]. Finally, in Section 7, we return to our
Coxeter groups, and provide an explicit formula for the rank of the Bredon homology groups (and
hence for the K -groups we are interested in), in terms of the combinatorics of the polyhedron  .

Our results rely on fairly standard, but rather long representation theoretic calculations which have
not been included in this article, but are available for the interested reader in the two appendices of
the arXived version of the present paper [10], making our results self-contained and fully verifiable.

2. Background material

2.1. K -theory and the Baum–Connes Conjecture

Associated to a discrete group G, one has GCr* , the reduced C*-algebra of G. This algebra is
defined to be the closure, with respect to the operator norm, of the linear span of the image of the
regular representation l G  ( (G))B l: 2 of G on the Hilbert space (G)l2 of square-summable com-
plex valued functions on G. This algebra encodes various analytic properties of the group [21].

For a C*-algebra A, one can define the topological K -theory groups p( ) ( ( ))-K A GL A1* *≔ ,
which are the homotopy groups of the space ( )GL A of invertible matrices with entries in A. Due
to Bott periodicity, there are canonical isomorphisms ( ) @ ( )+K A K A2* * , and thus it is sufficient
to consider ( )K A0 and ( )K A1 .

In the special case where = GA Cr* , the Baum–Connes Conjecture predicts that there is a
canonical isomorphism ( )  ( (G))GK X K Cn n r* , where X is a model for GE (the classifying space
for G-actions with isotropy in the family of finite subgroups), and (-)GK* is the equivariant
K -homology functor. The Baum–Connes conjecture has been verified for many classes of groups.
We refer the interested reader to the monograph by Mislin and Valette [21], or the survey article
by Lück and Reich [18] for more information on these topics.

2.2. Hyperbolic reflection groups

We will assume some familiarity with the geometry and topology of Coxeter groups, which the
reader can obtain from Davis’ book [4]. By a d-dimensional hyperbolic polyhedron, we mean a
bounded region of hyperbolic d-space d delimited by a given finite number of (geodesic) hyper-
planes, that is, the intersection of a collection of half-spaces associated to the hyperplanes. Let

Ì d be a polyhedron such that all the interior angles between intersecting faces are of the form
p/mij, where the ³m 2ij are integer (although some pairs of faces may be disjoint). Let G = G be
the associated Coxeter group, generated by reflections in the hyperplanes containing the faces of  .

The G-space d is then a model for GE , with fundamental domain  . This is a strict fundamen-
tal domain —no further points of  are identified under the group action —and hence = G d⧹ .
Recall that G admits the following Coxeter presentation:

G = á ¼ ( ) ñ ( )s s s s, , , 2.1n i j
m

1 ij∣

where n is the number of distinct hyperplanes enclosing  , si denotes the reflection on the ith face,
and ³m 2ij are integers such that: =m 1ii for all i, and, if ¹i j, the corresponding faces meet with
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interior angle p/mij. We will write = ¥mij if the corresponding faces do not intersect. For the rest
of this article, =d 3, and X is3 with the G-action described above, with fundamental domain  .

2.3. Cell structure of the orbit space

Fix an ordering of the faces of  with indexing set = { ¼ }J n1, , . We will write á ñS for the sub-
group generated by a subset Ì GS . At a vertex of  , the concurrent faces (a minimum of three)
must generate a reflection group acting on the 2-sphere, hence it must be a spherical triangle
group. This forces the number of incident faces to be exactly three. The only finite Coxeter groups
acting by reflections on S2 are the triangle groups D( )m2, 2, for some ³m 2, D( )2, 3, 3 ,
D( )2, 3, 4 andD( )2, 3, 5 , where we use the notation

D( ) = á ( ) ( ) ( ) ñ ( )p q r s s s s s s s s s s s s, , , , , , , , , . 2.2p q r
1 2 3 1

2
2
2

3
2

1 2 1 3 2 3∣

From our compact polyhedron  , we obtain an induced G-CW-structure on = X 3 with:

• one orbit of 3-cells, with trivial stabilizer;
• n orbits of 2-cells (faces) with stabilizers á ñ @s s Ci i

2
2∣ , the cycle group of order 2

( = ¼ )i n1, , ;
• one orbit of 1-cells (edges) for each unordered pair Îi j J, with ¹ ¥mij , with stabilizer a

dihedral group Dmij
—this group structure can be read off straight from the Coxeter presentation

á ( ) ñs s s s s s, , ,i j i j i j
m2 2 ij∣ ;

• one orbit of 0-cells (vertices) per unordered triple Îi j k J, , with á ñs s s, ,i j k finite, with stabilizer
the triangle group á ñ @ D( )s s s m m m, , , ,i j k ij ik jk .

We introduce the following notation for the simplices of  :

( )
= Ç ( )

= Ç Ç = Ç Ç ( ) ( )

f

e f f

v f f f e e e

faces ,

edges ,

vertices , 2.3

i

ij i j

ijk i j k ij ik jk

whenever the intersections are non-empty.

2.4. A spectral sequence

We ultimately want to compute the K -theory groups of the reduced C*-algebra of G via the
Baum–Connes conjecture. Note that the conjecture holds for these groups: Coxeter groups have
the Haagerup property [3] and hence satisfy Baum–Connes [7]. Therefore, it suffices to compute
the equivariant K -homology groups ( )GK X* , since X is a model of GE . In turn, these groups can
be obtained from the Bredon homology of X , calculated via an equivariant Atiyah–Hirzebruch
spectral sequence coming from the skeletal filtration of the G-CW-complex X (cf. [20]). The
second page of this spectral sequence is given by the Bredon homology groups

=
ì
í
ïï

îïï

(G )
( )E

R q

q

H ; even,

0 odd.
2.4p q

p
,

2
Fin
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The coefficients R of the Bredon homology groups are given by the complex representation ring
of the cell stabilizers, which are finite subgroups. In order to simplify notation, we will often write
Hp to denote (G )RH ;p

Fin . In our case ( ) =Xdim 3, so the Atiyah–Hirzebruch spectral sequence
is particularly easy to analyze, and gives the following:

PROPOSITION 2.1 There are short exact sequences

0 coker(d3
3,0) KΓ

0 (X) H2 0

and

0 H1 KΓ
1 (X) ker(d3

3,0) 0,

where = =d E H E H:3,0
3

3,0
3

3 0,2
3

2⟶ is the differential on the E3-page of the Atiyah–Hirzebruch
spectral sequence.

Proof. This follows at once from a result of Mislin [20, Theorem 5.29]. □

2.5. Bredon homology

To lighten the notation, we write Ge for the stabilizer in G of the cell e. The Bredon homology
groups in Equation (2.4) are defined to be the homology groups of the following chain complex:

. . .
⊕

e∈Id
RC (Γe)

∂d ⊕
e∈Id−1

RC (Γe) . . . , ð2:5Þ

where Id is a set of orbit representatives of d-cells ( ³d 0) in X . The differentials ¶d are defined
via the geometric boundary map and induction between representation rings. More precisely, if ¢ge
is in the boundary of e ( Îe Id , ¢ Î -e Id 1, Î Gg ), then ¶ restricted to (G )  (G )¢ R Re e is given
by the composition

RC (Γe)
Ind

RC (Γge′)
∼=

RC (Γe′),

where the first map is the induction homomorphism of representation rings associated to the sub-
group inclusion G Ì G ¢e ge , and the second is the isomorphism induced by conjugation
G = G¢ ¢ -g gge e

1. Finally, we add a sign depending on a chosen (and thereafter fixed) orientation on
the faces of  . The value ¶ ( )ed equals the sum of these maps over all boundary cells of e.

Since  is a strict fundamental domain, we can choose the faces of  as orbit representatives.
With this choice of orbit representatives, the element g in the previous paragraph is always the
identity. We will implicitly make this assumption from now on.

3. Analyzing the Bredon chain complex for G

Let = { £ £ }S s i n: 1i be the set of Coxeter generators and = { ¼ }J n1, , . Since X is
3-dimensional, the Bredon chain complex associated to X reduces to
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0 C3
∂3 C2

∂2 C1
∂1 C0 0. ð3:1Þ

We will now analyse the differentials in the above chain complex in turn.
First, let us recall some basic concepts from representation theory [9, 24] and explain the

upcoming notation. For a finite group G, the complex representation ring ( )R G is a free abelian
group with basis the set of irreducible representations of G (the ring structure is not relevant in this
setting). Hence, ( ) @ ( )R G c G , where we write ( )c G for the set of conjugacy classes in G. If H
is a subgroup of G, we write ( )  ( ) R H R GInd :H

G for the induction homomorphism and denote
r( )IndH

G simply by r when the groups are clear from the context. Similarly, we use r( )ResH
G or

r for restriction of representations.
We will use the character tables of the groups involved in the Bredon chain complex (3.1), that

is, the finite Coxeter subgroups of G up to rank three. These are based on the representation theory
described in for example, [9], where all these character tables are constructed. In the character
tables below, rows correspond to irreducible representations, and columns to representatives of
conjugacy classes, written in term of the Coxeter generators ¼s s, , n1 in a fixed Coxeter presenta-
tion of G (2.1).

The induction homomorphisms appearing in the Bredon chain complex (3.1) can be easily com-
puted using Fröbenius reciprocity [24]: r t r tá ( ) ñ = á ( )ñInd , , ResH

G
H
G , where á ñ,· · is the scalar

product of representations. Computing restrictions and scalar products is straightforward, and thus
Fröbenius reciprocity give r as a linear combination of the irreducible representation of the larger
group. Note that, for consistency across subgroups, one must pay particular attention to the order
of the Coxeter generators within a subgroup when computing character tables or induction
homomorphisms.

Let us write e for the identity element in G and, when discussing a dihedral group Dm, use the
hat to denote an entry which appears only when m is even.

3.1. Analysis of ¶3

Let G be a finite group with irreducible representations r r¼, , m1 of degree ¼n n, , m1 , and t the
only representation of the trivial subgroup { } £ G1G . Then t induces the regular representation
of G:

t r r( ) = + + ( ){ } n nInd . 3.2G
m m1 1 1G



LEMMA 3.1 Let X be a G-CW-complex with finite stabilizers, and Î k . If there is a unique orbit
of k-cells and this orbit has trivial stabilizer, then =H 0k , provided that ¶ ¹ 0k .

Proof. The Bredon module k equals (á ñ) @ R 1 with generator t , the trivial representation.
Then t¶ ( ) ¹ 0k implies (¶ ) =ker 0k ; and therefore the corresponding homology group
vanishes. □

From the lemma, we can easily see that =H 03 if ¶ ¹ 03 . Indeed, for ¶ = 03 to occur, one
would need all boundary faces of  to be pairwise identified. This cannot happen since  is a
strict fundamental domain—the group acts by reflections on the faces. The Lemma then forces

=H 03 , and Proposition 2.1 gives us
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COROLLARY 3.2 We have ( ) @GK X H1 1, and there is a short exact sequence

0 H0 KΓ
0 (X) H2 0.

3.2. Analysis of ¶2

Let f be a face of  and Î ¶e f an edge. Suppose, using the notation of Equation (2.3), that
=f fi and =e eij. Then we have a map (á ñ)  (á ñ) R s R s s,i i j induced by inclusion. Recall that

á ñ @s Ci 2 and á ñ @s s D,i j mij. Denote the characters of these two finite groups as specified in
Tables 1 and 2; and denote by a character name with the suffix ‘’ the character induced in the
ambient larger group.

A straightforward analysis (cf. [11, B.2] and Tables 1 and 2) shows that

r c c f

r c c f

 = + + å
= + + å

,

,
p

p

1 1 4

2 2 3


if <i j, or

r c c f

r c c f

 = + + å
= + + å

,

,
p

p

1 1 3

2 2 4




if <j i. Thus, the induction map on the representation rings is the morphism of free abelian
groups  ( ) c D2 mij given by

( )  ( + ¼ + )

( )  ( + ¼ + )

a b a b b a a b a b

a b a b a b a b a b

, , , , , , , or

, , , , , , , ,

↦
↦









where again the hat ^ denotes an entry which appears only when mij is even. Using the analysis
above, we can now show the following.

THEOREM 3.3 If  is compact, then =H 02 .

From this theorem and Corollary 3.2, we immediately obtain:

COROLLARY 3.4 ( ) =GK X H0 0 and ( ) =GK X H1 1.

Table 1. Character table of á ñ @s Ci 2

C2 e si

ρ1 1 1
ρ2 1 −1
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Proof of Theorem 3.3. Fix an orientation on the polyhedron  , and consider the induced orienta-
tions on the faces. At an edge, we have two incident faces fi and fj with opposite orientations. So
without loss of generality we have, as a map of free abelian groups,

(á ñ) Å (á ñ) (á ñ)

( ) ( - - - - ¼ ) ( )

  R s R s R s s

a b a b a a b b a b b a S S

, ,

, , , , , , , , , 3.3

i j i j

i i j j i j i j i j i j∣ ↦ 

where = + - -S a b a bi i j j, and the elements with a hat appear only when mij is even. Note that
we use vertical bars ‘∣’ for clarity, to separate elements coming from different representation rings.

By the preceding analysis, ¶ ( ) =x 02 implies that, for each Îi j J, such that the corresponding
faces fi and fj meet, we have

(1) =a ai j and =b bi j, and
(2) = = =a a b bi j i j, if mij is even.

Suppose that ¼f f, , n1 are the faces of  . Let = ( ¼ ) Î x a b a b, ,n n1 1 2∣ ∣ be an element in (¶ )Ker 2 .
Note that ¶ is connected (since P is homeomorphic to3), so by properties (1) and (2) above, we
have that = =a an1  and = =b bn1  . Since the stabilizer of a vertex is a spherical triangle
group, there is an even mij, which also forces =a b. Therefore, we have = ( ¼ )x a a a a, ,∣ ∣ , so
= ¶ ( )x a3 (note that the choice of orientation above forces all signs to be positive). This yields
(¶ ) Í (¶ )ker im2 3 , which gives the vanishing of the second homology group. □

3.3. Analysis of ¶1

A similar argument shows that H1 is torsion-free.

THEOREM 3.5 There is no torsion in H1.

Proof. Consider the Bredon chain complex

C2
∂2 C1

∂1 C0.

Table 2. Character table of á ñ @s s D,i j m, where <i j and £ £ -r m0 1, while £ £ / -p m1 2 1 if m is even, and
£ £ ( - )/p m1 1 2 if m is odd, and where the hat ^ denotes a character which appears only when m is even

Dm (sisj)r sj(sisj)r

χ1 1 1
χ2 1 −1
χ̂3 (−1)r (−1)r

χ̂4 (−1)r (−1)r+1

φp 2 cos 2πpr
m

)
0
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To prove that = (¶ )/ (¶ )H ker im1 1 2 is torsion-free, it suffices to prove that / (¶ ) im1 2 is torsion-
free. Let a Î 1 and ¹ Î k0 such that a Î (¶ )k im 2 . We shall prove that a Î (¶ )im 2 .

Since a Î (¶ )k im 2 , we can find b Î 2 with b a¶ ( ) = k2 . Suppose that  has n faces, and
write b = ( ¼ ) Î a b a b, ,n n1 1 2∣ ∣ , using vertical bars ‘∣’ to separate elements coming from differ-
ent representation rings. We shall see that one can find a 1-chain b¢, homologous to b , and with
every entry of b¢ a multiple of k.

At an edge eij, the differential ¶2 is described in Equation (3.3). Since every entry of b¶ ( )2 is a
multiple of k, we conclude from Equation (3.3) that for every pair of intersecting faces fi and fj,

º ( ) º ( )a a k b b kmod and mod .i j i j

Equation (3.3) also shows that = ( ¼ )¶1 1, 1 1, 1P ∣ ∣ , the formal sum over all generators of
representation rings of face stabilizers of ¶ Î P 2, is in the kernel of ¶2. In particular, setting
b b¢ = - ¶a 1 P1 , we see that b b a¶ ( ¢) = ¶ ( ) =2 2 and we can assume without loss of generality
that b¢ satisfies ¢ º ( )a k0 mod1 .

Let us consider the coefficients for the 1-chain b¢. For every face fj intersecting f1, we have
¢ - ¢ º ( )a a k0 modj1 , which implies ¢ º ( )a k0 modj . Since ¶ is connected, repeating this argu-

ment we arrive at ¢ º ( )a k0 modi for all i. In addition, there are even mij (the stabilizer of a vertex
is a spherical triangle group), and hence (3.3) also yields ¢ - ¢ º ( )a b k0 modi j , which implies
¢ º ( )b k0 modj . Exactly the same argument as above then ensures that ¢ º ( )b k0 modi for all i.
Since all coefficients of b¢ are divisible by k, we conclude that a b= ¶ ( ¢/ ) Î (¶ )k im2 2 , as

desired. □

We note that a similar method of proof can be used, in many cases, to show that H0 is torsion-
free—though the argument becomes much more complicated. This approach is carried out in
Section 4.

COROLLARY 3.6 Let (G)cf be the number of conjugacy classes of elements of finite order in G,
and c ( ) the Euler characteristic of the Bredon chain complex (3.1). Then we have

@ c(G)- ( )H .cf
1

Proof. The Euler characteristic of a chain complex coincides with the alternating sum of the ranks
of the homology groups, giving us

c ( ) = ( ) - ( ) + ( ) - ( ) H H H Hrank rank rank rank .0 1 2 3

Since = =H H 03 2 , we have c( ) = ( ) - ( )H Hrank rank1 0 , and ( ) = (G)H cfrank 0 [20]. Since
H1 is torsion-free (Theorem 3.5), the result follows. □

Note that both (G)cf and c ( ) can be obtained directly from the geometry of the polyhedron 
or, equivalently, from the Coxeter integers mij. We discuss this further, and give explicit formulas,
in Section 7.

REMARK 3.7 A previous article by three of the authors [12] gave an algorithm to compute the
rank of the Bredon homology for groups G with a cocompact, 3-manifold model X for the
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classifying space GE . The interested reader can easily check that the computations in the present
paper agree with the calculations in [12].

To complete the computation of the Bredon homology, and hence of the equivariant K -
-homology, all that remains is to compute the torsion subgroup of H0. We will show that in fact
H0 is also torsion-free.

THEOREM 3.8 There is no torsion in H0.

We postpone the proof to Section 5 below. We note the following immediate consequence of
Theorem 3.8.

COROLLARY 3.9 ( )GK X0 is torsion-free of rank (G)cf .

Our Main Theorem now follows immediately by combining Corollaries 3.4, 3.6 and 3.9.
Moreover, in Section 7, we will give a formula for (G)cf and c ( ) from the combinatorics of the
polyhedron.

4. No torsion in H0—the geometric approach

We present a geometric proof for a restricted version of Theorem 3.8. The method of proof is
similar to the proof of Theorem 3.5, but with further technical difficulties. We will show:

THEOREM 4.1 Assume the compact polyhedron  is such that all vertex stabilizers are of the
form ´D Cm 2, where ³m 3 can vary from vertex to vertex. Then there is no torsion in the
0-dimensional Bredon homology group (G )RH ;0

Fin .

First, we discuss some terminology and the over all strategy of the proof. Fix ³k 2 an integer.
Our over all objective is to rule out k-torsion in H0. Let b Î 1C (in the Bredon chain complex of
G) such that b¶ ( )1 is the zero vector modulo k . Note that an element a Î 1C has order k in

= / (¶ )H im0 0 1C if and only if a b= ¶ ( )k 1 . Recall that

= (á ñ)R s s, ,
e

i j1

edgeij

C ⨁

is the direct sum of the representation rings (as abelian groups) of the edge stabilizers. The coeffi-
cients of x supported along a particular edge eij are by definition the projection of x to

@ (á ñ) R s s,n
i jij , where nij is the dimension of the representation ring of the edge stabilizer. We

say an element x is k-divisible along an edge eij provided the coefficients of x supported along eij

are congruent to zero mod k.
By establishing k-divisibility of b along an edge eij, we mean: substituting b by a homologous

element b¢ Î 1C (homologous means that b b¶ ( ) = ¶ ( ¢)1 1 ), such that b¢ is k-divisible along eij.
When the 1-chain b is clear from the context, we will abuse terminology and simply say that the
edge e is k-divisible. We sometimes refer to an edge with stabilizer Dn as an n-edge, or edge of
type n.

Our goal is to replace b with a homologous chain b¢ for which all the edges are k-divisible,
that is,
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(1) b b¶ ( ¢) = ¶ ( )1 1 , and
(2) every coefficient in the 1-chain b¢ is divisible by k.

If we can do this, it follows that a b= ¶ ( ¢/ )k1 , and hence a is zero in H0.
The construction of b¢ is elementary, but somewhat involved. It proceeds via a series of steps,

which will be described in the following subsections. Sections 4.1–4.9 contain the conceptual, geo-
metric arguments needed for the proof. At several steps in the proof, we require some technical
algebraic lemmas. For the sake of exposition, we defer these lemmas and their proofs to the very
last Section 4.11.

4.1. Coloring the 1-skeleton

Recall that b Î = (G )Î ( )  Re e1 1⨁ , so we can view b as a formal sum of complex representa-
tions of the stabilizers of the various edges in the 1-skeleton of  . The edge stabilizers are dihedral
groups. Let us 2-color the edges of the polyhedron, blue if the stabilizer is D2, and red if the stabil-
izer is Dm, where ³m 3. From our constraints on the vertex groups, we see that every vertex has
exactly two incident blue edges. Of course, any graph with all vertices of degree 2 decomposes as
a disjoint union of cycles.

The collection of blue edges thus forms a graph, consisting of pairwise disjoint loops, separat-
ing the boundary of the polyhedron  (topologically a 2-sphere) into a finite collection of regions,
at least two of which must be contractible. The red edges appear in the interior of these individual
regions, joining pairs of vertices on the boundary of the region. Fixing one such contractible
region ¥R , the complement will be planar. We will henceforth fix a planar embedding of this com-
plement. This allows us to view all the remaining regions as lying in the plane 2.

4.2. Enumerating the regions

Our strategy for modifying b is as follows. We will work region by region. At each stage, we will
modify b by only changing it on edges contained in the closure of a region. In order to do this, we
need to enumerate the regions.

We have already identified the (contractible) region ¥R —this will be the last region dealt with.
In order to decide the order in which we will deal with the remaining regions, we define a partial
ordering on the set of regions. For distinct regions ¢R R, , we write < ¢R R if and only if R is con-
tained in a bounded component of ¢ R2⧹ . This defines a partial ordering on the finite set of
regions. For example, any region which is minimal with respect to this ordering must be simply
connected (hence contractible). We can thus enumerate the regions ¼R R, ,1 2 so that, for any <i j,
we have <R Rj i (Fig. 1). We will now deal with the regions in the order they are enumerated.
Concretely, the choice of enumeration means that by the time we get to the ith region, we have
already dealt with all the regions which are ‘interior’ to Ri (that is, in the bounded components of

) Ri
2⧹ .

4.3. Enumerating faces within a region

We now want to establish k-divisibility of the red edges inside a fixed region R. To do this, we
first need to order the 2-faces inside R. Consider the graph G dual to the decomposition of R into
2-faces. This graph has one vertex for each 2-face in R, and an edge joining a pair of vertices if
the corresponding 2-faces share a (necessarily red) edge. Notice that every vertex of R lies on a
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pair of blue edges. It follows that, if we remove the blue edges from the region R, the result
deformation retracts to G.

If s denotes the number of regions <R Ri with ¶ Ç ¶R Ri non-empty, then the first homology
( ) = ( )H G H R1 1 will be free abelian of rank s. We now choose any spanning tree T for the graph

G, and note that G T⧹ consists of precisely s edges, each of which is dual to a red edge inside the
region R. Since T is a tree, we can enumerate its vertices ¼v v v, , , n1 2 so that

(1) v1 is a leaf of the tree (vertex of degree one), and
(2) the subgraph induced by any { ¼ }v v, , k1 , £ £k n1 , is connected.

Since vertices of the dual tree correspond to 2-faces in R, this gives us an enumeration of the
2-faces ¼F F F, , , n1 2 inside the region R. Figure 2 illustrates this process for a contractible region,
while Fig. 3 gives an illustration for a non-contractible region.

4.4. Establishing k-divisibility of red edges dual to a spanning tree

Continuing to work within a fixed region R, we now explain how to establish k-divisibility of all
the red edges which are dual to the edges in the spanning tree T . As explained in Section 4.3, we
have an enumeration ¼F F, ,1 2 of the 2-faces contained inside the region R. With our choice of

R1 R2 R4

R3

R5

Figure 1. Example of enumeration of regions (see Section 4.2).

F1

F2

F3

F4

F5

F9

F6

F7 F8

F11

F13

F10

F12

v1

v2

v3 v4

v5

v6

v7

v8

v11

v12

v13

v10

v9

Figure 2. Contractible region, its dual tree T with an enumeration of its vertices, and the corresponding enumeration of
the faces in the region (see Section 4.3).
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enumeration, we have guaranteed that each +Fk 1 shares precisely one distinguished red edge with

= Fi
k

i1⋃ , distinguished in the sense that this red edge is dual to the unique edge in the tree T con-
necting the vertex +vk 1 to the subtree spanned by ¼v v, , k1 .

We orient the (blue) edges along the boundary loops of R clockwise, and the red edges cutting
through R in an arbitrary manner. For each 2-face Fi , we want to choose corresponding elements hi
in the representation ring (G ) @ R F

2
i

, where G @ CF 2i
is the stabilizer of Fi . These hi shall be

chosen such that all red edges dual to T are k-divisible for the 1-chain b h+ ¶ (å )i2 , which is
clearly homologous to b .

Pick an h1 arbitrarily. We now assume that h h¼, , k1 are given, and explain how to choose h +k 1.
By our choice of enumeration of vertices, the vertex +vk 1 is adjacent to some vj where £j k . Dual
to the two vertices +v v,j k 1 we have a pair +F F,j k 1 of 2-faces inside the region R. Dual to the edge
that joins vj to +vk 1 is the (red) edge Ç +F Fj k 1. We see that h h¶ ( + )+j k2 1 is the only term which
can change the portion of b supported on the edge Ç +F Fj k 1. Since hj is already given, we want to
choose h +k 1 in order to ensure that the resulting 1-chain is k-divisible on the edge Ç +F Fj k 1. This
will arrange key property (2) above (Section 4.3) for the (red) edge Ç +F Fj k 1.

That such an h +k 1 can be chosen is the content of Lemma 4.6 in Section 4.11. Iterating this pro-
cess, we find that the 1-chain b h+ ¶ (å )i2 is homologous to b , and that all red edges dual to
edges in T are k-divisible for b h+ ¶ (å )i2 .

4.5. Forming the graph B

Performing the process in Section 4.4 for each region R (including the region ¥R ), we finally
obtain a 1-chain homologous to our original b (which by abuse of notation we will still denote b)
which is k-divisible except possibly along:

• si red edges inside each region Ri, where si denotes the number of regions entirely enclosed by
the region Ri who share a boundary with Ri;

• all the blue edges inside the 1-skeleton, which we recall decompose into a finite collection of
blue loops.

F1

F2

F3

F4

F5

F9

F6

F17 F10

F16

F14

F11

F15

F7

F8

F12

F13

v2 v4

v5 v7

v8

v9

v10

v11

v12

v13
v14

v15

v16

v17
v1

v3

v6

Figure 3. Non-contractible region and its dual graph G . A spanning tree T for G consisting of all edges except the red
edges ( )v v,4 17 and ( )v v,17 10 . The enumeration of the vertices, and corresponding enumeration of the faces is done according
to Section 4.3.
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We now use these to form a graph B, which captures all the remaining potentially ‘bad’ edges for
the chain b , that is, edges that are still not k-divisible. B is formed with one vertex for each blue
loop. Note that each remaining red edge that is potentially not k-divisible joins a pair of vertices
which lie on some blue loops g g,1 2 (as all vertices lie on blue loops). For each such red edge, we
define an edge in the graph B joining the two vertices vi corresponding to the blue loops gi (Fig. 4).

LEMMA 4.2 The graph B is a tree.

Proof. It follows immediately from the discussion in Section 4.3 that B is connected. Thus it suf-
fices to show B has no embedded cycles. Observe that, since blue loops separate the plane into two
connected components, the corresponding vertex of B likewise partitions the graph B into two con-
nected components (corresponding to the ‘interior’ component and the ‘exterior’ component deter-
mined by the blue loop). Thus, if there is an embedded cycle, then for each vertex v of B, it must
remain within one connected component of { }B v⧹ . This means that any embedded cycle has the
property that all the vertices it passes through correspond to blue components lying in the closure of
a single region R (and all red edges lie inside that region )R .

Now by way of contradiction, assume that ¼e e, , k1 forms a cycle in B, cyclically joining vertices
g g¼, , k1 , where the gi are blue loops inside the closure of the region R. We can concatenate the cor-
responding (red) edges ei along with paths on the blue loops gi to obtain an embedded edge loop h
contained in the closure of the region R. Now pick a pair of 2-faces F F,1 2 inside the region R, where
F1 is contained inside the loop h, while F2 is contained outside of the loop h, for example, pick the
2-faces on either side of the red edge e1. Note that, by construction, the closed loop h separates these
regions from each other.

These two regions correspond to vertices v v,1 2 in the graph G associated to the region R. Since
T was a spanning tree for the graph G, it follows that we can find a sequence of edges in the tree T
connecting v1 to v2. This gives rise to a sequence of 2-faces connecting F1 to F2, where each con-
secutive face share an edge distinct from any of the red edges ei. Thus, we obtain a continuous path
joining F1 to F2 which is completely disjoint from h, a contradiction. We conclude that B cannot
contain any cycles, and hence is a tree. □

Notice that each vertex in B corresponds to a blue loop, which lies in the closure of precisely
two regions. There will thus be a unique such region which lies in the bounded component of the
complement of the loop. This establishes a bijection between the regions and the vertices of B.
From the enumeration of regions in Section 4.2, we can use the bijection to enumerate vertices of

R1 R2

R3

R4

R5

γ1 γ2

γ3 γ4

γ5

v5

v4

v3

v2

v1

Figure 4. (Left) Non-contractible region R with blue loops and red edges. (Right) Graph B associated to R (see Section 4.5).
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B. For example, the vertex with smallest labeling will always correspond to the boundary of a con-
tractable region. We refer the reader to Fig. 4 for an illustration of this labeling.

4.6. Coefficients along the blue loops

Our next goal is to modify b in order to make all the remaining red edges (that is, edges in the
graph B) k-divisible. Note that the 1-chain b might not be an integral 1-cycle, but it is a 1-cycle mod
k . We will now exploit this property to analyze the behavior of the 1-chain b along the blue loops.

PROPOSITION 4.3 Let g be any blue loop, oriented clockwise. Then the coefficients on the blue edges
are all congruent to each other modulo k, that is, if ( )a b c d, , , and ( ¢ ¢ ¢ ¢)a b c d, , , are the coefficients
along any two blue edges in a given blue loop, then ( ) º ( ¢ ¢ ¢ ¢)a b c d a b c d, , , , , , mod k. Moreover,
along any red edge in the graph B, the coefficient is congruent to zero mod k, except possibly if the
edge has an even label, in which case the coefficient is congruent to ( - ¼ )z z0, 0, , , 0, ,0ˆ ˆ for some z
(which may vary from edge to edge).

Proof. To see this, we argue inductively according to the ordering of the blue connected compo-
nents (see Section 4.5).

Base Case: For the initial case, consider the blue loop corresponding to vertex v1 in the tree B.
By hypothesis, this blue loop g has a single (red) edge incident to it which is potentially not
k-divisible, corresponding to the unique edge in the tree B incident to v1. Let w denote the single
vertex on g where that red edge is incident, allowing us to view g as a path starting and terminat-
ing at w. Since all the remaining red edges incident to g are k-divisible, applying Lemma 4.7 in
Section 4.11 (with all the ºz 0ˆ ) for each incident k-divisible red edge shows that all the coeffi-
cients along the path g are congruent to each other mod k . Note that, in this base case, we are
always in the cases < <i j k or < <j k i of Lemma 4.7, according to whether the k-divisible
red edge lies in the unbounded or bounded region determined by the blue loop g . This establishes
the first statement of the Proposition. To get the second statement, we apply Lemma 4.8 in Section
4.11 at the vertex w, and we are done.

Inductive Step: Now inductively, let us assume that we are focusing on the blue loop gi corres-
ponding to some vertex vi in B. We assume that all the blue loops gj corresponding to vertices vj

with <j i already satisfy the desired property. We also assume that all red edges in the graph B
connected to vertices vj with <j i have coefficients of the form described in the Proposition.

From the directed structure of the graph B, the vertex vi has a unique edge e connecting to a vertex
vj with index >j i, and all the remaining edges in B connect to a vj for some <j i.

By the inductive hypothesis, this tells us that all but one of these red edges have coefficients
congruent to ( - ¼ )z z0, 0, , , 0, ,0j jˆ ˆ for some zj (which might depend on the edge). Again, viewing
gi as a path starting and terminating at the same vertex w (where e is incident to g), we may apply
Lemma 4.7 and conclude that gi has coefficients along all edges that are congruent to each other.
Applying Lemma 4.8 at the vertex w shows that the coefficients along the edge e must also be of
the form ( - ¼ )z z0, 0, , , 0, ,0ˆ ˆ for some z. This completes the inductive step and the proof of the
Proposition. □

4.7. Equivalence classes of red edges

Now consider a red edge which is potentially not k-divisible, corresponding to an edge in the
graph B joining vertices vi to vj. The red edge thus joins the blue loop gi to the blue loop gj. From
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Proposition 4.3, we see that the coefficient along the red edge must be congruent to
( - ¼ )z z0, 0, , , 0, ,0ˆ ˆ for some z. In particular, there is a single residue class that determines the
coefficients along the red edge (modulo )k .

Next let us momentarily focus on a blue loop g , and assume the coefficients along the edges of
g are all congruent to ( )a b c d, , , modulo k, as ensured by Proposition 4.3 (Fig. 5). We define an
equivalence relation on all the red edges with even label incident to g , by defining the two equiva-
lence classes:

(a) the incident red edges that lie in the bounded region corresponding to g , and
(b) those that lie in the unbounded region.

It follows from Lemma 4.7 (Section 4.11) that all edges in the equivalence class (a) have corres-
ponding coefficients congruent to ( - ¼ )z z0, 0, , , 0, ,0j jˆ ˆ where each º -z b aj , while all edges in
equivalence class (b) have corresponding coefficients congruent to ( - ¼ )z z0, 0, , , 0, ,0j jˆ ˆ where
each º -z c aj (Fig. 5).

This equivalence relation is defined locally, and can be extended over all blue loops in the
1-skeleton, resulting in an equivalence relation on the collection of all red edges with even label.
Observe that, by construction, each equivalence class has the property that there is a single corres-
ponding residue class z mod k , with the property that all the edges within that equivalence class
have coefficient congruent to ( - ¼ )z z0, 0, , , 0, ,0ˆ ˆ , that is, the z is the same for the entire equiva-
lence class.

COROLLARY 4.4 The edges in the graph B that are not k-divisible are a finite union of equiva-
lence classes for this relation.

Proof. Let e be an edge in B, and assume that e is equivalent to an edge ¢e which is not an edge in
B. Since all edges that are not in B are k-divisible, it follows that the coefficient on ¢e is congruent
to zero mod k. Thus, the value of z for the equivalence class  containing ¢e is =z 0. Since
Î e , this forces e to be k-divisible, a contradiction. □

zj ≡ b − a

γ

congruent to (a, b, c, d) zj ≡ c − a

Figure 5. ‘Bad’ red edges incident to blue loop g . All interior edges have coefficients satisfying one congruence, while all
exterior edges have coefficients satisfying a different congruence (Section 4.7).
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4.8. Establishing k-divisibility of the remaining red edges

Observe that the edges in each equivalence class form a connected subgraph, and hence a subtree
(see Lemma 4.2), of the graph B. This collection of subtrees partitions the graph B. Any vertex of
B is incident to at most two such subtrees—the incident red edges lying ‘inside’ and ‘outside’ the
corresponding blue loop.

We now proceed to establish k-divisibility of the remaining red edges for our chain. Fix an
equivalence class  of red edges, and associate to it a 1-chain a whose coefficients are given as
follows:

(1) if a blue loop g has an incident red edge Î e , and e lies in the bounded region of g , then
assign ( )0, 1, 0, 0 to each blue edge on g ;

(2) if a blue loop g has an incident red edge Î e , and e lies in the unbounded region of g , then
assign assign either ( )0, 0, 1, 0 to each blue edge on γ, or ( )0, 0, 1, 0- to each blue edge on γ;

(3) along the red edges in the equivalence class (recall that all these edges have even labels),
assign ( - ¼ )0, 0, 1, 1, 0, ,0ˆ ˆ , with sign chosen to ensure that the local 1-cycle condition
holds at both endpoints (see Lemma 4.7).

Notice that one can choose the signs in (2), (3) coherently because the equivalence class defines a
subtree of the tree B—and thus there are no cycles (these could have potentially forced the sign
along an edge to be both positive and negative). Another key feature of the 1-chains a is that they
are linearly independent. More precisely, two distinct equivalence classes ¢ , have associated
1-chains a and a ¢ whose supports are disjoint, except possibly along a single blue loop g . In the
case where the supports overlap along g , adding multiples of a does not affect the z-value along
the class ¢ (and vice versa).

It is now immediate from the equality case of Lemma 4.7 in Section 4.11 that the 1-chain a is
in fact an integral 1-cycle. Subtracting multiples of a from our given chain b , we may thus obtain
a homologous 1-chain for which all the red edges in  are now k-divisible. Repeating this for each
of the equivalence classes, we have now obtained a homologous 1-chain (still denoted b) for which
all the red edges are k-divisible.

4.9. Establishing k-divisibility of the remaining blue edges

We now have obtained a 1-chain with prescribed differential, whose coefficients along all red
edges are k-divisible. It remains to establish k-divisibility of the blue loops for the 1-chain.

If g is one of the blue loops, then since all incident red edges are k-divisible, we see that all the
edges on g have coefficients which are congruent to either ( )a b c d, , , , ( )a b a b, , , , ( )a a c c, , , or
( )a a a a, , , , according to the equivalence classes that are incident to g (see also Proposition 4.3).

Let us discuss, as an example, the case ( )a b a b, , , . Note that this case occurs if the only inci-
dent red edges to g with even label lie in the unbounded region determined by g . Consider the
pair of integral 1-cycles a a,13 24 supported on g , obtained by assigning to each edge on g the coef-
ficient ( )1, 0, 1, 0 and ( )0, 1, 0, 1 , respectively. From the equality case of Lemma 4.7, we see that
a a,13 24 are in fact 1-cycles. By adding multiples of a a,13 24, we can now arrange for the coeffi-
cients along the blue loop g to all be k-divisible. The three other cases can be dealt with similarly;
we leave the details to the reader.
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4.10. Completing the proof

Performing this process described in Section 4.9 for all the blue components, we finally obtain the
desired 1-chain b¢. Since b¢ now satisfies properties (1) and (2) mentioned at the beginning of the
proof, we conclude that the given hypothetical torsion class a Î H0 was in fact the zero class.
This completes the proof of Theorem 4.1.

REMARK 4.5 It is not obvious how to adapt the strategy in the geometric proof above to the case
when other vertex stabilizer types are allowed. In the case of vertex stabilizers of the type
D( )2, 3, 3 , D( )2, 3, 4 and D( )2, 3, 5 , most of the arguments can be adapted. The main difficulty
lies in the arguments of Section 4.4, which rely heavily on Lemma 4.7 in Section 4.11.
Unfortunately, the analog of that Lemma does not seem to hold when one allows these other types
of vertices as endpoints of the edge. For vertices with stabilizer D( )2, 2, 2 , additional difficulties
arise, notably in Sections 4.7, 4.8 and 4.9.

4.11. Local analysis

The geometric proof that (G )RH ;0
Fin is torsion free, Theorem 4.1, relies on a detailed local ana-

lysis of the induction homomorphism at the vertices of the polyhedron  . We state and prove the
results needed here. Although rather technical, they are all, unless an explicit proof is given,
straightforward consequences of the induction homomorphisms (cf. [11, Appendix B]). Let us
introduce some notation. Throughout this section, a will denote an integral 1-chain that is also a
1-cycle (mod k), that is, a¶ ( ) º 01 . Our goal is to understand how this condition constrains the
coefficients of a.

At every vertex =v vijl, there are three incident edges =e eij1 , =e eil2 and =e ejl3 , and let x1,
x2 and x3 be a projected along those edges, written as column vectors. Write A1 for the integer matrix
representing the induction homomorphism from e1 to v, that is, (á ñ) (á ñ) R s s R s s s, , ,i j i j l⟶ (as
always, we will implicitly identify representation rings with free abelian groups, via the bases expli-
citly described in [11, Appendix A]), and define A2 and A3 analogously for e2 and e3. So each of
these matrices is a submatrix of ¶1 in matrix form. Then the value of ¶ ( )x1 at the vertex =v vijl (that

is, projected to (á ñ)R s s s, ,i j l ) is given by the matrix product ( )(   )A A A
x1 2 3

x

x
1

2

3
∣ ∣ · , with

signs depending on edge orientations. The product above is zero modulo k, by the hypothesis on a
being a 1-cycle mod k. We can reduce modulo k all the entries and, abusing notation, still call the
resulting matrices and vectors A1, A2, A3, x1, x2 and x3. Furthermore, for simplicity, let us redefine A1

as-A1 etc. as needed to take account of the chosen orientations. Then we have that the column vec-
tor representing a locally at v (that is, along the incident edges) is in the kernel of the matrix repre-

senting ¶1 locally at v, that is, ( ) Î ( )A A Aker
x 1 2 3

x

x
1

2

3
∣ ∣ . One important consequence is that we can

perform row operations on the matrix = ( )A A A A1 2 3∣ ∣ without changing its kernel and, in particular,
we may row reduce A, for instance into its Hermite normal form, to simplify calculations.
(Obviously, row reduction must be performed modulo k, that is, in Ck\cong @/ k .) Another conse-
quence is that, to study the consequences of establishing k-divisibility of an edge, we only need to
remove the corresponding matrix block and vector. For example, if k-divisibility of e1 has been estab-
lished for a, that is, if x1 is zero modulo k, then the equation above is equivalent to

( ) Î ( )A Akerx

x 2 3
2

3
∣ , and we can now row reduce this matrix to help us calculate its kernel, if needed.
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Recall that, throughout Section 4, we are only interested in the case where all vertices have stabilizers
of the form D( )m2, 2, , with >m 2 (see statement of Theorem 4.1). So let us now focus on that
case.

For a D( )m2, 2, , >m 2, vertex, recall that we assume <j l and we have (cf. [11, Appendix
B]) induction matrices ( )<M m2,

1 (if <i j) or ( )>M m2,
1 (if >i j), ( )<M m2,

2 (if <i l) or >M m2, (if >i l), and
Mm m, where

M (1) <
2,m =

1 0 0 0
0 1 0 0
̂0 ̂1 ̂0 ̂0
̂1 ̂0 ̂0 ̂0
1 1 0 0
...

...
...

...
1 1 0 0
0 0 1 0
0 0 0 1
̂0 ̂0 ̂0 ̂1
̂0 ̂0 ̂1 ̂0
0 0 1 1
...

...
...

...
0 0 1 1

, M (2) <
2,m =

1 0 0 0
0 1 0 0
̂1 ̂0 ̂0 ̂0
̂0 ̂1 ̂0 ̂0
1 1 0 0
...

...
...

...
1 1 0 0
0 0 1 0
0 0 0 1
̂0 ̂0 ̂1 ̂0
̂0 ̂0 ̂0 ̂1
0 0 1 1
...

...
...

...
0 0 1 1

, Mm,m =
Id c (Dm)

Id c (Dm)

,

and ( )>M m2,
1 , respectively ( )>M m2,

2 , equals ( )<M m2,
1 , respectively, ( )<M m2,

2 , with the 2nd and 3rd columns
interchanged.

In the following lemmas, recall that a is an integral 1-chain which is also a 1-cycle mod k.
Moreover, in Lemmas 4.7 and 4.8, let ^ denote coefficients that only appear when m is even, and
recall the standard labeling of faces: the m-edge lies between the faces labeled Fj and Fl, and the
labeling always satisfies (without loss of generality) that <j l. Finally, recall that we refer to an
edge with stabilizer Dm as an m-edge, or edge of type m.

LEMMA 4.6 Let a be an integral 1-chain, which we assume is also a 1-cycle mod k. Let F1, F2 be
a pair of adjacent 2-faces, sharing a common edge e, with endpoint v whose stabilizer is of the
form D( )m2, 2, , with >m 2. Assume that we are given an h = ( )n m,1 1 1 in the representation
ring ( )R C2 associated to the stabilizer of the 2-face F1. Then there exists a choice of
h = ( )n m,2 2 2 in the representation ring ( )R C2 associated to the stabilizer of the 2-face F2, with
the property that a h h+ ¶ ( + )2 1 2 has coefficient along e congruent to zero mod k (that is, the
edge e is now k-divisible).

Proof. The edge e has stabilizer Dm, with >m 2. We will assume the orientations along the edges
and faces are as given in Fig. 6. Assume the coefficients of a supported on the edge e are given by
( ¼ )a b c d r r, , , , , , s1ˆ ˆ . We choose h ( + + - )a n r m a,2 1 1 1≔ . A straightforward computation
using the induction formulas shows that, with this choice of h2, the coefficient of
a a h h¢ + ¶ ( + )2 1 2≔ along the edge e is of the form ( ¢ ¢ ¢ ¢ ¼ ¢)z b c d r r0, , , , 0, , , s2≔ ˆ ˆ . That is to
say, we chose h2 in order to force ¢ = ¢ =a r 01 .
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We are left with checking that the remaining coefficients of a¢ are all congruent to zero mod k.
To see this, we use the fact that a¢ is also a 1-cycle mod k. From the labelings of the faces around
the vertex v, and the order in which we label faces (one region at a time), we see that we are in
one of the two cases < <i j l or < <j l i. Let us consider the case < <i j l, and assume that
the coefficients along the 2-edges incident to v are given by ( )x x x x x, , ,1 2 3 4≔ and

( )y y y y y, , ,1 2 3 4≔ . As a¢ is a 1-cycle mod k, we have

( )( - - ) º( )< ( )<M M M
x
y
z

0.m m m m2,
1

2,
2

,∣ ∣

Note that the last s rows of the matrix are identical, giving rise to s identical relations
+ - - + ¢ ºx x y y r 0t2 4 2 4 (for £ £t s1 ). Since ¢ =r 01 , these equations immediately imply

that all the remaining ¢ ºr 0t .
Let us now assume that m is odd. The first and the third row of the matrix give rise to

equations - ºx y 01 1 and + - - ºx x y y 01 3 1 3 , forcing - ºx y 03 3 . Using the second row, we
get - + ¢ ºx y b 03 3 , which immediately gives ¢ ºb 0. This completes the proof when < <i j l
and m is odd. The case where m is even is analogous—one just uses the equations obtained from
the first five rows of the matrix to conclude that ¢ ¢ ¢a b c, , ˆ and ¢d̂ are all congruent to zero mod k.

Finally, if < <j l i, then one proceeds in a completely similar manner, but using the block
matrix ( - - )( )> ( )>M M Mm m m m2,

1
2,

2
,∣ ∣ instead. It is again straightforward to work through the equa-

tions—we leave the details to the reader. □

LEMMA 4.7 Consider a vertex of type D( )m2, 2, , >m 2, with the incident 2-edges oriented
compatibly. If the coefficients of a along the m-edge are congruent to ( - ¼ )z z0, 0, , , 0, ,0ˆ ˆ for
some z, then the coefficients ( )a b c d, , , and ( ¢ ¢ ¢ ¢)a b c d, , , along the pair of 2-edges satisfy the
following congruences:

(i) if < <i j l, then ( ) º ( ¢ ¢ ¢ ¢)a b c d a b c d, , , , , , and º - º -z b a d cˆ ;
(ii) if < <j i l , then ( ) º ( ¢ ¢ ¢ ¢)a b c d a c b d, , , , , , and º - º -z c a d bˆ ;
(iii) if < <j l i, then ( ) º ( ¢ ¢ ¢ ¢)a b c d a b c d, , , , , , and º - º -z c a d bˆ ;

and we have oriented the m-edge so that the vertex is its source. (With the opposite orientation,
simply replace ẑ by -ẑ .) Moreover, the same statement holds if one changes all congruences to
equalities.

e

ē1 ē2

ē3 ē4

FlFj

Figure 6. Local picture near the edge e (Lemma 4.6).
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Proof. Let = ( )x a b c d, , ,1 , = ( ¢ ¢ ¢ ¢)x a b c d, , ,2 and = ( - ¼ )x z z0, 0, , , 0, ,03 ˆ ˆ be the coeffi-
cients of a along the edges incident to the vertex. Consider the case < <i j l first. Since a is a
1-cycle mod k,

( )( )- - º( )< ( )<M M M
x
x
x

0,m m m m2,
1

2,
2

,

1

2

3

∣ ∣

which gives - ¢ ºa a 0, - ¢ ºb b 0, - ¢ - ºb a z 0ˆ , - ¢ + ºa b z 0ˆ , + - ¢ - ¢ ºa b a b 0,
- ¢ ºc c 0, - ¢ ºd d 0, - ¢ - ºd c z 0ˆ , - ¢ + ºc d z 0ˆ and + - ¢ - ¢ ºc d c d 0, from which

the result follows. The other two cases, < <j i l and < <j l i, are analogous but for the block
matrix ( - - )( )> ( )<M M Mm m m m2,

1
2,

2
,∣ ∣ , respectively, ( - - )( )> ( )>M M Mm m m m2,

1
2,

2
,∣ ∣ . The former gives

the same congruences but with b and c interchanged, and the latter with b and c, and ¢b and ¢c ,
interchanged. For the opposite orientation of the m-edge, replace-Mm m, by Mm m, in the calculation
above. □

LEMMA 4.8 Consider a vertex of type D( )m2, 2, , >m 2, with the incident 2-edges oriented
compatibly. Assume the coefficients along the 2-edges are both congruent to ( )a b c d, , , , that the
m-edge is oriented compatibly with the first 2-edge, and that the faces are labeled so that
< <i j l or < <j l i (so we are excluding the case < <j i l). Then the m-edge coefficients are

congruent to ( - ¼ )z z0, 0, , , 0, ,0ˆ ˆ , where

(i) if < <i j l, then º -z a bˆ ;
(ii) if < <j l i, then º -z a cˆ .

(If we reverse the orientation on the m-edge, the congruencies above hold with ẑ replaced by-ẑ .)
In particular, if m is odd, the m-edge is automatically k-divisible.

Proof. We are assuming º º ( )x x a b c d, , ,1 2 , and that = ( ¼ )x x y z t r r, , , , , , s3 1ˆ ˆ are the coeffi-
cients of a along the edges incident to the vertex. Consider the case < <i j l first. Since a is a
1-cycle mod k,

( )( )- - º( )< ( )<M M M
x
x
x

0,m m m m2,
1

2,
2

,

1

2

3

∣ ∣

which gives º - ºx a a 0, º - ºy b b 0, º -c a bˆ , º -d b aˆ , while all the remaining
equations are of the form º ( + ) - ( + ) ºr a b a b 0t (for £ £t s1 ). The claim follows. The case
< <j l i is completely analogous, but uses instead the block matrix ( - - )( )> ( )>M M Mm m m m2,

1
2,

2
,∣ ∣ .

The details are left to the reader. □

It is perhaps worth noting that the analog of Lemma 4.8 is false if the faces are enumerated to
satisfy < <j i l . In particular, the corresponding block matrix ( - - )( )> ( )<M M Mm m m m2,

1
2,

2
,∣ ∣ leads

to, for example, º -y b c, which is not necessarily zero.

1495EQUIVARIANT K-HOMOLOGY FOR HYPERBOLIC REFLECTION GROUPS

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/69/4/1475/5053107 by O
hio State U

niversity user on 10 D
ecem

ber 2018



5. No torsion in H0—the linear algebra approach

In this section, we give a proof of Theorem 3.8 inspired by the representation ring splitting tech-
nique of [23]. We do this by establishing a criterion for (G )RH ;0

Fin to be torsion-free. Our criter-
ion is efficient to check, and only requires elementary linear algebra. Furthermore, we will see it is
satisfied for G a 3-dimensional hyperbolic Coxeter group.

The verification of our criterion relies on simultaneous base transformations of the representa-
tion rings, bringing the induction homomorphisms into the desired form. For the 3-dimensional
hyperbolic Coxeter groups, these transformations are carried out in Appendices A and B in [11].
In Section 6, we will see that this condition is also satisfied for several additional classes of groups
that had previously been considered by other authors.

DEFINITION 5.1 The vertex block of a given vertex v in a Bredon chain complex differential matrix
¶1 consists of all the blocks of ¶1 that are representing maps induced (on complex representation
rings from G  Ge v) by edges e incident to v.

We represent elements in the Bredon chain complex as column vectors. So the matrix D for
the differential ¶1 is a ´  rank rank0 1 matrix, acting by left multiplication on a column vec-
tor in 1. For a vertex v, denote by n0 the rank of (G )R v , and by n1, n2, n3, the ranks of the
representation rings corresponding to the three edges e1, e2 and e3 incident to v. Then the vertex
block for v is a submatrix of D of size ´ ( + + )n n n n0 1 2 3 . Since vertex blocks have been con-
structed to contain all entries from incident edges, we note that the rest of the entries in their
rows are zero.

THEOREM 5.2 If there exists a base transformation such that all minors in all vertex blocks are in
the set {- }1, 0, 1 , then (G )RH ;0

Fin is torsion-free.

Proof of Theorem 5.2. We start by recalling a general result on Smith Normal Forms, already
observed by Smith [25]. Denote by ( )d Ai the ith determinant divisor ( )d Ai , defined to be the great-
est common divisor of all ´i i minors of a matrix A when ³i 1, and to be ( )d A 10 ≔ when
=i 0. Then the elementary divisors of the matrix A, up to multiplication by a unit, coincide with

the ratios a = ( )
( )-

i
d A

d A
i

i 1
.

Let us use the notation

- (¶ ) - ¶ pre rank rank rank ker ,1 1 1≔

where 1 is the module of 1-chains in the Bredon chain complex (Equation (3.1)). Observe that if
A is any ´i i submatrix of D of non-zero determinant, and < - (¶ )i pre rank 1 , then A can be
expanded to some ( + ) ´ ( + )i i1 1 submatrix of non-zero determinant.

Now (G )RH ;0
Fin is torsion-free if and only if a = 1i for all £ £ - (¶ )i1 pre rank 1 . From

the discussion above, it is sufficient to find, for each £ £ - (¶ )i1 pre rank 1 , an ´i i minor in the
Bredon chain complex differential matrix ¶1 with determinant 1. We produce such a minor by
induction on i.

Base Case: For =i 1, we observe there are vertices with adjacent edges, hence there are non-
zero vertex blocks. As by assumption all the entries in the vertex blocks are in the set {- }1, 0, 1 ,
there exists an entry of value1.
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Inductive step: Let £ £ - (¶ )i2 pre rank 1 , and assume we already have an ( - ) ´ ( - )i i1 1
minor of ¶1 of value 1, corresponding to a submatrix B. We want to find an ´i i minor of ¶1 of
value 1.

Given any vertex block V , choose a maximal square submatrix B◦ of B which is disjoint from
the rows and columns of V . At the two extremes, this submatrix could be empty (if B is contained
in V ) or could coincide with B (if B is completely disjoint from V ). Note that after possibly per-
muting rows, we get a square sub-block M of V such that the submatrix B takes the form

( )=B
M

B
det

0
.

* ◦

Then in particular  = ( ) = ( ) ( )B M B1 det det det· ◦ , which forces ( ) = Bdet 1◦ . One can then
consider extending B to an ´i i block ¢B by choosing a submatrix ¢M inside V of size
- ( )i Bsize ◦ . Such an extension might not be possible, but when it is, the resulting block ¢B takes

the form (possibly after permuting rows)

( )¢ =
¢

B
M

B
det

0
.

* ◦

Consider the collection of all ´i i blocks obtained in this manner, and note that for any such
block, we have ( ¢) = ( ¢) ( )B M Bdet det det· ◦ .

Since £ - (¶ )i pre rank 1 , there exists a vertex block V for which this construction yields an
´i i block with ( ¢) ¹Bdet 0. We have that ¢M is a minor in the vertex block V , so by hypothesis
( ¢) Î {- }Mdet 1, 0, 1 . Since ( ¢) ¹Bdet 0, we conclude that ( ¢) = Mdet 1. And as we already

noted above, the submatrix B◦ of ¢B satisfies ( ) Î {- }Bdet 1, 1◦ . This implies our submatrix ¢B
satisfies ( ¢) = ( ¢) ( ) = B M Bdet det det 1· ◦ , which completes the inductive step and hence the
proof of the theorem. □

Our proof of Theorem 3.8 now reduces to verifying the hypotheses of Theorem 5.2, when G is
a 3-dimensional hyperbolic reflection group. We will rely on the simultaneous base transforma-
tions that can be found in [11, Appendix A].

PROPOSITION 5.3 For a system of finite subgroups of types ´A C5 2, S4, ´S C4 2,
D( ) = ( )C2, 2, 2 2

3 and D( ) = ´m C D2, 2, m2 for ³m 3 as vertex stabilizers, with their three
2-generator Coxeter subgroups as adjacent edge stabilizers, there is a simultaneous base trans-
formation such that all vertex blocks have all their minors contained in the set {- }1, 0, 1 .

Proof. We apply the base transformation specified in [11, Appendix A]. Then we have that all of
the induced maps have all of their entries in the set {- }1, 0, 1 . Next, for each vertex stabilizer
type, we assemble the vertex blocks from the three vertex-edge-adjacency induced maps.

Let us provide full details for the case of vertex stabilizer D( ) = ´m C D2, 2, m2 for ³m 3.
The vertex block of a stabilizer of type ´C Dm2 for ³m 3 odd consists of (cf. [11, Appendix B])
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two blocks ±

1 0 0 0
0 0 0 1
0 0 0 0
...

...
...

...
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
...

...
...

...
0 0 0 0

and one block ± identity matrix of size m +3
2

0
.

Note that all the columns in this matrix have a very special form: all but one of the entries are
zero, and the single non-zero entry is 1. An easy induction shows that when checking whether
the minors all take value in the set {  }0, 1 , such columns can always be discarded (and likewise
for rows). This fact is very useful for reducing the size of the matrices to check. For the matrix
above, this fact immediately lets us conclude that all minors are in {  }0, 1 .

For ³m 6 even, but not a power of 2, we have the following vertex block, where each matrix
block is specified up to orientation sign (we make this assumption from now on),

Dm × C2 Dm ↪→ Dm × C2 D2 ↪→ Dm × C2 D2 ↪→ Dm × C2

ρ1 ⊗ χ1 ↓ 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1
ρ1 ⊗ (χ3 − χ2) ↓ 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ1) ↓ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ3 − χ1) ↓ 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0
. . . 0

...
...

...
...

...
...

...
...

ρ1 ⊗ (φ m
2 −1 − φ m

2 −2) ↓ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
(ρ2 − ρ1) ⊗ χ1 ↓ 0 1 0 0 0 1 0 0

(ρ2 − ρ1) ⊗ (χ2 − χ1) ↓ 0 0 1 0 0 0 1 0
(ρ2 − ρ1) ⊗ (χ3 − χ2) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1) ⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0 0
(ρ2 − ρ1) ⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0

... ρ1 ⊗ (φp − φp−1) ↓
...

...
...

...
...

...
...

...
...

ρ1 ⊗ (φ m
2 −1 − φ m

2 −2) ↓ 0 0 0 0 0 0 0 0

Again, we can discard all the rows and columns which have at most one entry 1 (and all other
entries zero). This reduces the above vertex block to the much smaller matrix

1 0 1 0 ±1 ±1
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0

,

for which we can easily check that all minors lie in {  }0, 1 .
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For ³m 4 a power of 2, we have the following vertex block:

Dm × C2 Dm ↪→ Dm × C2 D2 ↪→ Dm × C2 D2 ↪→ Dm × C2

ρ1 ⊗ χ1 ↓ 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1
ρ1 ⊗ (χ3 − χ1) ↓ 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ2) ↓ 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ2 − χ1) ↓ 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0
. . . 0

...
...

...
...

...
...

...
...

(φ m
2 −1 − φ m

2 −2) ↓ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
(ρ2 − ρ1) ⊗ χ1 ↓ 0 1 0 0 0 1 0 0

(ρ2 − ρ1) ⊗ (χ2 − χ1) ↓ 0 0 1 0 0 0 1 0
(ρ2 − ρ1) ⊗ (χ3 − χ1) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1) ⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0 0
(ρ2 − ρ1) ⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0

... ρ1 ⊗ (φp − φp−1) ↓
...

...
...

...
...

...
...

...
...

ρ1 ⊗ (φ m
2 −1 − φ m

2 −2) ↓ 0 0 0 0 0 0 0 0

Again, we can discard the rows and columns which have at most one entry 1 (and all other
entries zero). This reduces the above vertex block to the matrix

1 0 0 0 0 ±1 0 ±1 0
0 1 0 1 0 0 ±1 0 ±1
0 1 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0

,

for which we can easily check that it has all its minors in {  }0, 1 . This completes the verification
of the vertex block condition in the case of vertices with stabilizer D( ) = ´m C D2, 2, m2 for

³m 3.
For the finitely many remaining stabilizer types, we can proceed case-by-case: we input each

vertex block into a computer routine which computes all of its minors. Such a routine is straight-
forward to implement and takes approximately two seconds per vertex block on a standard com-
puter. The authors’ implementation is available at http://math.uni.lu/rahm/vertexBlocks/. Note
that for the groups under consideration, the matrix rank of the vertex block is at most 7, so the
´8 8 minors are all zero, and it is enough to compute the ´n n minors for £n 7. This computer

check verifies the minor condition for the vertex blocks associated to all remaining vertex stabili-
zers, and completes the proof of the theorem. □

COROLLARY 5.4 For any Coxeter group G having a system of finite subgroups of types
D( ) = ( )C2, 2, 2 2

3,D( ) = ´m C D2, 2, m2 for ³m 3, S4, ´S C4 2 or ´A C5 2 as vertex stabili-
zers, we have that the Bredon homology group (G )RH ;0

Fin is torsion-free.

REMARK 5.5
(a) When trying to extend the proof of Theorem 5.2 to (G )RH ;n

Fin for >n 0, one should take
into account the natural map (G )  ( G )R HH ; B ;n n

Fin described by Mislin [21], which is
an isomorphism for > G +n dim E 1sing , where GE sing consists of the non-trivially stabilized
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points in GE . Hence, such an extension of the theorem can only be useful when
£ G +n dim E 1sing .

(b) Note that the search for suitable base transformations for a given group G (as described in [11,
Appendix A] in our case) can be quite laborious. If the reader wants to apply Theorem 5.2 for
a given group G, it is prudent to first construct the vertex blocks without any base transform-
ation and compute their elementary divisors. If there exists a suitable simultaneous base trans-
formation which satisfies the hypotheses of Theorem 5.2, then those elementary divisors must
be in the set {- }1, 0, 1 .

6. Further examples with torsion-free G( )RH ;0
Fin

In this section, we briefly steer away from Coxeter groups, and instead give some further examples
illustrating our criterion for the Bredon homology group (G )RH ;0

Fin to be torsion-free.

6.1. The Heisenberg semidirect product group

Let us show that (G )RH ;0
Fin is torsion-free for G the Heisenberg semidirect product group of

Lück’s paper. In Tables 3 and 4, we transform the character tables of all the non-trivial finite sub-
groups of the Heisenberg semidirect product group, as identified by Lück [15].

In Tables 5, 6 and 7, we compute all possible induction homomorphisms ( )  ( ) R H R G
appearing in any possible Bredon chain complex.

Obviously, any concatenation of copies of the three matrices given in Tables 5, 6 and 7
yields a matrix with all of its minors contained in the set {- }1, 0, 1 . For the inclusions into
cyclic groups of order 2, an analogous (and even simpler) procedure works. Hence by
Theorem 5.2, (G )RH ;0

Fin is torsion-free for G the Heisenberg semidirect product group of
Lück’s article [15].

6.2. Crystallographic groups

Davis and Lück [5] consider the semidirect product of n with the cyclic p-group Cp, where the
action of Cp on n is given by an integral representation, which is assumed to act freely on the
complement of zero. The action of this semidirect product group G on G @ E n is crystallo-
graphic, with n acting by lattice translations, and Cp acting with a single fixed point. In particular,
all cell stabilizers are trivial except for one orbit of vertices of stabilizer type Cp. So all maps in the
Bredon chain complex are induced by the trivial representation, and we can easily apply Theorem
5.2 to see that (G )RH ;0

Fin is torsion-free for G.

7. G( )cf and c( )C from the geometry of P
Let G be the reflection group of the compact 3-dimensional hyperbolic polyhedron  . In this final
section, we compute the number of conjugacy classes of elements of finite order of G, (G)cf , and
the Euler characteristic of the Bredon chain complex (2.5), c ( ) , from the geometry of the poly-
hedron  . This gives us explicit combinatorial formulas for the Bredon homology and equivariant
K -theory groups computed in our Main Theorem.
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Table 3. Character table of the cyclic group C2 of order 2, with generator s, and base transformation (Section 6.1)

⎛
⎝ C2 e s

ρ1 1 1
ρ2 1 −1

⎞
⎠ �→

⎛
⎝ C2 e s

ρ1 + ρ2 2 0
ρ2 1 −1

⎞
⎠

Table 4. Character table of the cyclic group C4 of order 4, with generator s, and base transformation (Section 6.1). We let
= -i 12

⎛
⎜⎜⎜⎜⎝

C4 e s s2 s3

ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 i −1 −i
ρ4 1 −i −1 i

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

C4 e s s2 s3

ρ1 1 1 1 1
ρ2 − ρ1 0 −2 0 −2
ρ3 − ρ1 0 i − 1 −2 −i − 1
ρ4 − ρ3 0 −2i 0 2i

⎞
⎟⎟⎟⎟⎠

Table 5. The only non-trivial inclusion C C2 4↪ of a cyclic group of order 2 into a cyclic group of order 4: s s ,2↦ in terms
of scalar products of characters

C2 ↪→ C4 e s2 (·|ρ1 + ρ2) (·|ρ2)
ρ1 ↓ 1 1 1 0

(ρ2 − ρ1) ↓ 0 0 0 0
(ρ3 − ρ1) ↓ 0 −2 0 1

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0 0 0

Table 6. The trivial inclusion C C2 4↪ of a cyclic group of order 2 into a cyclic group of order 4: s e,↦ in terms of scalar
products of characters

C2 ↪→ C4 e e (·|ρ1 + ρ2) (·|ρ2)
ρ1 ↓ 1 1 1 0

(ρ2 − ρ1) ↓ 0 0 0 0
(ρ3 − ρ1) ↓ 0 0 0 0

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0 0 0
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7.1. Conjugacy classes of elements of finite order

We now give an algorithm to calculate (G)cf , the number of conjugacy classes of elements of
finite order in the Coxeter group G. We know that each element of finite order can be conjugated
to one which stabilizes one of the k-dimensional faces of the polyhedron, for some Î { }k 0, 1, 2 .
Of course, the only element which stabilizes all faces is the identity element. Let us set that aside,
and consider the non-identity elements, to which we associate the integer k. We now count the ele-
ments according to the integer k, in descending order.

Case =k 2: These are the conjugacy classes represented by the canonical generators of the
Coxeter group G. The number of these is given by the total number ( ) 2∣ ∣ of facets of the poly-
hedron  .

Case =k 1: These elements are edge stabilizers which are not conjugate to the stabilizer of a
face. We first note that there are some possible conjugacies between edge stabilizers.
Geometrically, these occur when there is a geodesic g Ì 3 whose projection onto the fundamen-
tal domain  covers multiple edges inside the 1-skeleton ( ) 1 . A detailed analysis of when this can
happen is given in [10]. Following the description in that paper, we decompose the 1-skeleton into
equivalence classes of edges, where two edges are equivalent if there exists a geodesic whose pro-
jection passes through both edges. Denote by [ ]( ) 1 the set of equivalence classes of edges, and
note that each equivalence class [ ]e has a well-defined group associated to it, which is just the di-
hedral group Ge stabilizing a representative edge. We can thus count the conjugacy classes in the
corresponding dihedral group, and discard the three conjugacy classes already accounted for (the
conjugacy class of the two canonical generators counted in case =k 2, as well as the identity).
Thus, the contribution from finite elements of this type is given by

å ( (G ) - )
[ ]Î[ ]( )

c 3 .
e

e
1

(Recall that ( )c Dm , the number of conjugacy classes in a dihedral group of order m2 , is / +m 2 3
if m even, and ( - )/ +m 1 2 2 if m is odd.)

Case =k 0: Finally, we consider the contribution from the elements in the vertex stabilizers
which have not already been counted. That is to say, for each vertex Î ( )v 0 , we count the conju-
gacy classes of elements in the corresponding 3-generated spherical triangle group, which cannot
be conjugated into one of the canonical 2-generated special subgroups. This number, (G )c v¯ ,

Table 7. The only inclusion { } C1 4↪ of the trivial group into a cyclic group of order 4, in terms of scalar products of
characters.

↪→ C4 e (·|τ)
ρ1 ↓ 1 1

(ρ2 − ρ1) ↓ 0 0
(ρ3 − ρ1) ↓ 0 0

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0

{ }1

1502 J.-F. LAFONT et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/69/4/1475/5053107 by O
hio State U

niversity user on 10 D
ecem

ber 2018



depends only on the isomorphism type of the spherical triangle group Gv, and is given in Table 8.
The contribution from these types of finite elements is thus

å (G )
Î ( )

c .
v

v
0

¯

Combining all these, we obtain the desired combinatorial formula for the number of conjugacy
classes of elements of finite order inside the group G:

å å(G) = + + ( (G ) - ) + (G )( )

[ ]Î[ ] Î( ) ( )


 

cf c c1 3 .
e

e
v

v
2

1 0

∣ ∣ ¯

7.2. Euler characteristic

The Euler characteristic of the Bredon chain complex can be easily calculated from the stabilizers
of the various faces of the polyhedron  , according to the formula:

åc ( ) = (- ) ( (G ))
Î

( )


R1 dim .
f

f
f

dim

Depending on the dimension of the faces, we know exactly what the dimension of the complex
representation ring is (the number of conjugacy classes in the stabilizer):

• for the 3-dimensional face (the interior), the stabilizer is trivial, so there is a 1-dimensional com-
plex representation ring;

• for the 2-dimensional faces, the stabilizer is C2, and there is a 2-dimensional complex represen-
tation ring;

• for the 1-dimensional faces e, the stabilizers are dihedral groups, and there is a (G )c e -dimen-
sional complex representation ring;

• for the 0-dimensional faces v, the stabilizers are spherical triangle groups, and there is a
(G )c v -dimensional complex representation ring.

Putting these together, we obtain

å åc ( ) = - + - (G ) + (G )( )

Î
Î

( )
( ) 




c c1 2 .
e

e v v
2

1
0∣ ∣

Table 8. Number of conjugacy classes in spherical triangle groups. The left column is the total number, and the right
column the number of those not conjugated into one of the three canonical 2-generated special subgroups

Γv c(Γv) c̄(Γv)
Δ(2, 2, m) 2 c(Dm) c(Dm) − 3
Δ(2, 3, 3) 5 1
Δ(2, 3, 4) 10 3
Δ(2, 3, 5) 10 5
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Finally, we obtain the desired explicit version of the Main Theorem, expressing the K -theory
groups in terms of the geometry of the polyhedron  .

MAIN THEOREM (EXPLICIT) Let G be a cocompact 3-dimensional hyperbolic reflection group, gener-
ated by reflections in the side of a hyperbolic polyhedron Ì 3. Then ( (G))K Cr0 * is a torsion-
free abelian group of rank

å å(G) = + + ( (G ) - ) + (G )( )

[ ]Î[ ] Î( ) ( )


 

cf c c1 3 ,
e

e
v

v
2

1 0

∣ ∣ ¯

and ( (G))K Cr1 * is a torsion-free abelian group of rank

å å åc(G) - ( ) = - + ( (G ) - ) + (G ) - ( (G ) - (G ))( )

[ ]Î[ ] Î Î( ) ( ) ( )

 
  

cf c c c c2 3 ,
e

e
e

e
v

v v
2

1 1 0

∣ ∣ ¯

where the possible values for the (G )c v and (G )c v¯ are listed in Table 8.
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