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Abstract

For P ⊂ H3 a finite volume geodesic polyhedron, with the property that all interior angles
between incident faces are of the form π/mi j (mi j � 2 an integer), there is a naturally
associated Coxeter group �P . Furthermore, this Coxeter group is a lattice inside the semi-
simple Lie group O+(3, 1) = Isom(H3), with fundamental domain the original polyhedron
P . In this paper, we provide a procedure for computing the lower algebraic K -theory of the
integral group ring of such groups �P in terms of the geometry of the polyhedron P . As an
ingredient in the computation, we explicitly calculate the K−1 and W h of the groups Dn and
Dn × Z2, and we also summarize what is known about the K̃0.

1. Introduction

Algebraic K -theory is a family of covariant functors from the category of rings to the cat-
egory of abelian groups, and when applied to a ring R, yields information about the category
of projective modules over R. The algebraic K -theory functors (and their relatives) are of
great interest to topologists, particularly when applied to integral group rings of discrete
groups. Indeed, it was discovered in the 1960’s that, for various natural problems in geomet-
ric topology, obstructions to the solution (in high dimensions) appeared as all the members
of suitable K -theory groups.

In view of this, one can understand the desire to obtain explicit computations for the K -
theory of integral group rings of finitely generated groups. Recent work of Lafont–Ortiz
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[LO1], [LO2] gave explicit computations for the lower algebraic K -theory of all the hy-
perbolic 3-simplex reflection groups. These are the lattices in the Lie group O+(3, 1) =
Isom(H3), that are generated by reflections in the sides of a suitable geodesic 3-simplex in
H3. Such groups were classified by several different authors, and there are precisely 32 of
them up to isomorphism (see the discussion in the introduction of [JKRT]).

Now consider P ⊂ H3 a finite volume geodesic polyhedron, with the property that all
the interior angles between incident faces are of the form π/mi j (mi j � 2 an integer).
One can extend each of the (finitely many) faces to a hyperplane (i.e. totally geodesic H2

embedded in H3), and form the subgroup �P � O+(3, 1) generated by reflections in these
hyperplanes. This group will always be a lattice in O+(3, 1), with fundamental domain
the original polyhedron P . We will call such a group a 3-dimensional hyperbolic reflection
group. A special case of this occurs if P is a tetrahedron, in which case the group �P is one
of the 32 hyperbolic 3-simplex reflection groups. This case of the tetrahedron is somewhat
special, as for most other combinatorial types of fixed simple polytopes, there are in fact
infinitely many distinct groups �P with polyhedron P of the given combinatorial type (see
for instance the Appendix for the case of the cube). In this paper, our goal is to explain
how the methods of [LO2] can be extended to provide computations of the lower algebraic
K -theory of the lattice �P � O+(3, 1) for arbitrary polyhedron P .

We present background material in Section 2. In particular, we remind the reader of exist-
ing results, that allow us to express the lower algebraic K -theory of the group �P (namely
W h(�P) for ∗ = 1, K̃0(Z �P) for ∗ = 0, and K∗(Z �P) for ∗ < 0) as a direct sum:

H�P∗ (EFIN (�P); KZ−∞) ⊕
⊕
V ∈V

H V
∗ (EFIN (V ) → ∗),

allowing us to break down its computation into that of the various summands.
The first term appearing in the above splitting is a suitable equivariant generalized ho-

mology group of a certain space. There is a spectral sequence which allows one to com-
pute this homology group. The E2-terms of this spectral sequence are obtained by taking
the homology of a certain chain complex. The groups appearing in this chain complex are
given by the lower algebraic K -theory of various finite groups, primarily dihedral groups
Dn and products Dn × Z2. In Section 3, we provide explicit number theoretic formulas for
the K−1 and W h of these finite groups (Sections 3·1 and 3·4), and we summarize what is
known about the K̃0 of these groups (Section 3·3); the K∗ for ∗ < −1 are well known to
vanish.

In Section 4, we analyze the chain complex, compute the E2-terms in the spectral se-
quence, and use this information to identify the term H�P∗ (EFIN (�P); KZ−∞) within the
range ∗ � 1. For ∗ = 0, 1, it is known that the remaining terms in the splitting are torsion.
Specializing to the case ∗ = 1, this allows us (Theorem 5) to give an explicit formula for
the rationalized Whitehead group W h(�P)⊗Q, in terms of the combinatorics and geometry
of the polyhedron P . Similarly, for ∗ � −1, the remaining terms in the splitting are known
to vanish. This allows us (Theorem 6) to also provide similarly explicit, though much more
complicated, expressions for K−1(Z �P).

In Section 5, we focus on identifying the remaining terms in the splitting. Using geometric
techniques, we show that only finitely many of these terms are non-zero. Furthermore, we
show that the non-vanishing terms consist of Bass Nil-groups, associated to various dihedral
groups that can be identified from the geometry of the polyhedron P .

Overall, the results encompassed in this paper give a general procedure for computing the
lower algebraic K -theory of any such �P . More precisely, we can use the geometry of the
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Lower algebraic K -theory of certain reflection groups 195

polyhedron P to:

(i) give a completely explicit computation for K−1(Z �P);
(ii) give an expression for K̃0(Z �P) in terms of the K̃0 of various dihedral groups, and

products of dihedral groups with Z2 (the computation of which is a classical problem,
see Section 4·2), as well as certain Bass Nil-groups N K0(ZDn);

(iii) give an expression for W h(�P) in terms of the Bass Nil-groups N K1(ZDn) asso-
ciated to various dihedral groups (the calculation of which is also a well known,
difficult problem).

In particular, we see that the lower algebraic K -theory of �P can be directly determined
from the geometry of the polyhedron P .

Finally, in the Appendix to the paper (Section 6), we illustrate this process by computing
the lower algebraic K -theory for a family of Coxeter groups �P whose associated poly-
hedron P is the product of an n-gon with an interval (see Example 7). As a second class of
examples, we compute the lower algebraic K -theory for an infinite family of Coxeter groups
whose associated polyhedra are combinatorial cubes (see Example 8).

2. Background material: geodesic polyhedra in H3, Coxeter groups and the FJIC

In this section, we introduce some background material. We briefly discuss the groups
of interest (Section 2·1), and the possible polyhedra P (Section 2·2). We also discuss how,
given a Coxeter group �, we can algorithmically decide whether � ��P for some polyhed-
ron P ⊂ H3 (Section 2·3). Finally, we provide a review of the Farrell–Jones isomorphism
conjecture, and discuss its relevance to our problem (Section 2·4).

2·1. Hyperbolic reflection groups

Consider a geodesic polyhedron P ⊂ H3, having the property that every pair of incident
faces intersects at an (internal) angle π/mi j , where mi j � 2 is an integer. Associated to such
a polyhedron, one can form a labeled complete graph G as follows:

(i) associate a vertex vi to every face Fi of P;
(ii) if a pair of faces Fi , Fj of P intersect at an angle of π/mi j , label the corresponding

edge of G by the integer mi j ;
(iii) if a pair of faces of P do not intersect, label the corresponding edge of G by ∞.

From the resulting labeled graph G, one can form a Coxeter group �P in the usual man-
ner: one assigns a generator xi of order two to each vertex vi of G, and adds in relations
(xi x j )

mi j = 1 to every labeled edge of G (with the understanding that a relation is vacuous if
the exponent is ∞).

From the constraint on the angles of the polyhedron P , it is clear that one has a homo-
morphism �P → O+(3, 1), obtained by assigning to each generator xi ∈ �P the reflection
in the hyperplane extending the corresponding face Fi of P . This morphism is in fact an
embedding of �P ↪→ O+(3, 1) as a lattice, with fundamental domain precisely the original
polyhedron P .

Conversely, we observe that, from the Coxeter graph G, we can readily recover both the
combinatorial polyhedron P and the internal angles π/mi j associated to each edge in the
1-skeleton of P .
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196 JEAN-F. LAFONT, BRUCE A. MAGURN AND IVONNE J. ORTIZ

2·2. Geodesic polyhedra in H3

A natural question is the realization question: given a combinatorial polyhedron P with
prescribed internal angles of the form π/me (me � 2) assigned to each edge e of P , does it
arise as a geodesic polyhedron inside H3? If so, we will say that the labeled combinatorial
polyhedron is realizable in H3.

In fact, a celebrated result of Andreev [An] provides a complete characterization of finite
volume geodesic polyhedra in H3 with non-obtuse internal angles. More precisely, given an
abstract combinatorial polyhedron P , with a 0 < θe � π/2 assigned to each edge e, Andreev
demonstrated that the following two statements are equivalent:

(i) the labeled combinatorial polyhedron P is realizable in H3; and
(ii) the collection θe satisfy a finite collection of linear inequalities, which are explicitly

given in terms of the combinatorics of the polyhedron P .

For a more specific discussion, we refer the reader to the recent paper of Roeder, Hubbard,
and Dunbar [RHD], or to the book of M. Davis [Da, section 6·10]. The point we want to em-
phasize is that, from a combinatorial polyhedron with prescribed dihedral angles π/me, one
can use Andreev’s theorem to easily check whether the labeled combinatorial polyhedron is
realizable in H3.

2·3. Coxeter groups as hyperbolic reflection groups

The Coxeter groups of interest here are canonically associated to a certain class of
geodesic polyhedra P in H3. For these Coxeter groups, our goal is to provide recipes for
computing the lower algebraic K -theory. The reader might naturally be interested in know-
ing, given a Coxeter group, whether it is one of these 3-dimensional hyperbolic reflection
groups. We summarize here the procedure for answering this question. Let us assume that
we are given a Coxeter group � in terms of its complete Coxeter graph G (i.e. the complete
graph on the generators, with each edge labelled by either an integer � 2, or by ∞).

First of all, we note that if we exclude the edges labelled ∞ in the graph G, we obtain a
labeled graph G ′. If the Coxeter group � was a hyperbolic reflection group, then G ′ would
have to be the dual graph to the corresponding polyhedron P , and in particular, would have
to be a planar graph. Furthermore, the fact that G ′ is dual to a polyhedron implies that it is
3-connected. So from now on, let us assume G ′ is a planar, 3-connected graph.

Note that by a famous result of Steinitz [St], 3-connected planar graphs are precisely
the class of graphs that arise as 1-skeletons of polyhedra (in this case, the dual of P).
Furthermore, a well-known result of Whitney [Wh] states that 3-connected planar graphs
have a unique embedding in S2. A detailed discussion of both these results can be found in
Ziegler’s classic text, see [Z, chapter 4]. These two results now allow us to deal with G ′ as a
polyhedron, since it arises as the 1-skeleton of a unique polyhedron.

Secondly, let us assume that P is one of our geodesic polyhedra, and �P is the associated
Coxeter group. If we take a vertex v ∈ P , then the stabilizer of v under the �P has to
be a 2-dimensional spherical reflection group. Since all the spherical Coxeter groups are in
fact spherical triangle groups, this immediately implies that at most three faces of P can
contain v. So in particular, if G ′ is dual to the polyhedron P , we see that all the faces of G ′

corresponding to non-ideal vertices of P must in fact be triangles.
Thirdly, if we take an ideal vertex v of P , then the stabilizer of v in �P must be a planar

Coxeter group, generated by reflections in a planar polygon with all angles of the form
π/me. Note that there are four such polygons: three triangles (equilateral triangle, right
isosceles, and the (π/6, π/3, π/2) triangle), or a rectangle. This in turn implies that their
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are at most four faces in P asymptotic to the vertex v. So if G ′ is dual to P , then the faces of
G ′ corresponding to ideal vertices of P have either 3 or 4 sides. Putting this together we see
that G ′ has the property that all its faces are triangles or quadrilaterals.

Finally, given such a G ′, with labels me on the edges (coming from the Coxeter graph),
we can dualize G ′ to obtain a polyhedron P . We can assign to the edge e∗ of P dual to the
edge e of G ′ the dihedral angle θe := π/me. This gives a labeled combinatorial polyhedron,
to which we can now apply Andreev’s theorem, and find out whether it is realizable in H3.
This allows us to efficiently determine whether the original, abstract Coxeter group � is one
to which the techniques of this paper apply.

Lastly, we point out that while these constraints are fairly stringent, this nevertheless
allows for infinitely many pairwise non-isomorphic Coxeter groups �P (see for instance
Example 8 in Section 6 for infinitely many examples with polyhedron a combinatorial cube).

2·4. Isomorphism conjecture and splitting formulas

The starting point for our computation is the Farrell–Jones isomorphism conjecture, which
predicts, for a group G, that the natural map:

H G
n (EVCG; KZ−∞) −→ H G

n (∗; KZ−∞)� Kn(ZG) (2·1)

is an isomorphism for all n. This conjecture is known to hold for lattices in O+(3, 1) for
n � 1, by work of Farrell and Jones [FJ1] in the cocompact case, and by work of Berkove,
Farrell, Juan–Pineda and Pearson [BFJP] in the non-cocompact case. So to compute the (al-
gebraic) right hand side, we can instead focus on computing the (topological) left hand side.

Let us discuss the left-hand side. Farrell–Jones [FJ1] established the existence of an
equivariant generalized homology theory (denoted H ?

∗ (−; KZ-∞)), having the property that
for any group G, and any integer n, the equivariant homology of a point ∗ with trivial G-
action satisfies H G

n (∗; KZ-∞) � Kn(ZG). Now given any G-CW-complex X , the obvious
G-equivariant map X → ∗ induces a canonical homomorphism in equivariant homology:

H G
n (X; KZ-∞) −→ H G

n (∗; KZ-∞)� Kn(ZG)

called the assembly map. The idea behind the isomorphism conjecture is to find a “suitable”
space X for the above map to be an isomorphism. The space X should be canonically asso-
ciated to the group G, and should be explicit enough for the left hand side to be computable.
In the isomorphism conjecture, the space EVCG that appears is any model for the classifying
space for G-actions with isotropy in the family of virtually cyclic subgroups. We refer the
reader to the survey paper by Lück and Reich [LR] for more details.

Having explained the left-hand side of the Farrell–Jones isomorphism conjecture, let us
now return to the groups for which we would like to do computations. Recall that we are
considering groups �P , associated to certain finite volume geodesic polyhedra P ⊂ H3.
These groups are automatically lattices in O+(3, 1).

Now for lattices � � O+(3, 1), Lafont-Ortiz established in [LO2, corollary 3·3] the
following formula for the algebraic K -theory:

H�
n (EVC(�); KZ−∞)� H�

n (EFIN (�); KZ−∞) ⊕
⊕
V ∈V

H V
n (EFIN (V ) → ∗). (2·2)

Let us explain the terms showing up in the above formula. The left-hand side is the ho-
mology group we are interested in computing, and coincides with the algebraic K -theory
groups Kn(Z �) (as equation (2·1) is an isomorphism). The first term on the right hand side
is the equivariant homology of EFIN �, a model for the classifying space for proper actions
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of G. But it is well known that for lattices in O+(3, 1), such a model is given by the action
on H3. For the second term appearing on the right-hand side, we have that:

(i) V consists of one representative V from each conjugacy class in � of those infinite
subgroups of the form Stab�(γ ), where γ ranges over geodesics in H3;

(ii) the homology groups H V
n (EFIN (V ) → ∗) are the cokernels of the assembly maps

H V
n (EFIN (V ); KZ-∞) → H V

n (∗; KZ-∞).

In view of the splitting formula, we merely need to analyze the two terms appearing on
the right-hand side of equation (2·2).

The first term is computed via an Atiyah-Hirzebruch type spectral sequence, which we
will analyze in Sections 3 and 4. The remaining terms will be analyzed in our last Section 5.

3. Lower algebraic K -theory of Dn, Dn × Z2 and A5 × Z2

In order to compute the term H�
∗ (EFIN (�P); KZ−∞), we will make use of an Atiyah-

Hirzebruch type spectral sequence due to Quinn. The computation of the E2-terms of the
spectral sequence requires knowledge of the lower algebraic K -theory of cell stabilizers for
the �P -action on H3. For many of the groups arising as cell stabilizers, the lower algebraic
K -theory is known (see [LO2, section 5]). The only lower algebraic K -groups we still need
to compute are those of dihedral groups Dn (generic stabilizers of 1-cells), those of groups
of the form Dn × Z2 (generic stabilizers of 0-cells), and the K−1 of the group A5 × Z2.

We recall that Carter [C] established that Kn(ZG) = 0 for n � −2 whenever G is a
finite group. In particular, we will just focus on computing the K−1, K̃0, W h for the generic
stabilizers Dn and Dn × Z2. Among these, we provide easily computable number theor-
etic expressions for the K−1 (Section 3·1) and for W h (Section 3·4). In contrast, the de-
termination of K̃0 is a classical, hard question; we provide a summary of what is known
(Section 3·3). We also calculate the group K−1(Z[A5 × Z2]) (Section 3·2).

3·1. The negative K -theory K−1(ZG)

A general recipe for computing the K−1 of integral group rings of finite groups is provided
by Carter [C]. First recall that if A is a simple artinian ring, it is isomorphic to Mn(D)

for some positive integer n and division ring D, finite dimensional over its center E . That
dimension [D : E] is a square, and the Schur index of A equals

√[D : E]. For a field F and
a finite group G, let rF denote the number of isomorphism classes of simple FG-modules.
D. W. Carter [C] proved

K−1(ZG)�Zr ⊕ (Z2)
s

where

r = 1 − rQ +
∑
p | |G|

(rQp − rFp) (3·1)

where, as in all our summations, p is prime; and s is the number of simple components A of
QG with even Schur index but with AP of odd Schur index for each prime P of the center of
A that divides |G|. We now proceed to use Carter’s formula to compute the K−1 associated
to the groups Dn, Dn × Z2, and A5 × Z2.

Let us first consider the case of the groups Dn and Dn ×Z2. If H is a subgroup of a group
G, denote its index in G by [G : H ]. Suppose that n is an integer exceeding 2, δ(n) is the
number of (positive) divisors of n, and for each prime p, write n = pνμ where μ � pZ. So
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Lower algebraic K -theory of certain reflection groups 199

ν = νp(n) is the power to which p divides n, and μ = μp(n) is the non-p-part of n. Define

σp(n) =
∑
d|μ

[ Z�
d : 〈−1̄, p̄〉 ] =

∑
p�d|n

[ Z�
d : 〈−1̄, p̄〉 ]

τ(n) =
∑
p|2n

νp(n)σp(n) =
∑
p|n

νp(n)σp(n)

We are now ready to state our:

THEOREM 1. If Dn is the dihedral group of order 2n and Z2 is the cyclic group of order
2, then:

(i) K−1(ZDn)�Z1−δ(n)+τ(n);
(ii) K−1(Z[Dn × Z2])�Z1−2δ(n)+σ2(n)+2τ(n).

Proof. For the groups G = Dn and G = Dn × Z2, we know that the simple components
of QG are matrix rings over fields (see below); so each has Schur index 1, which forces
s = 0. This gives us:

Fact 1. For the groups G = Dn and G = Dn × Z2, the group K−1(ZG) is torsion-free.

So for these groups, we are left with having to compute the quantities rF where F are
various fields. Now for F a field of characteristic 0, FG is semisimple, and rF coincides
with the number of simple components of FG in its Wedderburn decomposition.

Let us denote by ε the number of conjugacy classes of reflections in Dn; so ε is 1 or 2,
according to whether n is odd or even. As shown by Magurn [Ma1],

QDn �
⊕

d | n, d>2

M2(Q(ζd + ζ−1
d )) ⊕ Q2ε;

so rQ = δ(n) + ε. On the other hand, for the group Dn × Z2, we know that Q[Dn ×
Z2]�QDn ⊕ QDn , which immediately tells us that for these groups, rQ = 2δ(n) + 2ε. We
summarize these observations in our

Fact 2. For the groups G = Dn , we have that rQ = δ(n)+ε. For the groups G = Dn ×Z2,
we have that rQ = 2δ(n) + 2ε.

To count simple FG-modules for an arbitrary field F of characteristic p (possibly p = 0),
we employ a theorem of S. D. Berman. Suppose d is a positive integer and d � 0 in F . Then
xd − 1 has d different roots in the algebraic closure F̄ , and these form a (necessarily cyclic)
subgroup of F̄�. Say ζd is a generator – a primitive d th root of unity over F . Now Fd = F(ζd)

is a Galois extension of F , and each member of the Galois group Aut(Fd/F) is defined by
its effect ζd �→ ζ t

d , where t is coprime to d. Sending such an automorphism to t̄ ∈ Z�
d defines

an embedding of the Galois group as a subgroup Td of Z�
d .

With p as above, an element x ∈ G is p-regular if p does not divide the order of x .
Suppose m is the least common multiple of the orders of all p-regular elements of G. Then
m � 0 in F . Say p-regular elements x, y ∈ G are F-conjugate if xt = gyg−1 for some
t̄ ∈ Tm and g ∈ G. This is an equivalence relation on the set of p-regular elements of G.
Notice that F-conjugate p-regular elements have equal order, since each t is coprime to
m, hence to their orders. Berman established (see [CR1, theorems (21·5) and (21·25)]) that
for F is field of characteristic p (possibly p = 0) and G a finite group, the number rF of
isomorphism classes of simple FG-modules is equal to the number of F-conjugacy classes
of p-regular elements of G. In view of this result and Carter’s formula (3·1), we will now
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focus on counting the F-conjugacy classes in the groups Dn and Dn × Z2, where F is either
a p-adic field Qp or a finite field Fp. We first work over the field Qp, and establish

Fact 3. For the groups G = Dn , we have that rQp = (νp(n) + 1)σp(n) + ε. For the groups
G = Dn × Z2, we have that rQp = 2(νp(n) + 1)σp(n) + 2ε.

To see this, we first recall that for a prime p, the field Qp of p-adic numbers has character-
istic 0. Every element of a finite group G is 0-regular, and hence the least common multiple
m of the orders of 0-regular elements coincides with the minimum exponent of G. We now
set F = Qp, and for each m, set Fm = Qp(ζm). Write m = peq with e � 0 and q an integer
not divisible by p.

As shown by [Se1, chapter IV, section 4], Aut(Fpe/F) embeds as all Z�
pe and Aut(Fq/F)

embeds as the cyclic subgroup 〈 p̄〉 in Z�
q . The former is deduced from

[Fpe : F] = φ(pe) = |Z�
pe |,

and this, in turn, follows from the irreducibility in F[x] of the cyclotomic polynomial

p(x) = 1 + x pe−1 + x2pe−1 + · · · + x (p−1)pe−1
.

This irreducibility comes from that of the Eisenstein polynomial p(x + 1) in F[x]. Now Fq

is an unramified extension of F , so p remains prime in its valuation ring and p(x + 1) is
still an Eisenstein polynomial in Fq[x]. So p(x) is irreducible there, and

[Fm : Fq] = [Fq(ζpe) : Fq] = φ(pe).

Therefore [Fm : F] = [Fpe : F][Fq : F].
Now ζpeζq has order m. So we can choose ζm to be ζpeζq , and each element of Aut(Fm/F)

is uniquely determined by its restrictions to Fpe and Fq . The resulting embedding

Aut(Fm/F) −→ Aut(Fpe/F) × Aut(Fq/F)

must be an isomorphism, since the domain and codomain have equal finite size. Note also
that, for d dividing m, the restriction map

Aut(Fm/F) −→ Aut(Fd/F)

is surjective by the Extension Theorem of Galois theory. So the canonical map Zm → Zd

takes Tm onto Td .
Next, let us specialize to G = Dn , with F still the p-adic field Qp. Then m is the least

common multiple of 2 and n. For t̄ ∈ Tm � Z�
m , t is coprime to m, so must be odd. This

implies that for each reflection b ∈ Dn , bt = b, telling us that the Qp-conjugacy class of b
coincides with its ordinary conjugacy class. Hence there are ε distinct Qp-conjugacy classes
of reflections in Dn .

Now let us consider rotations in Dn . Each rotation x ∈ Dn has order dividing n = pνμ,
and hence has order pi d with i � ν and d dividing μ. Every rotation of order pi d is uniquely
expressible as a product yz where y and z are rotations of orders pi , d respectively. If x has
this decomposition yz, then as t̄ varies in Tm , xt = yt zt = y j zk where ( j̄, k̄) runs through all
pairs in Tpi × Td . Since rotations x ∈ Dn have conjugacy class {x, x−1}, the Qp−conjugacy
class of a rotation x of order pi d is the set of

|Tpi × Td | = |Z�
pi × 〈 p̄〉| = φ(pi )|〈 p̄〉|

elements xt , together with their inverses.
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If 〈 p̄〉 = 〈−1̄, p̄〉 in Z�
d , each − p̄u is p̄v for some integer v, and the set of powers

xt = yuz pu

is closed under inverses. Or if 〈 p̄〉 � 〈−1̄, p̄〉, then − p̄u � 〈 p̄〉, and the set of powers
xt does not overlap the set of x−t . Either way the number of Qp-conjugacy classes of x is
φ(pi)|〈−1̄, p̄〉|. There are φ(pi)φ(d) rotations of order pi d; so the number of Qp-conjugacy
classes of them is the index

φ(d)

|〈−1̄, p̄〉| = [Z�
d : 〈−1̄, p̄〉].

This number is independent of i . Since there are ν + 1 powers pi , we obtain

rQp = (ν + 1)
∑
d|μ

[Z�
d : 〈−1̄, p̄〉] + ε = (ν + 1)σp(n) + ε.

Finally, we observe that we have an isomorphism Qp[Dn × Z2] � Qp Dn ⊕ Qp Dn . Re-
calling that the integer rQp can also be interpreted as the number of simple components in
the Wedderburn decomposition of QpG, this tells us that for the group Dn × Z2, we have
rQp = 2(νp(n) + 1)σp(n) + 2ε. This concludes the verification of Fact 3.

Finally, we work over the finite fields Fp, and establish:

Fact 4. For the groups G = Dn , we have that rFp = σp(n) + ε (p odd) and rF2 = σ2(n).
For the groups G = Dn × Z2, we have that rFp = 2σp(n) + 2ε (p odd) and rF2 = σ2(n).

Let us first consider the case G = Dn . Set F = Fp, and let m be the least common
multiple of the orders of the p-regular elements in G. The fields F , F(ζm) are finite and
Aut(F(ζm)/F) is cyclic, generated by the p-power map, since |F | = p. So Tm = 〈 p̄〉 � Z�

m .
Fix a reference rotation a ∈ Dn of order n.

The p-regular rotations are the rotations of order d dividing μp(n), and so are of the form
αu , where α = an/d and u is coprime to d. Then αu , αv are Fp-conjugate if and only if

αupi = αv(−1) j

for some positive integers i , j . This just means ū ≡ v̄ mod 〈−1̄, p̄〉 in Z�
d . So the number of

Fp-conjugacy classes of p-regular rotations in Dn is∑
d|μ

[Z�
d : 〈−1̄, p̄〉] = σp(n).

Next let us consider reflections in Dn . If p is an odd prime, reflections are also p-regular.
Since m is even, each t with t̄ ∈ Tm � Z�

m is odd. So we see that for reflections, Fp-
conjugacy coincides with ordinary conjugacy. In particular, for odd primes, we see that the
number of Fp-conjugacy classes of reflections is ε. On the other hand, reflections are not
2-regular. Putting this together, we obtain that

rFp = σp(n) + ε (p odd) and rF2 = σ2(n),

which establishes the first part of Fact 4.
Now let us consider groups of the form G = Dn × Z2, where Z2 is the cyclic group {1, c}

generated by c of order 2. In the group Dn × Z2, the subgroup Dn × {1} is a copy of Dn . Fix
a reference rotation a ∈ Dn of order n and a reference reflection b ∈ Dn . Then in Dn × Z2

we have rotations (ai , 1), reflections (ai b, 1), co-rotations (ai , c) and co-reflections (ai b, c).
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For x ∈ Dn , the conjugates in Dn × Z2 of (x, 1) (resp. (x, c)) are the elements (y, 1) (resp.
(y, c)) with x conjugate to y in Dn . The least common multiple m of orders of p-regular
elements is the same for Dn and Dn × Z2; so the exponents t with t̄ ∈ Tm are the same for
both these groups.

For p odd, we have that m is even, hence t are odd, and (x, 1)t = (xt , 1), while (x, c)t =
(xt , c). The p-regular elements in Dn × Z2 are the reflections, the co-reflections, and the
p-regular rotations and co-rotations. So for p odd, the number of Fp-conjugacy classes in
Dn × Z2 is double the number of Fp-conjugacy classes in the corresponding Dn:

rFp = 2σp(n) + 2ε (p odd).

On the other hand, the only 2-regular elements in Dn × Z2 are rotations. This implies that
the F2-conjugacy classes are the same for Dn × Z2 as for Dn , giving us rF2 = σ2(n). This
completes the verification of the second statement in Fact 4.

Finally, let us apply Carter’s formula to complete the proof of our theorem. For groups
of the form G = Dn , we have from Fact 1 that K−1(ZDn) is free abelian. Furthermore, the
rank of K−1(ZDn) is given by equation (3·1). Combining Fact 3 and Fact 4, we see that

rQp − rFp =
{

νp(n)σp(n), p � 2

ν2(n)σ2(n) + ε, p = 2.

Summing over all primes dividing |G| = 2n, we see that:∑
p|2n

(rQp − rFp) =
(∑

p|2n

νp(n)σp(n)

)
+ ε = τ(n) + ε.

Substituting this expression into equation (3·1), and substituting in the calculation of rQ from
our Fact 2, we see that the rank of K−1(ZDn) is given by:

r = 1 − (δ(n) + ε) − (τ (n) + ε) = 1 − δ(n) + τ(n),

which establishes part (i) of our Theorem 1.
Similarly, for groups of the form G = Dn ×Z2, we again have from Fact 1 that K−1(ZDn)

is free abelian. Combining Fact 3 and Fact 4, we see that for these groups

rQp − rFp =
{

2νp(n)σp(n), p � 2

2ν2(n)σ2(n) + σ2(n) + 2ε, p = 2.

Summing over all primes dividing |G| = 4n (which coincides with the primes dividing 2n),
we see that:∑

p|4n

(rQp − rFp) = 2

( ∑
p|2n

νp(n)σp(n)

)
+ σ2(n) + 2ε = 2τ(n) + σ2(n) + 2ε.

Finally, substituting these into equation (3·1), and substituting the calculation of rQ from our
Fact 2, we obtain that K−1(Z[Dn × Z2]) has rank

r = 1 − (2δ(n) + 2ε) + (2τ(n) + σ2(n) + 2ε) = 1 − 2δ(n) + σ2(n) + 2τ(n),

establishing part (ii) of our theorem. This concludes the proof of Theorem 1.

As an application of this result, we can easily determine the K−1 of dihedral groups Dn

when n has few divisors. For example, we have:
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COROLLARY 2. For p an odd prime, set r = [Z�
p : 〈−1̄, 2̄〉]. Then we have:

(i) K−1(ZD2p)� K−1(Z[Dp × Z2])�Zr ;
(ii) K−1(Z[D2p × Z2])�Z3r .

Proof. From our theorem, we have that the rank of K−1(ZD2p) is given by:

1 − δ(2p) + τ(2p).

We have that δ(2p) = 4, while τ(2p) = ν2(2p)σ2(2p) + νp(2p)σp(2p). Since ν2(2p) =
νp(2p) = 1, we are left with computing the integers σ2(2p), σp(2p). But it is easy to verify
that σp(2p) = 2, while σ2(2p) = 1 + [Z�

p : 〈−1̄, 2̄〉] = 1 + r . This gives us τ(2p) = 3 + r ;
substituting in these values gives the first statement in our corollary.

Similarly, we know that the rank of K−1(Z[D2p × Z2]) is given by:

1 − 2δ(2p) + σ2(2p) + 2τ(2p).

Substituting in the values computed above, we find that the rank is given by

1 − 2(4) + (1 + r) + 2(3 + r) = 3r

which establishes the second statement in the corollary.

For a concrete example, we see for instance that when p = 3, r = 1, then K−1(ZD6)�Z

and K−1(Z[D6 × Z2]) � Z3 (see [LO2, section 5·1] for an alternate computation of this
group).

As another application, we can completely classify dihedral groups (and products of di-
hedral groups with Z2) whose K−1 vanishes:

COROLLARY 3. K−1(ZDn) = 0 if and only if n is a prime power, and K−1(Z[Dn ×
Z2]) = 0 if and only if n is a power of 2.

Proof. Note that

σp(n) =
∑
d|μ

[Z�
d : 〈−1̄, p̄〉] �

∑
d|μ

1 = δ(μ) = δ(n)

δ(pν)
= δ(n)

1 + ν
.

So

τ(n) �
∑
p|n

νp(n)

(
δ(n)

1 + νp(n)

)
= δ(n)

∑
p|n

(
1 − 1

1 + νp(n)

)
� δ(n)

∑
p|n

1

2
= δ(n)

g

2
,

where g is the number of primes that divide n. Then the rank of K−1(ZDn) is

1 − δ(n) + τ(n) � 1 + δ(n)
(g

2
− 1

)
.

So K−1(ZDn) does not vanish if n is not a prime power. If n = pe for p prime and e � 1,
then τ(n) = νp(n)σp(n) = (e)(1) = e and δ(n) = e + 1, which gives us K−1(ZDpe) = 0.

Next we consider the case of groups Dn × Z2. For arbitrary n,

σ2(n) + 2τ(n) � δ(n)

[
1

1 + ν2(n)
+ g

]
> δ(n)g.

This allows us to estimate from below the rank of K−1(Z[Dn × Z2]):
1 − 2δ(n) + σ2(n) + 2τ(n) > 1 + δ(n)(g − 2).
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So K−1(Z[Dn × Z2]) doesn’t vanish if n is not a prime power. If n = pe for p an odd prime
and e � 1, its rank is given by

1 − 2(e + 1) + σ2(n) + 2e = σ2(n) − 1.

But for such an n, ν2(n) = 0 and δ(n) = 1 + e, giving us

σ2(n) � δ(n)

1 + ν2(n)
= e + 1 � 2.

This implies that K−1(Z[Dpe × Z2]) does not vanish. However, if n = 2e with e � 1, the
rank is

1 − 2(e + 1) + 1 + 2e = 0

concluding the proof of Corollary 3.

3·2. The lower K -group K−1(Z[A5 × Z2])
Recall that the group A5 × Z2 is one of the three “exceptional” groups that arise as stabil-

izers of vertices of P , along with S4 and S4 ×Z2. The lower K -groups of the last two groups
have all been previously computed (see [LO2, section 5]). We implement the method dis-
cussed in the previous section to show the following:

Example 4. K−1(Z[A5 × Z2])�Z2.

Proof. We first recall that the group algebra QA5 decomposes into simple components as
follows:

QA5 �Q ⊕ M3(Q
(√

5)
) ⊕ M4(Q) ⊕ M5(Q).

Since Q[A5 × Z2] � QA5 ⊕ QA5, we see that the Schur indices of all the simple com-
ponents in the Wedderburn decomposition of Q[A5 × Z2] are equal to 1. Carter’s result
[C] now tells us that K−1(Z[A5 × Z2]) is torsion-free, and from equation (3·1), the rank is
given by

r = 1 − rQ + (rQ2 − rF2) + (rQ3 − rF3) + (rQ5 − rF5). (3·2)

We now proceed to compute the various terms appearing in the above expression.
Recall that for F a field of characteristic 0, rF just counts the number of simple compon-

ents in the Wedderburn decomposition of the group algebra F[A5×Z2]. From the discussion
in the previous paragraph, we have that

Q[A5 × Z2]�Q2 ⊕ M3

(
Q(

√
5)

)2 ⊕ M4(Q)2 ⊕ M5(Q)2.

yielding rQ = 8. Now by tensoring the above splitting with Qp, we obtain:

Qp[A5 × Z2]�Q2
p ⊕ M3

(
Qp ⊗Q Q(

√
5)

)2 ⊕ M4(Qp)
2 ⊕ M5(Qp)

2.

The second term is isomorphic to M3(Qp(
√

5))2 for p = 2, 3 and 5, since 5 is not a square
mod 8, 3, or 25, hence not a square in Qp. In particular, for each of the primes p = 2, 3, 5,
we obtain that rQ2 = rQ3 = rQ5 = 8.

Next let us consider the situation over the finite fields F2, F3, F5. We first recall that the
integer rFp counts the number of Fp-conjugacy classes of p-regular elements. Recall that
an Fp-conjugacy class of an element x is the union of ordinary conjugacy classes of certain
specific powers of x , where the powers are calculated from the Galois group associated to a
finite extension of the field Fp.
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For p = 2, we note that elements in A5 × Z2 are 2-regular precisely if they have order
1, 3 or 5. There is a single conjugacy class of elements of order one (the identity element).
The elements of order 3 form a single conjugacy class inside A5 × Z2. Finally, the elements
of order 5 form two conjugacy classes in A5 × Z2; representatives for these two conjugacy
classes are given by g = ((abcde), 1), and by g2. So there will be either one or two F2-
conjugacy classes of elements of order 5. To determine the specific powers, we note that the
minimal exponent of A5 × Z2 equals 30 = 2 · 15. The powers of x are given by considering
the Galois group of the extension Gal

(
F2(ζ15)/F2

)
, viewed as elements of Z∗

15. Since the
Galois group is generated by squaring, we see that the Galois group is cyclic of order 4,
given by the residue classes {1̄, 2̄, 4̄, 8̄} ⊂ Z∗

15. In particular, since 2̄ lies in the Galois group,
we see that g and g2 lie in the same F2-conjugacy class, implying that there is a unique
F2-conjugacy class of elements of order 5. We conclude that there are three F2-conjugacy
classes of 2-regular elements, giving rF2 = 3.

For p = 3, the elements in A5 × Z2 that are 3-regular have order 1, 2, 5 or 10. Since the
minimal exponent of the group is 30 = 3 · 10, we look at the Galois group associated to the
field extension F3(ζ10). Elements in the Galois group are generated by the third power, giving
us that Gal(F3(ζ10)/F3) = {1̄, 3̄, 7̄, 9̄} ⊂ Z∗

10. In particular, the F3-conjugacy class of any
element x ∈ A5 × Z2 is the union of the conjugacy classes of the elements x, x3, x7 and x9.
Now we clearly have a unique F3-conjugacy class of elements of order one. For elements
of order 2, there are three distinct (ordinary) conjugacy classes of elements of order two;
each of these ordinary conjugacy class is also an F3-conjugacy class. Next we note that
there are two conjugacy classes of elements of order 5, but these two ordinary conjugacy
classes are part of a single F3-conjugacy class since the 7th power of such an element is its
square. Finally, we observe that there are two conjugacy classes of elements of order 10, but
these again give rise to a single F3-conjugacy class. We conclude that overall there are six
F3-conjugacy classes of 3-regular elements, giving rF3 = 6.

Finally, for p = 5, the elements in A5 × Z2 that are 5-regular have order 1, 2, 3 or 6.
Since the minimal exponent of the group is 30 = 5 · 6, we need to look at the Galois group
associated to the field extension F5(ζ6). Elements in the Galois group are generated by the
fifth power, giving us that Gal(F5(ζ6)/F5) = {1̄, 5̄} ⊂ Z∗

6. This yields that the F5-conjugacy
class of an element x ∈ A5 × Z2 of order five is the union of the ordinary conjugacy classes
of x and of x5. Now we have a single F5-conjugacy class of elements of order one. For
elements of order 2, we have three ordinary conjugacy classes of elements; but each of these
also forms a single F5-conjugacy class (since for these elements, x5 = x). For elements
of order 3, we have a single ordinary conjugacy class of such elements, which also form a
single F5-conjugacy class. Finally, for elements of order 6, we also have a single ordinary
conjugacy class of such elements, which hence also form a single F5-conjugacy class. We
conclude that there is a total of six F5-conjugacy classes of 5-regular elements, and hence
rF5 = 6.

To conclude, we substitute in our calculations into the expression in equation (3·2) for the
rank of K−1(Z[A5 × Z2]), giving us:

r = 1 − 8 + (8 − 3) + (8 − 6) + (8 − 6) = 2

completing our calculation for Example 4.

3·3. The class group K̃0(ZG)

The group K̃0(ZG) = K0(ZG)/〈[ZG]〉 is closely related to the ideal class group of the
ring of algebraic integers R in a number field F (that is, a field F with [F : Q] finite).
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The ideal class group Cl(R) is the group of R-linear isomorphism classes of non-zero
ideals of R, under multiplication of ideals: (I )(J ) = (I J ). The identity element is the
class (R) of non-zero principal ideals; so Cl(R) measures the deviation of R from being a
principal ideal domain.

Suppose A is a finite dimensional Q-algebra. A Z-order in A is a subring � of A that is
finitely generated as a Z-module and spans A as a Q-vector space. For each prime number
p, the set Z − pZ is a submonoid of Z under multiplication; the local ring

S−1Z =
{a

n
: a ∈ Z, n ∈ S

}
is denoted by Z(p). For any �-module M , the localization M(p) = S−1 M is a �(p) = S−1�-
module. We say M is locally free if there is an integer n � 0 so that, for all primes p,
M(p) = �n

(p) as a �(p)-modules. This n is the rank rk(M) of M . By [Sw, lemma 6·14],
finitely generated locally free �-modules are projective; so they generate a subgroup L F(�)

of K0(�). There is a surjective group homomorphism

rk : L F(�) −→ Z, [P] − [Q] �−→ rk(P) − rk(Q).

Its kernel is the locally free class group Cl(�) of the Z-order �. Since rk is split by sending
1 ∈ Z to [�] ∈ L F(�), there is an isomorphism Cl(�) � L F(�)/〈[�]〉. As shown in
[CR2, 39·13], Cl(�) is a finite group.

In the classical case where A is a number field F and � is its ring of algebraic integers
R, Cl(R) as defined above coincides with the classical ideal class group Cl(R), and with
K̃0(R). Its order h(F) is called the class number of F .

Our focus is the case A = QG, � = ZG, for a finite group G. Swan proved (see [CR1,
32·11]) that every finitely generated projective ZG-module is locally free; so Cl(ZG) �
K̃0(ZG). But group rings and rings of algebraic integers are special in this respect; Cl and
K̃0 differ for Z-orders in general. Between these two, it is Cl that inherits the properties of
K0:

Cl(�1 ⊕ �2)�Cl(�1) ⊕ Cl(�2)

by [RU2], and

Cl(Mn(R))�Cl(R)

by [Re, 36·6].
If f : A1 → A2 is a Q-algebra homomorphism carrying a Z-order �1 into a Z-order �2,

the map K0( f ) : K0(�1) → K0(�2) induces a group homomorphism

Cl( f ) : Cl(�1) −→ Cl(�2)

making Cl a functor. If i : � → �′ is the inclusion of � into a maximal Z-order �′ of A
containing �, the map Cl(i) is surjective; its kernel D(�) is known as the kernel group of
�, and up to isomorphism D(�) is independent of the choice �′ (see [J]). So we have a (not
necessarily split) short exact sequence

0 → D(�) → Cl(�)
Cl(i)−−→ Cl(�′) → 0. (3·3)

So for a finite group G and associated � := ZG, understanding the group K̃0(ZG)�Cl(�)

boils down to understanding the groups Cl(�′) and D(�) and the way these fit together.
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Let us now specialize to the case of dihedral groups. For G the dihedral group Dn , the
isomorphism of Q-algebras

QDn �
⊕

d | n,d>2

M2(Q(ζd + ζ−1
d )) ⊕ Q2ε

carries ZDn into the maximal order

�′ �
⊕

d | n,d>2

M2(Z[ζd + ζ−1
d ]) ⊕ Z2ε.

Since Cl(Z) = 0, we obtain

Cl(�′)�
⊕

d | n,d>2

Cl(Z[ζd + ζ−1
d ]).

These summands, and the ideal class groups Cl(Z[ζd]), have been studied since the 19th
century work of Kummer and Dedekind. They remain difficult to compute, and their orders

hd = h
(
Q(ζd)

) = |Cl(Z[ζd])| (3·4)

h+
d = h

(
Q(ζd + ζ−1

d )
) = |Cl(Z[ζd + ζ−1

d ])| (3·5)

are still topics of active research.
A prime p is regular if p does not divide h p, and semiregular if p does not divide h+

p . A
conjecture originally discussed by Kummer, but currently known as Vandiver’s Conjecture,
is that all primes are semiregular. This has been verified for all primes less than 125,000
(see [Wag]). The smallest irregular prime is 37. Note that the order of Cl(�′) in the case
G = Dn is

∏
d h+

d for d|n, d > 2. If d|n, then h+
d |h+

n (see [Le]); so Cl(�′) = 0 if and only
if h+

n = 1. Computer calculations show that h+
n = 1 for all n � 71 (see [Li]).

The kernel group D(ZDn) vanishes for n a prime [GRU], and for n a power of a regular
prime [FKW], [K]. Each surjective group homomorphism G → H induces a surjective
homomorphism D(ZG) → D(ZH) by [RU2]. So if d|n, D(ZDn) maps onto D(ZDd).
According to [EM2, theorem 5·2], D(ZDp2) � (Zp)

d for all semiregular primes p, where
d > 1 when p is irregular. So D(ZDn) � 0 when n is divisible by the square of an irregu-
lar, semiregular prime. Of course we can remove the “semiregular” condition if Vandiver’s
Conjecture is true.

Also in [EM2], D(ZDn) is shown to have even order if (a) n is divisible by three different
odd primes, (b) n is divisible by 4 and two different odd primes, or (c) n is divisible by two
different primes in 1 + 4Z (in a parallel result by [Le], h+

n is even if n is divisible by three
distinct primes in 1 + 4Z). Another result in [EM2] is the proof that D(ZDn) = 0 for all
n < 60.

Next let us consider the situation for groups of the form G = Dn × Z2. Letting � =
Z[Dn × Z2], we again exploit the short exact sequence (3·3). Let c ∈ Z2 denote the non-
trivial element in the cyclic group of order 2. Since Q[Dn × Z2] � QDn ⊕ QDn by an
isomorphism (c → (1, −1)) taking Z[Dn × Z2] into ZDn ⊕ ZDn , the Cl(�′) vanishes for
G = Dn × Z2 if and only if it vanishes for the corresponding Dn .

In contrast to Cl(�′), the computation of the kernel group D(�) is much more involved.
First of all, let us consider the case where n is a power of 2. By [OT, example 6·9], we know
that D(Z[D2r × Z2])�Z2r . In fact, by [T], this group is the “Swan subgroup” generated by
the class of the ideal I in Z[D2r ×Z2] generated as an ideal by 5 and the sum of the elements
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in D2r × Z2. For an alternative generator of this group, consider the cartesian square

Z[Dn × Z2]

��

�� Z[Dn]

��
Z[Dn] �� F2[Dn]

(with the left map c �→ 1, top map c �→ −1 and remaining maps reduction mod 2). Now by
[RU2], the corresponding K -theory Mayer Vietoris sequence restricts to an exact sequence:

K1(ZDn) −→ K1(F2[Dn]) −→∂ D(Z[Dn × Z2]) −→ (D(Z[Dn]))2 −→ 0.

Now in the special case where n = 2r , the term (D(Z[Dn]))2 vanishes. Through computa-
tions of (F2 D2r )� one can show D(Z[D2r ×Z2]) is also generated by ∂(1 + b + ab). Finally,
since D(Z[Dn × Z2]) maps onto D(Z[D2r × Z2]) if 2r |n, we see that D(Z[Dn × Z2]) � 0
for n even.

Now for n odd, we know that Dn × Z2 � D2n . If p is an odd prime, D(Z[D2p]) is the
cokernel of the map R� → (R/2R)�, where R = Z[ζd +ζ−1

d ] (see [CR2, 50·14]). Generally,
if n is odd, the first map in the above sequence factors as the reduced norm, followed by
reduction mod 2:⊕

d|n,d>2

Z[ζd + ζ−1
d ]� ⊕ Z[b]� →

⊕
d|n,d>2

(
Z[ζd + ζ−1

d ]
2

)�

⊕ F2[b]�

followed by an isomorphism to K1(F2 Dn). So for odd n, if the kernel of the surjective map

D(Z[D2n]) −→ D(Z[Dn])2

is to be zero, then R� → (R/2R)� must be surjective for all R = Z[ζd + ζ−1
d ] with d|n,

d > 2.
The simplest conclusion we can draw about K̃0(ZDn) is that it vanishes for n < 60. For

a regular prime p, K̃0(ZDpr ) vanishes whenever h+
pr = 1 (which may be true for all r but is

only known to be so for φ(pr ) � 66). And K̃0(ZDn) has even order if n is divisible by too
many different primes p. Computer calculations are now accessible for K̃0(ZG) for groups
G of modest size [BB].

3·4. The Whitehead group W h(G)

From [Ba1] and [Wa] we know

K1(ZG)�±Gab ⊕ SK1(ZG) ⊕ Zr−q

where SK1(ZG) is finite and r and q are the numbers rR, rQ of simple components of
RG, QG respectively. From Berman’s Theorem, rR is the number of conjugacy classes of
unordered pairs {x, x−1} with x ∈ G, and rQ is the number of conjugacy classes of cyclic
subgroups of G. Furthermore

W h(G) = K1(ZG)/{±Gab} = SK1(ZG) ⊕ Zr−q .

For G a dihedral group Dn with ε conjugacy classes of reflections (ε =1 or 2 according to
whether n is odd or even), we computed in Section 3·1 that q = δ(n) + ε where δ(n) is the
number of divisors of n. Counting conjugacy classes of pairs {x, x−1} with x ∈ Dn , we find
r = (n+3ε)/2. So K1(ZDn) and W h(Dn) have rank (n+ε)/2−δ(n). Now (Dn)

ab � (Z2)
ε ,
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and by [Ma1], SK1(ZDn) = 1. So

W h(Dn)�Z(n+ε)/2−δ(n),

K1(ZDn)�Zε+1
2 ⊕ Z(n+ε)/2−δ(n).

For G = Dn × Z2, F[Dn × Z2]� (F Dn)
2 for any coefficient field F with 2 � 0; so r , q

are doubled. Also (Dn × Z2)
ab � (Dn)

ab × Z2; and by [Ma2], SK1(Z[Dn × Z2]) = 1. So

W h(Dn × Z2)�Zn+ε−2δ(n),

K1(Z[Dn × Z2])�Zε+2
2 ⊕ Zn+ε−2δ(n).

This completes the computation of the lower algebraic K -theory of the cell stabilizers for
the �P -action on H3.

4. Homology of EFIN �P

In order to simplify notation, we will omit the coefficients KZ-∞ in the equivariant ho-
mology theory, and will use � to denote the Coxeter group �P associated to a finite volume
geodesic polyhedron P ⊂ H3. Our goal in this section is to explain how to compute the term
H�

n (EFIN �). First recall that the � action on H3 provides a model for EFIN , with funda-
mental domain given by the original polyhedron P . If the polyhedron P is non-compact, we
can obtain a cocompact model for EFIN � by equivariantly removing a suitable collection
of horoballs from H3. A fundamental domain for this action is a copy of the polyhedron P
with each ideal vertex truncated. According to whether P is compact or not, we will use X
to denote either H3, or H3 with the suitable horoballs removed. We will denote by P̂ the
quotient space X/�, a copy of P with all ideal vertices truncated.

We observe that for this model, with respect to the obvious �-CW-structure, we have a
very explicit description of cells in X/ � = P̂ , as well as the corresponding stabilizers. The
cells in P̂ are of two distinct types. The first type of cells are cells from the original P; we
call these type I cells. Namely:

(i) there is one 3-cell (the interior of P̂) with trivial stabilizer;
(ii) the 2-cells corresponding to faces of P , and they all have stabilizers isomorphic to

Z2;
(iii) the 1-cells corresponding to elements in E(P), and their stabilizers will be finite

dihedral groups, given by the special subgroup corresponding to the two faces inter-
secting in the given edge;

(iv) the 0-cells corresponding to elements in V (P), and their stabilizers will be 2-
dimensional spherical Coxeter groups, given by the special subgroup corresponding
to the three faces containing the given vertex.

In addition to these, we have cells arising from truncating ideal vertices in P , which we
call type II cells. They are as follows:

(i) each truncated ideal vertex from P gives rise to a 2-cell in P̂ , with trivial stabilizer;
(ii) each face in P incident to an ideal vertex gives rise to a 1-cell in P̂ with stabilizer

Z2;
(iii) each edge in P incident to an ideal vertex gives rise to a 0-cell in P̂ with stabilizer

a dihedral group (isomorphic to the stabilizer of the edge that is being truncated).
From the fact that the ideal vertex stabilizers are 2-dimensional Euclidean reflection
groups, the stabilizer can only be isomorphic to one of the groups D2, D3, D4, or D6.
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Now to compute the homology group H�
n (X), we recall that Quinn has established [Qu,

appendix 2] the existence of an Atiyah-Hirzebruch type spectral sequence which converges
to this homology group, with E2-terms given by:

E2
p,q = Hp(P̂ ; {W hq(�σ )}) =⇒ H�

p+q(X).

The complex that gives the homology of P̂ with local coefficients {W hq(�σ )} has the form

· · · −→
⊕
σ p+1

W hq(�σ p+1) −→
⊕
σ p

W hq(�σ p) −→
⊕
σ p−1

W hq(�σ p−1) · · · −→
⊕
σ 0

W hq(�σ 0),

where σ p denotes the cells in dimension p, and the sum is over all p-dimensional cells in
P̂ . The pth homology group of this complex will give us the entries for the E2

p,q-term of the
spectral sequence. Let us recall that

W hq(F) =

⎧⎪⎨
⎪⎩

W h(F), q = 1

K̃0(ZF), q = 0

Kq(ZF), q � −1.

Note that, from the description of the stabilizers given above, we know that there is only
one 3-cell, with trivial stabilizer, and that all the 2-cells have stabilizers that are either trivial
or isomorphic to Z2. But it is well known that the lower algebraic K -theory of both the trivial
group and Z2 vanishes. In particular, for the groups of interest to us, we have that E2

p,q = 0
except possibly for p = 0, 1. It is also a well-known result of Carter [C] that for a finite
group G, Kn(ZG) = 0 for n < −1. This tells us that the only possible non-zero values for
E2

p,q occur when p = 0, 1 and −1 � q � 1, and are given by the homology of:

0 −→
⊕

e∈E(P)

W hq(�e) −→
⊕

v∈V (P)

W hq(�v) −→ 0 (4·1)

So in order to finish our computation of the E2-terms, we merely need to find the various
W hq(�e) and W hq(�v), and to analyze the morphism appearing above.

Recall that the edge stabilizers are given by dihedral groups Dk (1-cells of type I), or are
isomorphic to Z2 (1-cells of type II). Note that we have already largely computed the lower
algebraic K -theory of dihedral groups (see Section 3). Concerning the vertex stabilizers, we
note that these will be spherical triangle groups. The classification of these groups is well
known: up to isomorphism, they are either the generic Dk × Z2 (k � 2), or one of the three
exceptional cases S4, S4 ×Z2, and A5 ×Z2. We observe that, for the three exceptional cases,
the lower algebraic K -theory has already been computed: we refer the reader to [LO2] for
S4, to [Or, section 5] for S4 × Z/2, and to [LO2, section 5·4] and Section 3·2 for the group
A5×Z2. On the other hand, for the generic case, we have already given explicit computations
for the lower algebraic K -theory (see Section 3).

4·1. Analysis of the chain complex

Now that we know the groups appearing in the chain complex (4·1), let us proceed to
explain how one can compute the E2-terms for the Quinn spectral sequence for EFIN �.

Recall that the only edges with potentially non-trivial K -groups are the edges of type I,
with stabilizers �e isomorphic to dihedral groups. Each vertex in P̂ has three incident edges.
Vertices of type I have stabilizers �v which are spherical triangle groups and the inclusions
�e ↪→ �v always corresponds to the inclusion of a special subgroup �e into the finite
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Coxeter group �v. In contrast, vertices of type II have stabilizers �v which are dihedral;
two incident edges are of type II with stabilizer isomorphic to Z2. The third incident edge
is of type I, with stabilizer Ge one of the dihedral groups D2, D3, D4 or D6, and with the
inclusion Ge ↪→ Gv an isomorphism.

We now proceed to a case by case analysis based on the order of the edge stabilizers
arising in the truncated polyhedron P̂ .

Case 1: n � 7. If we have an edge e ∈ E(P̂) with stabilizer Dn , n � 7, then both
vertices v, w appearing as endpoints of e must be of type I, with stabilizer isomorphic
to Dn × Z2. Indeed, such Dn do not appear as subgroups of any other spherical triangle
group, nor do they appear as stabilizers of type II vertices. In this case, we observe that
all the remaining edges incident to either v or w have to have stabilizers isomorphic to
D2, which we know has vanishing lower algebraic K -theory. This implies that for such
an edge e ∈ E(P̂), we can split off the portion of the chain complex (4·1) corresponding
to e:

0 −→ W hq(Dn) −→ 2 · W hq(Dn × Z2) −→ 0.

Furthermore, since Dn ↪→ Dn × Z2 is a retract, we see that the map above is injective,
hence the homology will be concentrated in dimension zero, and will contribute a summand
2 · W hq(Dn × Z2)/W hq(Dn) to the corresponding E2

0,q .

Case 2: n = 6. If we have an edge e ∈ E(P̂) with stabilizer D6, the situation is a bit
more complicated. The endpoints v, w of the edge e are either of type I (with vertex stabilizer
D6 ×Z2) or of type II (with vertex stabilizer D6). In both cases, the remaining edges incident
to the vertices v, w have stabilizers isomorphic to Z2 or D2, which we know have vanishing
lower algebraic K -theory. So again, for each such edge e ∈ E(P̂), we can split off the
portion of the chain complex (4·1) corresponding to e:

0 −→ W hq(D6) −→ W hq(�v) ⊕ W hq(�w) −→ 0.

We now consider each of the cases q = 1, 0, −1.
For q = 1, we have that W h(D6) and W h(D6 × Z2) both vanish, so that the sequence

above degenerates to the identically zero sequence. In particular, the edges with stabilizer
D6 do not contribute to E2

1,1 or E2
0,1.

For q = 0, we recall that W h0(D6) = 0, while W h0(D6 × Z2) � (Z2)
2 (see [LO2,

section 5·1]. Hence each edge with stabilizer D6 makes no contribution to E2
1,0, while the

contribution to E2
0,0 is either 0, (Z2)

2, or (Z2)
4 according to whether none, one, or both of its

vertices have stabilizer D6 × Z2.
Finally, for q = −1, we have that W h−1(D6) � Z and W h−1(D6 × Z2) � Z3. Since the

natural inclusion D6 ↪→ D6 × Z2 is a retract, the corresponding induced map on W h−1 is a
split injection. This implies that edges with stabilizer D6 do not contribute to the E2

1,−1. At
the level of E2

0,−1, we find that an edge with stabilizer D6 contributes either a Z, Z3, or Z5,
according to whether none, one, or both of its vertices have stabilizer D6 × Z2.

Remark. Let r denote the number of vertices in P with stabilizer D6 × Z2, and E6 denote
the number of edges with stabilizer D6. Then the overall non-trivial contribution from all
the edges with stabilizer D6 can be summarized as follows:

(i) a contribution of Z2r
2 to the E2

0,0; and
(ii) a contribution of ZE6+2r to the E2

0,−1.
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Case 3: n = 5. If we have an edge e ∈ E(P̂) with stabilizer D5, then the two endpoints
v, w of the edge must be of type I. However, we still have two possibilities for the stabilizers
of the two endpoints v, w. Indeed, the dihedral group D5 appears as a special subgroup in
two different spherical triangle groups: D5 × Z2, as well as in [3, 5] � A5 × Z2. Note that
for the vertices with stabilizer D5 × Z2, the remaining incident edges will have stabilizers
D2, which we know has vanishing lower algebraic K -theory. On the other hand, vertices
with stabilizer A5 × Z2 will have two additional incident edges, one with stabilizer D3, and
one with stabilizer D2. But again, we know that these groups have vanishing lower algebraic
K -theory. Hence we see that in all cases, we can split off the portion of the chain complex
(4·1) corresponding to e:

0 −→ W hq(D5) −→ W hq(�v) ⊕ W hq(�w) −→ 0.

Now recall that W hq(D5) vanishes, except for q = 1, where W h1(D5) � Z. For the group
D5 × Z2, the non-vanishing lower algebraic K -groups consist of W h1(D5 × Z2)�Z2, and
W h−1(D5×Z2)�Z. Finally, for the group A5×Z2, all three lower K -groups are non-trivial,
with W h1(A5 × Z2)�Z2, W h0(A5 × Z2)�Z2, and W h−1(A5 × Z2)�Z2.

Now for q = 1, the chain complex gives:

0 −→ Z −→ Z2 ⊕ Z2 −→ 0

where the first Z comes from W h1(D5), and each Z2 comes from either a copy of W h1(D5 ×
Z2) or a copy of W h1(A5 × Z2). Note that since D5 ↪→ D5 × Z2 is a retract, the induced
mapping of Z −→ Z2 on Whitehead groups is split injective. Furthermore, the authors have
shown in [LO2, section 7·3] that the map Z −→ Z2 on Whitehead groups induced by the
inclusion D5 ↪→ A5 × Z2 is likewise split injective. Combining these two observations, we
see that regardless of the vertex stabilizers, each edge with stabilizer D5 will contribute a Z3

to the E2
0,1, and will make no contribution to E2

1,1.
Next we consider the case q = 0. The chain complex degenerates to:

0 −→ W h0(�v) ⊕ W h0(�w) −→ 0.

This tells us that each edge with stabilizer D5 makes no contribution to E2
1,0. As for the

contribution to E2
0,0, each such edge contributes either a 0, Z2, or (Z2)

2, according to whether
none, one, or both of its vertices have stabilizer A5 × Z2.

Finally, we look at the case q = −1. Again, the chain complex degenerates to:

0 −→ W h−1(�v) ⊕ W h−1(�w) −→ 0

giving us that edges with stabilizer D5 make no contribution to E2
1,−1. For the contribution

to E2
0,−1, we see that each such edge contributes either a Z2, Z3, or Z4, according to whether

none, one, or both of its vertices have stabilizer A5 × Z2.

Remark. Let s denote the number of vertices in P with stabilizer A5 × Z2, and E5 denote
the number of edges with stabilizer D5. Then the overall non-trivial contribution from all
the edges with stabilizer D5 can be summarized as follows:

(i) a contribution of Z3E5 to the E2
0,1;

(ii) a contribution of Zs
2 to the E2

0,0; and
(iii) a contribution of Z2E5+s to the E2

0,−1.

Case 4: n = 4. If we have an edge e ∈ E(P̂) with stabilizer D4, then we have three
possibilities for the stabilizers of the two endpoints v, w. On the one hand, the vertex could
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be of type II, with stabilizer isomorphic to D4. Among spherical triangle groups, D4 appears
as a special subgroup in only two different groups : D4 × Z2, and [3, 4] � S4 × Z2. So
alternatively, we could have one or both endpoint vertices of type I, with stabilizer D4 × Z2

or S4 × Z2.
Now in all three cases, we see that the remaining incident edges to the vertices have stabil-

izers isomorphic to either D2 or D3, which have vanishing lower algebraic K -theory, so we
can again split off the portion of the chain complex (4·1) corresponding to e ∈ E(P). Ob-
serving that the group D4 has no lower algebraic K -theory, the portion of the chain complex
further degenerates into:

0 −→ W hq(�v) ⊕ W hq(�w) −→ 0,

and hence there will be no contribution to E2
1,1, E2

1,0, and E2
1,−1. Further observe that all

three of the groups D4, D4 × Z2 and S4 × Z2 have vanishing W h1. So no matter what the
incident vertex groups are, we see that there is also no contribution to E2

0,1 from the edges
with stabilizer D4.

Next let us consider what happens with W h0. Both D4 × Z2 and S4 × Z2 have W h0

isomorphic to Z4, while D4 has vanishing W h0. In particular, we see that each edge with
stabilizer D4 will contribute 0, Z4, or (Z4)

2 to E2
0,0, according to whether the edge joins two,

one, or no ideal vertices.
The situation for W h−1 is likewise more complicated, as we have W h−1(D4 × Z2) = 0,

while W h−1(S4 × Z2) � Z. Hence the edge with stabilizer D4 will contribute 0, Z, or
Z2 to E2

0,−1 according to whether it has none, one, or two of its vertices with stabilizer
S4 × Z2.

Remark. Let t denote the number of vertices in P with stabilizer S4 × Z2, u denote the
number of ideal vertices with stabilizer [4, 4] = P4m, and E4 denote the number of edges
with stabilizer D4. Then the overall non-trivial contribution from all the edges with stabilizer
D4 can be summarized as follows:

(i) a contribution of Z
2E4−2u
4 to the E2

0,0; and
(ii) a contribution of Zt to the E2

0,−1.

Case 5: n � 3. For edges e ∈ E(P̂) with stabilizer D3 or D2, the contribution to the
E2-terms in the Quinn spectral sequence is concentrated on those vertices with stabilizer
D3 × Z2 or D2 × Z2. Indeed, we have on the one hand that the lower algebraic K -theory
of the edge groups D3 and D2 vanish, so the contribution to the E2-terms will come solely
from the corresponding vertex groups. The contribution from the vertices having an incident
edge with stabilizer Dn , n � 4, has already been accounted for (in the appropriate case
above). So we are left with dealing with vertices, all of whose incident edges are either D3

or D2. The only such vertices have stabilizer S4, D3 ×Z2 or D2 ×Z2. Among these, the only
non-vanishing K -theory appears for D3 ×Z2 � D6 (with K−1 isomorphic to Z) and D2 ×Z2

(with K̃0 isomorphic to Z2).

Remark. Let v denote the number of vertices in P with stabilizer D3 × Z2, and w denote
the number of vertices with stabilizer D2 ×Z2 Then the overall non-trivial contribution from
all the edges with stabilizer D3 and D2 can be summarized as follows:

(i) a contribution of Zw
2 to the E2

0,0; and
(ii) a contribution of Zv to the E2

0,−1.
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4·2. Collapsing of the spectral sequence and applications

Now collecting the information from the previous few sections, we immediately see that
the E2-terms in the Quinn spectral sequence all vanish, with the possible exception of E2

0,1,
E2

0,0, and E2
0,−1 (within the range q � 1).

In particular, the spectral sequence always collapses at the E2-stage, and yields the desired
homology group. Furthermore, from the analysis in the previous section, we obtain (see the
Remarks after Cases 2, 3, 4 and 5) the following explicit formulas:

H�
1 (X; KZ-∞)�Z3E5 ⊕ Q1

H�
0 (X; KZ-∞)� (Z2)

2r+s+w ⊕ (Z4)
2E4−2u ⊕ Q0

H�
−1(X; KZ-∞)�Z2r+s+t+v+2E5+E6 ⊕ Q−1

where in the expression above we have that:

(i) r is the number of special subgroups isomorphic to D6 × Z2;
(ii) s is the number of special subgroups isomorphic to A5 × Z2;

(iii) t is the number of special subgroups isomorphic to S4 × Z2;
(iv) u is the number of ideal vertices in P with stabilizer P4m;
(v) v is the number of special subgroups isomorphic to D3 × Z2;

(vi) w is the number of special subgroups isomorphic to D2 × Z2;
(vii) E4, E5, and E6 are the number of edges in P with stabilizer D4, D5, and D6 respect-

ively;

and the terms Qq are given by:

Qq �
⊕

e∈El (P)

2 · W hq(�e ×Z2)

W hq(�e)

where El(P) denotes the subset of edges of P having “large” stabilizer, i.e. satisfying �e =
Dn with n � 7.

Now let us discuss some applications of these spectral sequence computations. Recall
that the Farrell–Jones isomorphism conjecture holds for the groups �P , and hence the
lower algebraic K -theory W h∗(�P) of �P can be identified with H�

∗ (EVC �P; KZ-∞).
Furthermore, the term H�

∗ (EFIN �P; KZ-∞) computed above is a direct summand inside
H�

∗ (EVC �P; KZ-∞), and hence a direct summand inside W h∗(�P) (see equation (2·2)).
For ∗ = 0, 1, the remaining terms in equation (2·2) are known to be purely torsion, and in

particular, vanish when we tensor with Q. Specializing to ∗ = 1, and keeping the notation
from above, we immediately obtain that

W h(�P) ⊗ Q = Q3E5 ⊕ (Q1 ⊗ Q).

Along with the computations in Section 3.4, this allows us to explicitly determine the ration-
alized Whitehead group:

THEOREM 5. Let �P be a hyperbolic reflection group with associated finite volume
geodesic polyhedron P ⊂ H3. Then the rationalized Whitehead group has rank:

rk(W h(�P) ⊗ Q) = 3

2

∑
n

En[n + ε(n) − 2δ(n)] (4·2)

where En is the number of edges in P with stabilizer Dn, ε(n) equals 1 or 2 according to
whether n is odd or even, and δ(n) is the number of divisors of n.
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Proof. By the discussion above, we need to analyze the term Q1 ⊗ Q. For a given edge
with stabilizer Dn (n � 7), we see a contribution of 2rk(W h(Dn × Z2)) − rk(W h(Dn)) to
the overall rank of Q1 ⊗ Q. Appealing to the ranks of W h computed in Section 3·4, we see
that such an edge contributes

2(n + ε − 2δ(n)) − ((n + ε)/2 − δ(n)) = (3/2) · (n + ε − 2δ(n))

to the rank of Q1 ⊗ Q. Summing over all edges with stabilizer Dn , n � 7, and adding in the
contribution from the edges with stabilizer D5, we obtain that:

rk(W h(�P) ⊗ Q) = 3E5 + 3

2

∑
n�7

En[n + ε(n) − 2δ(n)].

To conclude, we merely observe that for n = 2, 3, 4, 6, the expression n + ε(n) − 2δ(n)

equals zero, while for n = 5, we have 5 + ε(5) − 2δ(5) = 5 + 1 − 2(2) = 2. So we see
that the expression computed above for rk(W h(�P) ⊗ Q) is in fact equal to the expression
appearing in equation (4·2), concluding the proof.

Next, let us consider the case ∗ = −1. In this case, it is known that the remaining terms
in the splitting given in equation (2·2) all vanish. In particular, this gives us isomorphisms

K−1(Z �P)� H�
−1(X; KZ-∞)�Z2r+s+t+2E5+E6 ⊕ Q−1.

Furthermore, we have explicit computations (see Theorem 1) for the various K -groups ap-
pearing in the description of Q−1. Substituting in those calculations, we immediately obtain:

THEOREM 6. Let �P be a hyperbolic reflection group with associated finite volume
geodesic polyhedron P ⊂ H3. Then the group K−1(Z �P) is torsion-free, with rank given by
the expression:

2r + s + t + v + 2E5 + E6 +
∑
n�7

En(1 − 3δ(n) + 3τ(n) + 2σ2(n))

where r, s, t, v are the number of vertex stabilizers isomorphic to D6 ×Z2, A5 ×Z2, S4 ×Z2,
and D3 × Z2 respectively, the Ek are the number of edges in P with stabilizer Dk, and the
number theoretic quantities δ(n), τ (n), σ2(n) are as defined in Section 3·1.

Finally, let us make a few comments on the case ∗ = 0. In this situation, we cannot
deduce any similar nice formulas for the K̃0(Z �P), the difficulties being twofold. On the
one hand, the computation of H�

0 (EVC �P; KZ-∞) involves knowing the reduced K̃0 for
dihedral groups and products of dihedral groups with Z2. As we saw in Section 3·3, these
computations are closely related to some difficult questions in algebraic number theory, and
always yield torsion groups. On the other hand, the remaining terms in the expression for
K̃0(Z �P) (see expression (2·2)) can sometimes be non-zero (see Section 5), and are likewise
(infinitely generated) torsion groups. Since it is known that these remaining terms are also
purely torsion, we can only conclude that the group K̃0(Z �P) is a torsion group (which is
already known to follow from the Farrell–Jones isomorphism conjecture for �P ).

5. Cokernels of relative assembly maps for V ∈ V
In this section, we focus on understanding the second term appearing in the splitting

formula given in equation (2·2). We recall that this term is of the form:⊕
V ∈V

H V
n (EFIN (V ) −→ ∗) (5·1)
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where V consists of one representative from each conjugacy class of the infinite groups that
arise as a stabilizers of single geodesics in H3, and H V

n (EFIN (V ) −→ ∗) is the cokernel
of the maps on homology H V

n (EFIN (V ); KZ-∞) −→ H V
n (∗; KZ-∞), which we call the

relative assembly map.
Let γ be a geodesic giving rise to a summand in expression (5·1). Since the stabilizer of

γ is assumed to be infinite, we conclude that Stab(γ ) acts cocompactly on γ , and hence the
projection π(γ ) of γ to the fundamental domain P is compact. There are three possibilities
for the projection π(γ ):

(i) either it intersects the interior of P;
(ii) it lies entirely in the 2-skeleton of P , and intersects the interior of a face;

(iii) it lies entirely in the 1-skeleton of P .

The argument given by Lafont-Ortiz in [LO1, proposition 3·5, 3·6] applies verbatim to show
that in the first two cases, the stabilizer of the geodesic γ has to be isomorphic to one of the
groups Z, D∞, Z × Z2 or D∞ × Z2. Now for all four of these infinite groups, it is well
known that the cokernel of the relative assembly map is trivial (see [Ba2], [Wd] for the first
two, and [Pe] for the last two). In particular, these groups will make no contribution to the
expression (5·1).

So let us consider geodesics of the third type. First of all, note that two such geodesics
γ1, γ2 will have Stab(γ1) conjugate to Stab(γ2) if and only if π(γ1) = π(γ2) (as subsets of
P). In particular, we see that among the groups in V , there are at most finitely many groups of
this type. Indeed, since there are exactly |E(P)| < ∞ edges in the 1-skeleton of P , we can
have at most |E(P)| such subgroups (up to conjugacy) inside �P . In particular, the infinite
direct sum in expression (5·1) really collapses down to a finite direct sum.

We now focus on identifying (1) the actual number of such subgroups, and (2) the corres-
ponding cokernels for the relative assembly map. In order to complete this process, we first
observe the following: for any such group, we can consider the action on the corresponding
geodesic γ , obtaining a splitting

0 −→ Fix�(γ ) −→ Stab�(γ ) −→ Isom�,γ (R) −→ 0

where Fix�(γ ) is the subgroup of � fixing γ pointwise, while Isom�,γ (R) is the induced
action of the stabilizer Stab�(γ ) on R (identified with the geodesic γ ). Note that since
Stab�(γ ) is known to act discretely on H3, and cocompactly on γ , we immediately obtain
that Isom�,γ (R) is a discrete, cocompact subgroup of Isom(R), i.e. has to be isomorphic to
Z or D∞. On the other hand, the term Fix�(γ ) corresponds to the subset fixing γ pointwise,
and taking a point in γ that projects to the interior of an edge e, we immediately see that
this group must be isomorphic to a dihedral group Dn (coinciding with the stabilizer of the
edge e). As in the previous section, let us proceed with a case by case analysis, according to
the order of the group Fix�(γ ).

Case 1: n � 6. If we have a geodesic γ with infinite stabilizer, satisfying Fix�(γ )� Dn

with n � 6, then we observe that π(γ ) ⊂ P coincides with a single edge in the 1-skeleton
of P (see [LO2, section 4]), with stabilizer Dn . Furthermore, both vertex endpoints of the
edge must be non-ideal, with vertex stabilizer isomorphic to Dn × Z2.

It is easy to see that the vertex stabilizers actually leave the geodesic γ invariant. So
applying Bass–Serre theory, we see that for each edge of P with internal angle π/n with
n � 6, one has an element in V isomorphic to (Dn × Z2) ∗Dn (Dn × Z2) � Dn × D∞. We
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note that for V of the form Dn × D∞, the cokernel of the relative assembly map satisfies:

H V
∗ (EFIN (V ) −→ ∗)� N K∗(ZDn)

where N K∗(ZDn) is the Bass Nil-group associated to the dihedral group Dn (see [D],
[DKR], [DQR]). In particular we see that each geodesic extending an edge with stabil-
izer Dn, n � 6, joining non-ideal vertices (in the case n = 6), will contribute a single copy
of the Bass Nil-group for Dn.

Case 2: n = 5. If we have a geodesic γ with the property that Fix�(γ ) � D5, then we
observe that, once again, the projection π(γ ) of the geodesic into the polyhedron P will
consist of a single edge with stabilizer D5 (see [LO2, section 4]). Note that the endpoints of
this edge must have stabilizer either D5 × Z2 or A5 × Z2.

Again, this allows us to use Bass–Serre theory to identify the stabilizer of γ . It will be an
amalgamation of two finite groups over the common (index two) subgroup D5. Furthermore,
the vertex groups correspond precisely to the subgroups of the vertex stabilizer that also
leaves γ invariant. It is easy to check that, regardless of whether the vertex stabilizer is
D5 × Z2 or A5 × Z2, this subgroup has to be isomorphic to D10 � D5 × Z2. We conclude
that each geodesic with Fix�(γ ) � D5 must have stabilizer isomorphic to D10 ∗D5 D10 �
D5 × D∞. The cokernel of this relative assembly map is known to be isomorphic to the
Bass Nil-group N K∗(ZD5) ([LO3], see also [DKR]), which is known to vanish for ∗ � 1.
We conclude that geodesics extending edges with stabilizer D5 make no contribution to the
lower algebraic K -theory.

Case 3: n = 4. If we have a geodesic γ with the property that Fix�(γ ) � D4, then we
observe that, once again, the projection π(γ ) of the geodesic into the polyhedron P will
consist of a single edge with stabilizer D4. In this case, the two endpoints of this edge must
have stabilizer either isomorphic to D4 × Z2 or to S4 × Z2. In both cases, one can see that
the subgroup of the vertex stabilizers that also leaves the geodesic invariant are isomorphic
to D4 × Z2. Hence, we obtain that the stabilizer of γ is an amalgamation (D4 × Z2) ∗D4

(D4 × Z2) � D4 × D∞. We have discussed this cokernel in [LO2, section 6·4]: it can be
identified with the Bass Nil groups N K∗(ZD4) (see also [D], [DKR], [DQR]). In particular,
we see that each geodesic extending an edge with stabilizer D4, and with infinite stabilizer,
will contribute a single copy of the Bass Nil group for D4.

Remark. We note that these Nil-groups have been partially computed by Weibel [We],
who showed that N K0(ZD4) is isomorphic to the direct sum of a countably infinite free
Z2-module with a countably infinite free Z4-module. He also showed that N K1(ZD4) is a
countably infinite torsion group of exponent 2 or 4.

Case 4: n = 3. Geodesics γ with the property that Fix�(γ ) � D3 are somewhat more
difficult to track. The reason for this is that an edge in P with stabilizer D3 can have four
possible stabilizers for the endpoints. Indeed, the spherical triangle groups containing D3 as
a special subgroup include D3 × Z2, S4, S4 × Z2 and A5 × Z2.

Now if the projection π(γ ) of the geodesic is a union of edges forming an interval, then we
can use Bass-Serre theory to write out the stabilizer of the geodesic. From the tessellations
associated to the four possible vertex stabilizers, we can readily see that the geodesic is
reflected whenever the endpoint has stabilizer D3 × Z2, S4 × Z2 or A5 × Z2. In all three
cases, one sees that the subgroup of the vertex stabilizer that leaves the γ invariant is in fact
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isomorphic to D3 × Z2. We conclude that in this case, the stabilizer of γ is isomorphic to
(D3 × Z2) ∗D3 (D3 × Z2)� D3 × D∞. But the authors have shown that the cokernel of the
relative assembly map for this group is isomorphic to the Bass Nil-group N K∗(ZD3) (see
[LO1, section 5], as well as [D], [DKR], [DQR]).

Alternatively, the projection π(γ ) of the geodesic could be a union of edges forming a
closed loop in the 1-skeleton P (1) of P . In this case, we see that the stabilizer of γ fits into
a short exact sequence:

0 −→ D3 −→ Stab�(γ ) −→ Z −→ 0

and hence can be written as a semidirect product D3 �α Z. In this case, the cokernel of the
relative assembly map will be a Farrell Nil-group N Ki (ZD3, α).

Summarizing this discussion, we see that each orbit of a periodic geodesic in H3 which
is pointwise fixed by a D3 contributes a single copy of a Farrell Nil-group N K∗(ZD3; α)

(for a suitable automorphism α ∈ Aut(D3)). Finally, we remark that for ∗ = 0, 1, the Farrell
Nil-groups N K∗(ZD3; α) are known to vanish, irrespective of the automorphism α. Hence
we obtain that the geodesics extending edges with stabilizer D3 make no contribution to the
lower algebraic K -theory.

Case 5: n = 2. Geodesics γ with Fix�(γ )� D2 are the most difficult ones to handle. The
primary difficulty is that every spherical triangle group contains D2 as a special subgroup.
Now assume we have such a geodesic γ , and consider its projection into the 1-skeleton P (1)

of P . The projection is either:

(i) a union of edges forming a closed loop inside P (1); or
(ii) a union of edges forming a path inside P (1).

If the projection is a path, Bass–Serre theory applies, and the stabilizer of the geodesic γ will
have to be isomorphic to one of the groups D4∗D2 D4, D4∗D2 (D2×Z2) or (D2×Z2)∗D2 (D2×
Z2) � D2 × D∞ (depending on the nature of the endpoints of the path). In this situation,
the authors have established (see [LO1, section 4] and [LO2, sections 6·2, 6·3]) that for
all three of these groups, the cokernels of the relative assembly map are isomorphic to the
Bass Nil-group N K∗(ZD2) corresponding to the canonical index two subgroup isomorphic
to D2 ×Z. These Bass Nil-groups are known to be isomorphic to

⊕
∞ Z2, a countable direct

sum of Z2, in dimensions ∗ = 0 and ∗ = 1.
Alternatively, if the projection is a closed loop, then from the short exact sequence:

0 −→ D2 −→ Stab�(γ ) −→ Z −→ 0

we have that the stabilizer is of the form D2 �α Z, α ∈ Aut(D2). We now claim that the
geometry of the situation forces α = I d, i.e. the stabilizer is in fact a direct product D2 × Z.
In order to see this, we first observe that Aut(D2) = Aut(Z2 × Z2) � S3, given by an
arbitrary permutation of the three non-zero elements in D2. Let us try to rule out the various
automorphisms in Aut(D2).

First, let us denote by g, h the reflections in the hyperplanes P1, P2 extending the two faces
of the polyhedron incident to one of the edges in the closed loop. Now the fixed subgroup of
γ can be identified with the subgroup D2 consisting of {1, g, h, gh}, and the elements g, h
are the canonical generators of the special subgroup D2. We also have that α permutes the
subset {g, h, gh}. But observe that g, h are reflections, whereas their product gh is a rotation
by π around the geodesic γ . Since rotations are never conjugate to reflections, this implies
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that gh must be fixed by the permutation α. So the only possibility that is left is where α

interchanges g and h.
In order to rule out this last possibility, we can look at the element τ in the stabilizer of

γ that acts via a minimal translation along γ . Note that τ either maps each Pi to itself, or
interchanges P1 and P2. So to rule out the case where α interchanges the two reflections g
and h, it is sufficient to identify the element τ , and verify that it leaves invariant each of the
hyperplanes Pi .

We now focus on explicitly describing the element τ in the group �. Given a pair of con-
secutive edges in this loop, we have that the corresponding common vertex of intersection
must have stabilizer �v of the form Dk × Z2, with k an odd integer. The two incoming
edges with stabilizer D2 correspond to the special subgroups �ei , �e j of Dk ×Z2 of the form
〈g〉 × Z2, where g is one of the two canonical reflections generating Dk . In this situation,
there is a unique element ν(v, ei) of the group �v whose action takes the geodesic extending
the edge ei to the geodesic extending the edge e j . Of course, we have the obvious relation
ν(v, e j ) = ν(v, ei)

−1. In concrete terms, the element ν(v, ei) can be described as follows: it
is simply the longest word in the group �V (with respect to the Coxeter generating set). Note
that the element ν(v, ei) is always a rotation inside Isom(H3). Geometrically, this rotation of
H3 fixes the vertex v, and at the level of the spherical tessellation of the unit tangent sphere
at v, takes the spherical triangle corresponding to the polyhedron P to the spherical triangle
which is directly opposite.

Now assume that the loop of interest is given cyclicly by the sequence of edges and ver-
tices {e1, v1, e2, v2, . . . , en, vn}. We can consider each of the elements ν(vi , ei), and observe
that the product

ν(v1, e1) · ν(v2, e2) · · · · · ν(vn, en) ∈ �

clearly stabilizes the geodesic γ extending the edge e1. Furthermore, this element acts via a
minimal translation along γ , and hence can be taken as an explicit description of the desired
element τ . Note that Deodhar [De] considered similar elements in the general setting of
Coxeter groups (see also Davis’ book [Da, section 4·10]). We now are left with verifying
that this element τ leaves each of the two hyperplanes P1, P2 invariant.

To check this last statement, we first consider how the element ν(v, e j ) acts on the hyper-
planes whose intersection defines the vertex v. We note that there are three such hyperplanes
P1, P2, P3, labelled so that P1 � P2 = e j and P2 � P3 = ei . In particular, we have that the
hyperplanes P1 and P3 intersect at an angle π/k, with k odd. Now from the explicit formula
for ν(v, e j ), it is immediate that it leaves P2 invariant, and interchanges P1 and P3. In other
words, the element ν(v, e j ) interchanges the two hyperplanes whose intersection is the edge
with internal dihedral angle π/k. We would now like to use this to compute the effect of the
element τ on the original pair of hyperplanes.

We note that the loop of interest is a simple loop in the 1-skeleton P (1) of the polyhedron
P , hence can be thought of as a simple closed curve on ∂ P � S2. In particular, this loop
separates ∂ P into precisely two connected components U1, U2, and without loss of gener-
ality, we have that the faces F1, F2 whose intersection forms the edge e1 satisfy Fi ⊂ Ui .
Considering vertex v1, let us think of the action of ν(v1, e1) on the two hyperplanes P1, P2.
Since v1 has degree three, we have an edge f1 in P (1) incident to the loop, and this edge must
have internal angle of the form π/k (k odd). Observe that f1 is contained in one of the two
components U1, U2. From the discussion in the previous paragraph, the effect of ν(v1, e1)

is to interchange the hyperplanes extending the faces adjacent to f1, and to leave invariant
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the hyperplane extending the face opposite f1. But observe that the two faces incident to f1

are contained in the same component Ui , while the opposite face to f1 is contained in the
other component. This forces the action of ν(v1, e1) to respect the components U1, U2. Sim-
ilarly, we see that each of the elements ν(vi , ei) respect the individual components, which
forces their product τ to similarly respect the components. Since τ maps the hyperplane P1

extending F1 to the hyperplane extending a face which:

(i) is incident to e1, i.e. is either F1 or F2; and

(ii) is in the same connected component U1 as F1

we conclude that τ leaves P1 (and likewise P2) invariant. This forces α = I d, ensuring
that the stabilizer of the corresponding geodesic must be isomorphic to the direct product
D2 × Z. For this group, the cokernel of the relative assembly map is the classic Bass Nil-
group N K∗(ZD2).

Finally, let us comment on the number of copies of this Bass Nil-group that will appear in
our computation. This requires counting �P orbits of geodesics whose stabilizer is infinite,
and is fixed by a subgroup isomorphic to D2. But this is actually not too difficult. Indeed,
such a geodesic has to project to the subset of the 1-skeleton of P consisting of edges with
internal dihedral angle = π/2. So given the polyhedron P , restrict to this subset of the 1-
skeleton P (1), obtaining a graph G2. Since the 1-skeleton of P has the property that every
vertex has degree � 4, the subgraph G2 inherits this same property. Now disconnect this
graph along all vertices of degree 3 or 4, resulting in a collection of intervals and loops.
Finally, disconnect the graph at any vertex of degree 2, having the property that the third
incident edge in G has internal dihedral angle which is even. Discard all intervals with the
property that one of their endpoints came from a vertex of degree 4. Then there is a bijective
correspondence between:

(i) connected components of the resulting graph Ĝ2;

(ii) �P -orbits of geodesics γ ⊂ H3 with infinite stabilizer and Fix�(γ )� D2.

By the discussion in the last couple of pages, we conclude that geodesics extending the
edges with stabilizer D2 contribute a total of |π0(Ĝ2)| · N K∗(ZD2) to the lower algebraic
K -theory.

Remark. We note that for i = 0, 1 each of these Bass Nil-groups N Ki (ZD2) is isomorphic
to

⊕
∞ Z2, the direct sum of countably many copies of Z2 (see [LO1, lemma 5·3, 5·4]).

6. Appendix: concrete examples

To illustrate the methods discussed in this paper, we now proceed to work through
the lower algebraic K -theory for some concrete examples. Let us start with a relat-
ively simple class of examples. Consider the groups �n , n � 5, given by the following
presentation:

�n :=
〈
y, z, xi , 1 � i � n

∣∣∣∣ y2, z2,

x2
i , (xi xi+1)

2, (xi z)3, (xi y)3, 1 � i � n

〉
.

The groups �n are Coxeter groups, and the presentation given above is in fact the Coxeter
presentation of the group.
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Fig. 1.

Example 7. For the groups �n whose presentations are given above:
(i) the Whitehead group is given by

W h(�n)�n · N K1(D2)�
⊕
∞

Z2;

(ii) the K̃0 is given by

K̃0(Z�n)�n · N K0(D2)�
⊕
∞

Z2;

(iii) the K−1 always vanishes.

Proof. The groups �n arise as hyperbolic reflection groups, with underlying polyhedron
P the product of an n-gon with an interval. An illustration of the polyhedron associated to
the group �5 is shown in Figure 1, where again, ordinary edges have dihedral angle π/3,
while dotted edges have dihedral angle π/2. In general, the polyhedron associated to the
group �n is combinatorially a product of the n-gon with an interval. This polyhedron has
exactly two faces which are n-gons, and the dihedral angle along the edges of these two
faces is π/3. All the remaining edges have dihedral angle π/2.

To begin with, we observe that for the associated polyhedron, every edge has stabilizer D2

or D3, giving us Ek = 0 for k � 4. Furthermore, for the associated polyhedron, every vertex
has stabilizer S4, implying that r = s = t = v = 0. Applying Theorem 6, we immediately
obtain that K−1(Z�n) = 0. Applying Theorem 5, we also obtain that W h(�n) ⊗ Q = 0.
Note that the discussion in Section 4·2 actually establishes that

H�n
1 (EFIN�n; KZ-∞) = 0.

So to complete the computation of W h(�n), we need to identify the remaining terms in the
splitting described in equation (2·2). From the discussion in our Section 5, we see that the
next step is to understand geodesics in H3 whose projection under the �n-action lies in
the 1-skeleton of the polyhedron P . But it is easy to see that, up to the �P -action, these give:

(i) two distinct geodesics with stabilizer D3 × Z, which project to the boundary of the
two n-gons appearing in P; and

(ii) n distinct geodesics whose fixed subgroup is D2, each of which projects to a single
edge lying between the two n-gons in the polyhedron P .
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Fig. 2.

Now we know (Section 5, Case 4) that geodesics with stabilizer D3 × Z yield no contri-
bution to the splitting in equation (2·2). On the other hand, each of the geodesics with fixed
subgroup D2 contributes (Section 5, Case 5) a copy of N K1(ZD2), which is isomorphic to
a countable infinite direct sum of Z2.

Finally, let us consider the case of K̃0. Since we have r = s = u = w = E4 = 0, we have
(see Section 4·2) that H�n

0 (EFIN�n; KZ-∞) = 0. Now the discussion in the previous para-
graph, combined with the splitting in equation (2·2), gives us that K̃0(Z�n)�n·N K0(ZD2).
But it is known that these Bass Nil-groups are isomorphic to the countable direct sum of in-
finitely many copies of Z2, concluding our computation.

Next, let us consider a somewhat more complicated family of examples. For an integer
n � 2, we consider the group �n , defined by the following presentation:

�n :=
〈
x1, . . . , x6

∣∣∣∣ x2
i , (x1x2)

n, (x1x5)
2, (x1x6)

2, (x3x4)
2, (x2x5)

2, (x2x6)
2

(x1x4)
3, (x2x3)

3, (x4x5)
3, (x4x6)

3, (x3x5)
3, (x3x6)

3

〉
.

Observe that the groups �n are Coxeter groups, and that the presentation given above is in
fact the Coxeter presentation of the group.

Example 8. For the groups �n whose presentations are given above:

(i) the rationalized Whitehead group is given by

W h(�n) ⊗ Q�Q(3/2)·(n+ε(n)−2δ(n));
(ii) the Whitehead group is given by

W h(�n)�Z(3/2)·(n+ε(n)−2δ(n)) ⊕ (1 + 2ε(n)) · N K1(ZD2) ⊕ N K1(ZDn);
(iii) the K̃0 is given by

K̃0(Z �n)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2·K̃0(Z[Dn×Z2])
K̃0(Z[Dn ]) ⊕ (1 + 2ε(n)) · N K0(ZD2) ⊕ N K0(ZDn) n � 7

Z4
2 ⊕ 5 · N K0(ZD2) ⊕ N K0(ZD6) n = 6

3 · N K0(ZD2) n = 5

Z4 ⊕ 5 · N K0(ZD2) ⊕ N K0(ZD4) n = 4

3 · N K0(ZD2) n = 3

Z2 ⊕ 6 · N K0(ZD2) n = 2;
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(iv) the K−1 is given by

K−1(Z �n)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1−3δ(n)+3τ(n)+2σ2(n) n � 7

Z5 n = 6

Z2 n = 5

0 n = 4

Z2 n = 3

0 n = 2.

Proof. To verify the results stated in this example, we first observe that the Coxeter groups
�n arise as hyperbolic reflection groups, with underlying polyhedron P a combinatorial
cube. The geodesic polyhedron associated to �n is shown in the Figure 2. In the illustration,
the bold edge has internal dihedral angle π/n, the ordinary edges have internal dihedral
angle π/3, and the dotted edges have internal dihedral angle π/2.

To compute the rationalized Whitehead group, we just apply our Theorem 5. The poly-
hedron P has five edges with stabilizer D2, six edges with stabilizer D3, and one edge with
stabilizer Dn . Evaluating equation (4·2) gives us that the rank of W h(�n) ⊗ Q is equal to
(3/2) · (n + ε(n) − 2δ(n)).

Now while Theorem 5 gives us a simple formula for the rationalized Whitehead group, it
only requires a little bit more work to calculate the integral Whitehead group. In order to do
this, we exploit the splitting given in equation (2·2) (see Section 2·4):

W h(�n)� H�n
1 (EFIN (�n); KZ−∞) ⊕

⊕
V ∈V

H V
1 (EFIN (V ) −→ ∗).

For the groups �n , the first term in the splitting is computed in Section 4·2 (see the argument
for Theorem 5), and is free abelian of rank (3/2) · (n + ε(n) − 2δ(n)). As far as the second
term in the splitting is concerned, we apply the procedure in Section 5. The edge with sta-
bilizer Dn contributes a single Bass Nil-group N K1(ZDn) to the splitting. The collection
of edges with stabilizer D3 form a closed cycle, which is the image of a single geodesic in
H3. This gives rise to a single Farrell Nil-group N K1(ZD3, α) (for a suitable automorphism
α ∈ Aut(D3)); but these groups are known to vanish. Finally, the edges with stabilizer D2

correspond to either three or five geodesics in H3, according to whether n is odd or even.
Overall, these contribute 1 + 2ε(n) copies of the Bass Nil-group N K1(ZD2) to W h(�n).
This completes our computation of W h(�n).

Next, let us compute K−1(Z �n). We first observe that six of the eight vertices in P have
stabilizer S4, while the remaining two vertices have stabilizer Dn × Z2. This tells us that, in
the notation of Theorem 6, s = t = 0. Now:

(i) if n = 2, then we additionally have that Ek = 0 for k � 5, and r = v = 0;
(ii) if n = 3, then we have that Ek = 0 for k � 5, and r = 0, while v = 2;

(iii) if n = 4, then we have that Ek = 0 for k � 5, and r = v = 0;
(iv) if n = 5, then we have Ek = 0 for k � 6, E5 = 1, and r = v = 0;
(v) if n = 6, then we have v = E5 = 0, E6 = 1, Ek = 0 for k � 7, and r = 2;

(vi) if n � 7, then we have r = v = E5 = E6 = 0, and within the range k � 7, all the Ek

vanish except En = 1.
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Applying Theorem 6 completes the computation of K−1(Z �n).

Lastly, let us compute K̃0(Z �n). We again make use of the splitting given in equation
(2·2). The first term in the splitting, H�n

0 (EFIN (�n); KZ−∞), is given by a particularly
simple expression (see Section 4·2). Observe that, regardless of the value of n, we have that
s = u = 0; so the expression for the first term in the splitting reduces to

H�n
0 (EFIN (�n); KZ-∞)� (Z2)

2r+w ⊕ (Z4)
2E4 ⊕ Q0.

As such, we see that the first term vanishes, except in the following four cases:

(i) n = 2, where r = E4 = 0, w = 1, and Q0 �0, so the first term is Z2;
(ii) n = 4, where r = w = 0, E4 = 1, and Q0 �0, so the first term is Z4;

(iii) n = 6, where r = 2, w = E4 = 0, and Q0 �0, and hence the first term is Z4
2;

(iv) n � 7, where r = w = E4 = 0, and hence the first term coincides with the group
Q0 = 2K̃0(Z[Dn × Z2])/K̃0(ZDn).

For the second term in the splitting (2·2), we apply the methods from Section 5. The second
term is determined by orbits of geodesics in H3 whose stabilizer is infinite, and which project
to the 1-skeleton of the geodesic polyhedron associated to the group �n . But these geodesics
were determined earlier, when we discussed the computation of the Whitehead group. An
identical analysis gives us that the second term is just (1+2ε(n))· N K0(ZD2)⊕ N K0(ZDn).
Combining these two terms completes the computation of the K̃0, and concludes the com-
putations for this example.
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