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Abstract. We establish a strengthening of Jordan separation, to the setting

of maps f : X → Sn+1, where X is not necessarily a manifold, and f is not

necessarily injective.

1. Introduction

In a previous paper [L], we established a result which we termed strong Jordan
separation. This was a version of Jordan separation which applied to maps f :
Sn → Sn+1 which aren’t assumed to be injective. Under some mild hypothesis, one
could nevertheless ensure that the image separated Sn+1, and that any continuous
extension F : Dn+1 → Sn+1 surjects onto one of the connected components of
Sn+1−f(Sn). Recently, Iwaniec and Onninen [IO] found applications of this result
in the field of quasi-conformal hyperelasticity. In this short note, we extend our
result from [L] to the broadest possible setting, by establishing the following two
results:

Theorem 1. Let X be a compact topological space, f : X → Sn+1 a continuous
map, and U ⊂ X an open subset homeomorphic to an open n-disk Dn◦ . Assume
that

• the map f : X → Sn+1 contains U in its set of injectivity (i.e. U ⊂
Inj(f) := {x ∈ X | f−1(f(x)) = x}), and

• the map Ȟn(X; Z2)→ Ȟn(X −U ; Z2) on Čech cohomology groups induced
by the inclusion X − U ↪→ X has a non-trivial kernel.

Then f(X) separates Sn+1 into at least two connected components. Furthermore,
there are precisely two connected components V1, V2 of Sn+1 − f(X) having the
property that their closure V̄i intersects f(U). In fact, for these two connected
components, we have containments f(U) ⊂ V̄i.

In the previous theorem, one should think of the sets V1, V2 as corresponding
locally to the two “sides” of f(U) ∼= Dn◦ in the ambient Sn+1.

Theorem 2. Under the hypotheses of the previous theorem, let us further assume
that X is a closed subspace of an ambient topological space X̂. Define two subgroups
of Hn(X; Z2) by:

• K = ker
(
Hn(X; Z2)→ Hn(X̂; Z2)

)
, and

• J = im
(
Hn(X − U ; Z2)→ Hn(X; Z2)

)
.

where both maps are induced by the corresponding inclusions of spaces. If K 6⊆ J ,
then we have that for any continuous extension F : X̂ → Sn+1, F surjects onto
one of the two open components Vi.
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We will prove both these theorems in Section 2 of our paper. Observe that, other
than the condition requiring U to lie in Inj(f), the hypotheses in both theorems
are internal, in the sense that they are statements purely about the (homology of
the) spaces U,X, X̂, and do not involve the map f . In Section 3, we will provide
examples showing that the hypotheses of the theorems are necessary. We will also
exhibit examples of triples (X̂,X,U) satisfying the homological hypotheses of both
theorems.

Acknowledgments

Tadeusz Iwaniec asked whether the author’s arguments for the strong Jordan
separation theorem in [L] could be extended to the case where the source space is a
manifold other than the sphere. The present paper was motivated by, and answers,
Iwaniec’s question. This research was partially supported by the NSF, under grant
DMS-0606002, and by an Alfred P. Sloan research fellowship.

2. Proofs

Throughout this section, all homology and cohomology groups are understood
to have coefficients in Z2. The proofs of both Theorems follow closely the proof of
the strong Jordan separation in [L, Section 2].

Proof (Theorem 1). We start by recalling that Alexander duality provides us with
an isomorphism:

H̃0(Sn+1 − f(X)) ∼= Ȟn(f(X))
hence to show that f(X) separates Sn+1 it is sufficient to show that Ȟn(f(X)) 6= 0.
Now consider the decomposition of X into two open sets, one obtained by shrinking
U slightly, the other obtained by enlarging X−U slightly. The intersection of these
two open sets is an open subset homeomorphic to Sn−1×R. Corresponding to this
decomposition, we have an image decomposition of f(X) into two open sets (recall
that U ⊂ Inj(f)). In particular, we can apply the Mayer-Vietoris sequence in Čech
cohomology to compute the cohomology of f(X):

. . .→ Ȟn−1(Sn−1)→ Ȟn(f(X))→ Ȟn(f(U))⊕Ȟn(f(X−U))→ Ȟn(Sn−1)→ . . .

Putting in the known terms into the sequence above, we obtain:

(1) . . .→ Z2 → Ȟn(f(X))→ Ȟn(f(X − U))→ 0

so to show that Ȟn(f(X)) 6= 0, it is sufficient to show that the Z2
∼= Ȟn−1(Sn−1)

injects into Ȟn(f(X)). In order to show this, we compare the Mayer-Vietoris
sequence above with the corresponding Mayer-Vietoris sequence for the decompo-
sition of X. This gives us the following commutative diagram:

. . . // Z2
φ //

f∗∼=
��

Ȟn(f(X)) //

f∗

��

Ȟn(f(X − U)) //

f∗

��

0

. . . // Z2
ψ // Ȟn(X) // Ȟn(X − U) // 0

Since we assumed that the map Ȟn(X) → Ȟn(X − U) has non-trivial kernel, we
see that ψ is injective. This forces the composite ψ ◦ f∗ = f∗ ◦ φ to be injective,
and hence the map φ to be injective, as desired. This allows us to conclude that
0 6= Ȟn(f(X)) ∼= H̃0(Sn+1 − f(X)), and we see that f(X) separates Sn+1.
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Now, the remainder of the proof is virtually identical to that given in [L]. We
will briefly sketch out the arguments, referring the reader to [L, Section 2.1] for
more details.

To see that there are precisely two connected components V1, V2 whose closure
intersects f(U), one considers the inclusion Sn+1 − f(X) ↪→ Sn+1 − f(X − U).
The latter space is obtained from the former by “adding in f(U)”, i.e. we have
identifications Sn+1 − f(X −U) =

(
Sn+1 − f(X)

)
∪ f(U). By applying Alexander

duality to the exact sequence in (1), we obtain:

0→ Z2 → H̃0(Sn+1 − f(X))→ H̃0

((
Sn+1 − f(X)

)
∪ f(U)

)
→ 0

This is a homological version of the statement “there are precisely two components
of Sn+1 − f(X) which are incident to f(U)”.

In order to obtain the statement we desire, we make use of the following ele-
mentary result from point set topology: if {Vi} is a collection of pairwise disjoint
open sets in Rn+1, and Z is a connected set which intersects the closure of each
Vi, then Z ∪

(⋃
Vi
)

is connected. Now apply this to the situation where the {Vi}
are the connected components of Sn+1 − f(X) whose closure intersects f(U), and
Z = f(U). For any distinct pair of connected components of Sn+1 − f(X) whose
closure intersects f(U), we will get a corresponding element in H̃0(Sn+1 − f(X))
which maps to zero in H0(Sn+1−f(X−U)). In other words, the rank of the kernel
is one less than the number of connected components of Sn+1−f(X) whose closure
intersects f(U). Since we know that the kernel has rank one, we conclude that
there are precisely two connected components V1, V2 of Sn+1− f(X) whose closure
intersects f(U).

Finally, to see that f(U) ⊂ V̄i, take p ∈ f(U) arbitrary, consider a shrinking
sequence of open metric balls {Ui} centered at f−1(p). We can apply the same
argument as in the previous paragraph, but replacing f(U) by f(Ui). Observe that
f(X−U) ⊂ f(X−Ui) induces an isomorphism on all the Čech cohomology groups,
and so by Alexander duality, the homology groups of the complements are also
unchanged. This forces the same two components V1, V2 to intersect every f(Ui).
Since the sets f(Ui) are shrinking down to {p}, this immediately gives us that p
lies in the closure of both Vi, completing the proof of Theorem 1.

Proof (Theorem 2). Before starting with the proof of the theorem, let us briefly
discuss some general background material. For p /∈ f(X), we will consider the
homomorphism f∗ : Hn(X)→ Hn(Rn+1 − p) ∼= Z2. Note that, since all the groups
Hn(Rn+1 − p) are isomorphic to Z2, we see that for any p, q /∈ f(X), there are
canonical identifications between the groups Hn(Rn+1 − p) and Hn(Rn+1 − q). In
particular, it makes sense to talk about elements being “the same” or “different”
in the groups Hn(Rn+1 − p) and Hn(Rn+1 − q). Finally, let us fix some notation.
Recall that U ⊂ X is an open set homeomorphic to an open disc Dn◦ , which we
identify with the unit disk in Rn. Fixing this identification, we now denote by U(r)
(r < 1) the subset of U which corresponds to the open disk of radius r. We will
use O to denote the point in U which corresponds to the origin.

Let us now argue by way of contradiction: assume that there exists a continuous
extension F : X̂ → Sn+1 and points zi ∈ Vi with zi /∈ F (X̂). By hypothesis, K 6⊆ J ,
so there exists a homology class α ∈ Hn(X) having the following two properties:

(1) α ∈ ker(Hn(X)→ Hn(X̂)), and
(2) α /∈ im(Hn(X − U)→ Hn(X)).
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Let us consider the image of the class α in each of the homology groups Hn(Rn+1−
zi) ∼= Z2. To compute this, observe that since zi /∈ F (X̂), we can factor the map
f∗ as the composition F∗ ◦ i∗, where i : X → X̂ is the inclusion. This forces the
containment ker(i∗) ⊆ ker(f∗), which combined with property (1) in the choice of
α, ensures that α maps to zero in each of the homology groups Hn(Rn+1−zi) ∼= Z2.

So in order to obtain a contradiction, it is sufficient to show that the class α
maps to distinct elements in each of the two homology groups Hn(Rn+1− zi) ∼= Z2.
This is considerably harder; we will proceed in several steps. We will first replace
the map f by another map g, obtained by locally perturbing f on the interior of
U . This new map g will have the following properties:

• g is tame on the interior of U(1/2),
• g ≡ f on the complement of U(3/4),
• U ⊂ Inj(g),
• f is homotopic to g in the complement of the points z1, z2.

The construction of g can be done by appealing to the important codimension one
taming theorem of Ancel-Cannon [AC] (when n ≥ 4), Ancel [A] (when n = 3), Bing
[B] (when n = 2) and Schoenflies (when n = 1). We refer the reader to [L, pg. 689]
for details on how to accomplish this perturbation.

Since f ' g in the complement of the zi, it is sufficient to show that g∗ maps α to
distinct elements in Hn(Rn+1−zi). Now for the map g, we can again apply Theorem
1, and see that there are exactly two connected components V ′1 , V

′
2 of Sn+1− g(X)

whose closure intersects g(U). Recall that O ∈ U is the point corresponding to the
origin under the homeomorphism identifying Dn◦ with U . We know that there exists
a sequence of points xi ∈ V ′1 , yi ∈ V ′2 , with the property that lim{xi} = lim{yi} =
g(O). We claim that, for each i, the g∗(α) form distinct elements in the two groups
Hn(Rn+1 − xi) and Hn(Rn+1 − yi).

To see this, we first note that, if the points p, q are chosen in the same connected
component of Rn+1−g(X), then the two homomorphisms g∗ : Hn(X)→ Hn(Rn+1−
p) and g∗ : Hn(X) → Hn(Rn+1 − q) are identical. In particular, it is enough to
show that the images of g∗(α) are distinct for a specific index i. But recall that
the map g is tame on U(1/2), and hence there exists a global homeomorphism
φ : Rn+1 → Rn+1 with the property that φ ◦ g maps U(1/2) into the standard
Rn × {0} ⊂ Rn+1. Furthermore, for i sufficiently large, φ(xi) (respectively φ(yi))
are points which are locally immediately above (respectively below) the hyperplane
Rn×{0}. It is of course sufficient to show that φ∗(g∗(α)) represents distinct elements
in the two homology groups Hn(Rn+1 − φ(xi)) and Hn(Rn+1 − φ(yi)).

Now consider a cycle representing the homology class α ∈ Hn(X); this is a formal
linear sum

∑
σk of finitely many maps σk : ∆n → X. The cycle we are interested

in is the image cycle φ∗(g∗(α)), which is represented by the formal linear sum
∑
τk,

where each τk = φ ◦ g ◦ σk. In particular, there exists a point p ∈ φ(g(U(1/2)))
with the property that p lies solely in the image of the interior of the finitely many
simplices, and p is a non-singular value of each of the maps τk. Note that we
can join φ(xi) to φ(yi) by a PL-curve η which intersects (φ ◦ g)(X) in a single
transverse intersection at the point p. There are now two possibilities: either (A)
the homology class φ∗(g∗(α)) represents distinct elements in the two homology
groups Hn(Rn+1−φ(xi)) and Hn(Rn+1−φ(yi)), in which case we are done, or (B)
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from intersection theory, we have that the number of intersection points of η with
the maps τk is even.

So we are left with arguing that possibility (B) does not occur. By way of
contradiction, if this was the case, one could subdivide the finitely many simplices
which intersect η, obtaining a new cycle

∑
τ ′k having the additional property that

all the maps τ ′k whose image passes through p coincide with a fixed map τ : ∆n →
Rn+1. At the cost of further subdividing, we may moreover assume that τ lies
entirely within the image of g(U). Now, since there are an even number of copies of
τ in the cycle

∑
τ ′k, and since we are working with Z2-coefficients, we can remove all

occurences of this singular simplex from the cycle, resulting in a new cycle
∑
τ ′′k ,

which still represents φ∗(g∗(α)) and with the property that the image of all the
singular simplices avoid the point p.

Observe that all the subdivisions of the singular simplices τk gives rise to sub-
divisions of the singular simplices σk (recall that we have τk = φ ◦ g ◦ σk), since
a subdivision of a singular simplex is actually performed at the level of the source
space. So corresponding to the cycle

∑
τ ′k representing φ∗(g∗(α)), we have a cor-

responding cycle
∑
σ′k representing the original α. Let σ be the singular simplex

corresponding to τ , and recall that the subdivision was chosen fine enough so that
τ was contained inside the image of g(U). In particular, this forces σ(∆n) ⊂ U ,
which we recall lies in the set of injectivity of the map g. This implies that there are
no “accidental cancellations” due to distinct singular simplices in the chain

∑
σ′k

both getting mapped to τ . Since τ occurred an even number of times in the cycle∑
τ ′k, we have that σ likewise occurs an even number of times in the cycle

∑
σ′k.

Finally, working with coefficients in Z2 means that we can drop all copies of σ,
obtaining a new cycle

∑
σ′′k having the following two properties:

• the cycle
∑
σ′′k represents the homology class α, and

• the cycle
∑
σ′′k has image in X which is disjoint from the point O ∈ U .

But now observe that, since U is homeomorphic to Dn◦ , we have that X − U is a
deformation retract of X − {O}. Applying the deformation retraction to the cycle∑
σ′′k , we can now obtain a cycle representing α, but whose image is contained

inside X − U . This forces α ∈ im
(
Hn(X − U)→ Hn(X)

)
, contradicting property

(2) in our choice of the class α. We conclude that possibility (A) must occur,
completing the proof of Theorem 2.

3. Optimality and examples

Before discussing some specific examples covered by our two theorems, let us
start by giving some simple non-examples:

• Take X = S1 ⊂ R2, and let f be the projection onto the interval [−1, 1] ⊂
R2 ⊂ S2. The set of injectivity does not contain any open set U .

• Take X ⊂ R2 to be the union of the standard unit circle, along with the
interval [1, 2] on the x-axis. If f is the projection onto the interval [−1, 2] ⊂
R2 ⊂ S2, then we see that f is injective on U = (1, 2), but the inclusion
X − U ↪→ X induces an isomorphism on Ȟ1, so has trivial kernel.

In both cases, we see that the conclusion to Theorem 1 fails, i.e. f(X) ⊂ S2 fails to
separate. Similarly, for Theorem 2, we can consider the following simple example:
let X = S1, and f : S1 ↪→ S2 be the embedding into the equator. Let X̂ = S1×[0, 1]
be an annulus, with X ⊂ X̂ corresponding to S1 × {0}. Note that since X ↪→ X̂
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is a homotopy equivalence, the group K in Theorem 2 is automatically trivial, and
hence K ⊂ J holds. It is also clear that there exist extensions F : S1 × [0, 1]→ S2

with the property that F fails to surject onto either hemisphere. These simple
non-examples show that the hypotheses in Theorems 1 and 2 are indeed necessary.

We now proceed to give some examples of triples (X̂,X,U) which satisfy the
homological conditions of both theorems. In particular, for each of the following
examples of triples, we have that if f : X → Sn+1 is injective on U , then: (1) f(X)
automatically separates Sn+1, (2) there are exactly two connected components
V1, V2 ⊂ Sn+1 − f(X) whose closure contain f(U), and (3) any extension of f to a
map F : X̂ → Sn+1 surjects onto either V1 or V2.

Example: manifolds pairs.

Taking X̂ to be a compact (n+1)-dimensional manifold with non-empty bound-
ary, let X be the boundary of X̂, and let U be any open n-disk in X. Note that both
of the groups Ȟn(X) and Hn(X) are free Z2-modules, generated by the connected
components of X (each of which is a closed manifold). It is now immediate that the
map Ȟn(X) → Ȟn(X − U) has non-trivial kernel, as removing U changes one of
the connected components of X from a closed manifold to a compact manifold with
boundary. Similarly, this forces J = im

(
Hn(X−U)→ Hn(X)

)
to miss elements in

Hn(X): an explicit element α /∈ J is given by the sum of the fundamental classes
of the connected components of X. Finally, we note that α ∈ K is the image of
the relative fundamental class µ ∈ Hn+1(X̂,X) of the manifold with boundary X̂.
From the long-exact sequence of the pair (X̂,X), we immediately see that α maps
to zero in Hn(X̂), and hence α ∈ K. This implies that K 6⊆ J , completing the
verification of the homological hypotheses in our two theorems.

For a more concrete example, if X = K2 denotes the Klein bottle, and if f :
K2 → R3 is a continuous map which contains an open set U ⊂ Inj(f), then the first
theorem implies that f(K2) separates R3 into at least two connected components.
Our second theorem tells us that, if X̂ = L3 is the “solid Klein-bottle”, and F :
L3 → R3 is an extension of f , then F surjects onto one of the two components
V1, V2 incident to any prescribed open set U ⊂ Inj(f).

The reader might also like to compare the example where X̂ = S1 × [0, 1] with
the non-example discussed at the beginning of this section. The distinction lies of
course in the choice of X, which in the present example is ∂X̂ = S1 × {0, 1}, and
in the non-example, consisted solely of S1 × {0}.
Example: pseudo-manifold pairs.

Recall that an n-dimensional pseudo-manifold is a simplicial complex with the
property that every (n−1)-dimensional simplex is a face of exactly two n-simplices.
An (n+ 1)-dimensional pseudo-manifold with boundary is defined to be a simplical
pair (X̂,X) with the property that: (1) X is an n-dimensional pseudo-manifold,
(2) every n-simplex in X is contained in a unique (n + 1)-dimensional simplex,
and (3) every n-simplex in X̂ − X is contained in exactly two (n + 1)-simplices.
From the homological viewpoint, the important observation is that the constraint
on the codimension one simplices ensures that compact pseudo-manifolds still have
a notion of a fundamental class (the sum of all top-dimensional simplices). In
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particular, the arguments given earlier for manifolds easily extend to the pseudo-
manifold case.

The distinction with the manifold situation is that pseudo-manifolds are allowed
to be singular, but that the singularities are relatively “small”, i.e. codimension
at least two. The importance of this class of topological spaces comes from the
fact that every complex projective algebraic variety is a pseudo-manifold (as the
singularities will have complex codimension ≥ 1). Note that complex projective
algebraic varieties can always be triangulated (see [LW]). Examples of compact
pseudo-manifolds with boundary can be obtained by taking a complex projec-
tive variety V ⊂ CPn, taking a suitable real codimension one, smooth subman-
ifold M2n−1 ⊂ CPn which intersects V non-trivially, and cutting CPn open along
M2n−1. The portion of V in any of the (at most two) connected components of
the resulting manifold with boundary will yield an example of a compact pseudo-
manifold with boundary.

Example: CW-complexes and universality.

We now proceed to consider the case where both X and X̂ are CW-complexes,
and where U ⊂ X is a top-dimensional open cell en ⊂ X. In this case, we note that
Čech cohomology coincides with singular cohomology. Furthermore, it is easy to
see from a Mayer-Vietoris sequence argument that the map Ȟn(X)→ Ȟn(X − en)
has non-trivial kernel precisely if the attaching map Sn−1 ↪→ X(n−1) for the n-cell
en induces the zero map on (n− 1)-dimensional cohomology (where X(n−1) ⊂ X is
the (n−1)-skeleton of X). As such it is easy to construct CW-complexes satisfying
the homological conditions of our first theorem. Similarly, it is easy to extend
such an n-dimensional CW-complex X to an (n + 1)-dimensional CW-complex
X̂ satisfying the homological conditions for our Theorem 2. For example, one
extension which always works is the case where X̂ is taken to be the cone over
X. To see this, first observe that X̂ is contractible, and hence that Hn(X̂) =
0. This forces K = ker

(
Hn(X) → Hn(X̂)

)
= Hn(X). So as long as the map

Hn(X −u)→ Hn(X) is not surjective, the pair (X̂,X) will satisfy the homological
conditions of our Theorem 2. But observe that, from the fact that X is a CW-
complex satisfying the conditions of our Theorem 1, we have that Hn−1(X−U)→
0 ∈ Hn−1(Sn−1). Since we are working with coefficients in Z2, the Ext term in
the universal coefficient theorem automatically vanishes, and we can identify the
cohomology groups above as the duals of the corresponding homology group. This
forces the cohomological statement above to be equivalent to the dual homological
statement: Z2

∼= Hn−1(Sn−1) → 0 ∈ Hn−1(X − U). The Mayer-Vietoris sequence
now yields:

Hn(X − u)→ Hn(X)→ Z2 → 0

confirming that the first map is not surjective. This completes the verification that
taking X̂ to be the cone over X always satisfies the homological conditions for
Theorem 2.

Let us conclude with an observation: the example of pseudo-manifolds is, in
some sense, a “universal example” amongst CW-complexes. Indeed, let us illustrate
what we mean by reconsidering the situation where (X̂,X) are CW-complexes, and
U ⊂ X is the interior of an n-cell in X. Since X is assumed to satisfy the hypotheses
of Theorem 1, the analysis in the previous paragraph gives rise to a homology class
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α ∈ Hn(X) which is not in the image of Hn(X − U). Now recall that, given a
homology class α ∈ Hn(X; Z2), in an arbitrary topological space X, there exists
an n-dimensional pseudo-manifold Y and a continuous map φ : Y → X with the
property that φ∗[Y ] = α.

Now it is easy to see, from the constraints on α, that the image φ(Y ) must
pass through U . One can further modify Y so as to ensure that the corresponding
φ : Y → X has the property that φ : φ−1(U) → U is a homeomorphism (this can
be done by an argument similar to the one at the end of Section 2). This discussion
establishes the following:

Lemma (Universality of pseudo-manifold example). Let X be an n-dimensional
CW-complex, U an n-cell in X, such that the pair (X,U) satisfies the hypotheses
of Theorem 1 for the map f : X → Sn+1. Then there exists a pseudo-manifold
pair (Y,U ′) and a map φ : (Y,U ′)→ (X,U), with the property that the pair (Y,U ′)
satisfies the hypotheses of Theorem 1 for the composite map f ◦ φ : Y → Sn+1.

In particular, the image of φ(Y ) under f already separates Sn+1, showing that
Theorem 1 for CW-complexes is actually a consequence of Theorem 1 for pseudo-
manifolds. A similar analysis can be used to show that Theorem 2 for CW-complex
pairs can also be deduced from the pseudo-manifold case; we leave the details to
the interested reader.

Example: spaces which are not CW-complexes.

Finally, we give an example which cannot be deduced from the pseudo-manifold
case: take X to be the closed topologists sine curve. It is well known that the first
singular cohomology group is H1(X) = 0, while the first Čech cohomology group
is Ȟ1(X) ∼= Z2. If U ⊂ X is an open interval in the “sine portion” of X, then one
can readily verify that both H1(X − U) = 0 and Ȟ1(X − U) = 0. In particular,
we see that the pair (X,U) satisfy the homological conditions for our Theorem 1,
so any continuous map f : X → S2 which is injective on U will have image that
separates. Of course, the fact that H1(X) ∼= H1(X) = 0 tells us that there is no
chance of using pseudo-manifolds to detect separation (in contrast to the situation
with CW-complexes). For X̂, one can again take the cone over X; it is easy to
verify that the homological conditions for Theorem 2 are indeed satisfied.
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