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Abstract. We study compact Riemannian manifolds (M, g) for which the light
from any given point x ∈ M can be shaded away from any other point y ∈ M by
finitely many point shades in M . Compact flat Riemannian manifolds are known to
have this finite blocking property. We conjecture that amongst compact Riemann-
ian manifolds this finite blocking property characterizes the flat metrics. Using
entropy considerations, we verify this conjecture amongst metrics with nonpositive
sectional curvatures. Using the same approach, K. Burns and E. Gutkin have in-
dependently obtained this result. Additionally, we show that compact quotients of
Euclidean buildings have the finite blocking property.

On the positive curvature side, we conjecture that compact Riemannian mani-
folds with the same blocking properties as compact rank one symmetric spaces are
necessarily isometric to a compact rank one symmetric space. We include some
results providing evidence for this conjecture.

1. Introduction

To what extent does the collision of light determine the global geometry of space?
In this paper we study compact Riemannian manifolds with this question in mind.
Throughout, we assume that (M, g) is a smooth, connected, and compact mani-
fold equipped with a smooth Riemannian metric g. Unless stated otherwise, ge-
odesic segments γ ⊂ M will be identified with their unit speed paramaterization
γ : [0, Lγ] → M, where Lγ is the length of the segment γ. By the interior of a
geodesic segment γ we mean the set int(γ) := γ((0, Lγ)) ⊂ M .

Definition (Light). Let X, Y ⊂ (M, g) be two nonempty subsets, and let Gg(X, Y )
denote the set of geodesic segments γ ⊂ M with initial point γ(0) ∈ X and terminal
point γ(Lγ) ∈ Y . The light from X to Y is the set

Lg(X, Y ) = {γ ∈ Gg(X, Y )| int(γ) ∩ (X ∪ Y ) = ∅}.

Definition (Blocking Set). Let X, Y ⊂ M be two nonempty subsets. A subset B ⊂ M
is a blocking set for Lg(X, Y ) provided that for every γ ∈ Lg(X, Y ),

int(γ) ∩B 6= ∅.

In this paper we focus on compact Riemannian manifolds for which the light be-
tween pairs of points in M is blocked by a finite set of points. We remark that by a
celebrated theorem of Serre [Se], Gg(x, y) is infinite when x, y ∈ M are two distinct
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points. In contrast, Lg(x, y) ⊂ Gg(x, y) may or may not be a infinite subset. For
example, in the case of a round metric on a sphere, |L(x, y)| is infinite only when
x = y or x and y are an antipodal pair.

Definition (Blocking Number). Let x, y ∈ M be two (not necessarily distinct) points
in (M, g). The blocking number bg(x, y) for Lg(x, y) is defined by

bg(x, y) = inf{n ∈ N ∪ {∞}|Lg(x, y) is blocked by n points}.

Definition (Finite Blocking Property). A compact Riemannian manifold (M, g) is
said to have finite blocking if bg(x, y) < ∞ for every (x, y) ∈ M ×M . When (M, g)
has finite blocking and the blocking numbers are uniformly bounded above, (M, g) is
said to have uniform finite blocking.

The finite blocking property seems to have originated in the study of polygonal
billiard systems and translational surfaces (see e.g. [Fo], [Gu1], [Gu2], [Gu3], [HiSn],
[Mo1], [Mo2], [Mo3], and [Mo4]). Our motivation comes from the following theorem
(see e.g. [Fo], [Gu1, lemma 1], or [GuSc, proposition 2]):

Theorem: Compact flat Riemannian manifolds have uniform finite blocking.

We believe the following is true:

Conjecture. Let (M, g) be a compact Riemannian manifold with finite blocking.
Then g is a flat metric.

There is a natural analogue of (uniform) finite blocking for general geodesic metric
spaces. We provide an extension of the above theorem in section 5:

Theorem 1. Compact quotients of Euclidean buildings have uniform finite blocking.

As evidence for the above conjecture we prove the following theorem in section 4:

Theorem 2. Let (M, g) be a compact nonpositively curved Riemannian manifold
with the finite blocking property. Then g is a flat metric.

This theorem is a consequence of a well known result about nonpositively curved
manifolds and the next theorem relating the finite blocking property to the topological
entropy of the geodesic flow:

Theorem 3. Let (M, g) be a compact Riemannian manifold without conjugate points.
If htop(g) > 0, then bg(x, y) = ∞ for every (x, y) ∈ M . In other words, given any pair
of points x, y ∈ M and a finite set F ⊂ M − {x, y}, there exists a geodesic segment
connecting x to y and avoiding F .

Working independently and using a similar approach K. Burns and E. Gutkin have
also obtained Theorem 3 as well as the following [BuGu]:
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Theorem: (Burns and Gutkin) Let (M, g) be a compact Riemannian manifold with
uniform finite blocking. Then htop(g) = 0 and the fundamental group of M is virtually
nilpotent.

In section 2, we define regular finite blocking by imposing a continuity and separa-
tion hypothesis on blocking sets. We show that manifolds with regular finite blocking
have uniform finite blocking and are conjugate point free. Combining this result with
the previous theorem of K. Burns and E. Gutkin, and recent work of N.D. Lebedeva
[Le] yields:

Theorem 4. Let (M, g) be a compact Riemannian manifold with regular finite block-
ing. Then g is a flat metric.

Blocking light is also interesting in the context of the nonnegatively curved compact
type locally symmetric spaces. In [GuSc], they show the following:

Theorem: (Gutkin and Schroeder) Let (M, g) be a compact locally symmetric space
of compact type with R-rank k ≥ 1. Then bg(x, y) ≤ 2k for almost all (x, y) ∈ M×M .

We refer the reader to [GuSc] for a more precise formulation and discussion of
this result. On the positively curved side, we focus on the blocking properties of
the compact rank one symmetric spaces or CROSSes. The CROSSes are classified
and consist of the round spheres (Sn, can), the projective spaces (KPn, can) where
K denotes one of R,C, or H, and the Cayley projective plane (CaP2, can) where
can denotes a symmetric metric. The CROSSes all satisfy the following blocking
property:

Definition (Cross Blocking). A compact Riemannian manifold (M, g) is said to have
cross blocking if

0 < d(x, y) < Diam(M, g) =⇒ bg(x, y) ≤ 2.

Just as with finite blocking, we also define regular cross blocking by imposing a
continuity and separation hypothesis on blocking sets. In addition to cross blocking,
round spheres also satisfy the following blocking property:

Definition (Sphere Blocking). A compact Riemannian manifold (M, g) is said to
have sphere blocking if bg(x, x) = 1 for every x ∈ M .

This is a blocking interpretation of “antipodal points”; we think of the single
blocker for Lg(x, x) as being antipodal to x. We believe the following is true:

Conjecture. A compact Riemannian manifold (M, g) has cross blocking if and only
if (M, g) is isometric to a compact rank one symmetric space. In particular, (M, g)
has cross blocking and sphere blocking if and only if (M, g) is isometric to a round
sphere.

As support for this conjecture, we prove the following theorems in section 3:
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Theorem 5. Let (S2, g) be a metric on the two sphere with cross blocking and sphere
blocking. Then a shortest periodic geodesic is simple with period 2 Diam(S2, g).

Theorem 6. Let (M2n, g) be an even dimensional manifold with positive sectional
curvatures and regular cross blocking. Then (M, g) is a Blaschke manifold. If in ad-
dition M is diffeomorphic to a sphere or has sphere blocking, then (M, g) is isometric
to a round sphere.

Theorem 7. Let (M, g) be a compact Riemannian manifold with regular cross block-
ing, sphere blocking, and which doesn’t admit a nonvanishing line field. Then (M, g)
is isometric to an even dimensional round sphere.
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2. Finite Blocking and Conjugate Points

For the reader’s convenience, we begin with the definition of a conjugate point in
a compact Riemannian manifold (M, g). We let TM (resp. UM) denote the tangent
bundle (resp. unit tangent bundle) of M and denote the fibers above a point p ∈ M ,
by TpM and UpM . For a point p ∈ M , the exponential map

expp : TpM → M

is everywhere defined by completeness.

Definition (Conjugate Point). A point q = expp(v) ∈ M is conjugate to p along the
unit speed geodesic γv : [0, ||v||] → M with initial condition v

||v|| ∈ Up(M) ⊂ UM if

d(expp)v is not of full rank.

In [Wa1], F. Warner describes the conjugate locus of singular points C(p) ⊂ Tp(M)
for the exponential map expp. A point v ∈ C(p) is said to be regular if there exists
a neighborhood U of v such that each ray emanating from the origin in Tp(M)
intersects at most one point in C(p) ∩ U . The order of a point v ∈ C(p) is defined
to be the dimension of the kernel of d(expp)v. Warner shows that the set of regular

points CR(p) ⊂ C(p) is an open dense subset of C(p) which (if nonempty) forms a
codimension one submanifold of Tp(M). Moreover, the order of points is constant in
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each connected component of CR(p) and there are normal forms depending on the
order of the point for the exponential map in a neighborhood of each regular point.
From these normal forms, it follows that the preimage under the exponential map of
a regular conjugate point of order more than one is indiscrete. It appears that regular
p! oints of order more than one are rare in Riemannian manifolds (see e.g. [Wa2]).
The next proposition shows that there are no such conjugate points in Riemannian
manifolds with the finite blocking property.

Proposition 2.1. Suppose that (M, g) is a compact Riemannian manifold with finite
blocking. Then for each p ∈ M , point preimages of expp are discrete subsets of TpM .

Proof. Suppose not. Then there are points p, q ∈ M and a sequence of vectors {vi} ⊂
exp−1

p (q) converging to a vector v∞ ∈ exp−1
p (q) ⊂ Tp(M). Let B = {b1, . . . , bk} ⊂ M

be a finite blocking set for Lg(p, q). Note that any geodesic segment γ ∈ Gg(p, q)
contains a subsegment γ′ ∈ Lg(p, q). It follows that for each index i, there is a well
defined time ti ∈ (0, 1), given by

ti = inf{t ∈ (0, 1)| expp(tvi) ∈ B}.
After possibly relabeling blockers and passing to a subsequence, we may assume that
expp(tivi) = b1 for all i ∈ N. A subsequence of the vectors {tivi} converge to a vector
t∞v∞ and by continuity of the exponential map, expp(t∞v∞) = b1. This shows that
the point b1 is a sooner conjugate point to p along the geodesic ray γ(t) = expp(tv∞)
than is the point q. By repeating this argument, there is ! always a sooner conjugate
point, contradicting the fact that conjugate points are discrete along a geodesic. �

We expect that compact Riemannian manifolds with the finite blocking property
will never have conjugate points. Next we impose some restrictions on blocking sets
and show that the light between conjugate points cannot be finitely blocked by such
sets. For a compact Riemannian manifold (M, g), let M ′ ⊂ M × M be the subset
of points for which bg < ∞, T ′ ⊂ TM be the subset of vectors (p, v) ∈ TM for
which (p, expp(v)) ∈ M ′, and let F(M) denote the set of finite subsets of M . A
blocking function for (M, g) is a symmetric map B : M ′ → F(M) such that for each
(x, y) ∈ M ′, B(x, y) is a finite blocking set for Lg(x, y). Given a blocking function B
we define the first blocking time tB : T ′ → (0, 1) by

tB(p, v) = inf{t ∈ (0, 1)| expp(tv) ∈ B(p, expp(v))}.

Definition (Continuous Blocking). We say that a closed Riemannian manifold (M, g)
has continuous blocking if there is a blocking function B for which the first blocking
time tB : T ′ → (0, 1) is continuous.

Definition (Separated Blocking). We say that a blocking function B is separated if
there exists an ε > 0 such that the ε-neighborhoods of blocking points in each finite
blocking set B(x, y) ⊂ M are disjoint.
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Lemma 2.2. Let B be a separated blocking function for a compact Riemannian mani-
fold (M, g). Then the cardinalities of blocking sets defined by B are uniformly bounded
above. In particular, compact Riemannian manifolds with finite blocking and a sepa-
rated blocking function have uniform finite blocking.

Proof. Suppose that the blocking sets defined by B are ε-separated. An upper bound
Kmax for the sectional curvatures yields a lower bound C := C(Kmax, ε) > 0 for the
volume of balls of radius ε in M . Therefore, there are at most vol(M, g)/C disjoint
balls of radius ε in M , concluding the proof. �

Proposition 2.3. Let (M, g) be a compact Riemannian manifold with a blocking
function B that is both continuous and separated. Let p ∈ M and suppose that U
is an open subset of Tp(M) consisting of vectors from T ′ ∩ Tp(M). Then p is not
conjugate to any point in expp(U) ⊂ M .

Proof. Suppose not. Then there is a vector v ∈ U for which expp(v) is conjugate to p.
It is well known (see e.g. [Wa1]) that expp is not one to one in any neighborhood of v.
Let Bi be a sequence of balls centered at v and contained in U with radii decreasing to
zero. For each i, choose distinct points xi, yi ∈ Bi with expp(xi) = expp(yi) := qi. Let
B be a continuous and separated blocking function, and let li := expp(tB(xi)xi) and
ri := expp(tB(yi)yi) be the associated first blocking points in B(p, qi). By continuity
of B, the sequences {li} and {ri} both converge to expp(tB(v)v). This contradicts the
separatedness of B for all large enough indices i ∈ N. �

When a compact Riemannian manifold (M, g) has finite (resp. cross) blocking and
a continuous and separated blocking function, we shall say that (M, g) has regular
finite (resp. regular cross) blocking.

Corollary 2.4. Let (Mn, g) be a compact Riemannian manifold with regular finite
blocking. Then (M, g) has uniform finite blocking and is conjugate point free. In
particular, the universal cover of M is diffeomorphic to Rn

Proof. Since (M, g) has finite blocking, T ′ = TM . By lemma 2.2, (M, g) has uniform
finite blocking and by proposition 2.3, (M, g) is conjugate point free. The second
statement is Hadamard’s theorem. �

Corollary 2.5. Let (M, g) be a compact Riemannian manifold with regular cross
blocking. If p, q ∈ M are conjugate points, then d(p, q) = 0 or d(p, q) = Diam(M, g).

Proof. Suppose p, q ∈ M satisfy 0 < d(p, q) < Diam(M, g) and let γ : [0, 1] → M be
a geodesic with γ(0) = p and γ(1) = q. Then γ(t) = expp(tv) for some v ∈ Tp(M).
By continuity of the exponential map and the cross blocking property, there is an
open set U ⊂ Tp(M) containing v and satisfying U ⊂ T ′ ∩ Tp(M). By proposition
2.3, the points p and q are not conjugate. �
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3. Blocking Light and Round Spheres

In this section, we show under various hypothesis that compact Riemannian man-
ifolds with blocking properties similar to those of round spheres are necessarily iso-
metric to round spheres. In general, we believe the following should be true:

Conjecture. Let (M, g) be a compact Riemannian manifold with cross blocking.
Then (M, g) is isometric to a compact rank one symmetric space.

We begin by reviewing the definition and basic properties concerning cut points
in a compact Riemannian manifold (M, g). In this section, a unit speed geodesic
γ : [0, Lγ] → M for which γ(0) = γ(Lγ) = p will be called a geodesic lasso based at
p. For a geodesic lasso γ, we shall denote by γ−1 : [0, Lγ] → M the geodesic lasso
obtained by traversing γ in the reverse direction; specifically, γ−1(t) := γ(Lγ − t). If
in addition the geodesic γ is regular at p, i.e. γ̇(0) = γ̇(Lγ), γ will be called a closed
geodesic based at p. By a simple lasso (resp. simple closed geodesic)based at p we
mean a lasso (resp. closed geodesic) γ : [0, Lγ] → M based at p which is injective on
the interval (0, Lγ) and with p /∈ γ((0, Lγ)).

Definition. Let (M, g) be a compact Riemannian manifold, p ∈ M , v ∈ Up(M), and
γ : [0,∞) → M the unit speed geodesic ray defined by γ(t) = expp(tv) . Let [0, t0] be
the largest interval for which t ∈ [0, t0] implies d(p, γ(t)) = t. The point γ(t0) is said
to be a cut point to p along the geodesic γ. The union of the cut points to p along all
the geodesics starting from p is called the cut locus and will be denoted by Cut(p).

The next two propositions are well known and describe points in the cut locus (see
e.g. [do Ca]).

Proposition 3.1. Suppose that γ(t0) is the cut point of p = γ(0) along a geodesic γ.
Then either:

• γ(t0) is the first conjugate point of γ(0) along γ, or
• there exists a geodesic σ 6= γ from p to γ(t0) such that length(σ) = length(γ).

Conversely, if (a) or (b) is satisfied, then there exists t′ ∈ (0, t0] such that γ(t′) is
the cut point of p along γ.

Proposition 3.2. Let p ∈ M and suppose that q ∈ Cut(p) satisfies d(p, q) =
d(p, Cut(p)). Then either:

• there exists a minimizing geodesic γ from p to q along which q is conjugate to
p, or

• there exist exactly two minimizing geodesics γ and σ from p to q that together
form a simple geodesic lasso based at p of length 2d(p, Cut(p)).

It follows from proposition 3.1 that expp is injective on a ball of radius r centered
at the origin in Tp(M) if and only if r < d(p, Cut(p)).
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Definition. The injectivity radius of (M, g) is defined to be

inj(M, g) = inf
p∈M

d(p, Cut(p)).

Note that the injectivity radius of a compact Riemannian manifold is never larger
than its diameter. Compact manifolds for which the injectivity radius equals the
diameter are known as Blaschke manifolds. All of the compact rank one symmetric
spaces are Blaschke and the well known Blaschke conjecture asserts that these are the
only Blaschke manifolds. We will use the following theorem from [Ber1], extending
earlier work of [Gr]:

Theorem 3.3 (Berger). Let (M, g) be a Blashke metric on a smooth sphere. Then
the metric g is a symmetric metric.

For a Blaschke manifold (M, g), all infinite geodesics γ : R → M cover simple
closed geodesics of length 2 Diam(M, g) (see e.g. [Be, Corollary 5.42]). The next
proposition is a first step in showing that geodesics in a manifold with cross blocking
behave similarly to those in a Blaschke manifold.

Proposition 3.4. Suppose that (M, g) has cross blocking. Let γ : [0, Lγ] → M be a
unit speed simple geodesic lasso based at p ∈ M . Then Lγ ≤ 2 Diam(M, g) and the
point γ(Lγ/2) is the cut point to p in both of the directions γ̇(0) and −γ̇(Lγ).

Proof. Let D := Diam(M, g) and let c1 be the cut point to p in the direction γ̇(0)
and c2 be the cut point to p in the direction −γ̇(Lγ). By simplicity of γ, there
exists unique t1, t2 ∈ (0, Lγ) such that ci = γ(ti) for i = 1, 2. By proposition 3.1,
t1 ≤ Lγ/2 ≤ t2. The statement of the proposition follows from showing that t1 = t2,
i.e that c1 = c2 and the point γ(Lγ/2) is the cut point to p in both of the directions
γ̇(0) and −γ̇(Lγ).

We now will assume that t1 < t2 and must obtain a contradiction. With this
assumption, we first argue that d(p, γ((t1, t2))) = D. If not, choose a t ∈ (t1, t2)
for which 0 < d(p, γ(t)) < D. Note that since γ is simple, the restrictions of γ
to the interval [0, t] and γ−1 to the interval [0, Lγ − t] define distinct elements in
Lg(p, γ(t)) with nonintersecting interiors. There must be a single blocking point
on the restriction of γ to the interior of each of these intervals since (M, g) has
cross blocking. As neither of these light rays are minimizing, there is a unit speed
minimizing geodesic σ : [0, Lσ] → M joining p to γ(t). Since σ is minimizing, it
defines a third light ray between p and γ(t), whence its interior must intersect one
of the two blocking points for Lg(p, γ(t)). Let s′ := inf{s ∈ (0, Lσ)|σ(s) ∈ int γ!}.
By simplicity of γ, there is a unique t′ ∈ (0, Lγ) such that σ(s′) = γ(t′) := q. Since
σ is unit speed and minimizing, 0 < d(p, q) = s′ < Lσ = d(p, γ(t)) < D, so that
bg(p, q) ≤ 2 by the cross blocking condition. However, the restriction of γ to [0, t′],
γ−1 to [0, Lγ − t′], and the restriction of σ to [0, s′] define three distinct elements in
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Lg(p, q) with nonintersecting interiors, implying bg(p, q) ≥ 3. This is a contradiction,
whence d(p, γ((t1, t2))) = D.

Next we show that d(p, γ((t1, t2))) = D yields a contradiction, completing the
proof. By the discreteness of conjugate points along geodesics, there is a t ∈ (t1, t2)
so that q := γ(t) is not conjugate to p in the direction γ̇(0) or in the direction
−γ̇(Lγ). Neither of the restrictions of γ to [0, t] or γ−1 to [0, Lγ − t] is minimizing
so that there is a unit speed minimizing geodesic σ : [0, D] → M joining p to q.
Note that since σ is minimizing, the interior of σ cannot intersect γ. Indeed, a
first point of intersection between the interiors of σ and γ would be at a point p′

satisfying 0 < d(p, p′) < D so that the reasoning from the previous paragraph may
be applied to obtain a contradiction. Let qn = σ(D − 1/2n). Choose sufficiently
small neighborhoods B1 of tγ̇(0) and B2 of −(Lγ − t)γ̇(Lγ) on which expp restricts
to a local diffeomorphism. For all sufficiently large n, there are unique xn ∈ B1 and
yn ∈ B2 such that qn = expp(xn) = expp(yn). It follows by the continuity properties
of the exponential map that for suitably large n, the geodesics

s 7→ expp(sxn)

and

s 7→ expp(syn)

for s ∈ [0, 1] and the restriction of σ to the interval [0, D−1/2n] define three light rays
between p and qn with nonintersecting interior. Hence, bg(p, qn) ≥ 3 for suitably large
n. But 0 < d(p, qn) < D, so that bg(p, qn) ≤ 2 by cross blocking, a contradiction.

�

Lemma 3.5. Suppose that (M, g) has cross blocking and sphere blocking. Suppose
that γ : [0, Lγ] → M is a unit speed simple geodesic lasso based at p ∈ M . If
Lγ < 2 Diam(M, g), then γ is regular at p and all lassos based at p finitely cover γ. If
Lγ = 2 Diam(M, g), then the interior of all of the geodesic lassos through p intersect
in the point γ(Lγ/2).

Proof. Let p := γ(Lγ/2). Suppose there is a (not necessarily simple) unit speed lasso
τ : [0, Lτ ] → M through p with τ̇(0) distinct from γ̇(0) and −γ̇(Lγ). As (M, g) has
sphere blocking and γ is simple, there is a unique t ∈ (0, Lγ) such that γ(t) blocks
Lg(p, p). Let s := inf{t ∈ (0, Lτ ] | τ(t) = p}. The restriction of τ to the interval [0, s]
gives an element in Lg(p, p) so that by sphere blocking, its interior must pass through
the blocking point γ(t) (and hence int(γ)). Let s′ := inf{t ∈ (0, s)| τ(t) ∈ int γ}. By
simplicity of γ there is a unique t′ ∈ (0, Lγ) such that γ(t′) = τ(s′) := q. As γ is
simple, the restrictions of γ to the intervals [0, t′], γ−1 to the interval [t′, Lγ], and τ to
the interval [0, s′] define three distinct light rays between p and q with nonintersecting
interiors. Since p 6= q cross blocking implies that d(p, q) = Diam(M, g) and that q = p
(by proposition 3.4 and since Lγ/2 ≤ Diam(M, g)). Hence, if Lγ/2 < Diam(M, g)
there are no geodesic lassos through p with initial tangent vector outside of the set
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{γ̇(0),−γ̇(Lγ)}, and if Lγ/2 = Diam(M, g), the interior of any lasso through the
point p passes through the point p. This concludes the proof of the last statement in
the lemma.

We now assume that Lγ/2 < Diam(M, g), and will argue that γ is regular at the
point p and that all lassos at p finitely cover γ. By simplicity of γ, the restriction
of γ to the intervals [0, Lγ/2] and γ−1 to the interval [0, Lγ/2] define distinct light
rays between p and p with nonintersecting interiors. As (M, g) has cross blocking,
the interior of a third light ray must intersect the interior of γ in a blocker and will
therefore have a first point of intersection p′ with the interior of γ. This implies
bg(p, p

′) ≥ 3, a contradiciton. Therefore |Lg(p, p)| = 2, while Gg(p, p) is infinite
by [Se]. Note that any geodesic segment from Gg(p, p) − Lg(p, p) is obtained from
extending one of the two light rays in Lg(p, p). Each such extension gives rise to a
geodesic lasso based at p with initial tangent! vector in the set {−γ̇(0), γ̇(Lγ)}. But
by the previous paragraph, the initial tangent vector of all lassos at p lie in the set
{γ̇(0),−γ̇(Lγ)}. Therefore, γ must be regular at p and all lassos at p finitely cover
γ. �

Definition. A SC2L manifold is a Riemannian manifold with the property that all
geodesics cover simple closed geodesics of length 2L.

It is tempting to think that the only SC2L manifolds are the CROSSes. Amazingly,
O. Zoll exhibited an exotic SC2L real analytic Riemannian metric on the two sphere
[Zo]. This example is discussed in [Be, Chapter 4] along with examples on higher
dimensional spheres. We remark that these examples are not cross blocked. Indeed,
proposition 3.4 implies that SC2L manifolds with cross blocking are Blaschke with
inj(M, g) = Diam(M, g) = L, while theorem 3.3 asserts that there are no exotic
Blaschke metrics on spheres. In view of our conjecture that the manifolds with cross
blocking are precisely the CROSSes and the Blaschke conjecture that the Blaschke
manifolds are precisely the CROSSes, we expect that Blaschke manifolds are precisely
those manifolds with cross blocking. In the next proposition, we use well known
results concerning Blaschke manifolds to show that Blaschke manifolds all have cross
blocking.

Proposition 3.6. Suppose that (M, g) is a Blaschke manifold. Then (M, g) has cross
blocking.

Proof. Suppose that p, q ∈ M satisfy 0 < d(p, q) < D := Diam(M, g). By [Be,
corollary 5.42], (M, g) is a SC2D manifold. It follows that there is a unit speed simple
closed geodesic γ : [0, 2D] → M with γ(0) = p and γ(d(p, q)) = q. The restriction
of γ to the intervals [0, d(p, q)] and γ−1 to [0, 2D− d(p, q)] give two distinct elements
in Lg(p, q) with nonintersecting interiors. Hence bg(p, q) ≥ 2. If bg(p, q) > 2 then
there must be a third unit speed light ray β : [0, Lβ] → M joining p to q. Note that
since β is a light ray and since all geodesics are periodic with period 2D, Lβ < 2D.
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Moreover, since d(p, q) < D = inj(M, g), the restriction of γ to the interval [0, d(p, q)]
is the unique minimizing geodesic from p to q so that Lβ > inj(M, g) = D. Extend

β to the simple closed geodesic β : [0, 2D] → M . Then the restriction of !β to the
interval [Lβ, 2D] gives a geodesic joining q to p of length 2D − Lβ < D = inj(M, g).
Hence, there are two minimizing geodesics joining p and q, a contradiction. Therefore,
bg(p, q) = 2 and Blaschke manifolds have cross blocking. �

Corollary 3.7. Suppose that (M, g) is Blaschke manifold with sphere blocking. Then
(M, g) is isometric to a round sphere.

Proof. By the last proposition (M, g) has cross blocking. By lemma 3.5, the interior
of all of the simple closed geodesics through p intersect in a single point p′ satisfying
d(p, p′) = Diam(M, g). By proposition 3.4, p′ is the cut point to p along all these
geodesics. Hence, dim(Cut(p)) = 0, from which it follows (see e.g. [Be, proposition
5.57]) that M is diffeomorphic to a sphere. By theorem 3.3, (M, g) is a round sphere.

�

For the proof of the next theorem, we will need the following two definitions:

Definition. For p ∈ M and p′ ∈ Cut(p), define the link Λ(p, p′) ⊂ Up′M by

Λ(p, p′) = {−γ̇(d(p, p′))| γ is a unit speed and minimizing geodesic from p to p′}.

Definition. For p ∈ M and U ⊂ UpM , U is said to be a great sphere if U is the
intersection of a linear subspace of TpM with UpM .

Theorem 3.8. Suppose that (M, g) is a compact Riemannian manifold with regular
cross blocking, sphere blocking, and which does not admit a nonvanishing continuous
line field. Then (M, g) is isometric to an even dimensional round sphere.

Proof. First we argue that (M, g) is a Blaschke manifold.
To obtain a contradiction, suppose that inj(M, g) < Diam(M, g) := D. We begin

by showing that for each point x ∈ M satisfying d(x, Cut(x)) < D there is a unique
simple closed geodesic based at x and this geodesic has length 2d(x, Cut(x)). Indeed,
let x satisfy d(x, Cut(x)) < D and x′ ∈ Cut(x) satisfy d(x, x′) = d(x, Cut(x)). By
corollary 2.5 the points x and x′ are not conjugate so that by proposition 3.2 there
is a simple geodesic lasso C through x of length 2 inj(M, g). By lemma 3.5, C is a
simple closed geodesic through x and is the unique lasso through x, as required.

Let L := sup{d(p, Cut(p)) | p ∈ M} ≤ D. If L < D, the preceeding paragraph
shows that there is a unique closed geodesic Cp of length less than 2D through each
point p ∈ M. Since all of the Cq have lengths uniformly bounded above, when-
ever a sequence of points {pi} converge to a point p∞ ∈ M , the sequence of closed
geodesics Cpi

converge to a closed geodesic C∞. By the uniqueness of these geodesics,
C∞ = Cp∞ . Therefore, the tangent spaces to these geodesics define a nonvanishing
continuous line field on M , a contradiction.
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Hence, there is a point p ∈ M satisfying d(p, Cut(p)) = D. Such a point is said
to have spherical cut locus at p [Be, definition 5.22]. By [Be, proposition 5.44], the
link Λ(p, p′) ⊂ Up′(M) is a great sphere for each p′ ∈ Cut(p), whence all geodesics
through p are periodic of period 2D. Now consider a geodesic connecting p to a point
q satisfying d(q, Cut(q)) < D. This geodesic gives rise to a closed geodesic of length
2D through q, while the first paragraph shows that there is a closed geodesic through
p of length 2d(q, Cut(q)). This contradicts lemma 3.5, implying that at every point
q ∈ M , we have d(q, Cut(q)) = D, and hence concluding the proof that (M, g) is
Blaschke.

By corollary 3.7, (M, g) is isometric to a round sphere. As M does not admit a
nonvanishing line field, (M, g) is isometric to an even dimensional round sphere. �

Next, we adapt Klingenberg’s estimate on the injectivity radius to obtain the
following (see e.g. [do Ca, chapter 13, proposition 3.4]):

Theorem 3.9. Suppose that (M2n, g) is an even dimensional, orientable, Riemann-
ian manifold with positive sectional curvatures. If (M, g) has regular cross blocking,
then (M, g) is Blaschke. In particular, if M is diffeomorphic to a sphere or (M, g)
has sphere blocking, then g is a round metric on a sphere.

Proof. Suppose to the contrary that inj(M, g) < Diam(M, g) and choose p, q ∈ M
so that q ∈ Cut(p) and d(p, q) = inj(M, g). By corollary 2.5, p and q are not
conjugate points. By proposition 3.2, there is a unit speed simple closed geodesic
C : [0, 2 inj(M, g)] → M of length 2 inj(M, g) passing through p = C(0) and q =
C(inj(M, g)). Since M is orientable and even dimensional, parallel transport along C
leaves invariant a vector v orthogonal to C at C(0). The field v(t) along C(t) is the
variational field of closed curves Cs(t) for s ∈ [0, ε). As the sectional curvatures are
strictly positive, the second variational formula implies that length(Cs) < length(C)
for all small s > 0. For each s > 0, let qs be a point of Cs at maximum distance from
Cs(0). Necessarily, lims→0 qs = q and d(qs, Cs(0)) < inj(M, g). For each s > 0, let
γs be the unique minimizing geodesic joining qs to Cs(0). No! te that each γ̇s(0) is
orthogonal to Cs by the first variational formula. Let w ∈ TqM be an accumulation
point of the vectors γ̇s(0) ∈ TqsM and γ : [0, 1] → M be the geodesic defined by
γ(t) := expq(tw). It follows that γ is a minimizing geodesic joining q to p which is
orthogonal to C at q. As γ is minimizing, it cannot intersect C except at the points
p and q, whence bg(p, q) ≥ 3, a contradiction. Therefore (M, g) is Blaschke. The last
statement follows from theorem 3.3 and corollary 3.7. �

Theorem 3.10. Suppose that (S2, g) is a Riemannian metric on the two sphere
with cross blocking and sphere blocking. Then a shortest nontrivial closed geodesic is
simple and has length 2 Diam(S2, g).

Proof. Let D := Diam(M, g) and let C be a shortest nontrivial closed geodesic.
We first argue that if C is simple, then its length is 2 Diam(S2, g). Indeed, by
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proposition 3.4, length(C) ≤ 2D. We suppose that length(C) < 2D and will obtain a
contradiciton. Note that C separates S2 into two components. By Santalo’s formula
(see e.g. [Sa] pg. 488 or [Ber2] pg. 290), almost all geodesic rays with initial
point on C eventually leave the component they initially enter. Choose one such ray
γ : [0,∞) → M and let t := inf{t ∈ (0,∞)| γ(t) ∈ C}. If γ(t) is distinct from γ(0),
then bg(γ(0), γ(t)) ≥ 3, a contradiction. Hence, γ(0) = γ(t), also a contradiction by
lemma 3.5.

Next we argue that a shortest nontrivial closed geodesic C is simple. By [NaRo]
or [Sab], length(C) ≤ 4D. Suppose that C is not simple, and choose a unit speed
paramaterization C : [0, LC ] → M such that C(0) is a crossing point. Let s =
inf{t ∈ (0, LC) |C(s) = C(0)}. Without loss of generality, we may assume that the
restriction of C to the interval [0, s] defines a simple lasso at C(0), whence s = 2D
by proposition 3.4. The restriction of C to the interval [2D, LC ] defines another lasso
at C(0). If this lasso is not simple, then it contains a simple lasso of length 2D
and LC > 4D, a contradiction. Hence, the restriction of C to the interval [2D, LC ]
defines a simple lasso and LC = 4D. By lemma 3.5, C(D) = C(3D). Note that
the restriction of C to [0, 2D] separates S2 into two components. This implies that
C((0, 2D)) ∩ C((3D, 4D)) 6= ∅. Letting s = inf{t ∈ (3D, 4D) |C(t) ∈!C((0, 2D))}, it
follows that bg(C(D), C(s)) ≥ 3, a contradiction. �

4. Finite Blocking Property and Entropy

In this section we relate the finite blocking property for a compact Riemannian
manifold (M, g) to the topological entropy htop(g) of its geodesic flow.

Our starting point is a well known theorem (see e.g. [Ma, corollary 1.2]) identifying
the topological entropy with the exponential growth rate of the number of geodesics
between pairs of points in M . For x, y ∈ M and T > 0, let nT (x, y) (resp. mT (x, y))
denote the number of geodesic segments (resp. light rays) between the points x and
y of length no more than T .

Theorem 4.1 (Mañé). Let (M, g) be a compact Riemannian manifold without con-
jugate points. Then

htop(g) = lim
T→∞

log(nT (x, y))

T
,

for all (x, y) ∈ M ×M.

The main observation of this section lies in the following:

Proposition 4.2. Let (M, g) be a compact Riemannian manifold without conjugate
points. If htop(g) > 0, then bg(x, y) = ∞ for all (x, y) ∈ M ×M.

Proof. Let I := inj(M, g). We first argue that nT (x, y) ≤ (T/2I)2 mT (x, y). For a
unit speed geodesic γ : [0, Lγ] → M in Gg(x, y), let t1(γ) := sup{t ∈ [0, Lγ) | γ(t) = x}
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and t2(γ) := inf{t ∈ (t1(γ), Lγ] | γ(t) = y}. Restrict γ to the interval [t1(γ), t2(γ)]
and change the parameter of this interval to define a unit speed geodesic

Light(γ) : [0, t2(γ)− t1(γ)] → M

in Lg(x, y). Since for each β ∈ Lg(x, y), Light(β) = β, it follows that

Light : Gg(x, y) → Lg(x, y)

defines a surjective map. To conclude this step, it suffices to show that given a fixed
unit speed β ∈ Lg(x, y) of length not more than T > 0, there are at most (T/2I)2

distinct preimages of β under the map Light of length not more than T . For each unit
speed geodesic γ : [0, Lγ] → M of length ! not more than T satisfying Light(γ) = β,

γ̇(t1(γ)) = β̇(0) and γ̇(t2(γ)) = β̇(Lβ) since geodesics are determined by their initial
conditions. It follows that the number of preimages of β having length bounded above
by T coincides with the number of different extensions of β to a unit speed geodesic
β ∈ Gg(x, y) having length not more that T . Given such an extension β, let nβ(x)
and nβ(y) be the number of returns to x and the number or returns to y. Necessarily,
nβ(x), nβ(y) ≤ T/2I since each return to x or return to y increases the length of β

by at least 2I. Hence, by uniqueness of geodesics, nT (x, y) ≤ (T/2I)2 mT (x, y).
To complete the proof, we argue by contradiction, assuming there is a pair of points

x, y ∈ M with a finite blocking set F = {b1, . . . bk} ⊂ M − {x, y} for Lg(x, y). By
definition, the interior of any light ray γ ∈ Lg(x, y) passes through some point bi ∈ F ,
breaking γ into two geodesic segments γ1 ∈ Gg(x, bi) and γ2 ∈ Gg(bi, y). If γ has
length bounded above by T , then one of γ1 or γ2 must have length bounded above by
T/2. Moreover, given a geodesic segment α ∈ Gg(x, bi) (resp. β ∈ Gg(y, bi)), there is
at most one extension of α (resp. β) to a light ray between x and y. It follows that

mT (x, y) ≤
∑k

j=1 nT/2(x, bj)+nT/2(bj, y). Combining this with the estimate from the
previous paragraph yields:

nT (x, y) ≤ (T/2I)2

k∑
j=1

nT/2(x, bj) + nT/2(bj, y).

Let 0 < ε < htop(g)/3. By theorem 4.1, there is a T0 ∈ R so that T > To implies

|htop(g)− log(nT (∗1, ∗2))

T
| < ε,

for all ∗1, ∗2 ∈ {x, y} ∪ F. Therefore

exp(htop(g)−ε)T < nT (∗1, ∗2) < exp(htop(g)+ε)T ,

for all T > T0 and ∗1, ∗2 ∈ {x, y} ∪ F . It now follows that

exp(htop(g)−ε)T < nT (x, y) < 2k(T/2I)2 exp(htop(g)+ε)T/2,

a contradiction for all sufficiently large values of T . �
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We remark that the conclusion bg(x, y) = ∞ for all (x, y) ∈ M×M may be phrased
more geometrically as saying that given any point (x, y) ∈ M ×M and any finite set
F ⊂ M − {x, y}, there is a geodesic segment between x and y avoiding F .

As a corollary of proposition 4.2, we obtain the following:

Theorem 4.3. Let (M, g) be a compact Riemannian manifold with nonpositive sec-
tional curvatures. Then (M, g) has finite blocking if and only if (M, g) is flat.

Proof. Assume that (M, g) has nonpositive curvature and is not flat. Then (M, g) has
no conjugate or focal points. By [Pe, corollary 3], a geodesic flow on a nonflat compact
Riemannian manifold without focal points has positive entropy. By proposition 4.2,
(M, g) does not have finite blocking. �

K. Burns and E. Gutkin [BuGu] made the nice observation that by assuming
uniform finite blocking and by iterating the line of reasoning used in the proof of
proposition 4.2 one can establish the following:

Theorem 4.4 (Burns-Gutkin). Let (M, g) be a compact Riemannian manifold with
the uniform finite blocking. Then htop(g) = 0 and π1(M) has polynomial growth.

Using their result we obtain the following:

Theorem 4.5. Let (M, g) be a compact Riemannian manifold with regular finite
blocking. Then (M, g) is flat.

Proof. By corollary 2.4, (M, g) has uniform finite blocking and is conjugate point
free. By theorem 4.4, π1(M) has polynomial growth. By [Le], compact Riemannian
manifolds without conjugate points and with polynomial growth fundamental group
are flat. �

5. Finite Blocking Property and Buildings

In this section, we provide a proof of Theorem 1, which states that compact quo-
tients of Euclidean buildings have uniform finite blocking. Let us start by recalling
some elementary facts about Euclidean buildings, referring the reader to [Br] for more
details.

Let W ⊂ Rn be a compact polyhedron, with all faces forming angles of the form
π/mij for some positive integer mij. Let Λ ⊂ Isom(Rn) be the Coxeter group gen-
erated by reflections in the faces of the polyhedron, and observe that the Λ-orbit of
W generates a tessellation of Rn by isometric copies of W . We can label the faces
of the copies of W in the tessellation of Rn according to the face of W whose orbit
contains them. A Euclidean building is a polyhedral complex X̃, equipped with a
CAT(0)-metric, having the property that each top dimensional polyhedron is isomet-
ric to W (these will be called chambers). In addition, a certain number of axioms are
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required to be satisfied. We omit a precise definition of Euclidean buildings, content-
ing ourselves with mentioning the properties we will need. The reader may refer to
[Br] for a precise definition, and to [Da] for geometric properties of these buildings.
The polyhedral complex must also satisfy:

• each face of the complex X̃ is labelled with one of the faces of the polyhedron
W .

• given any pair of points x, y ∈ X̃, there exists an isometric, polyhedral, label
preserving embedding of the tessellated Rn whose image contains x and y.
The image of such an embedding is called an apartment.

• the group Isom(X̃) is defined to be the group of label preserving isometries
of X̃.

• given any two apartments A1,A2 whose intersection is non-empty, there exists
an element φ ∈ Isom(X̃) which fixes pointwise A1∩A2, and satisfies φ(A1) =
A2

We will say that X is a compact quotient of X̃ provided it is the quotient of X̃ by a
cocompact subgroup of Isom(X̃), acting fixed point freely.

Note that in a Euclidean building, one has uniqueness of geodesics joining pairs
of points (from the CAT(0) hypothesis). Furthermore, we can pick an apartment
containing both x and y, giving a totally geodesic Rn inside X̃ containing x, y. Then
the geodesic joining x to y coincides with the straight line segment from x to y within
the apartment. We will call the point along the geodesic that is equidistant from x
and y the midpoint of x and y, and denote it by (x + y)/2.

Another important point is that both the building X̃, as well as the compact
quotient X come equipped with a canonical folding map to the canonical chamber
W , given by the labeling. We will use ρ to denote the canonical folding map, and
given a point x ∈ X (or in X/Γ), we define the type of the point x to be the point
ρ(x) ∈ W . We now make two observations:

• in a compact quotient X/Γ, there are only finitely many points of any given
type, and

• given any point p in X/Γ, every pre-image of p in the universal cover X has
exactly the same type as p.

The proof of the theorem will make use of the following easy:

Lemma 5.1. Let A be any apartment, and x, y ∈ W a pair of points in the model
chamber. Define S(x), S(y) to be the set of points in A of type x, y respectively.
Then there exist a finite collection of points b1, . . . , bk ∈ W having the property that:

{(x̄ + ȳ)/2 | x̄ ∈ S(x), ȳ ∈ S(y)} ⊂
k⋃

i=1

S(bi)
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Proof. We first observe that the Coxeter group Λ contains an isomorphic copy of Zr

as a finite index subgroup, where r = dim(A). In particular, if we denote by Λ′ this
finite index subgroup, we note that each of the two sets S(x), S(y) are the union of
[Λ : Λ′] = m disjoint copies of Λ′-orbits in A. Now note that given any two Λ′-orbits
in A, the collection of midpoints of points in the first orbit with points in the second
orbit lie in a finite collection of Λ′-orbits (in fact, at most 2r such orbits). This is
immediate from the proof of the fact that a flat torus has finite blocking.

This in turn implies that the collection of midpoints of points in the set S(x) and
points in the set S(y) lie in the union of at most 2rm2 of the Λ′-orbits in A. Since each
Λ′-orbit lies in a corresponding Λ-orbit, we conclude that the collection of midpoints
lie in the union of a finite collection of Λ-orbits. But two points are in the same
Λ-orbit if and only if they have the same type. Hence choosing the points b1, . . . , bk

to be the finitely many types (at most 2rm2 of them), we get the desired containment
of sets.

We now proceed to prove Theorem 1:

Proof (Theorem 1). Let X = X̃/Γ be a compact quotient of the Euclidean building
X̃, and let W denote a model chamber. Given two points x, y in the space X, we want
to exhibit a finite set of blockers. Consider the sets P(x),P(y) ⊂ X̃ consisting of all
pre-images of the points x, y, respectively, under the covering map X̃ → X = X̃/Γ.
As we previously remarked, we can make sense of the midpoint of a pair of points in
X̃. We now claim that the collection of midpoints joining points in P(x) to points in
P(y) have only a finite number of possible types in W .

In order to see this, let us apply the previous lemma to the types ρ(x), ρ(y) ∈ W .
First note that given an arbitrary pair of points x̄ ∈ P(x), ȳ ∈ P(x), there exists
an apartment A containing x̄, ȳ. Furthermore, we have the obvious containments
P(x)∩A ⊂ S(ρ(x)), P(y)∩A ⊂ S(ρ(y)), and hence the midpoint joining x̄ to ȳ has
the property that its type is one of the finitely many points b1, . . . , bk.

Hence to obtain a finite blocking set, let us consider the collection of all points in
X whose type is one of b1, . . . , bk. This yields a finite collection B of points in X
having the property that if γ is an arbitrary geodesic joining x to y, its midpoint
must be one of the points in B, completing the proof of the theorem.
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