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Abstract. We consider groups G which have a cocompact, 3-manifold model
for the classifying space EG. We provide an algorithm for computing the ratio-
nalized equivariant K-homology of EG. Under the additional hypothesis that
the quotient 3-orbifold EG/G is geometrizable, the rationalized K-homology
groups coincide with the groups K∗(C∗

redG)⊗ Q. We illustrate our algorithm
on some concrete examples.

1. Introduction

We consider groups G which have a cocompact, 3-manifold model for the clas-
sifying space EG. For such groups, we are interested in computing the equivariant
K-homology of EG. We develop an algorithm to compute the rational equivariant
K-homology groups. If in addition we assume that the quotient 3-orbifold EG/G
is geometrizable, then G satisfies the Baum-Connes conjecture, and the rational
equivariant K-homology groups coincide with the groups K∗(C

∗
redG). These are

the rationalized (topological) K-theory groups of the reduced C∗-algebra of G.
Some general recipes exist for computing the rational K-theory of an arbitrary

group (see Lück and Oliver [LuO], as well as Lück [Lu1], [Lu2]). These general
recipes pass via the Chern character. They typically involve identifying certain
conjugacy classes of cyclic subgroups, their centralizers, and certain (group) ho-
mology computations. Similar formulas (with similar ingredients) appear in p-adic
K-theory, after tensoring with Qp (see for instance Adem [Ad]).

In contrast, our methods rely instead on the low-dimensionality of the model
for the classifying space EG. Given a description of the model space EG, our
procedure is entirely algorithmic, and returns the ranks of the K-homology groups.

Let us briefly outline the contents of this paper. In Section 2, we provide some
background material. Section 3 is devoted to explaining our algorithm, and the
requisite proofs showing that the algorithm gives the desired K-groups. In Section
4 we implement our algorithm on several concrete classes of examples. Section 5
has some concluding remarks.
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2. Background material

2.1. C∗-algebra. Given any discrete group G, one can form the associated
reduced C∗-algebra. This Banach algebra is obtained by looking at the action g �→
λg of G on the Hilbert space l2(G) of square summable complex-valued functions
on G, given by the left regular representation:

λg · f(h) = f
(
g−1h

)
g, h ∈ G, f ∈ l2(G).

The algebra C∗
r (G) is defined to be the operator norm closure of the linear span of

the operators λg inside the space B
(
l2(G)

)
of bounded linear operators on l2(G).

The Banach algebra C∗
r (G) encodes various analytic properties of the group G.

2.2. Topological K-theory. For a C∗-algebra A, the corresponding (topo-
logical) K-theory groups can be defined in the following manner. The group K0(A)
is defined to be the Grothendieck completion of the semi-group of finitely gener-
ated projective A-modules (with group operation given by direct sum). Since the
algebra A comes equipped with a topology, one has an induced topology on the
space GLn(A) of invertible (n × n)-matrices with entries in A, and as such one
can consider the group π0

(
GLn(A)

)
of connected components of GLn(A) (note

that this is indeed a group, not just a set). The group K1(A) is defined to be
limπ0

(
GLn(A)

)
, where the limit is taken with respect to the sequence of natural

inclusions of GLn(A) ↪→ GLn+1(A). The higher K-theory groups Kq(A) are sim-
ilarly defined to be limπq−1

(
GLn(A)

)
, for q ≥ 2. Alternatively, one can identify

the functors Kq(A) for all q ∈ Z via Bott 2-periodicity in q, i.e. Kq(A) ∼= Kq+2(A)
for all q.

2.3. Baum-Connes conjecture. Let us now recall the statement of the
Baum-Connes conjecture (see [BCH], [DL]). Given a discrete group G, there
exists a specific generalized equivariant homology theory having the property that,
if one evaluates it on a point ∗ with trivial G-action, the resulting homology groups
satisfy HG

n (∗) ∼= Kn(C
∗
r (G)). Now for any G-CW-complex X, one has an obvi-

ous equivariant map X → ∗. It follows from the basic properties of equivariant
homology theories that there is an induced assembly map:

HG
n (X) → HG

n (∗) ∼= Kn(C
∗
r (G)).

Associated to a discrete group G, we have a classifying space for proper actions EG.
The G-CW-complex EG is well-defined up to G-equivariant homotopy equivalence,
and is characterized by the following two properties:

• if H ≤ G is any infinite subgroup of G, then EGH = ∅, and
• if H ≤ G is any finite subgroup of G, then EGH is contractible.

The Baum-Connes conjecture states that the assembly map

HG
n (EG) → HG

n (∗) ∼= Kn(C
∗
r (G))

corresponding to EG is an isomorphism. For a thorough discussion of this topic,
we refer the reader to the book by Mislin and Valette [MV] or the survey article
by Lück and Reich [LuR].
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2.4. 3-orbifold groups. We are studying groups G having a cocompact 3-
manifold model for EG. Let X denote this specific model for the classifying space,
and for this section, we will further assume that the quotient 3-orbifold X/G is
geometrizable.

The validity of the Baum-Connes conjecture for fundamental groups of ori-
entable 3-manifolds has been established by Matthey, Oyono-Oyono, and Pitsch
[MOP, Thm. 1.1] (see also [MV, Thm. 5.18] or [LuR, Thm. 5.2]). The same ar-
gument works in the context of geometrizable 3-orbifolds. We provide some details
for the convenience of the reader.

Lemma 1. The Baum-Connes conjecture holds for the orbifold fundamental
group of geometrizable 3-orbifolds.

Proof. In fact, the stronger Baum-Connes property with coefficients holds for
this class of groups. This property states that a certain assembly map, associated
to a G-action on a separable C∗-algebra A, is an isomorphism (and recovers the
classical Baum-Connes conjecture when A = C). The coefficients version has better
inheritance properties, and in particular, is known to be inherited under graph
of groups constructions (amalgamations and HNN-extensions), see Oyono-Oyono
[O-O, Thm. 1.1].

The orbifold fundamental group of a geometrizable 3-orbifold can be expressed
as an iterated graph of groups, with all initial vertex groups being orbifold funda-
mental groups of geometric 3-orbifolds. Geometric 3-orbifolds are cofinite volume
quotients of one of the eight 3-dimensional geometries. Combined with Oyono-
Oyono’s result, the Lemma reduces to establishing the property for the orbifold
fundamental group of finite volume geometric 3-orbifolds.

The fundamental work of Higson and Kasparov [HK] established the Baum-
Connes property with coefficients for all groups satisfying the Haagerup property.
We refer the reader to the monograph [CCJJV] for a detailed exposition of the
Haagerup property. We will merely require the fact that groups acting with cofi-
nite volume on all eight 3-dimensional geometries (E3, S3, S2 × E1, H3, H2 × E1,

P̃ SL2(R), Nil, and Sol) always have the Haagerup property, which will conclude
the proof of the Lemma.

For the five geometries E3, S3, S2 × E1, Nil, and Sol, any group acting on
these will be amenable, and hence satisfy the Haagerup property. Lattices inside
groups locally isomorphic to SO(n, 1) are Haagerup (see [CCJJV, Thm. 4.0.1]),

and hence groups acting on the two geometries H3 and P̃ SL2(R) are Haagerup.
Finally, the Haagerup property is inherited by amenable extensions of Haagerup
groups (see [CCJJV, Example 6.1.6]). This implies that groups acting on H2×E1

are Haagerup, for any such group is a finite extension of a group which splits as a
product of Z with a lattice in SO(2, 1). This concludes the proof of the Lemma. �

Remark: If one assumes that the G-action is smooth and orientation preserving,
then Thurston’s geometrization conjecture (now a theorem) predicts that X/G is
a geometrizable 3-orbifold. The proof of the orbifold version of the conjecture was
originally outlined by Thurston, and was independently established by Boileau,
Leeb, and Porti [BLP] and Cooper, Hodgson, and Kerckhoff [CHK] (both loosely
following Thurston’s approach). The manifold version of the conjecture (i.e. trivial
isotropy groups) is of course due to the recent work of Perelman.
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Remark: If the quotient space X/G is not known to be geometrizable (for in-
stance, if the G-action is not smooth, or does not preserve the orientation), then
the argument in Lemma 1 does not apply. Nevertheless, our algorithm can still
be used to compute the rational equivariant K-homology of EG. It is however no
longer clear that this coincides with K(C∗

r (G))⊗Q.

2.5. Polyhedral CW-structures. Let us briefly comment on the G-CW-
structure of X. As the quotient space X/G is a connected 3-orbifold, we can
assume without loss of generality that the CW-structure contains a single orbit of
3-cell. Taking a representative 3-cell σ for the unique 3-cell orbit, we observe that
the closure of σ must contain representatives of each lower dimensional orbit of cells.
Indeed, if some lower dimensional cell had no orbit representatives contained in σ̄,
then there would be points in that lower dimensional cell with no neighborhood
homeomorphic to R3. Pulling back the 2-skeleton of the CW-structure via the
attaching map of the 3-cell σ, we obtain (i) a decomposition of the 2-sphere into
the pre-images of the individual cells, and (ii) an equivalence relation on the 2-
sphere, identifying together points which have the same image under the attaching
map. We note that the quotient space X/G can be reconstructed from this data.
If in addition we know the isotropy subgroups of points, then X itself can be
reconstructed from X/G. We will assume that we are given the G-action on X,
in the form of a partition and equivalence relation on the 2-sphere as above, along
with the isotropy data.

In some cases, one can find a G-CW-structure which is particularly simple: the
2-sphere coincides with the boundary of a polyhedron, the partition of the 2-sphere
is into the faces of the polyhedron, and the equivalence relation linearly identifies
together faces of the polyhedron. More precisely, we make the:

Definition 2. A polyhedral CW-structure is a CW-structure where each cell
is identified with the interior of a polyhedron Pi

∼= Dk, and the attaching map from
the boundary ∂Dk ∼= ∂Pi of a k-cell to the (k− 1)-skeleton, when restricted to each
s-dimensional face of ∂Pi, is a combinatorial homeomorphism onto an s-cell in the
(k − 1)-skeleton.

In the case where there is a polyhedral G-CW-structure on X with a single 3-
cell orbit, then our algorithms are particularly easy to implement. All the concrete
examples we will see in Section 4 come equipped with a polyhedral G-CW-structure.

Remark: It seems plausible that, if a G-CW-structure exists for a (topological)
G-action on a 3-manifold X, then a polyhedral G-CW-complex structure should
also exist. It also seems likely that, if a polyhedral G-CW-structure exists, then
the G-action on the 3-manifold X should be smoothable.

For some concrete examples of polyhedral G-CW-structures, consider the case
where X is either hyperbolic space H3 or Euclidean space R3, and the G-action is
via isometries. Then the desired G-equivariant polyhedral CW-complex structure
can be obtained by picking a suitable point p ∈ X, and considering the Voronoi
diagram with respect to the collection of points in the orbit G ·p. Another example,
where X is the 3-dimensional Nil-geometry, is discussed in Section 4.2.
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3. The algorithm

In this section, we describe the algorithm used to perform our computations.
Throughout this section, let G be a group with a smooth action on a 3-manifold,
providing a model for EG. We will assume that EG supports a polyhedral G-CW-
structure, and that P is a fundamental domain for the G-action on X, as described
in Section 2.5. So P is the polyhedron corresponding to the single 3-cell orbit,
and the orbit space BG is obtained from P by identifying various boundary faces
together. We emphasize that the polyhedral G-CW-structure assumption serves
only to facilitate the exposition: the algorithm works equally well with an arbitrary
G-CW-structure.

3.1. Spectral sequence analysis. As explained in the previous section, the
Baum-Connes conjecture provides an isomorphism:

HG
n (EG) → HG

n (∗) ∼= Kn(C
∗
r (G)).

We are interested in computing the equivariant homology group arising on the left
hand side of the assembly map. Since our group G is 3-dimensional, we will let
X denote the 3-dimensional manifold model for EG. To compute the equivariant
homology of X, one can use an Atiyah-Hirzebruch spectral sequence. Specifically,
there exists a spectral sequence (see [DL], or [Q, Section 8]), converging to the
group HG

n (X), with E2-terms obtained by taking the homology of the following
chain complex:

(1) · · · →
⊕

σ∈(X/G)(p+1)

Kq

(
C∗

r (Gσ)
)
→

⊕
σ∈(X/G)(p)

Kq

(
C∗

r (Gσ)
)
→ · · ·

In the above chain complex, (X/G)(i) consists of i-dimensional cells in the quotient
X/G, or equivalently, G-orbits of i-dimensional cells in X. The groups Gσ denote
the stabilizer of a cell in the orbit σ. Since our space X is 3-dimensional, we see
that our chain complex can only have non-zero terms in the range 0 ≤ p ≤ 3 (the
morphisms in the chain complex will be described later, see Section 3.3). Moreover,
since X is a model for EG, all the cell stabilizers Gσ must be finite subgroups of
G. For F a finite group, the groups Kq

(
C∗

r (F )
)
are easy to compute:

Kq

(
C∗

r (F )
)
=

{
0 if q is odd,

Zc(F ) if q is even.

Here, c(F ) denotes the number of conjugacy classes of elements in F . In fact, for q
even, Kq

(
C∗

r (F )
)
can be identified with the complex representation ring of F . This

immediately tells us that E2
pq = 0 for q odd. We will denote by C the chain complex

in equation (1) corresponding to the case where q is even. By the discussion above,
we know that Hp(C) = 0 except possibly in the range 0 ≤ p ≤ 3. We summarize
this discussion in the:

Fact 1: The only potentially non-vanishing terms on the E2-page (and hence any
Ek-page, k ≥ 2) occur when 0 ≤ p ≤ 3 and q is even.

Next we note that the differentials on the Ek-page of the spectral sequence
have bidegree (−k, k + 1), i.e. are of the form dkp,q : Ek

p,q → Ek
p−k,q+k−1. When

k = 2, alternating rows on the E2-page are zero (see Fact 1), which implies that
E3

p,q = E2
p,q. When k = 3, the differentials d3p,q shift horizontally by three units,
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and up by two units. So the only potentially non-zero differentials on the E3-page
are (up to vertical translation by the 2-periodicity in q) those of the form

d33,0 : E2
3,0

∼= E3
3,0 → E3

0,2
∼= E2

0,0.

Once we have k ≥ 4, the differentials dkp,q shift horizontally by k ≥ 4 units. But
Fact 1 tells us that the only non-zero terms occur in the vertical strip 0 ≤ p ≤ 3,
which forces E4

p,q
∼= E5

p,q
∼= · · · for all p, q. In other words, the spectral sequence

collapses at the E4-stage. Since the E2-terms are given by the homology of C, this
establishes:

Lemma 3. The groups Kq

(
C∗

r (G)
)
can be computed from the E4-page of the

spectral sequence, and coincide with

Kq

(
C∗

r (G)
)
=

{
H1(C)⊕ ker(d33,0) if q is odd,

coker(d33,0)⊕H2(C) if q is even,

where d33,0 : H3(C) → H0(C) is the differential appearing on the E3-page of the
spectral sequence.

Since we are only interested in the rationalized equivariant K-homology, we
can actually ignore the presence of any differentials: after tensoring with Q the
Atiyah-Hirzebruch spectral sequence collapses at the E2-page [Lu1, Remark 3.9].
Thus for q even,

Kq

(
C∗

r (G)
)
⊗Q ∼=

(
E2

0,q ⊗Q
)
⊕
(
E2

2,q−2 ⊗Q
) ∼= (H0(C)⊗Q)⊕ (H2(C)⊗Q) ,

and for q odd,

Kq

(
C∗

r (G)
)
⊗Q ∼=

(
E2

1,q−1 ⊗Q
)
⊕
(
E2

3,q−3 ⊗Q
) ∼= (H1(C)⊗Q)⊕ (H3(C)⊗Q) .

Lemma 4. The ranks of the groups Kq

(
C∗

r (G)
)
⊗Q are given by

rank
(
Kq

(
C∗

r (G)
)
⊗Q

)
=

{
rank

(
H1(C)⊗Q

)
+ rank

(
H3(C)⊗Q

)
if q is odd,

rank
(
H0(C)⊗Q

)
+ rank

(
H2(C)⊗Q

)
if q is even.

Remark: Alternatively this result follows directly from the equivariant Chern
character being a rational isomorphism [MV, Thm. 6.1].

In the next four sections, we explain how to algorithmically compute the ranks
of the four groups appearing in Lemma 4.

3.2. 1-skeleton of X/G and the group H0(C). For the group H0(C), we
make use of the result from [MV, Theorem 3.19]. For the convenience of the reader,
we restate the theorem:

Theorem 5. For G an arbitrary group, we have

H0(C)⊗Q ∼= Qcf(G),

where cf(G) denotes the number of conjugacy classes of elements of finite order in
the group G.

This reduces the computation of the rank ofH0(C)⊗Q to finding some algorithm
for computing the number cf(G). We now explain how one can compute the integer
cf(G) in terms of the 1-skeleton of the space X/G.
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For each cell σ in BG, we fix a reference cell σ̃ ∈ EG, having the property
that σ̃ maps to σ under the quotient map p : EG → BG. Associated to each cell
σ in BG, we have a finite subgroup Gσ̃ ≤ G, which is just the stabilizer of the
fixed pre-image σ̃ ∈ EG. Since the stabilizers of two distinct lifts σ̃, σ̃′ of the cell
σ are conjugate subgroups inside G, we note that the conjugacy class of the finite
subgroup Gσ̃ is independent of the choice of lift σ̃, and depends solely on the cell
σ ∈ BG. Now given a cell σ in BG with a boundary cell τ , we have associated
lifts σ̃, τ̃ . Of course, the lift τ̃ might not lie in the boundary of σ̃, but there exists
some other lift τ̃ ′ of τ which does lie in the boundary of σ̃. Clearly, we have an
inclusion Gσ̃ ↪→ Gτ̃ ′ . Fix an element gσ,τ ∈ G with the property that gσ,τ maps
the lift τ̃ ′ to the lift τ̃ . This gives us a map φτ

σ : Gσ̃ ↪→ Gτ̃ , obtained by composing
the inclusion Gσ̃ ↪→ Gτ̃ ′ with the isomorphism Gτ̃ ′ → Gτ̃ given by conjugation
by gσ,τ . Now the map φτ

σ isn’t well-defined, as there are different possible choices
for the element gσ,τ . However, if g′σ,τ represents a different choice of element, then

since both elements gσ,τ , g
′
σ,τ map τ̃ ′ to τ̃ , we see that the product

(
g′σ,τ

)(
gσ,τ )

−1

maps τ̃ to itself, and hence we obtain the equality g′σ,τ = h · gσ,τ , where h ∈ Gτ̃ .
This implies that the map φτ

σ is well-defined, up to post-composition by an inner
automorphism of Gτ̃ .

Consider the set F (G) consisting of the disjoint union of the finite groups Gṽ

where v ranges over vertices in the 0-skeleton (BG)(0) of BG. Form the smallest
equivalence relation ∼ on F (G) with the property that:

(i) for each vertex v ∈ (BG)(0), and elements g, h ∈ Gṽ which are conjugate
within Gṽ, we have g ∼ h, and

(ii) for each edge e ∈ (BG)(1) joining vertices v, w ∈ (BG)(0), and element g ∈ Gẽ,
we have φv

e(g) ∼ φw
e (g).

Note that, although the maps φτ
σ are not well-defined, the equivalence relation given

above is well-defined. Indeed, for any given edge e ∈ (BG)(1), the maps φv
e , φ

w
e are

only well-defined up to inner automorphisms of Gṽ, Gw̃. In view of property (i),
the resulting property (ii) is independent of the choice of representatives φv

e , φ
w
e .

For a finitely generated group, we let eq(G) denote the number of ∼ equivalence
classes on the corresponding set F (G). We can now establish:

Lemma 6. For G an arbitrary finitely generated group, we have cf(G) = eq(G).

Proof. Let us write g ≈ h if the elements g, h are conjugate in G. As each
element in F (G) is also an element in G, we now have the two equivalence relations
∼,≈ on the set F (G). It is immediate from the definition that g ∼ h implies g ≈ h.

Next, we argue that, for elements g, h ∈ F (G), g ≈ h implies g ∼ h. To see
this, assume that k ∈ G is a conjugating element, so g = khk−1. For the action
on EG, we know that g, h fix vertices ṽ, w̃ (respectively) in the 0-skeleton (EG)(0),
which project down to vertices v, w ∈ (BG)(0) (respectively). Since g = khk−1, we
also have that g fixes the vertex k ·w̃. The g fixed set EGg is contractible, so we can
find a path joining ṽ to k · w̃ inside the subcomplex EGg. Within this subcomplex,
we can push any path into the 1-skeleton, giving us a sequence of consecutive edges

within the graph
(
EGg

)(1) ⊆ (EG)(1) joining ṽ to k · w̃. This projects down to a

path in (BG)(1) joining the vertex v to the vertex w (as k · w̃ and w̃ lie in the same
G-orbit, they have the same projection). Using property (ii), the projected path
gives a sequence of elements g = g0 ∼ g1 ∼ · · · ∼ gk = h, where each pair gi, gi+1

are in the groups associated to consecutive vertices in the path.
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So we now have that the two equivalence relations ∼ and ≈ coincide on the set
F (G), and in particular, have the same number of equivalence classes. Of course,
the number of ∼ equivalence classes is precisely the number eq(G). On the other
hand, any element of finite order g in G must have non-trivial fixed set in EG. Since
the action is cellular, this forces the existence of a fixed vertex v̄ ∈ (EG)(0) (which
might not be unique). The vertex v̄ has an image vertex v ∈ (BG)(0) under the
quotient map, and hence g ≈ g̃ for some element g̃ in the set F (G), corresponding
to the subgroup Gṽ. This implies that the number of ≈ equivalence classes in F (G)
is equal to cf(G), concluding the proof. �

Remark: The procedure we described in this section works for any model for BG,
and would compute the β0 of the corresponding chain complex. On the other hand,
if one has a model for EG with the property that the quotient BG has few vertices
and edges, then it is fairly straightforward to calculate the number eq(G) from the
1-skeleton of BG. For the groups we are considering, we can use the model space
X. The 1-skeleton of BG is then a quotient of the 1-skeleton of the polyhedron P .
Along with Lemma 6, this allows us to easily compute the rank of H0(C) ⊗ Q for
the groups within our class.

3.3. Topology of X/G and the group H3(C). Our next step is to under-
stand the rank of the group H3(C)⊗ Q; this requires an understanding of the dif-
ferentials appearing in the chain complex C. In X, if we have a k-cell σ contained
in the closure of a (k + 1)-cell τ , then we have a natural inclusion of stabilizers
Gτ ↪→ Gσ. Applying the functor Kq

(
C∗

r (−)
)
, where q is even, we get an induced

morphism from the complex representation ring of Gτ to the complex representa-
tion ring of Gσ. Concretely, the image of a complex representation ρ of Gτ under
this morphism is the induced complex representation ρ ↑:= IndGσ

Gτ
ρ in Gσ, with

multiplicity given (as usual) by the degree of the attaching map from the boundary
sphere Sk = ∂τ to the sphere Sk = σ/∂σ. Note that conjugate representations
induce up to the same representation.

In the chain complex, the individual terms are indexed by orbits of cells in
X, rather than individual cells. To see what the chain map does, pick an orbit of
(k + 1)-cells, and fix an oriented representative τ . Then for each orbit of a k-cell,
one can look at the k-cells in that oriented orbit that are incident to τ , call them
σ1, . . . , σr. The stabilizer of each of the σi is a copy of the same group Gσ (where
the identification between these groups is well-defined up to inner automorphisms).
For each of these σi, the discussion in the previous paragraph allows us to obtain
a map on complex representation rings. Finally, one identifies the groups Gσi

with
the group Gσ, and take the sum of the maps on the complex representation rings.
This completes the description of the chain maps in the complex C.

Consider a representative σ for the single 3-cell orbit in the G-CW-complex X
(we can identify σ with the interior of the polyhedron P ). The stabilizer of σ must
be trivial (as any element stabilizing σ must stabilize all of X). We conclude that
C3 =

⊕
σ∈(X/G)(3) Kq

(
C∗

r (Gσ)
) ∼= Z, and the generator for this group is given by the

trivial representation of the trivial group. But inducing up the trivial representation
of the trivial group always gives the left regular representation, which is just the
sum of all irreducible representations. This tells us that, for each 2-cell in the
boundary of σ, the corresponding map on the K-group is non-trivial.
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Now when looking at the chain complex, the target of the differential is indexed
by orbits of 2-cells, rather than individual 2-cells. Each 2-cell orbit has either one
or two representatives lying in the boundary of σ. Whether there is one or two can
be decided as follows: look at the G-translate σ′ of σ which is adjacent to σ across
the given boundary 2-cell τ . Since X is a manifold model for EG, there is a unique
such σ′. As the stabilizer of the 3-cell is trivial, there is a unique element g ∈ G
which takes σ to σ′. Let τ ′ denote the pre-image g−1(τ ), a 2-cell in the boundary
of σ. Clearly g identifies together the cells τ, τ ′ in the quotient space X/G.

If τ = τ ′, then the cell τ descends to a boundary cell in quotient space X/G,
and the stabilizer of τ is isomorphic to Z2 (with non-trivial element given by g).
On the other hand, if τ �= τ ′, then τ descends to an interior cell in the quotient
space X/G, with trivial stabilizer.

Now if the 3-cell σ has a boundary 2-cell τ whose stabilizer is Z2, then the
orbit of τ intersects the boundary of σ in precisely τ . Looking at the coordi-
nate corresponding to the orbit of τ , we see that in this case the map Z −→⊕

f∈(X/G)(2)Kq

(
C∗

r (Gf )
)
in the chain complex is an injection, and hence that

E2
3,q = H3(C) = 0 for all even q.

The other possibility is that all boundary 2-cells are pairwise identified, in which
case the quotient space X/G is (topologically) a closed manifold. With respect to
the induced orientation on the boundary of σ, if any boundary 2-cell τ is identified
by an orientation preserving pairing to τ ′, then the quotient space X/G is a non-
orientable manifold. Focusing on the coordinate corresponding to the orbit of τ ,
we again see that the map Z −→

⊕
f∈(X/G)(2)Kq

(
C∗

r (Gf )
)
in the chain complex is

injective (the generator of Z maps to ±2 in the τ -coordinate). So in this case we
again conclude that E2

3,q = H3(C) = 0 for all even q.
Finally, we have the case where all pairs of boundary 2-cells are identified

together using orientation reversing pairings. Then the quotient space X/G is
(topologically) a closed orientable manifold. In this case, the corresponding map
Z −→

⊕
f∈X(2)Kq

(
C∗

r (Gf )
)
in the chain complex is just the zero map (the genera-

tor of Z maps to 0 in each τ -coordinate, due to the two occurrences with opposite
orientations). We summarize our discussion in the following:

Lemma 7. For our groups G, the third homology group H3(C) is either (i) iso-
morphic to Z, if the quotient space X/G is topologically a closed orientable manifold,
or (ii) trivial in all remaining cases.

Remark: In [MV, Lemma 3.21], it is shown that the comparison map from Hi(C)
to the ordinary homology of the quotient space Hi(BG;Z) is an isomorphism in all
degrees i > dim(EGsing)+1, and injective in degree i = dim(EGsing)+1. Note that
most of our Lemma 7 can also be deduced from this result. Indeed, our discussion
shows that, in case (i), the singular set is 1-dimensional (i.e. all cells of dimension
≥ 2 have trivial stabilizer), and hence H3(C) ∼= H3(X/G) ∼= Z. If X/G is non-
orientable, then [MV, Lemma 3.21] gives that H3(C) injects intoH3(X/G) ∼= Z2, so
our Lemma provides a bit more information. In the case where X/G has boundary,
[MV, Lemma 3.21] implies that H3(C) injects into H3(X/G) ∼= 0, so again recovers
our result. We chose to retain our original proof of Lemma 7, as a very similar
argument will be subsequently used to calculate H2(C) (which does not follow from
[MV, Lemma 3.21]).
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3.4. 2-skeleton of X/G and the rank of H2(C). Now we turn our attention
to the group H2(C). In order to describe this homology group, we will continue the
analysis initiated in the previous section. Recall that we have an explicit (com-
binatorial) polyhedron P which serves as a fundamental domain for the G-action.
We can view the quotient space X/G as obtained from the polyhedron P by iden-
tifying together certain faces of P . The CW-structure on X/G is induced from the
natural (combinatorial) CW-structure on the polyhedron P . The quotient space
X/G inherits the structure of a 3-dimensional orbifold. Note that, if we forget the
orbifold structure and just think about the underlying topological space, then X/G
is a compact manifold, with possibly non-empty boundary.

There is a close relationship between the isotropy of the cells inX/G, thought of
as a 3-orbifold, and the topology of X/G, viewed as a topological manifold. Indeed,
as was discussed in the previous Section 3.3, the stabilizer of any face σ of the
polyhedron P is either (i) trivial, or (ii) is isomorphic to Z2. In the first case, there
is an element in G which identifies the face σ with some other face of P . So at
the level of the quotient space X/G, σ maps to a 2-cell which lies in the interior
of the closed manifold X/G. In the second case, there are no other faces of the
polyhedron P that lie in the G-orbit of σ, and hence σ maps to a boundary 2-cell
of X/G. We summarize this analysis in the following

Fact 2: For any 2-cell σ in X/G, we have that:

i) σ lies in the boundary of X/G if and only if σ has isotropy Z2, and
ii) σ lies in the interior of X/G if and only if σ has trivial isotropy.

A similar analysis applies to 1-cells. Indeed, the stabilizer of any edge in the
polyhedron P must either be (i) a finite cyclic group, or (ii) a finite dihedral group.
But case (ii) can only occur if there is some orientation reversing isometry through
one of the faces containing the edge. This would force the edge to lie in the boundary
of the corresponding face, with the stabilizer of the face being Z2. In view of Fact
2, such an edge would have to lie in the boundary of X/G. Conversely, if one has an
edge in the boundary of X/G, then it has two adjacent faces (which might actually
coincide) in the boundary of X/G, each with stabilizer Z2, given by a reflection in
the face. In most cases, these two reflections will determine a dihedral stabilizer
for e; the exception occurs if the two incident faces have stabilizers which coincide
in G. In that case, the stabilizer of e will also be a Z2, and will coincide with the
stabilizers of the two incident faces. We summarize this discussion as our:

Fact 3: For any 1-cell e in X/G, we have that:

i) e lies in the interior of X/G if and only if e has isotropy a cyclic group, acting
by rotations around the edge,

ii) if e has isotropy a dihedral group, then e lies in the boundary of X/G,
iii) the remaining edges in the boundary ofX/G have stabilizer Z2, which coincides

with the Z2 stabilizer of the incident boundary faces.

With these observations in hand, we are now ready to calculate H2(C)⊗Q. In
order to understand this group, we need to understand the kernel of the morphism

Φ :
⊕

σ∈(X/G)(2)

K0

(
C∗

r (Gσ)
)
→

⊕
e∈(X/G)(1)

K0

(
C∗

r (Ge)
)
.
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Indeed, the group H2(C) is isomorphic to the quotient of ker(Φ) by a homomorphic
image of K0

(
C∗

r (Gτ )
) ∼= Z, where τ is a representative for the unique 3-cell orbit.

As such, we see that the rank of H2(C)⊗Q either coincides with the rank of ker(Φ),
or is one less than the rank of ker(Φ).

Our approach to analyzing ker(Φ) is to split up this group into smaller pieces,
which are more amenable to a geometric analysis. Let us introduce the notation
Φe, where e is an edge, for the composition of the map Φ with the projection onto
the summand K0

(
C∗

r (Ge)
)
. The next Lemma analyzes the behavior of the map Φ

in the vicinity of a boundary edge with stabilizer a dihedral group.

Lemma 8. Let e be a boundary edge, with stabilizer a dihedral group Dn. Then
we have:

(i) if σ is an incident interior face, then

Φe

(
K0

(
C∗

r (Gσ)
))

⊆ Z · 〈1, 1, . . . , 1, 1〉 ≤ K0

(
C∗

r (Dn)
)
,

(ii) if σ1, σ2 are the incident boundary faces, then

Φe

(
K0

(
C∗

r (Gσ1
)
)
⊕K0

(
C∗

r (Gσ2
)
))

∩ Z · 〈1, 1, . . . , 1, 1〉 = 〈0, . . . , 0〉.

Note that Lemma 8 tells us that, from the viewpoint of finding elements in
ker(Φ), boundary faces and interior faces that come together along an edge with
dihedral stabilizer have no interactions.

Proof. There are precisely two boundary faces which are incident to e, and
some indeterminate number of interior faces which are incident to e. From Fact 2,
the boundary faces each have corresponding Gσ

∼= Z2, while the interior faces each
have Gσ

∼= 1. For the boundary faces, we have

K0

(
C∗

r (Gσ)
)
= K0

(
C∗

r (Z2)
) ∼= Z⊕ Z

with generators given by the trivial representation and the sign representation of
the group Z2. The interior faces have K0

(
C∗

r (Gσ)
) ∼= Z, generated by the trivial

representation of the trivial group.
For each incidence of σ on e, the effect of Φe on the generator is obtained

by inducing up representations. But the trivial representation of the trivial group
always induces up to the left regular representation on the ambient group. The
latter is the sum of all irreducible representations, hence corresponds to the element
〈1, . . . , 1〉 ≤ K0

(
C∗

r (Zn)
)
. This tells us that, for each internal face, the image of Φe

lies in the subgroup Z · 〈1, 1, . . . , 1, 1〉, establishing (i).
On the other hand, an easy calculation (see Appendix A) shows that, if σ1, σ2 ∈

(X/G)(2) are the two boundary faces incident to e, then in the e-coordinate we have

Φe

(
K0

(
C∗

r (Gσ1
)
)
⊕K0

(
C∗

r (Gσ2
)
))

∩ Z · 〈1, 1, . . . , 1, 1〉 = 〈0, . . . , 0〉,

which is the statement of (ii). �

To analyze ker(Φ), we need to introduce some auxiliary spaces. Recall that
X/G is topologically a closed 3-manifold, possibly with boundary. We introduce
the following terminology for boundary components:

• a boundary component is dihedral if it has no edges with stabilizer Z2

(i.e. all its edges have stabilizers which are dihedral groups),
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• a boundary component is non-dihedral if it is not dihedral (i.e. it contains
at least one edge with stabilizer Z2),

• a dihedral boundary component is odd if it has no edges with stabilizer of
the form D2k (i.e. all its edges have stabilizers of the form D2k+1), and

• a dihedral boundary component is non-odd if it contains an edge e with
stabilizer of the formD2k (i.e. an edge whose stabilizer has order a multiple
of 4).

Let s denote the number of orientable non-odd dihedral boundary components, and
let t denote the number of orientable odd dihedral boundary components. Note that
it is straightforward to calculate the integers s, t from the polyhedral fundamental
domain P for the G-action on X.

Next, form the 2-complex Y by taking the union of the closure of all interior
faces of X/G, along with all the non-dihedral boundary components. We denote
by ∂Y ⊂ Y the subcomplex consisting of all non-dihedral boundary components.
By construction, ∂Y consists precisely of the subcomplex generated by the 2-cells
in Y ∩ ∂(X/G), so the choice of notation should cause no confusion. Let Z denote
the union of all dihedral boundary components of X/G.

By construction, every 2-cell in X/G appears either in Y or in Z, but not in
both. This gives rise to a decomposition of the indexing set (X/G)(2) = Y (2)

∐
Z(2),

which in turn yields a splitting:⊕
σ∈(X/G)(2)

K0

(
C∗

r (Gσ)
)
=

[ ⊕
σ∈Y (2)

K0

(
C∗

r (Gσ)
)]

⊕
[ ⊕
σ∈Z(2)

K0

(
C∗

r (Gσ)
)]
.

Let us denote by ΦY and ΦZ the restrictions of Φ to the first and second summands
described above. We then have the following:

Lemma 9. There is a splitting ker(Φ) = ker(ΦY )⊕ ker(ΦZ).

Proof. We clearly have the inclusion ker(Φ1) ⊕ ker(Φ2) ⊆ ker(Φ), so let us
focus on the opposite containment. If we have some arbitrary element v ∈ ker(Φ),
we can decompose v = vY + vZ , where we have vY ∈

⊕
σ∈Y (2) K0

(
C∗

r (Gσ)
)
, and

vZ ∈
⊕

σ∈Z(2) K0

(
C∗

r (Gσ)
)
. Let us first argue that vZ ∈ ker(ΦZ), i.e. that Φ(vZ) =

0. This is of course equivalent to showing that for every edge e, we have Φe(vZ) = 0.
Since vZ is supported on 2-cells lying in Z, it is clear that for any edge e �⊂ Z,

we have Φe(vZ) = 0. For edges e ⊂ Z, we have:

0 = Φe(v) = Φe(vY + vZ) = Φe(vY ) + Φe(vZ).

This tells us that Φe(vZ) = Φe(−vY ) lies in the intersection

(2) Φe

( ⊕
σ∈Y (2)

K0

(
C∗

r (Gσ)
))

∩ Φe

( ⊕
σ∈Z(2)

K0

(
C∗

r (Gσ)
))

.

But Y (2) contains all the interior faces incident to e, while Z(2) contains all boundary
faces incident to e. Since e ⊂ Z, and Z is the union of all dihedral boundary
components of X/G, we have that the stabilizer Ge must be dihedral. Applying
Lemma 8, we see that the intersection in equation (2) consists of just the zero
vector, and hence Φe(vZ) = 0.

Since we have shown that Φe(vZ) = 0 holds for all edges e, we obtain that
vZ ∈ ker(ΦZ), as desired. Finally, we have that

Φ(vY ) = Φ(v − vZ) = Φ(v)− Φ(vZ) = 0
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as both v, vZ are in the kernel of Φ. We conclude that vY ∈ ker(ΦY ), concluding
the proof of the Lemma. �

We now proceed to analyze each of ker(ΦY ), ker(ΦZ) separately. We start with:

Lemma 10. The group ker(ΦZ) is free abelian, of rank equal to s+ 2t.

Before establishing Lemma 10, recall that s, t counts the number of orientable
dihedral boundary components of X/G which are non-odd and odd, respectively.
From the definition of Z, we see that the number of connected components of the
space Z is precisely s+ t.

Proof. It is obvious that ker(ΦZ) decomposes as a direct sum of the kernels of
Φ restricted to the individual connected components of Z, which are precisely the
dihedral boundary components of X/G. So we can argue one dihedral boundary
component at a time. On a fixed dihedral boundary component, we have that each
2-cell contributes a Z⊕Z to the source of the map Φ, with canonical (ordered) basis
given by the trivial representation and the sign representation on Z2. Fix a bound-
ary edge e, and let σ1, σ2 be the two boundary faces incident to e. We assume that
the two faces are equipped with compatible orientations, and let (ai, bi) be elements
in the groups K0

(
C∗

r (Gσi
)
) ∼= Z ⊕ Z. Now assume that Φe

(
(a1, b1 | a2, b2)

)
= 0.

Then an easy computation (see Appendix A) shows that:

a) if e has stabilizer of the form D2k+1, then we must have a1 = a2 and b1 = b2,
b) if e has stabilizer of the form D2k, then we must have a1 = a2 = b1 = b2

(and since Z consists of dihedral boundary components, there are no edges e in
Z with stabilizer Z2). Note that reversing the orientation on one of the faces just
changes the sign of the corresponding entries. We can now calculate the contribution
of each boundary component to ker(ΦZ).

Non-orientable components: Any such boundary component contains an embedded
Möbius band. Without loss of generality, we can assume that the sequence of faces
σ1, . . . , σr cyclically encountered by this Möbius band are all distinct. At the cost of
flipping the orientations on σi, 2 ≤ i ≤ r, we can assume that consecutive pairs are
coherently oriented. Since we have a Möbius band, this forces the orientations of
σ1 and σr to be non-coherent along their common edge. So if we have an element
lying in ker(ΦZ), the coefficients along the cyclic sequence of faces must satisfy
(regardless of the edge stabilizers):

a1 = a2 = . . . = ak = −a1

b1 = b2 = . . . = bk = −b1

This forces a1 = b1 = 0. Regardless of the orientations and edge stabilizers, equa-
tions (a) and (b) imply that this propagates to force all coefficients to equal zero.
We conclude that any element in ker(ΦZ) must have all zero coefficients in the
2-cells corresponding to any non-orientable boundary component.

Orientable odd components: Fix a coherent orientation of all the 2-cells in the
boundary component. Then in view of equation (a) above, elements lying in ker(Φ)
must have all ai-coordinates equal, and all bi-coordinates equal (as one ranges over
2-cells within this fixed boundary component). This gives two degrees of freedom,
and hence such a boundary component contributes a Z2 to ker(ΦZ).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

144 J.-F. LAFONT, I. J. ORTIZ, AND R. J. SÁNCHEZ-GARCÍA

Orientable non-odd components: Again, let us fix a coherent orientation of all the
2-cells in the boundary component. As in the odd component case, any element in
ker(ΦZ) must have all ai-coordinates equal, and all bi-coordinates equal. However,
the presence of a single edge with stabilizer of the form D2k forces, for the two
adjacent faces, to have corresponding a- and b-coordinates equal (see equation (b)
above). This in turn propagates to yield that all the a- and b-coordinates must be
equal. As such, we have one degree of freedom for elements in the kernel, and hence
such a boundary component contributes a single Z to ker(ΦZ). This concludes the
proof of Lemma 10. �

Next we focus on the group ker(ΦY ). We would like to relate ker(ΦY ) with the
second homology of the space Y . Let A denote the cellular chain complex for the
CW-complex Y , and let dY : A2 → A1 denote the differentials in the cellular chain
complex. Since Y is a 2-dimensional CW-complex, we have that H2(Y ) = ker(dY ).
Our next step is to establish:

Lemma 11. There is a split surjection φ : ker(ΦY ) → ker(dY ), providing a
direct sum decomposition ker(ΦY ) ∼= ker(φ)⊕ ker(dY ).

Proof. Let D ⊂ C denote the subcomplex of our original chain complex de-
termined by the subcollection of indices Y (k) ⊂ (X/G)(k). By construction, the
map ΦY we are interested in is the boundary operator ΦY : D2 → D1 appearing in
the chain complex D. We define the map

φ̂ : D2 =
⊕

σ∈Y (2)

K0

(
C∗

r (Gσ)
)
→

⊕
σ∈Y (2)

Z = A2

as the direct sum of maps φ̂σ : K0

(
C∗

r (Gσ)
)
→ Z, where:

• if Gσ is trivial, then φ̂σ : Z → Z takes the generator for K0

(
C∗

r (Gσ)
)
= Z

given by the trivial representation to the element 1 ∈ Z, and
• if Gσ = Z2, then φ̂σ : Z⊕Z → Z is given by φ̂σ(〈1, 0〉) = 1, φ̂σ(〈0, 1〉) = 0,
where, as usual, 〈1, 0〉, 〈0, 1〉 correspond to the trivial representation and
the sign representation respectively.

For any element z ∈ ker(ΦY ), a computation shows that (dY ◦ φ̂)(z) = 0, and hence

φ̂ restricts to a morphism φ : ker(ΦY ) → ker(dY ).
Next, we argue that the map φ : ker(ΦY ) → ker(dY ) is surjective. To see this,

we construct a map φ̄ : A2 → D2 as a direct sum of maps φ̄σ : Z → K0

(
C∗

r (Gσ)
)
.

In terms of our usual generating sets for the groups K0

(
C∗

r (Gσ)
)
, the maps φ̄σ are

given by:

• if Gσ is trivial, then φ̄σ : Z → Z is defined by φ̄σ(1) = 1, and
• if Gσ = Z2, then φ̄σ : Z → Z⊕ Z is defined by φ̄σ(1) = 〈1, 1〉.

We clearly have that φ̂ ◦ φ̄ : A2 → A2 is the identity, and an easy computation
shows that if z ∈ ker(dY ), then φ̄(z) ∈ ker(ΦY ). We conclude that the restriction
φ : ker(ΦY ) → ker(dY ) is surjective, and that the restriction of φ̄ to ker(dY ) provides
a splitting of this surjection. Since the map φ is a split surjection, we see that
ker(ΦY ) ∼= ker(dY )⊕ ker(φ), completing the proof of Lemma 11. �

So the last step is to identify ker(φ). Recall that Y is a 2-complex which
contains, as a subcomplex, the union of all boundary components of X/G which
have an edge with stabilizer Z2. This subcomplex was denoted by ∂Y ⊂ Y . We
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can again call a connected component in ∂Y odd if all its edges have stabilizers of
the form D2k+1, and non-odd otherwise (i.e. some edge has stabilizer of the form
D2k). Let t′ denote the number of orientable, odd connected components in ∂Y .
Then we have:

Lemma 12. The group ker(φ) is free abelian, of rank = t′.

Proof. From the definition of φ, it is easy to see what form an element in
ker(φ) must have: in terms of the splitting D2 =

⊕
σ∈Y (2) K0

(
C∗

r (Gσ)
)
, the el-

ement can only have non-zero terms in the coordinates corresponding to 2-cells
in ∂Y . Moreover, in the coordinates σ ∈ (∂Y )(2), the entries in the correspond-
ing K0

(
C∗

r (Gσ)
) ∼= Z ⊕ Z must lie in the subgroup Z · 〈0, 1〉. Finally, the fact

that the elements we are considering lie in ker(ΦY ) means that, at each edge
e ∈ (∂Y )(1), with incident edges σ1, σ2, we must have that the corresponding coef-
ficients 〈0, b1〉 ∈ K0

(
C∗

r (Gσ1
)
)
and 〈0, b2〉 ∈ K0

(
C∗

r (Gσ2
)
)
sum up to zero, i.e. that

b1 + b2 = 0. These properties almost characterize elements in ker(φ). Clearly, we
can again analyze the situation one connected component of ∂Y at a time. As in
the argument for Lemma 10, there are cases to consider:

Non-odd component: In the case where an element z ∈ ker(φ) is supported entirely
on a non-odd boundary component, there is one additional constraint. For the two
faces σ1, σ2 incident to the edge with stabilizer D2k, the fact that z ∈ ker(Φ) forces
the corresponding coefficients to satisfy b1 = b2 = a1 = a2 (see equation (b) in the
proof of Lemma 10). Since z ∈ ker(φ), we also have a1 = a2 = 0. This implies
that the coefficients b1 = b2 must also vanish. But then all the bi coefficients must
vanish. We conclude that any element z ∈ ker(φ) must have zero coefficients on all
2-cells contained in a non-odd component.

Odd component: In the case where an element z ∈ ker(φ) is supported entirely on an
odd boundary component, the conditions discussed above actually do characterize
an element in ker(φ). This is due to the fact that, at every edge, the bi components
are actually independent of the ai components (see equation (a) in the proof of
Lemma 10). But the description given above is just stating that the bi form the
coefficients for an (ordinary) 2-cycle in the boundary component. Such a 2-cycle
can only exist if the boundary component is orientable, in which case there is
a 1-dimensional family of such 2-cycles. We conclude that the orientable, odd
components each contribute a Z to ker(φ), while the non-orientable odd components
make no contributions.

Since t′ is the number of orientable, odd components in ∂Y , the Lemma follows. �

We now have all the required ingredients to establish:

Theorem 13. The group ker(Φ) is free abelian of rank s+ t′ + 2t+ β2(Y ).

Proof. Lemma 9 provides us with a splitting ker(Φ) = ker(ΦY ) ⊕ ker(ΦZ).
Lemma 10 shows that ker(ΦZ) is free abelian of rank = s + 2t. Lemma 11 yields
the splitting ker(ΦY ) ∼= ker(φ)⊕ ker(dY ). Finally, Lemma 12 tells us that ker(φ) is
free abelian of rank = t′, while the fact that Y is a 2-complex tells us that ker(dY )
is free abelian of rank = β2(Y ). �

As a consequence, we obtain the desired formula for β2(C).
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Corollary 14. For our groups G, we have that the rank of H2(C) ⊗ Q is
either:

• β2(Y ) if X/G is a closed, oriented, 3-manifold, or
• s+ t′ + 2t+ β2(Y )− 1 otherwise.

Remark: Corollary 14 gives us an algorithmically efficient method for computing
β2(C), as it merely requires counting certain boundary components of X/G (to
determine the integers s, t, t′), along with the calculation of the second Betti number
of an explicit 2-complex (for the β2(Y ) term).

3.5. Euler characteristic and the rank of H1(C). Using the procedure
described in the previous section, we will now assume that the ranks β0(C), β2(C),
and β3(C) have already been calculated. In order to compute the rank of H1(C)⊗Q,
we recall that any chain complex has an associated Euler characteristic. The latter
is defined to be the alternating sum of the ranks of the groups appearing in the
chain complex. It is an elementary exercise to verify that the Euler characteristic
also coincides with the alternating sum of the ranks of the homology groups of the
chain complex.

In our specific case, the Euler characteristic χ(C) of the chain complex C can
easily be calculated from the various groups Gσ, where σ ranges over the cells in
BG. Each cell σ in BG contributes (−1)dimσc(Gσ), where c(Gσ) is the number of
conjugacy classes in the stabilizer Gσ of the cell. Since the homology groups Hi(C)
vanish when i �= 0, 1, 2, 3, we also have the alternate formula

χ(C) = β0(C)− β1(C) + β2(C)− β3(C)

This allows us to solve for the rank of H1(C)⊗Q, yielding

Lemma 15. For our groups G, we have that the rank of H1(C) ⊗ Q coincides
with β1(C) = β0(C) + β2(C)− β3(C)− χ(C).

4. Some examples

We illustrate our algorithm by computing the rational topological K-theory of
several groups. The first two examples are classes of groups for which the topological
K-theory has already been computed. Since our algorithm does indeed recover
(rationally) the same results, these examples serve as a check on our method. The
last three examples provide some new computations.

The first example considers the particular case where G is additionally assumed
to be torsion-free. As a concrete special case, we deal with any semi-direct product
of Z2 with Z (the integral computation for these groups can be found in the recent
thesis of Isely [I]). The second example considers a finite extension of the integral
Heisenberg group by Z4. The integral topological K-theory (and algebraic K- and
L- theory) for this group has already been computed by Lück [Lu3].

The third and fourth classes of examples are hyperbolic Coxeter groups that
have previously been considered by Lafont, Ortiz, and Magurn in [LOM, Exam-
ple 7], and [LOM, Example 8] respectively (where their lower algebraic K-theory
was computed). The fifth example is an affine split crystallographic group, whose
algebraic K-theory has been studied by Farley and Ortiz [FO].
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4.1. Torsion-free examples. In the special case where G is torsion-free, our
algorithm becomes particularly simple, as we now proceed to explain.

Let G be a torsion-free group with a cocompact, 3-manifold model X for the
classifying space EG = EG. Firstly, recall that β0(C) = cf(G), where cf(G)
denotes the number of conjugacy classes of elements of finite order in G (our Lemma
6 provides a way of computing this integer from the 1-skeleton of X/G). Since G
is torsion-free, we obtain that β0(C) = 1.

Next, we consider the orbit space M := X/G. Recall that any boundary
component in the 3-manifold M gives 2-cells with stabilizer Z2. Since G is torsion-
free, the orbit space M has no boundary, hence is a closed 3-manifold. Then Lemma
7 tells us that

β3(C) =
{
1 if M orientable,

0 if M non-orientable.

To compute β2(C) we apply Corollary 14. The 2-simplex Y is just the 2-skeleton
of M and, as ∂M = ∅, we obtain that

β2(C) =
{
β2(Y ) if M orientable,

β2(Y )− 1 if M non-orientable.

Note that the 2nd Betti number of Y = M (2) can be deduced from that of M , as
follows. Since M is obtained from Y by attaching a single 3-cell, the Mayer-Vietoris
exact sequence gives

0 �� H3(M) �
� �� H2(S

2)
g �� H2(Y )⊕H2(D3) �� �� H2(M) �� 0

(Here D3 is the attaching 3-disk.) Recall that H2(S
2) ∼= Z and H2(D3) = 0. Hence

if M is orientable, H3(M) ∼= Z, the image of the map g is then torsion and tensoring
with Q gives β2(Y ) = β2(M). If M is non-orientable, H3(M) = 0, the map g is
injective and we have β2(Y ) − 1 = β2(M). Hence in all cases we actually obtain
that β2(C) = β2(M).

To compute β1(C) we should find χ(C). Since G is torsion-free all the isotropy
groups are trivial and thus χ(C) = χ(M). Since M is a closed 3-manifold, χ(M)
and therefore χ(C) are zero. Finally, Lemma 15 gives

β1(C) = β0(C) + β2(C)− β3(C)− χ(C) = β2(M)− β3(C) + 1,

which simplifies to two cases:

β1(C) =
{
β2(M) if M is orientable,

β2(M) + 1 if M is not orientable.

Finally applying Lemma 4, we deduce the:

Corollary 16. Let G be a torsion-free group, and X be a cocompact 3-
manifold model for EG = EG. Assume that the quotient 3-manifold M = X/G is
geometrizable (this is automatic, for instance, if M is orientable). Then we have
that

rank (Kq(C
∗
r (G))⊗Q) = β2(M) + 1

holds for all q.
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Remark: The number above is the sum of the even-dimensional Betti numbers of
M (which coincides with the sum of the odd-dimensional Betti numbers of M , by
Poincaré duality) — compare this with the Remark after Lemma 4.

Remark: Note that for G torsion-free, the dimension of the singular part is −1
and hence Lemma 3.21 in [MV] gives Hi(C) ∼= Hi(M) for i > 0 and an injection
H0(C) ↪→ H0(M). From this it follows that βi(C) = βi(M) for i = 1, 2, 3 and
β0(C) = β0(M) since 1 ≤ β0(C) ≤ β0(M) = 1. This is shown above by direct
application of our algorithm.

Semi-direct product of Z2 and Z. For a concrete example of the torsion-free
case, consider a semi-direct product Gα = Z2 �α Z, where α ∈ Aut(Z2) = GL2(Z).
The automorphism α can be realized (at the level of the fundamental group) by an
affine self diffeomorphism of the 2-torus T 2 = S1 × S1, f : T 2 → T 2. The mapping
torus Mf of the map f yields a closed 3-manifold which is aspherical and satisfies
π1(Mf ) ∼= Gα. Hence it is a model of BGα and its universal cover a model of EGα.
SinceGα is torsion-free (as it is the semi-direct product of torsion-free groups), these
spaces are also models of BGα respectively EGα. In particular, these examples
fall under the purview of Corollary 16, telling us that rank (Kq(C

∗
r (Gα))⊗Q) =

β2(Mf ) + 1. To complete the calculation, we just need to compute the 2nd Betti
number of the 3-manifold Mf . This follows from a straightforward application of
the Leray-Serre spectral sequence. We have included the details in Appendix B and
here we only quote the result

β2(Mf ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3 if α = Id,

2 if det(α) = 1, tr(α) = 2, α �= Id,

1 if det(α) = 1, tr(α) �= 2,

1 if det(α) = −1, tr(α) = 0,

0 if det(α) = −1, tr(α) �= 0.

Adding 1 we obtain

Kq(C
∗
r (Gα))⊗Q ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q4 if α = Id,

Q3 if det(α) = 1, tr(α) = 2, α �= Id,

Q2 if det(α) = 1, tr(α) �= 2,

Q2 if det(α) = −1, tr(α) = 0,

Q if det(α) = −1, tr(α) �= 0.

These results agree with the integral computations in Isely’s thesis [I, pp. 5-7],
giving us a first check on our method.

4.2. Nilmanifold example. In the previous section, we discussed examples
where the group was torsion-free, and hence the quotient space was a closed 3-
manifold. In this next example, we have a group with torsion, but with quotient
space again a closed 3-manifold.

The real Heisenberg group Hei(R) is the Lie group of upper unitriangular, 3×3
matrices with real entries. It is naturally homeomorphic to R3. The integral Heisen-
berg group Hei(Z) is the discrete subgroup consisting of matrices whose entries are
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in Z. There is an automorphism σ ∈ Aut
(
Hei(R)

)
of order 4 given by:

σ :

⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦ �→

⎡⎣ 1 −y z − xy
0 1 x
0 0 1

⎤⎦ .

This automorphism restricts to an automorphism of the discrete subgroup Hei(Z),
allowing us to define the group G := Hei(Z)� Z4. An explicit presentation of the
group G is given by

G :=

〈
a, b, c, t

∣∣∣∣∣ [a, c] = [b, c] = 1, [a, b] = c, t4 = 1
tat−1 = b, tbt−1 = a−1, tct−1 = c

〉
where as usual, [x, y] denotes the commutator of the elements x, y. In the above
presentation, we are identifying the generators a, b, c with the matrices in Hei(Z)
given by

Ta =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ , Tb =

⎡⎣ 1 0 0
0 1 1
0 0 1

⎤⎦ , Tc =

⎡⎣ 1 0 1
0 1 0
0 0 1

⎤⎦ .

These generate the normal subgroup Hei(Z)  G, while the conjugation by the last
generator t acts via the automorphism σ ∈ Aut

(
Hei(Z)

)
.

The action of Hei(Z) on Hei(R) given by left multiplication and the action of
Z4 on Hei(R) given by the automorphism σ fit together to give an action of the
group G on Hei(R). It is shown in [Lu3, Lemma 2.4] that this action on Hei(R)
provides a cocompact model for EG, with orbit space G\EG homeomorphic to S3.
In order to apply our algorithm, we need to identify a G-CW-structure on Hei(R).
Let us identify R3 with Hei(R) via the map

(x, y, z) ↔

⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦ .

Via this identification, we will think of G as acting on R3.
The action of the index four subgroup Hei(Z)  G on R3

(n,m, l) · (x, y, z) = (x+ n, y +m, z + ny + l)

is free. The quotient space Hei(Z)\R3 can be identified in two steps. First, we
quotient out by the normal subgroup H := 〈Tb, Tc〉 ∼= Z ⊕ Z. On any hyperplane
given by fixing the x-coordinate x = x0, the subgroup H leaves the hyperplane
invariant, with the generators Tb, Tc translating by one in the y and z coordinates
respectively. Quotienting out by H, we obtain that H\R3 is homeomorphic to
R × T 2, where the T 2 refers to the standard torus obtained from the unit square
(centered at the origin) by identifying the opposite sides. The quotient Hei(Z)\R3

can now be identified by looking at the action of the quotient group Hei(Z)/H
on the space R × T 2. The generator for Z ∼= Hei(Z)/H, being the image of the
matrix Tx ∈ Hei(Z), acts by (x, y, z) �→ (x+ 1, y, z + y). Putting this together, we
see that a fundamental domain for the Hei(Z)-action on R3 is given by the unit
cube [−1/2, 1/2]3 centered at the origin. The quotient 3-manifold M := Hei(Z)\R3

can now be obtained from the cube via a suitable identification of the faces. The
manifold M can also be thought of as the mapping torus of the map φ : T 2 → T 2

given by (y, z) �→ (y, y + z) (mod 1).
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Figure 1. P = [0, 1
2 ]×[0, 1

2 ]×[− 1
2 ,

1
2 ] is a fundamental polyhedron

for the action ofG on R3. In the quotient space G\R3, vertices with
the same label are identified, as are edges with the same endpoints
and the same shading. The four edges with both endpoints labelled
C are identified with the upward orientation. All faces with the
same labels are identified in quotient space. Three edges (two in
the quotient) have non-trivial isotropy, as indicated.

Next, we identify a fundamental domain for the G-action on R3. Observe
that, since Hei(Z)  G, there is an induced G/Hei(Z) ∼= Z4 on M , and a natural
identification between G\R3 and Z4\M . The manifold M naturally fibers over T 2,
with fiber S1, via the projection onto the (x, y)-plane. The Z4 action preserves the
S1-fibers, so induces an action on the 2-torus T 2. At the level of the fundamental
domain [−1/2, 1/2]2 ⊂ R2 in the (x, y)-plane, the Z4-action is given by (x, y) �→
(−y, x). This tells us that a fundamental domain for the Z4-action can be obtained
by restricting to the square [0, 1/2] × [0, 1/2]. As far as the isotropy goes, there
are four points in T 2 with non-trivial stabilizer: the images of points (0, 0) and
(1/2, 1/2) both have stabilizer Z4, and the images of the points (0, 1/2) and (1/2, 0),
both have stabilizer Z2 (and lie in the same σ-orbit).

We conclude that a fundamental domain for the G-action on R3 is given by
the rectangular prism P := [0, 1/2] × [0, 1/2] × [−1/2, 1/2] ⊂ R3 (Figure 1). The
interior of P gives the single 3-cell orbit for the equivariant polyhedral G-CW-
structure on R3. For the isotropy groups, we just need to understand the action
on the four vertical lines lying above each of the four points (0, 0), (1/2, 0), (0, 1/2),
and (1/2, 1/2). It is easy to see that the vertical line (0, 0, z) consists entirely of
points with stabilizer Z4, while the vertical lines (1/2, 0, z) and (0, 1/2, z) both have
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stabilizer Z2. On the other hand, the action of the element of order 4 on the S1-
fiber above the point (1/2, 1/2) can be calculated, and consists of a rotation by π/4
on the S1-fiber. So the stabilizers for points on the line (1/2, 1/2, z) are all trivial.

The last task remaining is to identify the gluings on the boundary of P . First,
we have that the top and bottom squares of P are identified (via Tz ∈ G). Secondly,
the two sides incident to the z-axis get “folded together” by σ ∈ G (which rotates
the front face π/2 radians to the left side face). Finally, the element Tx◦σ maps the
hyperplane y = 1/2 (containing the back face) to the hyperplane x = 1/2 (contain-
ing the right side face). This element takes the line (0, 1/2, z) to the line (1/2, 0, z),
identifying together the corresponding edges of P . On the line of intersection of
these two hyperplanes, the element acts by (1/2, 1/2, z) �→ (1/2, 1/2, z + 1/4).
These give us the identifications between the faces of P , allowing us to obtain the
description of G\R3 shown in Figure 1.

Example 17. For the group G := Hei(Z) � Z4 described above, we have that

rank
(
K0

(
C∗

r (G)
)
⊗Q

)
= 5 and rank

(
K1

(
C∗

r (G)
)
⊗Q

)
= 5.

Before establishing this result, we note that this is consistent with the com-
putation by Lück, who showed that Kn

(
C∗

r (G)
) ∼= Z5 for all n (see [Lu3, Thm.

2.6]). This serves as a second check on our algorithm, and is, to the best of our
knowledge, the only example in the literature of an explicit computation for the
topological K-theory of a 3-orbifold group with non-trivial torsion.

Proof. We apply our algorithm, using the polyhedron P described above. For
the ∼ equivalence classes on F (G), we note that the quotient space G\R3 has three
vertices, one each with stabilizer Z4 (vertex A), Z2 (vertex B), and the trivial group
(vertex C). The edges joining distinct edges all have trivial stabilizer, allowing us
to identify all the identity elements together. We conclude that there are precisely
five ∼ equivalence classes, corresponding to the three non-trivial elements in the Z4

vertex stabilizer, the single non-trivial element in the Z2 vertex stabilizer, and the
equivalence class combining all the trivial elements. This gives rank(H0(C)⊗Q) = 5.

Next we consider the quotient space G\R3. The faces of P are pairwise iden-
tified, so the quotient space is a closed manifold. Moreover, with respect to the
induced orientation on ∂P , the identifications between the faces are orientation
reversing, so the quotient space is an orientable closed 3-manifold. Lemma 7 gives
us that H3(C) ∼= Z, and hence that rank(H3(C)⊗Q) = 1. Note that, as mentioned
earlier, [Lu3, Lemma 2.4] shows that the quotient space is actually a 3-sphere (but
we do not need this fact for our computation).

The quotient space has empty boundary, so s = t = t′ = 0. The 2-complex Y
is just the 2-skeleton of the quotient space. This is the image of the boundary of P
after performing the required identifications. As such, Y is constructed from two
squares, a triangle, and a hexagon (see Figure 2). Note that the square correspond-
ing to the front face of P (which also gets identified to the left face) folds up to a
cylinder in Y , as its top and bottom edge get identified together (leftmost cylinder
in Figure 2). The union of the hexagon and triangle, forming the back face of P
(which also gets identified to the right face), similarly folds up to another cylinder
in Y (rightmost cylinder in Figure 2). The two cylinders attach together along
a common boundary loop (image of the edge BB) to form a single long cylinder.
At one of the endpoints, the cylinder attaches to a single loop (image of the edge
CC) by a degree four map. So, ignoring for the time being the last square, we
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Figure 2. 2-skeleton of the quotient space G\R3. The four side
faces of the polyhedron P fold up into the two adjacent cylinders.
On the right, the boundary circle of the cylinder gets attached to
the circle by a degree 4 map. The top and bottom faces of P
get identified into a single square, which attaches to the cylinder
as indicated. The two loops in the cylinder based at A,B have
isotropy Z4 and Z2 respectively. All remaining points have trivial
isotropy.

have a subcomplex of Y which deformation retracts to S1 (as it coincides with the
mapping cylinder of the degree four map of S1). Up to homotopy, we conclude that
Y coincides with S1, along with a single square attached. The square comes from
the top face of P (which also gets identified with the bottom face), which, after
composing with the homotopy to S1, attaches to the S1 via a degree one map of
the boundary. This tells us that Y is homotopy equivalent to a 2-disk, and hence
is contractible. By Corollary 14, we conclude that rank

(
H2(C)⊗Q

)
= 0.

Finally, we compute the Euler characteristic of C. We have three vertices, one
each with stabilizer Z4, Z2, and trivial. This gives an overall contribution of +7
to χ(C). We have six edges, one with stabilizer Z4, one with stabilizer Z2, and the
remainder with trivial stabilizer. This contributes −10 to χ(C). There are four faces
with trivial stabilizer, contributing +4 to to χ(C). There is one 3-cell with trivial
stabilizer, contributing −1. Summing these up, we see that χ(C) = 7−10+4−1 = 0.
From Lemma 15, we see that rank

(
H1(C)⊗Q

)
= 4. Applying Lemma 4, we deduce

that both the rational K-groups have rank = 5, as claimed. �

4.3. Hyperbolic reflection groups - I. Consider the groups Λn, n ≥ 5,
given by the following presentation:

Λn :=

〈
y, z, xi, 1 ≤ i ≤ n

∣∣∣∣∣ y2, z2,
x2
i , (xixi+1)

2, (xiz)
3, (xiy)

3, 1 ≤ i ≤ n

〉
The groups Λn are Coxeter groups, and the presentation given above is in fact a
Coxeter presentation of the group.
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Figure 3. Hyperbolic polyhedron for Λ5. Ordinary edges have
internal dihedral angle π/3. Dotted edges have internal dihedral
angle π/2.

Example 18. For the groups Λn whose presentations are given above,

(1) the rank of K0

(
C∗

r (Λn)
)
⊗Q is equal to 3n+ 4,

(2) the rank of K1

(
C∗

r (Λn)
)
⊗Q is equal to n+ 1.

Proof. The groups Λn arise as hyperbolic reflection groups, with underlying
polyhedron P the product of an n-gon with an interval. This polyhedron has exactly
two faces which are n-gons, and the dihedral angle along the edges of these two
faces is π/3. All the remaining edges have dihedral angle π/2. An illustration of
the polyhedron associated to the group Λ5 is shown in Figure 3. We will take the
Λn action on X := H3, with fundamental polyhedron P , and quotient space X/Λn

coinciding with P . Note that this action is a model for EΛn, as finite subgroups F
of Λn have non-empty fixed sets (the center of mass of any F -orbit will be a fixed
point of F ), which must be convex subsets (and hence contractible). Both of these
last statements are consequences of the fact that the action is by isometries on a
space of non-positive curvature.

Applying the argument detailed in Section 3, we compute β0(C) by counting
equivalence classes on the set F (Λn). Since X/Λn = P , the set F (Λn) consists of 2n
copies of the group S4. Each individual S4 has five conjugacy classes, given by the
possible cycle structures of elements, with typical representatives: e, (12), (123),
(1234), (12)(34). Next we consider how the edges identify the individual conjugacy
classes to get the equivalence classes for ∼.

Firstly, all the individual identity elements will be identified together, yielding
a single ∼ class. So we will henceforth focus on non-identity classes. Each of
the edges on the top n-gon has stabilizer D3

∼= S3, which has three conjugacy
classes, represented by e, (12), (123). Under the inclusion into each adjacent vertex
stabilizers, representative elements for these classes map to representative elements
with the same cycle structure. So we see that all of the 3-cycles in the stabilizers
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of the vertices in the top n-gon lie in the same ∼ class, and likewise for all of the 2-
cycles. A similar analysis applies to the vertices in the bottom n-gon. Finally, each
vertical edge has stabilizer D2, and under the inclusion into the adjacent vertices,
has image generated by the two permutations (12) and (34) (and hence identifies
three conjugacy classes together). Putting all this together, we see that the ∼
equivalence classes consist of:

• one class consisting of all the identity elements in the individual vertex
groups,

• n classes of elements of order = 2, coming from the identification of cycles
of the form (12)(34) for each pair of vertices joined by a vertical edge,

• one class of elements of order = 2, coming from the cycles of the form (12)
in all vertex stabilizers,

• two classes of elements of order = 3, each coming from the cycles of the
form (123) in the top and bottom n-gon respectively, and

• 2n classes of elements of order = 4, each coming from the cycles of the
form (1234) in each individual vertex stabilizer.

We conclude that the β0(C) = rank
(
H0(C)⊗Q

)
= 3n+ 4.

Since our quotient space X/Λn = P is not a closed orientable manifold, Lemma
7 tells us that H3(C) = 0. To calculate β2(C) = rank

(
H2(C) ⊗ Q

)
, we apply

Corollary 14. There is a single boundary component for X/Λn = P , which is
orientable and non-odd (it contains edges with stabilizer D2), and contains no
edges with stabilizer Z2, so s = 1, t = 0, and t′ = 0. Also, there are no interior
2-cells, and the single boundary component is of dihedral type, so Y = ∅. By
Corollary 14, we conclude that rank

(
H2(C)⊗Q

)
= 0.

To calculate rank
(
H1(C) ⊗ Q

)
, we need the Euler characteristic of the chain

complex C. There are 2n vertices, all with stabilizers S4, which each have five
conjugacy classes. There are a total of 3n edges, n of which have stabilizer D2 (with
four conjugacy classes), and 2n of which have stabilizer D3 (with three conjugacy
classes). There are n+ 2 faces, with stabilizers Z2, which each have two conjugacy
classes. There is one 3-cell, with trivial stabilizer, with a single conjugacy class.
Putting this together, we have that

χ(C) =
(
5(2n)

)
−
(
3(2n) + 4(n)

)
+

(
2(n+ 2)

)
− 1 = 2n+ 3

Applying Lemma 15, we can now calculate:

rank
(
H1(C)⊗Q

)
= (3n+ 4)− (2n+ 3) = n+ 1

Finally, applying Lemma 4, we obtain the desired result. �

4.4. Hyperbolic reflection groups - II. Next, let us consider a somewhat
more complicated family of examples. For an integer n ≥ 2, we consider the group
Γn, defined by the following presentation:

Γn :=

〈
x1, . . . , x6

∣∣∣∣∣ x2
i , (x1x2)

n, (x1x5)
2, (x1x6)

2, (x3x4)
2, (x2x5)

2, (x2x6)
2

(x1x4)
3, (x2x3)

3, (x4x5)
3, (x4x6)

3, (x3x5)
3, (x3x6)

3

〉
Observe that the groups Γn are Coxeter groups, and that the presentation given
above is in fact a Coxeter presentation of the group.

Example 19. For the groups Γn whose presentations are given above, we have
that:
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Figure 4. Hyperbolic polyhedron for Γn. Ordinary edges have
internal dihedral angle π/3. Dotted edges have internal dihedral
angle π/2. The thick edge has internal dihedral angle π/n.

rank
(
K0

(
C∗

r (Γn)
)
⊗Q

)
=

{
3
2 (n− 1) + 12 n odd,
3
2n+ 14 n even,

rank
(
K1

(
C∗

r (Γn)
)
⊗Q

)
=

{
3 n odd,

2 n even.

Proof. To verify the results stated in this example, we first observe that the
Coxeter groups Γn arise as hyperbolic reflection groups, with underlying polyhedron
P a combinatorial cube. The geodesic polyhedron associated to Γn is shown in
Figure 4. Again, we set X := H3, with fundamental polyhedron P , and quotient
space X/Γn coinciding with P . As in the previous example, X is a model for EG.

To apply our procedure, we start by considering the equivalence relation ∼
on the set F (Γn). Out of the eight vertices of the cube P , six have stabilizer
isomorphic to S4, while the remaining two have stabilizer Dn × Z2. We will think
of Dn as the symmetries of a regular n-gon, and let r0, r1 denote the reflection
in a vertex, and in the midpoint of an adjacent side respectively (so r0, r1 are the
standard Coxeter generators for Dn). Recall that the number of conjugacy classes
of Dn depends on the parity of n: each rotation φ is only conjugate to its inverse
φ−1, while the reflections ri fall into one or two conjugacy classes, depending on
whether n is odd or even. Crossing with Z2, each of these conjugacy class in Dn

gives rise to two conjugacy classes in Dn × Z2: the image class under the obvious
inclusion Dn ↪→ Dn×Z2, and its “flipped” image, obtained by composing with the
non-trivial element τ in the Z2-factor. Next, we need to see how conjugacy classes
in the individual vertex stabilizers get identified together by the edge stabilizers.
After performing these identifications, we obtain that the ∼ equivalence classes
consist of:

• one class consisting of all the identity elements in the individual vertex
groups,
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• six classes of elements of order = 4, each coming from the cycles of the
form (1234) in the six individual S4 vertex stabilizers,

• one class of elements of order = 3, coming from the cycles of the form
(123) in the six S4 vertex stabilizers (these classes get identified together
via the edges with stabilizer D3),

• one class of elements of order = 2, comprised from the cycles of the form
(12) in the six S4 vertex stabilizers (identified via the edges with stabilizer
D3), along with the the three elements of the form (r0, 1), (r1, 1), (1, τ ) in
the two vertices with stabilizer Dn × Z2 (identified via the edges with
stabilizer D2),

• one class of elements of order = 2, consisting of the elements of cycle form
(12)(34) in the two S4 vertex stabilizers which are joined together by an
edge with stabilizer D2 (which identifies these elements together),

• two or four classes (according to the parity of n), coming from the two
elements of the form (r0, τ ) or (r1, τ ) in the two vertices with stabilizer
Dn×Z2 (these two elements lie in the same conjugacy class when n odd),
which are each identified to elements with cycle form (12)(34) in one of
the two adjacent S4 vertex stabilizers,

• n − 1 or n conjugacy classes (according to n odd or even respectively),
coming from elements of the form (φi, τ ) in each of the two vertices with
stabilizer Dn × Z2, and

• (n − 1)/2 or n/2 conjugacy classes (according to n odd or even respec-
tively), coming from the elements of the form (φi, 1) in the two vertices
with stabilizer Dn × Z2 (the elements in the two copies get identified
together via the edge with stabilizer Dn).

Summing this up, we find that rank
(
H0(C)⊗Q

)
is 3

2 (n− 1) + 12 if n is odd, and
3
2n+ 14 if n is even.

The quotient space X/Γn = P is a 3-manifold with non-empty boundary, so
Lemma 7 gives us that H3(C) = 0. The only boundary component is orientable
and non-odd, and contains no edges with stabilizer Z2, so s = 1 and t = t′ = 0.
Moreover, there are no interior faces, so Y = ∅. By Corollary 14, we conclude that
rank

(
H2(C)⊗Q

)
= 0.

Next, let us calculate the rank of H1(C)⊗Q. To do this, we first compute the
Euler characteristic χ(C). We have six vertices, four with stabilizer S4 (having five
conjugacy classes), and two with stabilizer Dn × Z2 (having either n + 3 or n + 6
conjugacy classes, depending on whether n is odd or even). There are twelve edges,
six with stabilizer D3 (with three conjugacy classes), five with stabilizer D2 (with
four conjugacy classes), and one with stabilizer Dn (with (n + 3)/2 or (n + 6)/2
conjugacy classes, depending on whether n is odd or even). There are six faces,
each with stabilizer Z2 (with two conjugacy classes each). Finally, there is one
3-cell with trivial stabilizer. Taking the alternating sum, we obtain that the Euler
characteristic is

χ(C) =
{

3
2 (n− 1) + 9 n odd,
3
2n+ 12 n even.

From Lemma 15, the difference between χ(C) and the rank of H0(C)⊗Q yields the
rank of H1(C) ⊗ Q, giving us that the latter is either 3 or 2 according to whether
n is odd or even. Applying Lemma 4, we obtain the desired result. �
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Figure 5. The polyhedron pictured here is an exact convex com-
pact fundamental polyhedron for the action of G on R3. The
dashed lines represent axes of rotation (through 180 degrees) for
certain elements of G. Note that the base of the figure is an equi-
lateral triangle, but the top is only isosceles.

4.5. Crystallographic group. Our next example is taken from the work of
Farley and Ortiz [FO]. Consider the lattice L ⊂ R3 generated by the three vectors

v1 =

(
2/3
−1/3
2/3

)
, v2 =

(
1
−1
0

)
, v3 =

(
0
−1
1

)
,

and let G = Sym(L) denote the subgroup of Isom(R3) which maps L to itself. The
group G is one of the seven maximal split 3-dimensional crystallographic groups,
and is discussed at length in [FO, Section 6.8].

A polyhedral fundamental domain P for the G-action on R3 is provided in
Figure 5. Next we describe the stabilizers of the various faces, edges, and vertices
of P (given in terms of the labeling in Figure 5).

Face stabilizers: The two triangles at the top (collectively labelled by S2), and the
two triangles at the bottom (labelled by S5) have trivial stabilizer. The three
quadrilateral sides (S1, S3, and S4) each have stabilizer Z2, generated by the re-
flection in the 2-plane extending the corresponding side.

Edge stabilizers: The three vertical edges in Figure 5 each have stabilizer D3, gen-
erated by the reflections in the two incident faces. The two dotted edges (in the
middle of the faces S2 and S5) have stabilizer Z2, generated by a rotation by π
centered on the edge. All remaining edges have stabilizer Z2, generated by the
reflection in the (unique) incident face whose isotropy is non-trivial. Note that,
when one passes to the quotient space X/G, the two triangles in the top face S2

get identified together by the π-rotation in the dotted line (and similarly for the
two triangles in the bottom face S5).

Vertex stabilizers: The two vertices (0, 0, 0) and (5/6,−1/6,−1/6) have stabilizer
D3 × Z2. The two vertices (1/4, 1/4, 1/4) and (2/3,−1/3,−1/3) have stabilizer
D3. Finally, the two vertices (1/2, 1/2, 0) and (1/3,−1/6, 1/3), the midpoints of
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the edges at which the dotted lines terminate, have stabilizer D2. The remaining
vertices of P are in the same orbit as one of the six described above.

Example 20. For the split crystallographic group G described above, we have

that rank
(
K0

(
C∗

r (Γn)
)
⊗Q

)
= 12 and rank

(
K1

(
C∗

r (Γn)
)
⊗Q

)
= 0.

Proof. We apply our algorithm, using the polyhedron P above. Our first
step is to consider the ∼ equivalence relation on the set F (G). The vertex and edge
stabilizers for P have been described above, and the ∼ equivalence classes are given
as follows:

• one class consisting of all the identity elements in the individual vertex
groups,

• one class consisting of all the elements of order 3 in the individual vertex
groups (these occur in the four vertices with stabilizer D3 or D3×Z2, and
are identified together via three consecutive edges with stabilizer D3),

• one class of elements of order 2, consisting of elements of order two in the
vertex groups isomorphic to D3, along with elements of order two in the
canonical D3-subgroup within the vertex groups isomorphic to D3 × Z2

(these are identified together via the three consecutive edges with stabi-
lizer D3), and the elements of the form (1, 0) in the two vertex groups
isomorphic to D2

∼= Z2×Z2 (identified together via the edges S1∩S2 and
S3 ∩ S5),

• two classes of elements of order 2, coming from each of the two dotted
edges: the rotation by π in the edge identifies the element (0, 1) in one
endpoint (vertex with stabilizer D2

∼= Z2 ×Z2) with the element which is
a product of a reflection in D3 with a reflection in Z2 in the other endpoint
(vertex with stabilizer D3 × Z2),

• six remaining classes, two each in the vertices with stabilizer D3×Z2 and
one each in those with stabilizer D2 (these classes aren’t identified to any
others via the edges).

Summing this up, we see that rank(H0(C)⊗Q) = 11.
Next, we note that the quotient space X/G is obtained from the polyhedron

P by “folding up” the top and bottom triangle along the dotted lines, resulting in
D3, a 3-manifold with non-empty boundary. Lemma 7 gives us that H3(C) = 0.
The only boundary component is orientable and odd, and contains edges with
stabilizer Z2, so s = t = 0 and t′ = 1. The 2-complex Y clearly deformation
retracts to the boundary S2, so β2(Y ) = 1. By Corollary 14, we conclude that
rank

(
H2(C)⊗Q

)
= 1.

Next, we calculate the rank of H1(C) ⊗ Q. As usual, we first calculate the
Euler characteristic χ(C). We have six vertices, two with stabilizer D2 (having four
conjugacy classes), two with stabilizer D3 (having three conjugacy classes), and two
with stabilizer D3×Z2 (having six conjugacy classes), giving an overall contribution
of +26. There are nine edges, six with stabilizer Z2 (with two conjugacy classes),
and three with stabilizer D3 (with three conjugacy classes), giving a contribution
of −21. There are five faces, three with stabilizer Z2 (with two conjugacy classes
each), and two with trivial stabilizer (with one conjugacy class each), giving a
contribution of +8. There is one 3-cell with trivial stabilizer, contributing a −1.
Summing up these contributions, we obtain that the Euler characteristic is χ(C) =
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26− 21 + 8− 1 = 12. From Lemma 15, we see that the rank of H1(C)⊗Q is = 0.
Applying Lemma 4, we obtain the desired result. �

5. Concluding remarks

The examples in the previous section were chosen to illustrate our algorithm
on several different types of smooth 3-orbifold groups. As the reader can see, our
algorithm is quite easy to apply, once one has a good description of the orbit space
G\X. There are several natural directions for further work.

For instance, in Section 4.5, we applied our algorithm to a specific 3-dimensional
crystallographic group. It is known that, in dimension = 3, there are precisely 219
crystallographic groups up to isomorphism. One could in principle apply our al-
gorithm to produce a complete table of the rational K-theory groups of all 219
groups. The essential difficulty in doing this lies in finding some convenient, sys-
tematic way to identify polyhedral fundamental domains for each of these groups.
For the 73 split crystallographic groups, such fundamental domains can be found
in the forthcoming paper of Farley and Ortiz [FO].

Another reasonable direction would be to focus on uniform arithmetic lattices
Γ in the Lie group PSL2(C) ∼= Isom+(H3). One could try to analyze the rela-
tionship (if any) between the rational K-theory of such a Γ and the underlying
arithmetic structure. Again, the difficulty here lies in finding a good description
of the polyhedral fundamental domain for the action (in terms of the arithmetic
data).

In a different direction, one can consider hyperbolic reflection groups. These
are groups generated by reflections in the boundary faces of a geodesic polyhedron
P ⊂ H3. In this context, the polyhedron P serves as a polyhedral fundamental
domain for the action, so one can readily apply our algorithm to compute the
rational K-theory of the corresponding group (see the examples in Sections 4.3
and 4.4). One could try, in this special case, to refine our algorithm to produce
expressions for the integral K-theory groups, in terms of the combinatorial data of
the polyhedron P . This is the subject of an ongoing collaboration of the authors.
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Appendix A

In this Appendix, we provide the details for the computations used in some of
the proofs in Section 3.4. Let n ≥ 2 be an integer and Dn be the dihedral group
with presentation

Dn = 〈s1, s2 | s21 = s22 = (s1s2)
n〉.

We will compute the map

(3) ϕ : RC(Z2)⊕RC(Z2) −→ RC(Dn)
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given by induction between representation rings with respect to the subgroups
〈s1〉 and 〈s2〉 of Dn, both isomorphic to Z2, and opposite orientations. That is,
ϕ(ρ, τ ) = (ρ ↑)−(τ ↑), where ‘↑’ means induction between the corresponding groups.

Recall from the main text (see Section 3.4, particularly Lemma 8) that if e is a
boundary edge with stabilizer Dn and σ1 and σ2 are incident boundary faces, then
K0(C

∗
r (Gσi

)) ∼= RC(Z2) and the relevant part of the Bredon chain complex at the
edge e is the map given in equation (3).

The character table for Dn is given by

Dn (s1s2)
r s2(s1s2)

r

χ1 1 1
χ2 1 −1
χ̂3 (−1)r (−1)r

χ̂4 (−1)r (−1)r+1

φp 2 cos
(
2πpr
m

)
0

where 0 ≤ r ≤ n− 1, p varies between 1 and n/2− 1 if n is even or (n− 1)/2 if n
is odd and the hat ̂ denotes a character which appears only when n is even.
The character table for Z2 is given by

Z2 e si
ρ1 1 1
ρ2 1 −1

To compute the induction homomorphism we will use Frobenius reciprocity.
We first do the case 〈s1〉. The characters of Dn restricted to this subgroup are

e s1
χ1 ↓ 1 1
χ2 ↓ 1 −1
χ̂3 ↓ 1 −1
χ̂4 ↓ 1 1
φp ↓ 2 0

Multiplying with the rows of the character table of 〈s1〉 ∼= C2 we obtain the induced
representations

ρ1 ↑ = χ1 + χ̂4 +
∑

φp,
ρ2 ↑ = χ2 + χ̂3 +

∑
φp.

The case 〈s2〉 is analogous, but note that the characters 3 and 4 must be inter-
changed in the even case:

e sj
χ1 1 1
χ2 1 −1
χ̂3 1 1
χ̂4 1 −1
φp 2 0

and
ρ1 ↑ = χ1 + χ̂3 +

∑
φp,

ρ2 ↑ = χ2 + χ̂4 +
∑

φp.
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As maps of free abelian groups we obtain

Z2 → Zc(Dn)

(a, b) �→ (a, b, b̂, â, a+ b, . . . , a+ b) for 〈s1〉 ↪→ Dn,

(c, d) �→ (c, d, ĉ, d̂, c+ d, . . . , c+ d) for 〈s2〉 ↪→ Dn.

Finally, the map ϕ above is

RC (Z2)⊕RC (Z2) ∼= Z2 ⊕ Z2 → Zc(Dn) ∼= RC (Dn)

(a, b, c, d) �→ (a− c, b− d, b̂− c, â− d, S, . . . , S)

where S = a+ b− c− d.

As an immediate consequence of this computation, we see that if the element
〈k, k, . . . , k〉 lies in the image of φ, then one must have that

a− c = k = S = a+ b− c− d.

Subtracting a− c from both sides, we deduce that 0 = b − d = k. In other words,
the image of φ intersects the subgroup Z · 〈1, 1, . . . , 1〉 only in the zero vector (as
was stated in Lemma 8).

Another consequence is that it is easy to identify elements in the kernel of φ.
The equation

0 = (a− c, b− d, b̂− c, â− d, S, . . . , S)

forces a = c and b = d. If in addition, n is even, then we also have a = d, and hence
all terms must be equal. This was used in the arguments for both Lemma 10 and
Lemma 12.

Appendix B

In this Appendix we compute the 2nd Betti number of the 3-manifolds Mf

appearing in the Remark at the end of Section 4.1. The manifold Mf , as a mapping
torus, fibers over S1 with fiber T 2. For this fibration, the Leray-Serre spectral
sequence gives

E2
pq = Hp(S

1, Hq(T
2)) ⇒ Hp+q(Mf ).

Since S1 is 1-dimensional, E2
p,q = 0 unless p = 0, 1. The differentials have bidegree

(−2, 1) so the spectral sequence already collapses at the E2-page. This implies that

H2(Mf ) ∼= E2
0,2 ⊕ E2

1,1
∼= H0(S

1, H2(T
2))⊕H1(S

1, H1(T
2)).

Recall that this is not ordinary homology but rather homology with local coefficient
system given by the homology of the fiber.

The homology group H0(S
1, H2(T

2)) is obtained from the chain complex

0 �� Z
Id−f∗ �� Z �� 0

where f∗ : Z → Z is the map induced by the action of the gluing map f on the
local coefficient Z = H2(T

2). If det(α) = 1, f is orientation preserving and hence
f∗ = Id. This implies H0(S

1, H2(T
2)) ∼= Z. If det(α) = −1, f is orientation

reversing and hence f∗ = −Id. This implies H0(S
1, H2(T

2)) ∼= Z2.
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The homology group H1(S
1, H1(T

2)) is obtained from the chain complex

0 �� Z2
Id−f∗ �� Z2 �� 0

where now f∗ : Z2 → Z2 is induced by the action of the gluing map f on the local
coefficient Z2 = H1(T

2). Note that by construction f acts on π1(T
2) ∼= H1(T

2)
via the automorphism α. So the map above is Id− α and hence H1(S

1, H1(T
2)) ∼=

ker(Id−α). Suppose that α =
(
a b
c d

)
. Then Id−α =

(
1−a −b
−c 1−d

)
. The kernel of this

map has dimension 2 if and only if Id − α = 0, that is, α = Id. The dimension is
at least 1 if and only if the determinant is zero, that is,

(1− a)(1− d) = bc ⇔ 1− tr(α) + ad = bc ⇔ 1 + det(α) = tr(α).

This occurs if and only if det(α) = 1 and tr(α) = 2, or det(α) = −1 and tr(α) = 0.
Altogether, this gives us

β2(Mf ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3 if α = Id,

2 if det(α) = 1, tr(α) = 2, α �= Id,

1 if det(α) = 1, tr(α) �= 2,

1 if det(α) = −1, tr(α) = 0,

0 if det(α) = −1, tr(α) �= 0.
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Université de Neuchâtel (Switzerland), September 2011.

[LOM] J.-F. Lafont, I. Ortiz, & B. Magurn, Lower algebraic K-theory of certain reflection
groups, Math. Proc. Cambridge Philos. Soc. 148 (2010), 193–226.

[Lu1] W. Lück, Chern characters for proper equivariant homology theories and applications
to K- and L-theory, J. Reine Angew. Math. 543 (2002), 193–234.

[Lu2] W. Lück, Rational computations of the topological K-theory of classifying spaces of
discrete groups, J. Reine Angew. Math. 611 (2007), 163–187.

[Lu3] W. Lück, K- and L-theory of the semi-direct product of the discrete 3-dimensional
Heisenberg group by Z/4, Geom. Topol. 9 (2009), 1639–1676.

[LuO] W. Lück and B. Oliver, Chern characters for the equivariant K-theory of proper G-
CW-complexes, in “Cohomological methods in homotopy theory (Bellaterra, 1998)”.
Prog. Math. Vol. 196, 217–247. Birkhauser, 2001.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

RATIONAL EQUIVARIANT K-HOMOLOGY OF LOW DIMENSIONAL GROUPS 163

[LuR] W. Lück and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and
L-theory, in “Handbook of K-theory,” pgs. 703–842, Springer, Berlin, 2005.

[MOP] M. Matthey, H. Oyono-Oyono, and W. Pitsch, Homotopy invariance of higher signa-
tures and 3-manifold groups, Bull. Soc. Math. Fr. 136 (2008), 1–25.

[MV] G. Mislin and A. Valette, Proper group actions and the Baum-Connes conjecture.
Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2003.
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