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Roundness Properties of Groups
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Abstract. Roundness of metric spaces was introduced by Per Enflo as a tool to study uni-
form structures of linear topological spaces. The present paper investigates geometric and
topological properties detected by the roundness of general metric spaces. In particular, we
show that geodesic spaces of roundness 2 are contractible, and that a compact Riemannian
manifold with roundness >1 must be simply connected. We then focus our investigation on
Cayley graphs of finitely generated groups. One of our main results is that every Cayley
graph of a free Abelian group on � 2 generators has roundness = 1. We show that if a
group has no Cayley graph of roundness =1, then it must be a torsion group with every
element of order 2,3,5, or 7.
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1. Introduction

In a series of papers, Per Enflo [6,8,9] used the idea of metric roundness to investi-
gate the uniform structure of Banach spaces. Later the same idea was used in [19]
to compare uniform structures between normed and quasi-normed linear topologi-
cal spaces. An extension of this property (generalized roundness) was used by Enflo
in the solution of Smirnov’s problem [7]. Also, if a metric space has nontrivial gen-
eralized roundness, then some positive power of the distance function is a negative
kernel on the space ([16]). Negative kernels on Cayley graphs of discrete groups
were used for proving the coarse Baum–Connes Conjecture (and thus the Novikov
Conjecture) for these groups [14,15].

We investigate the roundness and generalized roundness properties of general
metric spaces. The triangle inequality implies that any metric space has roundness
at least 1. Using the results of Enflo, essentially, a metric space X has roundness
p, 1<p� 2 if p is the supremum of all q so that quadrilaterals in X are thinner
than the ones in an Lq -space. With this in mind, our first result is not surprising.

�Partially supported by a Canisius College Summer Research Grant.
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THEOREM. Every CAT(0)-space has roundness 2.

On the other hand, it should be noticed that there are CAT(0)-spaces whose
generalized roundness is equal to 0 [10]. All spaces with approximate midpoints
have roundness between 1 and 2. It is reasonable to try to understand the extremal
cases.

THEOREM. Proper geodesic spaces that have roundness 2 are contractible.

We also point out that, in Section 1.19+ of [12], Gromov raises the question of
determining what types of spaces one can obtain when one imposes a restriction
on the distances achieved between all r-tuples of points. The previous theorem can
be viewed as a partial answer to this question in the context where the restrictions
on the distances between all 4-tuples of points are given by the roundness =2 con-
dition.

Combining these two results, we recover the well-known result that any proper
CAT(0)-space is contractible.

On the other hand, it is interesting to notice that the roundness properties of
metric spaces with nontrivial closed geodesics are very poor. Mild assumptions on
such a space imply that its roundness is 1. In particular, we have

THEOREM. A non-simply connected, compact, Riemannian manifold has roundness 1.

This is in fact a special case of a more general theorem applying to geode-
sic metric spaces with nontrivial fundamental group, and satisfying an additional
hypothesis on existence of convex neighborhoods around every point. This more
general result suggests that, as far as roundness is concerned, the most interesting
spaces to look at are simply connected geodesic spaces or, at the other extreme,
totally disconnected spaces.

Our main explicit calculations are on discrete metric spaces determined by
graphs, in particular Cayley graphs of finitely generated groups. Roundness is not a
quasi-isometric invariant and thus, in general, the roundness of a Cayley graph of
a group depends on the choice of generating set. A more relevant algebraic invari-
ant seems to be the roundness spectrum of a group, which is the collection of the
roundness of all the Cayley graphs of the group. One of our main results is

THEOREM. The roundness spectrum of a finitely generated free abelian group on
more than one generator is {1}.

In general, the roundness spectrum has the following property:

THEOREM. If the roundness spectrum of G does not contain 1 then G is a purely
torsion group in which every element has order 2, 3, 5 or 7.
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In [16] it was shown that in spaces with generalized roundness p > 0 the pth
power of the distance function is a negative kernel. Using this result we show the
following:

THEOREM. Let G be a group having a presentation whose Cayley graph has posi-
tive generalized roundness. Then G satisfies the coarse Baum–Connes Conjecture and
thus the strong Novikov Conjecture.

In particular, if G be a group having a presentation whose Cayley graph iso-
metrically embeds into an Lp-space with 1 � p � 2, then G satisfies the coarse
Baum–Connes Conjecture and thus the strong Novikov Conjecture (see also [18],
Corollary 4.3).

On the other hand negative kernels are closely related to the Kazhdan property.
Using this we can show that

THEOREM. Every Cayley graph of a finitely generated infinite Kazhdan group has
generalized roundness 0.

This result follows from combining the fact that infinite Kazhdan groups do
not admit negative kernels [3,4] and the equivalence between nontrivial generalized
roundness and negative kernels [16]. It should be noted that generalized roundness
is an easier condition to be checked than the existence of negative kernels because
generalized roundness is a property of finite subspaces of the space.

We would like to thank Tom Farrell, Ralf Spatzier and Tony Weston for their
helpful suggestions during the course of this work.

2. Preliminaries

DEFINITION 2.1. Let (X, d) be a metric space, p∈ [1,∞].

(1) The roundness of (X, d) is p if p is the supremum of all q such that: for any
four points x00, x10, x01, x11 in X,

d(x00, x11)
q +d(x01, x10)

q

�d(x00, x01)
q +d(x00, x10)

q +d(x11, x01)
q +d(x11, x10)

q .

(2) The generalized roundness of (X, d) is the supremum of all q such that: for
every n�2 and any collection of 2n-points {ai}ni=1, {bi}ni=1, we have that:

∑

1�i<j�n
(d(ai, aj )

q +d(bi, bj )q)�
∑

1�i,j�n
d(ai, bj )

q .
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Remark 2.2. (1) Definition 2.1, Part (1), can be rephrased in terms of 2-cubes.
Recall that the unit cube in R

n (n∈ N) is the set of n-vectors {0,1}n. An n-cube
N in an arbitrary metric space (X, d) is a collection of 2n (not necessarily dis-
tinct) points in X where each point in the collection is indexed by a distinct n-
vector ε∈{0,1}n from the unit cube. A diagonal in N is a pair of vertices (xε, xδ)
such that ε and δ differ in all coordinates. An edge in N is a pair of vertices
(xε, xδ) such that ε and δ differ in precisely one coordinate. The set of diagonals
in N will be denoted D(N) and the set of edges in N will be denoted E(N). An
n-cube N has 2n−1 diagonals and n2n−1 edges. If f = (x, y) is an edge or diagonal
in N , we will let l(f ) denote the d-length of f in X. In other words, l(f )=d(x, y).
The analytic condition in Definition 2.1, Part (1), is a statement about 2-cubes N
in X:

∑

d∈D(N)
l(d)q �

∑

e∈E(N)
l(e)q .

(2) The triangle inequality implies that any metric space has roundness � 1. If
the space has approximate midpoints, then its roundness is �2.

(3) The collection of 2n points in the second part of the definition is usually
called an n-double simplex.

3. Geometric Aspects of Roundness

Roundness and curvature bounded from above are two metric properties. In this
section, we examine their connections. Our first observation is that in spaces with
complicated topology, roundness cannot be large. We consider one of the simplest
nonsimply connected space first.

LEMMA 3.1. The roundness of the circle is 1.
Proof. Let x00, x01, x10, x11 be four points on S1 so that:

d(x00, x01)+d(x01, x11)=d(x00, x11), d(x01, x11)+d(x11, x10)=d(x01, x10).

Then, for p>1,

d(x00, x11)
p+d(x01, x10)

p= (d(x00, x01)+d(x01, x11))
p+ (d(x01, x11)+d(x11, x10))

p

>d(x00, x01)
p+d(x01, x11)

p+d(x01, x11)
p+d(x11, x10)

p

Thus the roundness can not be larger than 1.

Remark 3.2. The generalized roundness of the circle is 1: Lemma 3.1 implies
that the generalized roundness is less than or equal to 1. But in [5], Theorem 6.4.5,
it is shown that S1 isometrically embeds into an �1-space, which has generalized
roundness 1 [16].
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PROPOSITION 3.3. Let (X, d) be a geodesic metric space that admits a globally
minimizing closed geodesic. Then its roundness is 1.

Proof. A globally minimizing closed geodesic γ is an isometric embedding of a
circle of length �(γ ). The Proposition follows from Lemma 3.1.

LEMMA 3.4. Let (X, d) be a geodesic space. Suppose there is a closed curve γ such
that

�(γ )= inf{�(ξ) : ξ homotopically nontrivial rectifiable curve}>0.

Then the roundness of X is equal to 1.
Proof. Assume that the roundness of X is greater than 1. Proposition 3.3 implies

that such γ cannot be globally length minimizing. Hence, if γ : [0,L]→X is a unit
length parametrization we have, after reparametrizing if necessary, that there is s∈
[0,L/2] such that d(γ (0), γ (s)) < s. As X is a geodesic space, there is a curve η
from γ (0) to γ (s) whose length is equal to d(γ (0), γ (s)). Let γ1 be γ restricted
to [0, s], γ2 be γ restricted to [s,L]. Form two new loops η1 =η−1 ∗γ1, η2 =γ2 ∗η.
Note that η2 ∗η1 �γ . Since γ represents a nontrivial element in π1(X), one of the
loops η1, η2 must likewise be nontrivial. We now compute the lengths of η1, η2:

�(η1)=�(γ1)+�(η)= s+�(η)<s+ s=2s�L,
�(η2)=�(γ2)+�(η)= (L− s)+�(η)<(L− s)+ s=L.

So in both cases, we find a homotopically nontrivial loop with length shorter than
the assumed minimum L, contradiction.

The above lemma can be applied to a certain natural class of metric spaces.

DEFINITION 3.5. A metric space (X, d) is called good provided that, for each
p∈X, there is a neighborhood Np of p with:

(1) Np is simply connected.

(2) Np is geodesically convex i.e., for each y, z∈Np and for each geodesic γ join-
ing y to z with �(γ )=d(y, z), the trace of γ is contained in Np.

Remark 3.6. If (X, d) is a Riemannian manifold then (X, d) is good; this follows
from the existence of normal neighborhoods. More generally, any Finsler manifold
is good (this is due to J. H. C. Whitehead [22]; the authors thank Z. Shen for
informing us of this result).

PROPOSITION 3.7. Let (X, d) be a good, compact, geodesic space with nontrivial
fundamental group. Then there is a loop γ such that
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(1) γ is not freely homotopic to a constant loop.

(2) For each loop γ ′ not freely homotopic to a constant loop, �(γ ′)��(γ )

Proof. Let L= inf{�(η)|η not freely homotopic to a constant loop} and let {γi}i∈N

be a sequence of loops, each of which is not freely homotopic to a constant
loop such that �(γi)→L. We first observe that, without loss of generality, we can
assume that γi is piecewise geodesic. Indeed, for a given γi , we can cover the trace
of γi with a finite collection of simply connected, geodesically convex neighbor-
hoods Nj , j = 1, . . . , k, since (X, d) is a good geodesic space. Pick tj , j = 1, . . . , k,
in S1 such that γj ([tj , tj+1])⊂Nj and replace γj |[tj , tj+1] by a geodesic lying in
Nj and joining γj (tj ) to γj (tj+1). Since Nj is simply connected, the new loop is
freely homotopic to the original γj , is piecewise geodesic, and it has length less
than or equal to �(γj ). Hence this new sequence of loops also has lengths tending
to L.

Now parametrize each of these loops with respect to arclength, scaled by �(γi),
and let M= sup{�(γi) : i∈N}. Note that M<∞, and that for all i, all x, y∈S1, we
have

d(γi(x), γi(y))��(γi)dS1(x, y)�MdS1(x, y).

Hence the family of curves {γi} is equicontinuous, and as X is compact, a subse-
quence (also denoted {γi}) converges to a closed loop γ∞.

CLAIM 1. γ∞ is freely homotopic to γi , for sufficiently large i.

Proof. The assumptions on X allow us to cover the trace of γ∞ by a finite
sequence of simply connected, geodesically convex neighborhoods Nj , j =1, . . . , k.
As before, choose tj , j = 1, . . . , k, in S1 such that γj ([tj , tj+1]) ⊂ Nj . Note
that, since γi → γ∞ uniformly, we can also have that, for i sufficiently large,
that γi([tj , tj+1]) ⊂ Nj . For each 1 � j � k, pick a geodesic ηj joining γ (tj ) to
γ∞(tj ). Let γ ji =γi |[tj , tj+1], γ j∞ =γ∞|[tj , tj+1]. Consider the closed loops (γ ij )

−1 ∗
(ηj+1)

−1 ∗γ j∞ ∗ηj , and observe that this closed loop lies entirely in Nj . Since Nj is
simply connected, this loop is contractible. Concatenating the homotopies on the
various pieces, we see that γ∞ is freely homotopic to γi , for i sufficiently large,
proving the claim.

Claim 1 implies:

(1) γ∞ is not freely homotopic to a constant loop.

(2) From the definition of L, we derive that �(γ∞)�L.

The rest of this proof is fairly standard. Replace γ∞ by a curve γ which is piece-
wise geodesic, with geodesics joining γ∞(tj ) and γ∞(tj+1). As before, γ is freely
homotopic to γ∞, hence �(γ )�L.
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CLAIM 2. �(γ )=L.
Proof. Assume not. Then �(γ )>L. Let

ε= �(γ )−L
2k+1

>0.

Then there exists a positive integer i such that

(1) �(γj )−L<ε.
(2) d(γj (t), γ∞(t))<ε.

As before, set γ ji =γi |[tj , tj+1], γ j =γ |[tj , tj+1]. We have that

k∑

j=1

(
�(γ

j
i )+2ε

)
=�(γi)+2kε<L+ (2k+1)ε=�(γ )=

k∑

j=1

�(γ j ).

Hence there is j such that �(γ ji )+ 2ε < �(γ j ). But this contradicts the fact that
each γ j is a geodesic. Hence ��L. That completes the proof of Claim 2 and the
proposition.

Combining Lemma 3.4, Remark 3.6 and Proposition 3.7 we have:

COROLLARY 3.8. Let (X, d) be a good, compact, geodesic space with non-trivial
fundamental group. Then the roundness of X is equal to 1. In particular, a compact
non-simply connected Riemannian manifold has roundness 1.

Remark 3.9. Corollary 3.8 implies that, from the roundness point of view, the
most interesting Riemannian manifolds are the simply connected ones.

PROPOSITION 3.10. Let (X, d) be a CAT(0)-space. Then (X, d) has roundness 2.
Proof. Since CAT(0)-spaces have approximate midpoints ([1], Proposition 1.11),

the roundness of (X, d) is �2. Now we will show that the roundness is at least 2.
So let x00, x01, x10, x11 be four points in X. Proposition 1.11 in [1] implies that
there is a subembedding of the four points in R

2. More precisely, there are points
x00, x01, x10, x11 in R

2 such that d(xij , xk�)=d(xij , xk�), whenever (i, j) and (k, �)
are different in one coordinate, and d(xij , xk�)�d(xij , xk�) whenever they differ in
both coordinates. Thus

d(x00, x11)
2 +d(x01, x10)

2

�d(x00, x11)
2 +d(x01, x10)

2

�d(x00, x01)
2+d(x00, x10)

2+d(x11, x01)
2+d(x11, x10)

2

=d(x00, x01)
2 +d(x00, x10)

2+d(x11, x01)
2+d(x11, x10)

2

The second inequality holds because R
2, with the standard metric, has roundness 2.
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Roundness 2 imposes geometric and metric restrictions on the space.

PROPOSITION 3.11. Let (X, d) be a geodesic metric space of roundness 2. For any
two points A and B in X, there is a unique geodesic connecting them.

Proof. Assume that there are two geodesics between A and B. Let Mi , i= 1,2,
be the midpoints on the corresponding geodesics. Apply the roundness 2 inequal-
ity:

|M1M2|2 +|AB|2 � |AM1|2 +|M1B|2 +|AM2|2 +|M2B|2 =|AB|2,

where |xy| denotes the distance between the points x and y. The inequality above
immediately forces M1 =M2. Iterating this procedure we see that the two geodesics
coincide on a dense set of points, so that by continuity, they must coincide.

PROPOSITION 3.12. Let (X, d) be a proper geodesic space such that any pair of
points in X can be joined by a unique geodesic segment. Then X is contractible.

Proof. Let p ∈X be the base point, and let I denote the interval [0,1]. Define
F : X×I→X by letting F(q, t) to be the time-one reparametrization of the geode-
sic segment joining q to p. To show that F is continuous, let (q, t) be a point in
X×I and {(qn, tn)}n�1 a sequence of points that converges to (q, t). If F fails to
be continuous at (q, t), then there exists a subsequence, also denoted {F(qn, tn)}n�1

with d(F (qn, tn),F (q, t))� ε, for all n, for some ε > 0. We also obtain that, since
F(qn, tn) lies on a geodesic joining qn to p:

d(p,F (pn, tn))� sup
n

{d(p, qn)}.

Since {qn} converges to q, the supremum on the right is bounded, hence the points
F(qn, tn) lie in some closed ball of radius R at p. The properness of the metric
of X ensures that there is a convergent subsequence of {F(qn, tn)}n�1. After re-
parametrizing we assume that

lim
n→∞F(qn, tn)= z �=F(q, t).

Set S={qn |n∈N} with the metric induced from X.

CLAIM. Under the above hypotheses, d(p, z) = d(p,F (q, t)) and d(q, z) =
d(q,F (q, t)).

Proof. The continuity of the distance function implies that the function

d(p,−): S→R

is continuous. Notice that d(p,F (q, t))= td(p, q). Thus the continuity of multipli-
cation implies that

φ=d(p,F (−,−)): S×I→R
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is also continuous. Continuity of φ along with the fact that {(qn, tn)}n�1 converges
to (q, t) implies that

lim
n→∞φ(qn, tn)=φ(q, t)⇒ lim

n→∞d(p,F (qn, tn))=d(p,F (q, t))
⇒d(p, lim

n→∞F(qn, tn))=d(p,F (q, t))⇒d(p, z)=d(p,F (q, t)).

As before, the function

ψ=d(q,F (−,−)):S×I→R

is continuous. Then

lim
n→∞ψ(qn, tn)=ψ(q, t)⇒ lim

n→∞d(q,F (qn, tn))=d(q,F (q, t))
⇒d(f (q), lim

n→∞F(qn, tn))=d(q,F (q, t))⇒d(q, z)=d(q,F (q, t)).

This proves the claim.
Using the Claim, one can find a path η joining p to q by concatenating the

unique geodesic from p to z and the unique geodesic from z to q. The Claim
shows that the length of η is

�(η)=d(p,F (q, t))+d(F (q, t), q)=d(p, q).

The last equality follows because F(q, t) is a point on the geodesic joining p to q.
Since �(η) is equal to the distance between its two end-points, η is a geodesic. Since
z belongs to the unique geodesic from p to q, z must lie on η, and the Claim forces
z=F(q, t). This contradicts the fact that d(F (qn, tn),F (q, t))� ε>0, for all n.

4. Roundness Properties of Groups

In this section we look at the geometric properties of Cayley graphs of finitely gen-
erated groups. The graphs will be considered as discrete metric spaces equipped
with the combinatorial distance. In the remainder of this paper, we will consider
finite, symmetric (i.e., g∈�⇒g−1 ∈�) generating sets � which do not contain the
identity. Note that if the group G does not contain any elements of order 2, then
the generating sets of G have even cardinality. For a 4-tuple of points w,x, y, z
in a metric space X, we use the notation [w,x, y, z] to denote the 1-double sim-
plex whose diagonals are {w,y} and {x, z}. By the roundness of a 1-double simplex
we will mean the supremum of exponents for which the roundness inequality holds
for that specific 1-double simplex. This of course provides an upper bound for the
roundness of the space X. We will similarly use the term generalized roundness of
a n-double simplex to refer to the supremum of exponents for which the general-
ized roundness inequality holds for that specific n-double simplex.

The following is well known ([17], Proposition 2). We outline the proof for com-
pleteness.
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Figure 1.

PROPOSITION 4.1. Let X be an R-tree. Then the roundness of X is 2.
Proof. Geodesics in R-trees have midpoints. So the roundness of X is �2. Now,

any four points in an R-tree have a convex hull as in Figure 1.
There are two cases to be considered. One is the quadrilateral [A,B,C,D] and

the other is the quadrilateral [A,C,B,D]. Direct calculation shows that in both
cases the inequality holds for p= 2. It is also easy to see that the only time that
equality holds is if the points A, B, C and D are colinear in that order and
d(A,B)=d(C,D). Then the quadrilateral [A,B,C,D] has roundness 2.

COROLLARY 4.2. The Cayley graph of a nontrivial free group with the standard
set of generators has roundness 2. Also the Cayley graph of the free product of
finitely many copies of the cyclic group of order 2 has roundness 2.

Remark 4.3. The generalized roundness of a tree is � 1: in [5], Example 19.1.4,
it is shown that finite trees can be isometrically embedded into the cube of
a finite �1-space. Notice that any n-double simplex in the tree will be embed-
ded isometrically into an �1-space. Thus it will have generalized roundness �
1. Since the roundness of the tree is 2, the generalized roundness is between
1 and 2.

Remark 4.4. Roundness is not an invariant of quasi-isometries of metric spaces:
let Cay(F2, {x, y}) be the Cayley graph of the standard presentation of the free
group F2 on two generators x and y. Then G is a tree and thus it has roundness
2. We will give a different presentation of F2:

F2 =〈x, y, z1, z2, z3, z4 : z1 =x−1y, z2 =xy, z3 =xy−1, z4 =x−1y−1〉.

Then in the new Cayley graph Cay(F2,�) there is a quadrilateral as in Figure 2.
The lengths of the sides is 1 and the diagonals have length 2. That implies that

the roundness of Cay(F2,�) is equal to 1. But Cay(F2, {x, y}) and Cay(F2,�) are
quasi-isometric as they are Cayley graphs of the same group.

We suggest another invariant that comes closer into being a quasi-isometry
invariant, at least for infinite groups.
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Figure 2.

DEFINITION 4.5. Let G be a finitely presented discrete group. The roundness
spectrum of G is defined as

ρ(G)={ρ(Cay(G,�)) : � a generating set forG}.

Remark 4.6. (1) In general, ρ(G)⊆ [1,∞].
(2) In Remark 4.4, we have shown that ρ(F2)⊇{1,2}. If we use the presentation

F2 =〈x, y, z : z=y−1x〉,
then the roundness of the Cay(F2,�) is � ln3/ln2; the authors suspect that the
previous inequality is actually an equality.

PROPOSITION 4.7. Let G be an infinite, finitely generated group. Then ρ(G)⊂
[1,2].

Proof. Let � be a finite presentation of G. Assume that Cay(G,�) con-
tains three points, x, y, and z, such that d(x, y)= d(y, z)= 1, d(z, x)= 2. Then
ρ(Cay(G,�))�2 because y is the midpoint of x and z. If there is no such triple,
then the triangle inequality implies that, for all triples x, y, z,

d(x, y)=d(y, z)=1 �⇒ d(z, x)=1.

Therefore, if g and h are generators so is gh. That implies �=G, a contradiction,
since � is finite and G is infinite.

Remark 4.8. The previous result is not true for finite groups. For a finite group
G, let G be the set of generators. The Cayley graph of this presentation is a finite
complete graph. But the roundness of a complete finite graph is ∞. So the round-
ness spectrum of a finite group always contains ∞.
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Actually, the example in the Remark 4.4 suggests a way of constructing Cayley
graphs for almost any group whose roundness is 1.

PROPOSITION 4.9. Let G be a finitely generated group, containing two elements x
and y with the property that:

(1) x and y do not have order 2.

(2) x �=y±1.

(3) x3 �=y±1 and y3 �=x±1.

Then 1∈ρ(G).
Proof. Let � be a finite symmetric set of generators of G. Include x and y in

the set of generators. If x2 or y2 belong to �, then remove those generators. Also,
include the generators and relations:

z1 =x−1y, z2 =xy, z3 =xy−1, z4 =x−1y−1.

Let G be the Cayley graph in the new presentation. The quadrilateral [x, y, x−1, y−1]
has all vertices distinct (by (1) and (2)), and the edges all have length 1, since we
added zi , i = 1, . . . ,4, as generators. The diagonals d1 = [x, x−1] and d2 = [y, y−1]
have length two. That is because x2 and y2 do not belong to the generating set and
Conditions (2) and (3) ensure that x±2, y±2 are not equal to zi , i= 1, . . . ,4. This
4-point configuration implies that the roundness is 1.

COROLLARY 4.10. Assume G is a finitely generated group with 1 /∈ρ(G). Then G
is a torsion group with every element of order 2, 3, 5 or 7.

Proof. Let g ∈ G have order n bigger than or equal to 7. A simple count-
ing argument shows that in 〈g〉, there exists an element g′ such that g′ �∈
{g, gn−1, g3, gn−3} and (g′)3 �=g±1. Then the pair {g, g′} satisfies the conditions of
Proposition 4.9.

Let G contain an element g of order 4. Then include g in the generating set of
G. If g2 or g4 are in the generating set then delete them from the generating set.
Then the quadrilateral [1, g, g2, g3] has roundness 1. That is because from the con-
struction the edges have length 1 and the diagonals have length 2.

If G contains an element g of order 6, include g in the generating set. Delete
any generator from the original set which is a power of g. Then {g, g2} satisfies
the conditions of Proposition 4.9.

Remark 4.11. An argument identical to that of Proposition 4.9 and Corollary
4.10 implies that if a graph G has minimal cycles of length different from 3, 5 and
7, then the roundness of G is 1.
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Let Z
2 denote the free Abelian group on two generators. We will consider Z

2 as
the integral lattice in R

2 and we will use coordinates to denote elements of Z
2. Let

�i= (1,0), �j = (0,1) denote the standard basis of Z
2.

THEOREM 4.12. If � is a generating set for Z
2, then the Cayley graph G� of

(Z2,�) has roundness 1. In other words, ρ(Z2)={1}.
Proof. Before starting the proof we make two simple observations:

(1) If � is a finite, symmetric generating set for the group G, and φ∈Aut(G), then
there is a canonical isometry between Cay(G,�) and Cay(G,φ(�)); in fact, φ
induces the isometry.

(2) If � is a finite symmetric generating set for Z
2, and there exist g and h in �

(g �=±h) with g±h /∈�, then [0, g, g+h,h] is a 4-tuple with roundness equal to 1.

We will consider cases depending on |�|.
Case 1. |�| = 4. Then � = {±u,±v} where u, v ∈ Z

2 are linearly independent.
Observation (2) immediately applies, hence the roundness of G� equals 1.

Case 2. |�|=6. If � is not of the form {±u,±v,±(u+v)}, then Observation (2)
applies and we are done. Hence assume that � is of the form above, and observe
that {±u,±v} ⊆� is already a generating set for Z

2. But we know that Aut(Z2)

acts transitively on pairs of generating elements. Hence from Observation (1), it is
sufficient to compute the roundness of G� where

�={±�i,±�j,±(�i+ �j)}.

We will show that roundness is 1 by contradiction. Assume that the roundness is
equal to p>1. Consider the quadrilateral with vertices (0,0), (0,1), (n,0), (n,1).
Then:

(n+1)p+np�np+np+1p+1p �⇒ (n+1)p−np�2.

But, taking limits, and noting that p>1,

lim
n→∞[(n+1)p−np]=∞.

So there is n∈N, such that (n+1)p−np >2. Contradiction.
Case 3. |�|=2k�8. Theorem 7.1 (proved in the Appendix) implies that � con-

tains two elements u and v (u �=±v) with u±v /∈�. Hence Observation (2) applies
and we are done.

This concludes the argument for Theorem 4.12.

The proof of Theorem 4.12 can be modified to work for any finitely generated
free Abelian group.
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THEOREM 4.13. If � is a generating set for Z
n (n� 2), then the Cayley graph

G� of (Zn,�) has roundness 1. In other words, ρ(Zn)={1} whenever n�2.
Proof. In Theorem 4.12, the case n= 2 has been dealt with, so we assume that

n�3. As it was already observed in the proof of Theorem 4.12, if there is a pair u,
v in � with u �=±v and u±v /∈�, the quadrilateral [0, u, u+v, v] has roundness 1
forcing the roundness of the Cayley graph to be 1. Hence if we have a generating
set � such that the roundness of G� is not 1, then � has the property

for each u, v∈�,u �=±v, either u+v∈� or u−v∈� (∗)

If u and v are two linearly independent elements in �, they span a subgroup of
Z
n that is isomorphic to Z

2. Furthermore, the set �=�∩〈u, v〉 also satisfies prop-
erty (∗). But the argument in Theorem 7.1 shows that any generating set of Z

2

having property (∗) has cardinality 6 and it has (up to relabeling) the form �=
{±u,±v,±(u±v)}. Hence the generating set � has the stronger property

for all u, v∈�, {u, v} linearly independent, either u+v∈� or u−v∈�
but not both. (∗∗)

Since n� 3, � contains at least three linearly independent elements u, v and w.
Using Property (∗∗) we see that, up to relabeling, there are two possible cases:

Case 1. u+v∈�, u+w∈�, v−w∈�.

Case 2. u+v∈�, u+w∈�, v+w∈�.

We now discuss each case separately.
Case 1. Since u+v∈�, w∈�, Property (∗∗) implies that either u+v+w∈� or

u+v−w∈� but not both.
Let us assume that u+ v+w∈�. Since u+w∈�, v ∈�, Property (∗∗) implies

that u− v+w /∈�. Since u∈�, v−w∈� property (∗) again forces u+ v−w∈�.
But now we have that u+v∈�, w∈� and both (u+v)±w∈�, contradicting (∗∗).

On the other hand, if u+ v−w ∈�, since u+ v ∈�, w ∈�, (∗∗) implies that
u+ v+w /∈�. As u+w ∈�, v ∈�, (∗∗) forces u− v+w ∈�. But now we have
u∈�, v−w∈�, and both u±(v−w)∈�, contradicting (∗∗). Thus Case 1 cannot
occur.

Case 2. In this case, we claim that the assumption implies that � must contain
nu+nv+ (n−1)w, nu+ (n−1)v+nw, (n−1)u+nv+nw for infinitely many n∈N.
If this were the case, linear independence of u, v and w implies that all these ele-
ments are distinct, contradicting the finiteness of �.

We show the Claim by recursion on n. The fact that this triple of vectors with
n=1 lie in the generating set follows from the hypotheses for Case 2. Notice that
if � contains nu+nv+ (n− 1)w, nu+ (n− 1)v+nw, and (n− 1)u+nv+nw, then
it must contain the elements

2nu+ (2n−1)v+ (2n−1)w, (2n−1)u+2nv+ (2n−1)w,

(2n−1)u+ (2n−1)v+2nw.
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To see this observe that (∗∗) along with the hypotheses for Case 2 implies that u−
v, u−w and v−w are not in �. The hypotheses along with (∗∗) and

[nu+nv+ (n−1)w]− [nu+ (n−1)v+nw]=v−w /∈�
⇒ [nu+nv+ (n−1)w]+ [nu+ (n−1)v+nw]=2nu+ (2n−1)v+ (2n−1)w∈�

One applies the same reasoning to obtain the other two elements. So we obtain
that indeed:

nu+nv+ (n−1)w ∈ �
nu+ (n−1)v+nw ∈ �
(n−1)u+nv+nw ∈ �




 �⇒





2nu+ (2n−1)v+ (2n−1)w ∈ �
(2n−1)u+2nv+ (2n−1)w ∈ �
(2n−1)u+ (2n−1)v+2nw ∈ �

But now for this second set of elements of �, we see that the three differences are
u−v, u−w, and v−w are not in �, hence their sums must be in �; so we have:

nu+nv+ (n−1)w ∈ �
nu+ (n−1)v+nw ∈ �
(n−1)u+nv+nw ∈ �




 �⇒





(4n−1)u+ (4n−1)v+ (4n−2)w ∈ �
(4n−1)u+ (4n−2)v+ (4n−1)w ∈ �
(4n−2)u+ (4n−1)v+ (4n−1)w ∈ �

Finally, observe that for n∈N, 4n−1>n. We conclude that

nu+nv+ (n−1)w ∈ �
nu+ (n−1)v+nw ∈ �
(n−1)u+nv+nw ∈ �




 for n=1,3,11,43,171, . . .

giving the desired contradiction in Case 2.
As we obtain a contradiction in all case, we conclude that there is no finite sym-

metric generating set � having property (∗), and hence G� has roundness 1.

COROLLARY 4.14. Let � be a finite generating set of Z
n. Then the Cayley graph

G� has generalized roundness �1.

Remark 4.15. The attentive reader might wonder whether there is a simpler
proof for Theorem 4.13, and indeed might be tempted to argue as follows. Take
a pair of linearly independent vectors from the generating set for Z

n, and consider
the Z

2 subgroup they generate. From Theorem 4.12, this subgroup has generalized
roundness = 1, hence there are configurations in the subgroup whose roundness
is =1, which would force the roundness of Z

n to likewise be =1. The problem with
this approach is that the distance on the Z

2 subgroup induced by the ambient Z
n

might not, à priori, be isometric to a Cayley graph of Z
2. In fact, this approach

can be tweaked to give an easy proof in most cases. As long as there is a pair
of linearly independent vectors u, v∈� with the property that |〈u, v〉∩�| �=6, the
argument outlined above can be modified to work.
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5. Generalized Roundness and Baum–Connes Conjecture

Generalized roundness is connected with the existence of negative kernels which
are used in proving certain forms of the Baum–Connes Conjecture.

DEFINITION 5.1. Let X be a set. A real valued function h on X×X is called a
negative kernel provided that

(1) h(x, x)=0, for all x ∈X.

(2) h(x, y)=h(y, x), for all x, y ∈X.

(3) For all n-tuples x1, x2, . . . , xn in X and a1, a2, . . . , an in R satisfying∑n
i=1 ai =0, we have that

n∑

i,j=1

aiajh(xi, xj )�0.

In [16], it was shown that

PROPOSITION 5.2. In a metric space X, the pth power of the distance function is
a negative kernel if and only if it has generalized roundness �p.

An immediate application of the above result is to the generalized roundness of
Kazhdan groups [3,4].

PROPOSITION 5.3. Let � be a finite generating set for an infinite Kazhdan group
G and G� the corresponding Cayley graph. Then the generalized roundness of G�
is 0.

Proof. Assume that the generalized roundness of G� is p>0. Then by Proposi-
tion 5.2 we have that dp� : G×G→R is a negative kernel. Define 
p: G→R by


p(g)=dp�(g, e).

Then by the left invariance of the metric on G� , we get that dp�(x, y)=
p(x−1y).
Furthermore, observe that if zj ∈ C, j = 1, . . . , n satisfy

∑n
j=1zj = 0, then for any

collection of n elements gj of G, an easy computation yields that:

n∑

j,k=1

zj zkd
p
�(gj , gk)�0.

Since G is Kazhdan, this implies that 
p is bounded (see Delorme [4]). But p>0
and G is infinite, hence we obtain a contradiction.

To apply the above to the coarse Baum–Connes conjecture we need the follow-
ing definition:
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DEFINITION 5.4. Let X, Y be a pair of metric spaces. A (not necessarily con-
tinuous) map f :X → Y is a coarse embedding if there are nondecreasing proper
function ρ±: [0,∞)→ [0,∞) such that:

ρ−(dX(x, y))�dY (x, y)�ρ+(dX(x, y)), for all x, y ∈X,

and with limt→∞ ρ−(t)=∞. Of particular interest is the case where Y is a Hilbert
space, with distance induced by the norm. A discrete metric space X is said to
have bounded geometry, provided that for every r >0, there exists a uniform upper
bound N(r) on the cardinality of the metric balls of radius r.

Note that a composition of coarse embeddings is still a coarse embedding. Fur-
thermore, if � is a finitely generated group, then the identity map provides a coarse
embedding from any Cayley graph of � to any other Cayley graph of �. Hence if
one Cayley graph coarsely embedds into Hilbert space, they all coarsely embedd
into Hilbert space. In this situation we will say that the group � coarsely embed-
ds into Hilbert space, and ignore any reference to a Cayley graph.

Now Yu ([23]) has shown that discrete metric spaces with bounded geometry
that are coarsely embeddable into a Hilbert space satisfy the coarse Baum–Connes
conjecture. In particular, since Cayley graphs of finitely generated groups have
bounded geometry, if a finitely generated group coarsely embedds into Hilbert
space, then the coarse Baum–Connes Conjecture holds for the space, and hence the
strong Novikov conjecture holds for the group in question (see [23]). Recall that
the strong Novikov conjecture asserts the injectivity of the classical assembly map
for topological K-theory, and implies (amongst other things) the original Novikov
conjecture: that the higher signatures are homotopy invariants.

THEOREM 5.5. Let � be a finitely generated group, and assume that � coarsely
embedds into a metric space X with generalized roundness p > 0. Then � coarsely
embedds in Hilbert space. In particular, � must satisfy the coarse Baum–Connes con-
jecture, and hence the strong Novikov conjecture.

Proof. We start by observing that, since X has generalized roundness p>0, the
pth power of the distance function is a negative kernel. Next we recall that a clas-
sic result of Schoenberg [20] states that given a negative kernel h on a set X, there
exists a map f : X→ H into a Hilbert space H with the property that h(x, y)=
||f (x)− f (y)||2. So in our setting, there exists a map f : X→ H with the prop-
erty that dpX(x, y)= ||f (x)−f (y)||2 for all x, y ∈X. In particular, the map f is a
coarse embedding, with ρ−(t)=ρ+(t)= tp/2. Since � coarsely embedds into X by
hypothesis, the composition yields the desired coarse embedding into H.

Two special cases are worth pointing out. Note that an isometric embedding
is a coarse embedding, and a quasi-isometric embedding is also a coarse embed-
ding. Furthermore, if a group acts properly discontinuously, cocompactly, freely,
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and isometrically, on a space X, then � and X are quasi-isometric. This immedi-
ately yields:

COROLLARY 5.6. Let � be a finitely generated group, X a metric space with gen-
eralized roundness >0, and assume that either of the following holds:

(1) a Cayley graph of � isometrically embedds into X, or

(2) � acts properly discontinuously, cocompactly, with finite stabilizers, by isometries
on X.

Then � is coarsely embeddable into Hilbert space. In particular, � must satisfy the
coarse Baum–Connes conjecture, and hence the strong Novikov conjecture.

Note that a special case of the above corollary is the situation where some
Cayley graph of � has generalized roundness > 0. To obtain some further exam-
ples, we note that in [16], it was proved that the Banach spaces Lp(µ) (with 1 �
p�2) have generalized roundness �p. Hence we have

COROLLARY 5.7. Assume that the Cayley graph of a group � admits an isometric
embedding into an Lp(µ) space with 1 �p� 2. Then � satisfies the coarse Baum–
Connes conjecture and thus the strong Novikov conjecture.

We point out that a somewhat more general version of Corollary 5.7 can be
found in the work of Nowak [18]. We also mention that in the book by Deza–
Laurent ([5], Chapter 19), conditions are given for graphs to be embeddable into
an �1-space. A natural question to ask is whether a converse to Corollary 5.6 can
hold. Our next result is a partial counterexample to the converse:

PROPOSITION 5.8. There exists a group � which is coarsely embeddable into Hil-
bert space, but fails to satisfy the hypotheses in Corollary 5.6.

Proof. In Proposition 5.3, we showed that all Cayley graphs of finitely generated
Kazhdan groups have generalized roundness = 0. In particular, if � is a uniform
lattice in Sp(n,1) or F4(−20), then � is Kazhdan (see [3]) and, hence, every Cayley
graph of � has generalized roundness =0. This implies that � cannot be isometri-
cally embedded into any space X with generalized roundness >0 and, hence, fails
to satisfy hypothesis (1) in Theorem 5.7.

Next note that if � satisfies hypothesis (2) in Theorem 5.7, then picking a point
x ∈X, one can define a new distance d� on � by setting d�(g, h) :=dX(g ·x,h ·x).
Note that this distance is left-invariant under the natural � action on itself. Fur-
thermore, with this distance, the map φ: �→X given by φ(g)=g ·x is an isometric
embedding, and hence d� must have generalized roundness >0. But now the argu-
ment given in Proposition 5.3 applies verbatim and yields a contradiction.
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Finally, we note that � acts isometrically on a quaternionic hyperbolic space or
on the Cayley hyperbolic plane, hence � is δ-hyperbolic. But Sela [21] has proved
that δ-hyperbolic groups uniformly embedd into Hilbert space, giving the desired
result.

Let us point out that a consequence of work of Faraut–Harzallah [10] implies
that the generalized roundness of quaternionic hyperbolic spaces and of the Cayley
hyperbolic plane is =0. Note however that this does not, à priori, imply our Prop-
osition 5.3 for uniform lattices in Sp(n,1) or F4(−20). Indeed, the difficulty again
lies in that generalized roundness is not well behaved with respect to coarse em-
beddings.

We conclude this section by pointing out that Gromov [13] has established the
existence of finitely generated groups whose Cayley graph cannot be uniformly
embedded into Hilbert space. An immediate consequence of Corollary 5.7 is the
following:

COROLLARY 5.9. The groups constructed by Gromov in [13] cannot:

(1) have a Cayley graph that isometrically embedds into a space of generalized
roundness >0,

(2) act properly discontinuously, cocompactly, with finite stabilizers, by isometries on
a space with generalized roundness >0.

6. Open Problems

The calculations presented in this paper suggest a few of questions related to
roundness and generalized roundness.

QUESTION. Is every CAT(0) space coarsely equivalent to a space with positive
generalized roundness?

Using Theorem 5.5, a positive answer to this question would imply the coarse
Baum–Connes Conjecture for groups acting properly discontinuously, freely and
cocompactly by isometries on CAT (0)-spaces. Note that while the Novikov Con-
jecture is known for these groups [2,11], the coarse Baum–Connes is still open.

Concerning compact Riemannian manifolds, one can ask:

QUESTION. Does every compact Riemannian manifold contain a globally mini-
mizing closed geodesic? Do they always have roundness =1?

We have answered both questions (see Proposition 3.7) for compact Riemannian
manifolds with nontrivial fundamental group. If the answer to the first question
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were affirmative in general, our Proposition 3.1 would imply that all compact Rie-
mannian manifolds have roundness =1.

In view of the fact that one of our main results is the computation of the round-
ness of Cayley graphs of finitely generated free Abelian groups, it is natural to ask:

QUESTION. What is the generalized roundness of a Cayley graph of Z
n?

And more generally, for the application to the Novikov conjecture, we can ask:

QUESTION. Which finitely generated groups have a Cayley graph with positive
generalized roundness?

It is clear from this paper that many of the difficulties in working with round-
ness and generalized roundness arise from the fact that these metric invariants are
not coarse invariants. The authors believe that the development of coarse ana-
logues of roundness and generalized roundness would be useful. The main hope
would be that such a generalization would allow the results in Theorem 5.5 to
apply to a broader class of groups.

7. Appendix

We will show the combinatorial result used in the proof of Theorem 4.12. As
before, let Z

2 denote the free Abelian group on two generators. Also, we embed
Z

2 as the integral lattice in R
2 and we will use coordinates to denote elements of

Z
2. Let �i= (1,0), �j = (0,1) denote the standard basis of Z

2. Let ‖−‖ denote the
usual norm on R

2.

THEOREM 7.1. Given a finite symmetric generating set � with |�|�8, then there
is a pair g and h in �, such that g±h /∈�.

Proof. Let � be a minimal generating set of cardinality bigger than or equal to
8, that satisfies property (∗):

for each g,h∈�,g �=±h, either g+h∈� or g−h∈� (∗)

Then for any pair α, β of linearly independent elements of � we have that either

(1) 〈α,β〉=Z
2 or

(2) |�∩〈α,β〉|=6.

Indeed, if 〈α,β〉 does not generate all of Z
2, then it generates a proper subgroup

(isomorphic to Z
2) and, hence, |�∩〈α,β〉|< |�|. But the subset |�∩〈α,β〉| is a gen-

erating set for the subgroup 〈α,β〉 (which is abstractly a Z
2), and inherits the prop-

erty (*). By minimality of the cardinality of �, this implies that |�∩〈α,β〉|=6.
Notice that in case (2) above, we have that either α+β ∈�, or α−β ∈�, but

not both. We now break up the argument into cases.
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(i) Assume that � contains two elements that generate Z
2. Then, after applying

an element of SL(2,Z), we may assume that �i and �j and �i+ �j are in �.
(i.a) Assume that � contains a vector �v= (v1, v2) such that min{|v1|, |v2|}> 2.

We will show the proof when �v is in the first quadrant. The other cases follow sim-
ilarly. Notice that the pair {�i, �v} is a linearly independent subset but it does not
generate Z

2, since |v− 2|> 2. The same true is for the pair { �j, �v}, since |v1|> 2.
Thus the two pairs satisfy condition (2). Therefore either �i+ �v∈� or �i− �v∈� but
not both. Choose �v to have maximal norm among all elements of � with both
coordinates bigger than 2. Since ‖�v+�i‖> ‖�v‖, and ‖�v+ �j‖> ‖�v‖ the maximality
of ‖�v‖ implies that �v−�i∈�, and �v− �j ∈�. Now consider the pair {�v−�i, �v− �j}. It
is a linearly independent subset and it does not generate Z

2. Hence, either (�v−�i)+
(�v− �j)∈�, or (�v−�i)− (�v− �j)∈�, but not both. Since ‖(�v−�i)+ (�v− �j)‖>‖�v‖, the
maximality of ‖�v‖ implies that (�v−�i)− (�v− �j)= �j −�i ∈�. Again { �j −�i, �v} are lin-
early independent and they do not generate Z

2, so the sum or the difference, but
not both are in �. Assume, without loss of generality, that �v+ ( �j −�i)∈�. Then

�v− ( �j −�i) /∈�. (#)

Since {�v−�i, �j} are linearly independent, do not generate Z
2, and their sum is in

�, their difference is not:

�v−�i− �j /∈�. (##)

So {�v− �j,�i} are linearly independent, do not generate Z
2, and both (�v− �j)+�i /∈�

(by #) and (�v− �j)−�i /∈� (by ##), a contradiction.
(i.b) Assume that there is �v= (v1, v2) in � with |v1| maximal and bigger than 2.

We assume v1>0, the case v1<0, follows from an identical argument. Since �v+ �j
or �v− �j belongs to �, we may assume v2 �=0.

Case 1. Let v2>0. Choose �v so that |v1| is maximal and bigger than 2, and v2

is positive and maximal. Then we have

�v−�i ∈� (maximality of v1, and v1>0),

�v− �j ∈� (maximality of v2 amongst �v with v1 maximal),

�v−�i− �j ∈� (maximality of v1 and {�v,�i+ �j}⊂� with v1 maximal).

Since �v− �j and �j are linearly independent, do not generate Z
2 and �v∈�, �v−2 �j /∈

�. Also, since �v−�i − �j and �j are linearly independent, do not generate Z
2 and

�v−�i ∈�, �v−�i−2 �j /∈�. But since �v− �j ∈�, �i+ �j ∈� are linearly independent and
do not generate Z

2 we have

either: (�v− �j)− (�i+ �j) = �v−�i−2 �j ∈�
or: (�v− �j)+ (�i+ �j) = �v+�i ∈�

But, as explained before, the first case could not occur. Thus �v+�i ∈�, contradict-
ing the maximality of v1.



158 JEAN-FRANÇOIS LAFONT AND STRATOS PRASSIDIS

Case 2. We assume, as before, that �v∈� with v1>0 maximal and bigger than 2
and v2<0. As in Case 1, �v+ �j ∈� from the minimality of v2. As in Case 1 again,
This forces �v− �j /∈� (minimality of v2) and �v−2�i− �j ∈� because {�v−�i− �j,�i} are
linearly independent, do not generate Z

2 and �v− �j /∈�. Hence both (�v−�i)±(�i+
�j)∈�. However, these are linearly independent and do not generate Z

2, contra-
diction.

(i.c) The same argument shows that we can also exclude the case |v2|>2. Also,
� is invariant under taking negatives. That is we need to exclude the following
points:

(2,±1), (2,±2), (2,0), (1,2), (1,−1), (2,1), (0,2), (−1,2).

We just consider each case separately:

(a) Assume that �v= (2,2)∈�. Then, (2,1) and (1,2) are in �. Since the sum of
the last two vectors is not in �, (2,1)− (1,2)= (1,−1)∈�. But then �v+〈1,−1〉
or �v+ (1,−1) must be in �. Contradiction because one of the coordinates is
greater than 2.

(b) Assume that �v= (1,2)∈�. Then, (0,2) is in �. Since (1,1) is in �, (−1,1) is
in �, which implies that (2,1) is in �. By (a), (2,1)+ �j �∈�, we get (2,0) is in
�. Since (1,1) and (−1,1) are in � and do not generate Z

2 then only one of
(1,1)± (−1,1) can be in �. That is a contradiction, because both (2,0) and
(0,2) are in �.

(c) In all the other cases, it is easy to see that (−1,1)∈�. By applying the matrix

A=
(−1 0

0 −1

)

we can exclude (−1,2) (−2,2) (corresponding to cases (a) and (b) above). That
implies that (0,2) /∈�, because (0,2)±�i /∈�, from the previous cases. Also, (2,1)
can be excluded because (2,1)±�j /∈�. All the other cases can be excluded similarly,
except when (−1,1)∈�. If (−1,1)∈� then (−1,1)±(1,1) /∈�, from the previous
cases.

(ii) Assume that no two elements of � generate Z
2. Let −→x and −→y be two lin-

early independent elements of �. Then, after applying an element of SL(2,Z) we
can assume that m�i and n �j belong to �. If neither of the vectors m�i±n �j are in
�, then we are done. So let us assume that m�i+n �j ∈�.

We now define three sets of points in Z
2:

• Lx consists of the integral points lying on the lines y=0, y=±n, y=±2n,
• Ly consists of the integral points lying on the lines x=0, x=±m, x=±2m,
• Lxy consists of the integral points lying on the lines y= (n/m)x, y= (n/m)x±n,
y= (n/m)x±2n.

Note that these subsets have the property that all of their pairwise intersections lie
in the subgroup of Z

2 generated by the pair (m�i, n �j). This implies that the gener-
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ating set � must contain some vector �v with the property that �v /∈ (Lx ∩Ly)∪ (Lx ∩
Lxy)∪ (Ly ∩Lxy). But now from basic set theory, we can conclude that �v /∈ (Lx ∪
Ly)∩ (Lx ∪Lxy)∩ (Ly ∪Lxy). Hence the vector �v fails to lie in one of the pairwise
intersection. At the cost of applying an automorphism of Z

2, we may assume that
we have a �v∈� satisfying �v /∈Lx ∪Ly .

But now observe that the argument in Case (i.a) works equally well in this set-
ting. Indeed, the fact that �v /∈Lx ∪Ly implies that all of the vectors �v+ (ε1m�i)+
(ε2n �j) are linearly independent from both m�i and n �j , where each εi ∈{0,±1,±2}.
In particular, carrying out the argument in Case (i.a) but replacing each �i, �j in
that argument by m�i, n �j , we still have linear independence at all the required steps.
Hence we again obtain a contradiction. This concludes the proof of Theorem 7.1.
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