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Abstract. Let X denote a projective variety over an algebraically closed field on which
a linear algebraic group acts with finitely many orbits. Then, a conjecture of Soergel
and Lunts in the setting of Koszul duality and Langlands’ philosophy, postulates that
the equivariant derived category of bounded complexes with constructible equivariant
cohomology sheaves on X is equivalent to a full subcategory of the derived category of
modules over a graded ring defined as a suitable graded Ext . Only special cases of this
conjecture have been proven so far. The purpose of this paper is to provide a proof of this
conjecture for all projective toroidal imbeddings of complex reductive groups. In fact, we
show that the methods used by Lunts for a proof in the case of toric varieties can be
extended with suitable modifications to handle the toroidal imbedding case. Since every
equivariant imbedding of a complex reductive group is dominated by a toroidal imbedding,
the class of varieties for which our proof applies is quite large.

We also show that, in general, there exist a countable number of obstructions for this
conjecture to be true and that half of these vanish when the odd dimensional equivariant
intersection cohomology sheaves on the orbit closures vanish. This last vanishing condition
had been proven to be true in many cases of spherical varieties by Michel Brion and the
author in prior work.
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1. Introduction

This paper concerns a variant of a conjecture attributed to Soergel and Lunts
(see [So98], [So01], [Lu95]) for the action of linear algebraic groups on projective
varieties with finitely many orbits and over any algebraically closed field k. Let X
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denote such a projective variety provided with the action of a linear algebraic group
G. Recall that a sheaf F on X is equivariant, if it satisfies the following condition:
let µ, pr2 : G×X→ X denote the group-action and projection to the second factor,
respectively. Then there is given an isomorphism φ : µ∗(F ) → pr∗2(F ) satisfying
a co-cycle condition on further pull-back to G × G × X, and which reduces to
the identity on pull-back to X by the degeneracy map x 7→ (e, x). The conjecture
asserts that the equivariant derived category Db

G,c(X) of complexes of sheaves with
bounded, equivariant and constructible cohomology sheaves is equivalent to a full
subcategory of the derived category of differential graded-modules over a certain
differential graded algebra defined as a graded Ext ring.

More precisely, the conjecture states the following. Let Cb
G.c(X) denote the

category of complexes on a suitable Borel construction EG×
G

X associated to X,

and with bounded constructible G-equivariant cohomology sheaves. Let Li denote
the equivariant intersection cohomology complex on the closure of a G-orbit on X,
obtained by perverse extension of an irreducible G-equivariant local system on the
corresponding orbit. We will next replace each such Li by a complex of injective
sheaves in CbG.c(X) upto quasi-isomorphism and fixed throughout the paper, but
will continue to denote the corresponding complex of injective sheaves by Li itself.
Let L =

⊕
i Li and let B = BG(X) = Hom(L,L) (= RHom(L,L)) denote the

differential graded algebra where the multiplication is given by composition, and
where the Hom is computed in CbG,c(X). (It is straightforward to verify that a
different choice of a complex of injective sheaves replacing the Li up to quasi-
isomorphism will provide a quasi-isomorphic differential graded algebra.) Denote
by Mod(B) the category of differential graded modules over the differential graded
algebra B. Then each Ei = Hom(L,Li) is an object of Mod(B), and the conjecture
says that Db

G,c(X) is equivalent to the full subcategory of DMod(B) generated by
the Ei and that B is formal as a differential graded algebra, that is, it is quasi-
isomorphic as a differential graded algebra to its cohomology algebra.

When k is the field of complex numbers, one can take the equivariant derived
category to be made up of complexes of sheaves of Q-vector spaces and in positive
characteristics, one could consider instead the `-adic derived category considered
in [Jo93]. Only special cases of this conjecture have been proven so far, all of
them for certain classes of complex spherical varieties: the case of toric varieties
was considered in [Lu95], the case of smooth complete symmetric G-varieties for
the action of a semi-simple adjoint group G was considered in [Gu05] and [Sc11]
considered the case of complex flag varieties.

The main goal of this paper is to prove this conjecture for an important sub-class
of complex projective spherical varieties, namely, toroidal imbeddings of complex
reductive groups.

• Spherical varieties associated to reductive groups, form a large class of algeb-
raic varieties that include as special cases, both flag varieties as well as toric
varieties, as two extreme cases. Moreover, spherical varieties are constructed using
the combinatorial data of colored fans, similar to how toric varieties are constructed
from fans. As pointed out above, the conjecture has been already verified for both
projective toric varieties and also for flag varieties. Therefore, as the next step, it is
important to consider the validity of the conjecture for other important sub-classes
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of spherical varieties.

• Recall, (see [BK05, Prop. 6.2.5]), that given a complex connected reductive
group G and any projective (G×G)-equivariant imbedding X of G, there exists a

projective toroidal imbedding X̃ of G together with a (G×G)-equivariant birational

map X̃ → X. The above observation shows that the class of projective toroidal
imbeddings is, in fact, an important subclass of spherical varieties.

•Moreover, toroidal imbeddings of reductive groups form a sub-class of spherical
varieties that is closest to toric varieties, in the sense that they are also classified by
fans and the local structure is that of toric varieties: see [Ti11, 29.1] or [BK05, Sect.
6.2.2]. (More details on toroidal imbeddings, along with some examples may be
found in Section 2.2.) Our main result, (Theorem 1.2), shows the above mentioned
conjecture is indeed true for an important large class of spherical varieties.

Along the way, the same techniques allow us to prove part of the conjecture for
horospherical varieties. However, we have decided it may be preferable, for a variety
of reasons, to discuss the case of horospherical varieties separately elsewhere. It
may be also important to point out that the above conjecture also holds in positive
characteristics, though hardly any results are known in this case at present. The
reason we restrict to complex spherical varieties in this paper, is largely because we
make use of a reduction to the action by a compact group as in Lemma 2.7, though
most of our remaining arguments seem to extend to positive characteristics using
`-adic étale cohomology in the place of singular cohomology. Moreover, a proof of
the conjecture for projective toric varieties in positive characteristics seems to be
in place, using certain stack-theoretic machinery in the place of the arguments in
[Lu95]. In view of these, we provide a discussion of equivariant derived categories
in Section 5 that works in all characteristics, but will restrict to complex algebraic
varieties for the rest of the paper.

Next assume that X is a variety on which a linear algebraic group G acts with
finitely many orbits. For each orbit O, let LO denote an irreducible G-equivariant
local system on O. One may identify each LO with its extension by zero to an
equivariant sheaf on all of X. Since the cohomology sheaves of any complex K ∈
Db

G,c(X) are G-equivariant, it is clear that the set {LO|O} of all such G-equivariant
local systems as one varies over the G-orbits, forms a set of generators for the
derived category Db

G,c(X) in the sense that the smallest triangulated subcategory

containing all of {LO | O} and closed under finite sums is Db
G,c(X).1

Let ICG(LO[dimO]) denote the equivariant intersection cohomology complex
on O obtained by starting with the G-equivariant local system LO on O. Since the
restriction of each ICG(LO[dimO]) to the orbit O is the local system LO, the set
{ICG(LO[dimO])|O,LO} also generates Db

G,c(X). Let L1, . . . , Ln denote the above
collection of equivariant intersection cohomology complexes. We will next replace
each such Li by a complex of injective sheaves in CbG.c(X), but will continue to
denote the corresponding complex of injective sheaves by Li itself. Let L =

⊕
i Li.

1The equivariant derived categories we consider in this paper will always be defined
making use of the simplicial Borel construction. The reason for this choice, as well as a
comparison with other models of equivariant derived categories, such as those considered
in [BL94] is discussed towards the end of this introduction.
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Next let BG(X) = Hom(L,L). Let D(Mod(BG(X))) denote the derived category
of differential graded modules over the differential graded algebra BG(X). Then
we begin with the following theorem, which may be deduced readily using derived
Morita theory. (See also [Lu95, (0.3.1) Prop.] for a variant.) Therefore, we skip its
proof.

Theorem 1.1. Let X denote a variety on which a linear algebraic group acts with
finitely many orbits. Then, sending K ∈ Db

G,c(X) 7→ RHom(L,K ) defines a fully-

faithful imbedding of the equivariant derived category Db
G,c(X) into the derived

category D(Mod(BG(X))). If Ei denotes the image of Li under this imbedding and
if Df(Mod(BG(X))) denotes the triangulated full sub-category of D(Mod(BG(X)))
generated by the Ei, i = 1, . . . , n, then Db

G,c(X) is equivalent to Df(Mod(BG(X))).

With the above theorem in place, it remains to prove that BG(X) is formal
as a differential graded algebra, when X is a projective variety satisfying further
assumptions. Sections 2 and 3 are devoted to a detailed discussion of toroidal group
imbeddings in characteristic 0, where we prove the formality of the corresponding
differential graded algebra thereby settling the conjecture in this case and resulting
in the following theorem.

Theorem 1.2. Let G denote a projective toroidal imbedding of the complex con-
nected reductive group G and let BG×G(G) denote the differential graded algebra
Hom(L,L) (= RHom(L,L)) considered above. Then BG×G(G) is formal as a
differential graded algebra.

Let G denote such a projective toroidal imbedding of G and let T denote the
closure of a maximal torus T in G. Our strategy here is to reduce to the case
of the toric variety T: the picture is however much more involved than the toric
case considered in [Lu95], since one also has an action of the Weyl group on T
that needs to be considered, and considerable effort is needed to separate out the
Weyl group action from the torus action. We break the entire argument into the
following key steps:

1.1. Step 1

Let N denote the normalizer of T in G and let diag(T) (resp. diag(N)) denote
the image of T (resp. N) in G ×G under the diagonal imbedding of G. Then, the
(G × G)-action on G induces an action of (T × T)diag(N) on T. Restricting the
(G×G)-action on G to an action by (T×T)diag(N) on T induces a fully-faithful
functor

Db
G×G,c(G)

res−−→ Db
(T×T)diag(N),c(T). (1.1.1)

Moreover, if Db,o
(T×T)diag(N),c(T) denotes the full subcategory of Db

(T×T)diag(N),c(T)

generated by the (T × T)diag(N)-equivariant sheaves that are constant along the
orbits of (T× T)diag(N) on T, then the same functor induces an equivalence

Db
G×G,c(G)

res−−→ Db,o
(T×T)diag(N),c(T). (1.1.2)

(See Theorem 2.6 for further details.)
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1.2. Step 2

Next we observe that the subgroup diag(T) ⊆ (T×T)diag(N) acts trivially on T.
The quotient (T×T)diag(N)/diag(T) identifies with WT, which is the semi-direct
product of W and T, where the W action on T is induced from the action of N(T)

on T. For the following discussion, we will abbreviate (T×T)diag(N)) to Ñ. Since
diag(T) acts trivially on T, one obtains an induced action of WT on T. Let

ψ : EÑ×
Ñ

T→ EWT ×
WT

T (1.2.1)

denote the map induced by the identity on T and the quotient map Ñ → WT.
Since diag(T) acts trivially on T, the fibers of the map at every point on T can be
identified with Bdiag(T). Let G• denote the canonical Godement resolution. Then,

clearly the functor Rψ∗ = ψ∗G
• sends complexes in Db,o

Ñ,c
(T) to complexes of dg-

modules over the sheaf of dg-algebras Rψ∗(Q), that is, to objects in the derived

category DWT(T,Rψ∗(Q)). (Here we observe that any complex K ∈ Db,o

Ñ,c
(T) comes

equipped with a pairing Q⊗K → K, which induces the pairing Rψ∗Q)⊗Rψ∗(K)→
Rψ∗(K), and hence the structure of a dg-module over Rψ∗(Q) on Rψ∗(K).)

We let D+,o
WT,c(T, Rψ∗(Q)) denote the full subcategory generated by the objects

Rψ∗(j!Q) where j : O → T denotes the immersion associated with an Ñ-orbit and

we vary over such Ñ-orbits. Let

Lψ∗ : D+,o
WT,c(T, Rψ∗(Q))→ Db,o

Ñ,c
(T)

denote the functor defined by sending a dg-module M to Q
L
⊗

ψ−1Rψ∗(Q)
ψ−1(M).

Then the next key step is that the functor

Rψ∗ : Db,o

Ñ,c
(T)→ D+,o

WT,c(T, Rψ∗(Q))

is an equivalence of categories with Lψ∗ its inverse. (See Proposition 2.10 for
further details.)

1.3. Step 3

The next step is to separate out the W and T-actions. Since there is no obvious
map between the simplicial varieties EWT ×

WT
(T) and EW×

W
(ET×

T
T), we need to

consider the maps

p1 : EWT ×
WT

(ET×T)→EW×
W

(ET×
T

T) and p2 : EWT ×
WT

(ET ×T)→EWT ×
WT

(T).

Let π : ET×
T

T → T/T denote the obvious map as well as the induced map

EW×
W

(ET×
T

T) → EW×
W

(T/T). (Here T/T denotes the set of all T-orbits on T

provided with the topology, where the closed sets are the unions of T-orbit closures.
Then π : T→ T/T is continuous.) Then we prove the following theorem.
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Theorem 1.3. The restriction functor Db
G×G,c(G) → Db,o

Ñ,c
(T) and the functors

Rψ∗, p
∗
2, Rp1∗ and Rπ∗ induce equivalences of derived categories:

Db
G×G,c(G) ' D+,o

cart,c(EW×
W

(T/T), Rπ∗(A)), where A = Rp1∗p
∗
2Rψ∗(Q).

Here we denote by D+,o
cart,c(EW×

W
(T/T), Rπ∗(A)) the full subcategory of the category

D+(EW×
W

(T/T), Rπ∗(A)) generated by applying the functor Rπ∗Rp1∗p
∗
2 to the

generators of the subcategory D+,o
WT,c(T, Rψ∗(Q)) (as in Step 2).

Observe that the t-structure on the derived category on the left is the t-structure
whose heart consists of (G×G)-equivariant perverse sheaves on G, while the corres-
ponding t-structure on the derived category on the right is obtained by transferring
the t-structure from the derived category on the left. (See Proposition 6.4, for
example.)

1.4. Step 4 (final step)

Our next goal is to show, making use of the equivalences of derived categories
provided by the last three steps, that the dg-algebra BG×G(G) is quasi-isomorphic
as a dg-algebra to a dg-algebra defined in terms of the toric variety T, and provided
with a compatible action by W. We will adopt the following convention henceforth:
if {Ki | i} denotes a finite collection of complexes in an abelian category (with

enough injectives), RHom(
⊕

iKi,
⊕

iKi) = Hom(
⊕

i K̂i ,⊕K̂i) where K̂i is a fixed
replacement of Ki by a complex of injectives up to quasi-isomorphism. Then we
observe the following:

(i) The (G × G)-equivariant local systems on the (G × G)-orbits are constant
as observed in [BJ04, Lem. 3.6]. If O denotes an orbit for the (G × G)-action
on G, and ICG(O) denotes the corresponding equivariant intersection cohomology
complex extending the constant sheaf Q on the orbit O, then it corresponds to

ICÑ(OÑ) under the equivalence of derived categories provided by Step 1. Here OÑ

is the Ñ-orbit on T corresponding to the (G×G)-orbit OG. Since the equivalence
of derived categories in Step 1 is provided by derived functors as in (1.1.2) relating
the two derived categories, they preserve the corresponding RHom as well as the
composition pairing on the RHoms. Therefore, the dga BG×G is quasi-isomorphic

to the dga BÑ(T) = RHom(
⊕
O ICÑ(OÑ),

⊕
O ICÑ(OÑ)), where the sum varies

over all the Ñ-orbits on T.
(ii) Under the equivalence of equivariant derived categories provided by Step

2, the equivariant intersection cohomology complex ICÑ(OÑ) corresponds to the

complex ICWT(OWT)⊗Rψ∗(Q), where OWT denotes the same orbit OÑ of Ñ, but
viewed as an orbit for the induced action of WT. Therefore, the equivalence of
derived categories in Step 2 similarly provides a quasi-isomorphism between the
dgas: BÑ(T) and

BWT(T) = RHom(
⊕
O ICWT(OWT)⊗Rψ∗(Q),

⊕
O ICWT(OWT)⊗Rψ∗(Q)).

(iii) Under the equivalence of derived categories provided by Step 3, the complex
ICWT(OWT)⊗Rψ∗(Q) corresponds to Rπ∗(IC

W,T(OW,T)⊗A). Here ICW,T(OW,T)
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is the same complex as ICWT(OWT), but with the action of W and T separated
out: see the proof of Corollary 2.18. This similarly provides a quasi-isomorphism
between the dgas:

BWT(T) ' BW,T(T)

= RHom(
⊕
O Rπ∗(IC

W,T(OW,T)⊗A),
⊕
O Rπ∗(IC

W,T(OW,T)⊗A)).

The last RHom is taken in the category C+,o
cart,c(EW×

W
(T/T), Rπ∗(A)), which is

the category of complexes whose derived category is D+,o
cart,c(EW×

W
(T/T),Rπ∗(A)).

Thus, in order to show the dg-algebra BG×G(G) is formal, it suffices to prove
that the dg-algebra BW,T(T) is formal. After having done all of the above work to
separate out the W and T-actions, the remaining part of this proof is similar to
the proof in the toric case: see [Lu95] and Theorem 3.10. A key step in this proof
is that the dg-algebra Rπ∗(A) = Rπ∗(Rp1∗p

∗
2Rψ∗(Q)) is formal.

Remarks 1.4. 1. The toric variety T, with the action of T × T, is a non-trivial
example of a toric stack, since the diagonal torus acts trivially on T. Thus, perhaps
surprisingly, the theory of toric stacks shows up in the analysis of the equivariant
derived categories for toroidal group imbeddings.

2. One may want to compare the above steps with their counterparts in the
toric case. There, Step 1 is absent and Steps 2 and 3 are combined into one step
where one proves the result in Theorem 1.3 for projective toric varieties: here none
of the complications coming from the maps p1 and p2 occur in the toric case, as
there is no need to consider p1 or p2 in this case. Finally in the analogue of Step
4, one produces a dg-algebra BT(T) from the complexes Rπ∗(Li), and proves that
BT(T) is formal as a dga.

The discussion of the proof of Theorem 1.2 in the body of the paper is also
broken up, with each major step occupying a clearly marked subsection. See for
example, Subsection 2.3, which discusses Step 1 of the proof, Subsection 2.4, which
discusses Step 2, and Subsection 2.5 which discusses Step 3. Finally the last Step
(namely Step 4), occupies all of Section 3 and completes the proof of Theorem 1.2.
Since this is a rather long section, we have further broken this up into Steps 4.1
through 4.3.

In Section 4, we discuss the following general result which sheds some light on
the validity of the conjecture that the dg-algebra BG(X) is formal in general. We
recall that a well-known theorem (see [Ka80]) shows that there are a countable
number of obstructions mi, i = 3, 4, . . . , that need to vanish for an A∞-dg-algebra
to be formal. Implicit in the following theorem is the fact that we make use of the
cohomology notation for intersection cohomology complexes, where we start with
a local system L or the constant sheaf Q on the smooth part of a stratified variety:
in [BBD82], they start with L[d] (Q[d], respectively) where d is the dimension of
the open stratum of the stratified variety.

Theorem 1.5.
(i) Suppose the A∞-dg-algebra B has the property that Hi(B) = 0 for all odd i.

Then all the obstructions mi, for i odd and i ≥ 3 vanish.
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(ii) Suppose X is a projective G-spherical variety for a connected reductive
group G over a field of characteristic 0. Assume further that X is a simply-con-
nected spherical variety in the sense of [BJ04], that is, the stabilizers in G and
B are connected at all points on X, where B is a Borel subgroup of G. Then the
conclusions of (i) hold for the dg-algebra BG(X) considered in Theorem 1.1.

We begin Section 2, with a quick self-contained review of the simplicial model of
equivariant derived categories in 2.1, so that the remainder of the paper could be
read effortlessly. Some of the more technical details are left to Section 5, which is
also devoted to a detailed comparison of the two well-known models of equivariant
derived categories. We provide this comparison for the following two reasons:

(i) The simplicial Borel construction sending a G-space to EG×
G

X produces

a simplicial resolution of X, which is clearly functorial in X. Other geometric
models of the Borel construction always involve the choice of such a resolution
and can often make the situation quite complicated. For example, in Section 3, in
the context of the analysis of the toroidal imbedding case, we run into situations
where it becomes necessary to relate the equivariant derived categories associated
to two groups, G and H, where one is provided with a surjective homomorphism
G → H. This is quite difficult, and nearly impossible if one uses the geometric
approach where one produces approximations of classifying spaces by starting with
representations of the groups. In contrast, this is totally effortless in the simplicial
setting, so that this forces us to adopt the simplicial methods for defining classifying
spaces and associated equivariant derived categories.

(ii) On the other hand, the geometric models of classifying spaces have certain
advantages in that their approximations are indeed varieties, and therefore, much
of the machinery from the non-equivariant framework adapts easily. In addition,
the geometric models seem to be more popular in the literature. Moreover, the
conjecture we are considering in this paper is originally stated in terms of the
geometric models for classifying spaces: see [Lu95].2

We provide this comparison in as general a context as possible so as to be of use
in a wide variety of contexts, that is, for schemes of finite type over perfect fields
k of finite `-cohomological dimension for some prime ` 6= char(k). Here BGgm,m is
a degree-m approximation to the classifying space for G and EGgm,m denotes the
universal principal G-bundle over BGgm,m . Recall this means Um = EGgm,m is an
open G-stable subvariety of a representation Wm of G, so that (i) G acts freely
on Um and a geometric quotient Um/G exists as a variety and (ii) so that in the
family {(Wm ,Um) | m ∈ N}, the codimension of Wm − Um in Wm goes to ∞
as m approaches ∞. (See Definition 6.2 for more precise details.) BG will denote
a simplicial model for the classifying space of G and EG will denote its universal
principal G-bundle.

2The reason we have left this discussion still in Section 5, is that the results in this
section are not used anywhere else in the paper, except to show that the conjecture
in question, which was originally stated in the framework of the geometric model of
equivariant derived categories carries over to the simplicial model of equivariant derived
categories.
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Theorem 1.6. For each fixed m ≥ 0, we obtain the diagram of simplicial varieties
(where p1 is induced by the projection EGgm,m × X→ X and p2 is induced by the
projection EG× (EGgm,m ×X)→ EGgm,m ×X):

EG×
G

(EGgm,m ×X)

p1vv p2 ((
EG×

G
X EGgm,m×

G
X

.

(i) For each finite interval I = [a, b] of the integers, with 2m− 2 ≥ b− a,

p∗1 : DI
G(EG×

G
X)→ DI

G(EG×
G

(EGgm,m ×X)) and

p∗2 : DI
G(EGgm,m×

G
X)→ DI

G(EG×
G

(EGgm,m ×X))

are equivalences of categories. (Here the superscript I denotes the full subcategory
of complexes whose cohomology sheaves vanish outside of the interval I and sub-
script G denotes the full subcategories of complexes whose cohomology sheaves are
G-equivariant.) Moreover, for complexes of Q`-adic sheaves (where Q` denotes
an algebraic closure of Q`), both the functors p∗1 and p∗2 send complexes that are
mixed and pure to complexes that are mixed and pure.3 There exists an equivalence
of derived categories:

Db
G(EGgm,m×

G
X) ' Db

G(EG×
G

X)

which is natural in X and G. The above equivalences hold in all characteristics with
the derived categories of complexes of `-adic sheaves on the étale site and hold in
characteristic 0 with the derived categories of complexes of sheaves of Q-vector
spaces.

(ii) Moreover, both the maps pi, i = 1, 2, induce isomorphisms on the funda-
mental groups completed away from the characteristic.

We devote all of Section 5 to a detailed discussion of equivariant derived cate-
gories leading up to the above theorem. The Appendix provides a supplementary
discussion of geometric classifying spaces, concluding with a result that shows how
to transfer t-structures under equivalences of triangulated categories.

Conventions

• In view of the reasons explained above, the equivariant derived categories we
consider will always be defined using the simplicial construction of the classifying
spaces of linear algebraic groups. The equivalence of derived categories stated in the
last Theorem, then shows that all our results carry over to the equivariant derived
categories defined by means of the procedures discussed in [BL94] or [To99].

3Recall that a complex of Q`-adic sheaves is mixed and pure if it has a finite increasing
filtration whose successive quotients have cohomology sheaves that are pure: see [BBD82,
5.1.5].
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• The derived push-forwards we consider in various contexts in the paper, will
almost always be defined using a functorial resolution such as that given by the
Godement resolution. This has the advantage of preserving any extra structure
that is associated to a given sheaf.
• A dga (short for differential graded algebra or a sheaf of such algebras) will

mean a chain complex A•, provided with an associative pairing A• ⊗ A• → A•

of chain complexes. The dga will be commutative if the above pairing is graded
commutative. (A chain complex will always have differentials of degree +1.)

The approach we take is similar in principle to that of [Lu95] (and [Gu05]),
where the formality of the dg-algebra B is proven for projective complex toric
varieties (for complex complete symmetric varieties, respectively). Both these need
to relate the equivariant derived category Db

G,c(X) with the category of sheaves of
dg-modules over a sheaf of dg-algebras on a space whose points correspond to all
the G-orbits on X.

This intermediate equivalence strongly needs the existence of attractive slices at
each point of each G-orbit. Therefore, such a hypothesis is not always satisfied, in
general. In the case of toroidal group imbeddings, we show that these hypotheses
are met to a large extent.

We define slices in a somewhat more general context as follows.

Definition 1.7. Let a linear algebraic group G act on a variety X and let x ∈ X.
A locally closed subvariety S of X containing x, stable under the action of the
isotropy group Gx and satisfying the following two conditions is called a slice at x:

(i) There exists a Gm-action on S commuting with the action of Gx.
(ii) The map G×

Gx

S → X sending (g, x) to g.x is an open immersion at (e, x),

and the dimension of S is the codimension of the orbit G · x in X.

Let Gm act on a variety X with a fixed point x. Let λ : Gm×X→ X denote this
action. We say x is attractive if for all y in a Zariski neighborhood of x, we have
limt→0ty = x. Equivalently, all weights of λ acting on the Zariski tangent space at
x are contained in an open half-space.

Assume the situation of Definition 1.7. Let x ∈ X and let S denote a slice at x.
We say that S is an attractive slice, if x is an attractive fixed point for the given
action of Gm on S. (See [BJ01, Appendix] for further details on attractive fixed
points.)
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2. Toroidal group imbeddings and the proof of Theorem 1.3

As pointed out earlier, it is more convenient for us to make use of the simplicial
model of the Borel construction and the resulting equivariant derived categories.
As this may not be that familiar, we begin this section with a quick review of the
simplicial model of the equivariant derived category. A detailed comparison with
other geometric models of the equivariant derived category appears in Section 5.3.4

2.1. The simplicial model of equivariant derived categories

This is the simplicial model discussed in detail in [De74], and also in [Jo93, Sect.
6] or [Jo02]. The main advantage of this model comes from the functoriality of
the simplicial Borel construction. In view of the various applications, we have
decided to make the discussion in this section general enough so that it applies
to actions of linear algebraic groups defined over fields k that are perfect and of
finite ` cohomological dimension for some ` 6= char(k). Therefore, all objects in
the following discussion will be defined and of finite type over such a field k.

Given a linear algebraic group G acting on a variety X, EG×
G

X will now denote

the simplicial variety defined by letting (EG×
G

X)n = G×n ×X with the face maps

di : (EG×
G

X)n → (EG×
G

X)n−1, i = 0, . . . , n, induced by the group action µ :

G×X→ X, the group multiplication G×G→ G and the projection G×X→ X.
The ith degeneracy si : (EG×

G
X)n−1 → (EG×

G
X)n, i = 0, . . . , n − 1 is induced by

inserting the identity element of the group G in the ith place. This construction is
functorial: if f : X→ Y is any G-equivariant map between varieties with G-action,
one obtains an induced map EG×

G
X→ EG×

G
Y.

Given a Grothendieck topology, Top, on varieties over k, one defines an induced
Grothendieck topology Top(EG×

G
X) whose objects are Un → (EG×

G
X)n in the

topology Top((EG×
G

X)n) for some n ≥ 0. The maps between two such objects and

coverings for this topology are defined as in [De74]. When one chooses the étale
topology, this site will be denoted Et(EG×

G
X).

Definition 2.1 (Sheaves on a simplicial variety). Given a simplicial variety X•
(for example, EG×

G
X), a sheaf F on the site Top(X•) is a collection of sheaves

{Fm | m ≥ 0} with Fm on the transcendental site (in case k = C) or the étale
site of Xm, provided with structure maps α∗(Fm) → Fn for each structure map
α : Xn → Xm, and satisfying certain compatibility conditions: see [De74, (5.6.6)].
We say that a sheaf F has descent (or is cartesian) if the above maps α∗(Fm)→ Fn
are all isomorphisms. D(EG×

G
X) will denote the derived category of complexes of

sheaves of Q-vector spaces on the simplicial variety EG×
G

X when everything is

4We feel this approach would provide enough information of the constructions used,
so that a reader can easily follow the main arguments in the paper, without having to
suffer through all the technical fine points. The more technical aspects of the simplicial
construction, along with a detailed comparison with other geometric constructions are
left to Section 5, which can be used as a reference, if the reader so wishes.
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defined over the complex numbers, and will denote the derived category of `-
adic sheaves on the étale site Et(EG×

G
X), in general. In this framework, DG(X)

will denote the full subcategory of D(EG×
G

X) consisting of complexes of sheaves

so that the cohomology sheaves have descent. Moreover, for each finite interval
I = [a, b] with −∞ < a ≤ b < ∞, DI

G(X) will denote the full subcategory of
DG(X) consisting of complexes K for which Hi(K) = 0 for all i /∈ I.

Remark 2.2. It may be important to point out that, in order to construct the
equivariant derived category, one needs to begin with the category of all sheaves
on the simplicial variety EG×

G
X: that is the only way to ensure that the category of

sheaves have important properties like having enough injectives. Then one restricts
to the full subcategory of all complexes of sheaves whose cohomology sheaves are
equivariant (that is, cartesian) to obtain the equivariant derived category: the fact
that the full subcategory of equivariant sheaves is closed under extensions is needed
to ensure the equivariant derived category, so defined, is a triangulated category as
shown in [Hart66, p. 38]. One needs to adopt such a construction in the geometric
models of equivariant derived categories as well: see [BL94, Chap. 1.8], for example.
The only exception to this is when the group G is discrete: in this case, the
category of equivariant sheaves have enough injectives as shown by Grothendieck
(see [Groth57], [BL94, Chap. 1.8]): therefore, in this case, we may work with the
category of complexes which are equivariant in each degree. We make use of this
observation in Step 4.1 in the proof of Theorem 1.2.

Derived pushforwards. Observe that if f• : X• → Y• is a map of simplicial varieties,
then the induced push-forward f•,∗ = {fn,∗ | n ≥}, which is not a single functor,
but a collection of functors, indexed by n ≥ 0. This issue is rather technical, and
becomes relevant only where it is important to compute the cohomology of the
fibers of the simplicial map f• as a simplicial scheme. The solution is to use the
simplicial topology as in [Jo02], and we invoke that in Section 5.4, as well as in
the proof of Theorem 1.6 in Section 5.

Terminology 2.3. We will adopt the following terminology throughout the rest
of the paper. If G is a linear algebraic group acting on a variety X, EG×

G
X will

always denote the simplicial variety defined above. In particular, BG will denote
the corresponding simplicial variety when X = Spec k. The geometric model for
EG×

G
X considered in (5.1.1), which is an ind-scheme, will always be denoted

{EGgm,m×
G

X | m}.

2.2. Toroidal imbeddings of connected reductive groups:
basic definitions and examples

Throughout the rest of this section we will assume the base field is the field of
complex numbers. Let G denote a connected reductive group. Viewing G as a
(G×G)-homogeneous space for the action of G×G by left and right multiplication,
G ' (G × G)/diag(G). (Here diag(G) denotes the group G imbedded diagonally
in G×G.)
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G-spherical varieties may be defined as normal varieties X, equipped with a
G-action so that a Borel subgroup B has an open dense B-orbit. It is known
(see [Kn91, Rem. 2.2]) that then X contains only finitely many B-orbits as well
as G-orbits. Moreover, such a spherical variety X may be viewed as a partial
compactification of the homogeneous space G/H, which denotes the open G-orbit
on X. When the group G is replaced by G ×G and H by the diagonal imbedding
of G in G × G (with the diagonal G acting on G × G by both left and right-
multiplication), we obtain spherical imbeddings of the group G.

Choose a maximal torus T of G, and denote by N its normalizer in G; the
quotient N/T is the Weyl group W. Let B denote a fixed Borel subgroup containing
T. G-spherical varieties are classified by colored fans (that is, fans with the extra
structure of colors) in the valuation cone associated to G/H (see [Kn91]). The
colors of X correspond to B-stable prime divisors in X that are not G-stable, and
contain a G-orbit. Equivalently, the colors correspond to the closures in X of the
B-stable prime divisors in the open G-orbit, so that the closure in X contains a G-
orbit. Spherical varieties that are G×G-equivariant imbeddings of G are classified
by colored fans in X∗(T) ⊗ R with support in the negative Weyl chamber: see
[BK05, 6.2.4 Prop.]. (Here X∗(T) denotes the weight-lattice.)

Toroidal imbeddings form an important special class of G-spherical varieties,
defined as follows.

Definition 2.4 (Toroidal imbeddings). An equivariant imbedding of the connec-
ted reductive group G is toroidal, precisely when there are no colors, that is,
every B-stable prime divisor in X is either G-stable or does not contain a G-orbit.
Toroidal imbeddings of the group G are classified by fans in the negative Weyl
chamber: see [BK05, 6.2.4 Prop.].

Therefore, given a G×G equivariant imbedding X of G, one may find a G×G
equivariant toroidal imbedding X̃ provided with a birational (G × G)-equivariant

map X̃→ X, by replacing the given colored fan with the fan obtained by removing
all the colors.

Moreover, such a toroidal imbedding is complete, if and only if the corresponding
fan has support the whole Weyl chamber. By considering W-translates of the above
fans, one obtains a W-invariant fan in X∗(T)⊗R. Then a toroidal imbedding will
be smooth if and only if the corresponding W-invariant fan has the property that
every cone is generated by part of a basis of the free abelian group X∗(T).

Before proceeding further, we will next discuss a few examples of toroidal group
imbeddings.

Examples 2.5.
(i) All toric varieties are toroidal imbeddings of the open dense torus.
(ii) The simplest example of group imbeddings, other than toric varieties, are

that of GL2. In this case there are at least 4 distinct (GL2 × GL2)-equivariant

imbeddings of GL2, namely, A4, P4, and Ã4, P̃4, where the last two are blow-ups
of the first two at the origin in A4. Only the latter two are toroidal imbeddings,
and clearly P̃4 is the only toroidal imbedding that is projective. (See [AKP, 8.2].)

(iii) Let G be semi-simple of adjoint type. Then X∗(T) has a basis consisting
of the fundamental weights. Therefore, the fan consisting of the Weyl chambers
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and their faces is smooth. The corresponding (smooth) toroidal imbedding is the
wonderful compactification of G. (See [BK05, Sect. 6.1].) In fact, an alternate
definition of a toroidal group imbedding of the reductive group G is as a group
imbedding X of G, so that the quotient map G→ Gad (which denotes the adjoint
group) extends to a morphism of schemes X to the wonderful compactification of
Gad: see [BK05, Def. 6.2.2].

(iv) If G is semi-simple but no longer of adjoint type, then we may consider the
same fan, but now it is almost never smooth. For example, if G = SL3 then we
get a singular toroidal compactification of G. It can be constructed geometrically
as the normalization of the wonderful compactification of PGL3 in the function
field k(SL3). This construction works more generally for any semi-simple G: the
normalization in k(G) of the wonderful compactification of the adjoint group yields
a canonical imbedding of G, which is toroidal and projective but (again) almost
never smooth. (See [BK05, Sect. 6.2.A] for additional details.)

For the rest of the paper, we will adopt the terminology introduced in the outline
of the proof of Theorem 1.2 in the introduction.

2.3. Step 1 of the proof of Theorem 1.2.

Let G denote a normal (G × G)-variety which contains G as an open orbit. We
will assume that G is a toroidal imbedding of G. Note that the normalizer (or
stabilizer) of diag(T) in G×G equals (T×T)diag(N); moreover, the centralizer of
diag(T) in G ×G equals T × T, since T is its own centralizer in G. We also have
the exact sequence

1→ diag(T)→ (T× T)diag(N)→WT→ 1,

where WT denotes the semi-direct product of T with W (acting naturally on T).
Let T denote the closure of T in G; then (T × T)diag(N) acts on T via its

quotient WT, where W acts by conjugation and T by left multiplication. This
yields a (restriction) functor

res : Db
G×G,c(G)→ Db

(T×T)diag(N),c(T). (2.3.1)

The first main result of this section is the following.

Theorem 2.6.
(i) The above functor is fully-faithful.

(ii) Moreover, if Db,o
(T×T)diag(N),c(T) denotes the full subcategory of the category

Db
(T×T)diag(N),c(T) generated by the (T × T)diag(N)-equivariant sheaves that are

constant along the orbits of (T× T)diag(N) on T, then the above functor induces
an equivalence

Db
G×G,c(G)

res−−→ Db,o
(T×T)diag(N),c(T).

(iii) It sends the (G×G)-equivariant intersection cohomology complex ICG×G(QO)
on a (G×G)-orbit O to the corresponding (T×T)diag(N)-equivariant intersection
cohomology complex IC(T×T)diag(N)(QO′) where O′ is the (T × T)diag(N)-orbit
corresponding to the (G×G)-orbit O.
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Proof. Observe that

Db
G×G,c(G) = Db

G×G,c(EG× EG ×
G×G

G) while,

Db
(T×T)diag(N),c(T) = DG×G,c(EG× EG ×

G×G
(G×G ×

(T×T)diag(N)
(T))).

Therefore, the map denoted res is the pull-back map φ∗ induced by the map

φ : EG× EG ×
G×G

(G×G ×
(T×T)diag(N)

(T))→ EG× EG ×
G×G

G,

where φ itself is induced by the natural map G ×G ×
(T×T)diag(N)

T→ G.

In order to prove φ∗ is fully-faithful, it is enough to show that the natural map
M → Rφ∗φ

∗(M) is a quasi-isomorphism for all M ∈ Db
G×G,c(G). Unfortunately,

the map φ is neither proper nor smooth, which makes it difficult to prove this
directly. Therefore, we adopt a rather indirect technique. We first replace all the
linear algebraic groups by their maximal compact subgroups. We may choose a
maximal compact subgroup K ⊂ G such that NK := K ∩N is a maximal compact
subgroup of N; then TK := T ∩ K is the largest compact sub-torus of T. Lemma
2.7 below shows then that it suffices to prove that the induced restriction

resK : Db
K×K,c(G)→ Db

(TK×TK)diag(NK),c(T)

is fully-faithful. This functor identifies with φ∗K where φK is the natural map

EK× EK ×
K×K

(K×K ×
(TK×TK)diag(NK)

(T))→ EK× EK ×
K×K

G. (2.3.2)

Observe that φK is proper. Therefore, one has a projection formula which provides
the (natural) identification

RφK∗φ
∗
K(M) 'M ⊗RφK∗φ∗K(Q),M ∈ Db

(TK×TK)diag(NK),c(T).

Therefore, it suffices to prove that

RφK∗(Q) = RφK∗(φ
∗
KQ)

'→Q. (2.3.3)

Secondly, the properness of φK shows that one has proper-base-change, so that
it suffices to prove that φK is surjective and its fibers are Q-acyclic and connected:
observe that this will prove (2.3.3) and, making use of the adjunction between φ∗K
and RφK∗, that the functor φ∗K is fully-faithful. This is worked out in Lemma 2.8
below, which will complete the proof that the functor φ∗ is fully-faithful.

To prove the second statement, it suffices to show that φ∗ induces an equivalence
on the corresponding hearts, that is, at the level of the equivariant sheaves. First
observe that G is an scs variety (that is, a spherical simply connected variety) in
the sense of [BJ04, Sect. 1]. Thus the isotropy subgroup of any (G×G)-orbit O ⊂ G
is connected, by [loc. cit., Lem. 3.6], which implies that all the (G×G)-equivariant
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local systems on O are constant. Any constructible (G × G)-equivariant sheaf on
G has a finite filtration by (G×G)-equivariant sheaves that are extension by zero
of the constant sheaves on the (G×G)-orbits. Also, by [BK05, Prop. 6.2.3], every
such orbit O intersects T along a unique orbit of (T×T)diag(N), and this sets up
a bijection between (G × G)-orbits in G and (T × T)diag(N)-orbits in T, which
preserves the closure relations. This completes the proof of the second statement.
(Observe that the stabilizers of the (T×T)diag(N)-orbits in T are not connected in
general: for example, the stabilizer of the open orbit is diag(N). Thus, one obtains
(T × T)diag(N)-equivariant sheaves on these orbits that are not constant. This

is the need to restrict to the full subcategory Db,o
(T×T)diag(N),c(T) in order for the

restriction functor to be an equivalence.)
The third statement follows from the local structure of toroidal group imbed-

dings: see [Ti11, Thm. 29.1]. Here are the details to prove it. Let O′ denote a (T×
T)diag(N)-orbit on T and let O′ → O′ denote the corresponding open immersion

of O′ into its closure. We stratify O′ so that one obtains a sequence of open

immersions U0 = O′ j
′
0−→ U′1

j′1−→ U′2 → · · · → U′n−1

j′n−1−−−→ U′n = O′, so that each of
the strata Ui−Ui−1 is a (disjoint) union of (T×T)diag(N)-orbits. Let j′ : Ui → Ui+1

denote an open immersion of (T× T)diag(N)-stable subvarieties appearing in the

above factorization of O′ → O′. Let j : Vi → Vi+1 denote the open immersion
of the corresponding (G × G)-stable subvarieties in the factorization of O → O,
where O is the (G×G)-orbit corresponding to O′. Recalling that the equivariant
intersection cohomology complexes are suitable perverse extensions, now it suffices
to show that φ∗(σ≤nRj∗(L)) ' σ≤nRj

′
∗(φ
∗(L)) for any constant sheaf L on Vi,

where σ≤n denotes the cohomology truncation that kills cohomology sheaves in
degrees greater than n.

For a given point x ∈ Vi+1, the local structure in [Ti11, Thm. 29.1] shows that,
after possibly replacing x by a translate of x by an element (g1, g2) ∈ G × G,
one may take the intersection with an open neighborhood Vx so that j|Vx∩Vi :
Vx ∩Vi → Vx ∩Vi+1 identifies with idRu(B)×Ru(B−)×j′ : Ru(B)× Ru(B−)×Ui →
Ru(B)× Ru(B−)× Ui+1. (Here B is a Borel subgroup of G containing T and B−

is its opposite Borel subgroup also containing T. Then Ru(B) × Ru(B−) denotes
the product of the unipotent radicals of B and B−.) Now φ∗ corresponds to pull-
back by the inclusion of Ui in Ru(B)× Ru(B−) × Ui so that φ∗(L) is the pull-
back of the sheaf L on Vx ∩ Vi = Ru(B)× Ru(B−) × Ui to Ui. Therefore, on
this open neighborhood Vx , σ≤n(Rj∗(L)) = id � σ≤nRj

′
∗(φ
∗(L)) and therefore,

φ∗(σ≤nRj∗(L)) = σ≤nRj
′
∗(φ
∗(L)). �

Lemma 2.7. Let G denote a connected reductive group acting on a variety X. Let
K denote a maximal compact subgroup of G. Then the restriction functor

Db
G,c(X)→ Db

K,c(X)

is fully-faithful.

Proof. We consider the map ψ : EG×
G

(G×
K

X)→ EG×
G

X induced by the left-action

of G on X. Observe that the functor ψ∗ identifies with the restriction functor
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considered in the lemma. Using the simplicial models for the Borel construction,
one sees that the above map in simplicial degree n is the map ψn : Gn ×G×

K
X→

Gn × X. This is induced by the map ψ0 : G×
K

X → X, which being locally trivial

in the complex topology, is cohomologically proper. One may verify therefore that
each ψn is cohomologically proper, so that proper-base-change and the projection
formula hold and that therefore, it suffices to verify that the fibers of ψ0 are acyclic
with Q-coefficients. But the fibers of ψ0 identify with G/K, which is acyclic with
rational coefficients. Now an argument exactly as in the case of the functor φ∗K in
the last Theorem, proves that the functor ψ∗ is fully-faithful. �

Lemma 2.8. The fibers of φK are acyclic with Q-coefficients, where φK is the map
in (2.3.2). Moreover, φK restricts to an isomorphism over an open dense subset of
G (⊆ G) for the complex topology.

Proof. Recall the Cartan decomposition G = KTK; also, T = TKTr, where Tr :=
exp(iLie(TK)) denotes the real part of T. Thus, G = KTrK. We will first consider
fibers of φK on the open orbit, that is, for the map

φoK : (K×K) ×
(TK×TK).diag(NK)

T→ G.

Since this map is K × K-equivariant, it suffices to consider the fiber at a point
t ∈ Tr. We claim that this fiber is isomorphic to Kt/Nt

K, where Kt (resp. Nt
K)

denotes the centralizer of t in K (resp. NK).
Let x, y ∈ K and z ∈ T such that xzy−1 = t. Write z = zKzr ∈ TKTr = T.

Using the action of 1 × TK ⊂ (TK × TK)diag(NK), we may assume that zK = 1,
that is, z = zr. Then t = (xy−1)(yzy−1) and xy−1 ∈ K, yzy−1 ∈ exp(iLie(K)). By
the uniqueness in the decomposition G = K exp(iLie(K)), we obtain xy−1 = 1 and
t = yzy−1. So y = x, and z is conjugate to t in K. As z, t ∈ Tr, they are conjugate
in NK, that is, there exists n ∈ NK such that t = nzn−1. Then t = nx−1txn−1,
that is, x ∈ Ktn. We may replace (x, y, z) with (xn−1, yn−1, nzn−1) by using
the action of diag(NK), to get (xn−1, xn−1, t), where xn−1 ∈ Kt is unique up to
multiplication by N t

K. As (TK×TK)diag(NK) = (1×TK)diag(NK), this yields the
claim.

Since Kt is a compact connected Lie group with maximal compact torus TK,
and Nt

K is its normalizer in Kt, the claim implies the fibers over G are Q-acyclic.
Moreover, the fiber at any point t ∈ T with regular real part tr just consists of
this point.

Next we consider the fibers of φK over an arbitrary (G × G)-orbit O in G. It
suffices to show that any such fiber is again isomorphic to Kt/Nt

K for some t ∈ Tr.
For this, we recall the structure of O (see [BJ04, (5.1.2), (5.1.3)] which discusses
projective reductive varieties, which includes group imbeddings): there exists a
Levi subgroup L of G containing T such that LK := L ∩K is a maximal compact
subgroup of L, and

O = (K×K) ×
LK×LK

L/LO,

where LO ⊆ L is a central subgroup. Moreover T∩O = diag(NK) ×
(diag(NK)∩L)

T/LO
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(note that LO ⊂ T as LO is central in L). So we obtain an isomorphism

(K×K) ×
(TK×TK)diag(NK)

(T ∩ O) ∼= (K×K) ×
(TK×TK)diag(NK∩L)

T/LO

and a commutative triangle

(K×K) ×
(TK×TK)diag(NK))

(T ∩ O) //

**

O = (K×K) ×
LK×LK

L/LO

��
(K×K)/(LK × LK)

where the horizontal arrow is the pull-back of ϕK over O. This identifies the fibers
of φK over the orbit O with K×K-translates of the fibers of the map

(LK × LK) ×
(TK×TK)diag(NK))

(T/LO)→ L/LO.

Therefore, this reduces to the case of the fibers over the open orbit with the group
G replaced by L. �

In the remainder of this section, we will need to consider the derived direct
images of maps between simplicial varieties of the form EG×

G
X → EG×

G
Y where

X and Y are varieties provided with the action of a linear algebraic group G and
f : X → Y is a G-equivariant map. Most of the time, this can be handled as in
Section 2.1, but occasionally it is helpful to make use of the methods of [Jo02],
which enables one to consider a single derived functor Rf∗. Since this is a technical
issue, we prefer to discuss it later in 5.4, rather than here.

2.4. Step 2 of the proof of Theorem 1.2

Throughout the rest of the paper, we will let

Ñ := (T× T)diag(N). (2.4.1)

Recall that Ñ acts on T via its quotient Ñ/diag(T) 'WT. Let

ψ : EÑ×
Ñ

T→ EWT ×
WT

T (2.4.2)

denote the map induced by the identity on T and the quotient map Ñ → WT.
Since diag(T) acts trivially on T, the fibers of the simplicial map ψ at every point

can be identified with Bdiag(T). Recall Db,o

Ñ,c
(T) denotes the full subcategory of

the derived category Db
Ñ,c

(T) generated by the constant sheaves on each orbit

of Ñ on T. Let G• denote the canonical Godement resolution. Then, clearly the
functor Rψ∗ = ψ∗G

• sends complexes in Db,o

Ñ,c
(T) to complexes of dg-modules

over the sheaf of dg-algebras Rψ∗(Q), that is, to objects in the derived category
DWT(T,Rψ∗(Q)). We let D+,o

WT,c(T, Rψ∗(Q)) denote the full subcategory generated

by the objects Rψ∗(j!Q) where j : O → T denotes the immersion associated with

an Ñ-orbit and we vary over such Ñ-orbits. Let

Lψ∗ : D+,o
WT,c(T, Rψ∗(Q))→ Db,o

Ñ,c
(T)

denote the functor defined by sending a dg-module M to Q
L
⊗

ψ−1Rψ∗(Q)
ψ−1(M).
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Remark 2.9. Observe that the derived category Db,o

Ñ,c
(T) has the following t-struc-

tures: either the standard one, where the heart is the full subcategory of complexes
whose cohomology sheaves are Ñ-equivariant and vanish in all degrees except 0 (see,
for example, [BBD82, 1.3.2]), or the t-structure obtained by gluing as in [BBD82,

2.2], where the heart is the full subcategory of Ñ-equivariant perverse sheaves.

Proposition 2.10.
(i) The functor Rψ∗ : Db,o

Ñ,c
(T) → D+,o

WT,c(T, Rψ∗(Q)) is an equivalence of

categories with inverse Lψ∗. (The derived category on the right is generated by
the dg-modules over the dga Rψ∗(Q) of the form j!j

∗Rψ∗(Q) = Rψ∗j!j
∗(Q), as

j : O → T varies over the Ñ-orbits on T).
(ii) As a consequence, the derived category D+,o

WT,c(T, Rψ∗(Q)) obtains induced

t-structures, induced from the t-structures on Db,o

Ñ,c
(T) by the functor Rψ∗.

Proof. A key observation is that if j : O → T is the locally-closed immersion
associated to an Ñ-orbit on T, then Rψ∗(j!j

∗(Q)) = j!j
∗(Rψ∗(Q)). This follows

readily since the map ψ is a fibration with fibers Bdiag(T) and one makes use
of the simplicial model of classifying spaces. In the simplicial setting, the map
ψn : (EÑ×

Ñ

T)n → (EWT ×
WT

T)n is of the form pn × id, where pn : (Ñ)n−1 →

(WT)n−1 is the surjection induced by the surjection Ñ → WT. Moreover, if jn :

(EÑ×
Ñ

O)n = (Ñ)n−1 × O → (EÑ×
Ñ

T)n = (Ñ)n−1 × T is the map induced by j,

then jn = idn−1 × j, with a similar assertion holding for the map induced by j,
(EWT ×

WT
O)n → (EWT ×

WT
T)n, which will be also denoted jn. Therefore (denoting

by j also the map {jn | n} of simplicial varieties),

Rψ∗(j!j
∗(Q) = {Rψn∗(jn!j

∗
n(Q) | n} = {Rpn∗(Q) � j!(j

∗(Q)) | n}
= {jn!j

∗
n(Rpn∗(Q) �Q) | n} = j!j

∗Rψ∗(Q).

Therefore, one obtains the identifications

Rψ∗ ◦ Lψ∗(j!Rψ∗(j∗Q)) = j!j
∗(Rψ∗(Q)) and Lψ∗ ◦Rψ∗(j!j∗Q) = j!j

∗(Q).

Here we have denoted the restriction of the map ψ to any of the orbits also by
ψ. Since the derived category Db,o

Ñ,c
(T) (D+,o

WT,c(T, Rψ∗(Q))) is generated by the

j!j
∗(Q) (j!(Rψ∗j

∗(Q)), respectively) as one varies over the Ñ -orbits, and Lψ∗ is
left-adjoint to Rψ∗, the statement (i) in the proposition follows.

Proposition 6.4 shows that when one has an equivalence of triangulated catego-
ries, one may transfer the t-structure on one of the triangulated categories to the
other. This proves the statement (ii) and completes the proof of the Proposition.
�

Definition 2.11. Henceforth we call the t-structure obtained by gluing the stan-
dard t-structures on a stratified variety, shifted by the codimensions of the strata
(as in [BBD82, 2.2]), the t-structure obtained by gluing.

One starts with either the standard t-structures or the t-structures obtained by
gluing on the derived categories Db

G×G,c(G) and Db,o
(T×T)diag(N(T),c(T).
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Corollary 2.12. We obtain the equivalences of derived categories:

Db
G×G,c(G)

res−−→ Db,o
(T×T)diag(N(T),c(T)

Rψ∗−−−→ D+,o
WT,c(T,Rψ∗(Q)).

The derived category D+,o
WT,c(T, Rψ∗(Q)) obtains induced t-structures, induced from

the t-structures on Db,o

Ñ,c
(T) by the functor Rψ∗.

Moreover, if ICÑ(OÑ) denotes the Ñ -equivariant intersection cohomology comp-

lex on the closure of the Ñ-orbit OÑ obtained from the constant local system on

the corresponding orbit, then Rψ∗(IC
Ñ(OÑ) = ICWT(OWT)⊗Rψ∗(Q). Here OWT

is the same Ñ-orbit viewed as an orbit for the action of WT and ICWT(OWT)
denotes the WT-equivariant intersection cohomology complex on the closure of the
orbit OWT obtained from the constant local system on OWT.

Proof. All conclusions but the last are clear by combining Theorem 2.6 and Propo-

sition 2.10. To see the last conclusion, first observe that we have ICÑ(OÑ) '
ψ∗(ICWT(OWT) and the map ψ is a locally trivial fibration. Therefore, the last
conclusion follows from the projection formula. �

2.5. Step 3 of the proof of Theorem 1.2: proof of Theorem 1.3

It is important for us to be able to separate the W and T actions on T. We proceed
to do this.

First we define actions of finite groups on simplicial varieties.

Definition 2.13 (Finite group actions on simplicial varieties). If X• is a simpli-
cial variety, an action of the finite group W on X• corresponds to a W-action
on each Xn so that the structure maps of the simplicial variety X• are all W-
equivariant. The two results below, follow readily from the fact that WT is the
semi-direct product of W and T.

Proposition 2.14.
(i) If X is a variety, then giving a WT-action on X is equivalent to providing

T and W actions on X so that the T-action µ : T × X → X is W-equivariant.
Equivalently, the diagram

W × T×X
id×µT //

µ′W
��

W ×X

µW

��
T×X

µT // X

(2.5.1)

commutes, where µW (µT) denote the W (T) action and µ′W denotes the diagonal
action of W on T×X. Equivalently, the following relations hold (where ◦ denotes
generically any of the actions):

w ◦ (t ◦ x) = (w ◦ t) ◦ (w ◦ x), w ∈W, t ∈ T, x ∈ X. (2.5.2)

(ii) Moreover, in this case the simplicial variety ET×
T

X has an induced action

by W.

Author's personal copy



EQUIVARIANT DERIVED CATEGORIES

Proof. We skip the proofs as these may be deduced in a straightforward manner
from the fact that WT is the semi-direct product of W and T. �

Lemma 2.15. Assume the situation of Proposition 2.14. Given ti ∈ T and wi ∈
W, i = 1, 2 and x ∈ X, one obtains the following identifications:

t1w1 ◦ (w ◦ x) = t1 ◦ (w1 ◦ (w ◦ x)),

t2w2t1w1 ◦ (w ◦ x) = t2w2t1 ◦ (w1 ◦ (w ◦ x)) = t2 ◦ (w2 ◦ (t1 ◦ (w1 ◦ w ◦ x))).

Proof. Again the proof is skipped since this follows from a straightforward calcula-
tion. �

One may now consider the action of W on the simplicial variety ET×
T

T, where

we let W act diagonally on the two factors ET and T. We let EW×
W

(ET×
T

T) denote

the simplicial variety which is the diagonal of the resulting bisimplicial variety.

Lemma 2.16. Now we obtain an equivalence of categories:

Db
cart,c(EW×

W
(ET×

T
T),Q) ' Db

WT,c(EWT ×
WT

T,Q) = Db
WT,c(T,Q)

where the subscript cart (c) denotes the complexes of sheaves having cartesian
(respectively, constructible) cohomology sheaves. (Recall that a sheaf F = {Fn | n}
on a simplicial variety X• is cartesian, if all the maps φ : α∗(Fm) → Fn are
isomorphisms for each structure map α : Xn → Xm of the simplicial space X•.
See 2.1 for further details.) The above equivalence extends to an equivalence of
the corresponding bounded below derived categories:

D+
cart,c(EW×

W
(ET×

T
T),Q) ' D+

WT,c(EWT ×
WT

T,Q) = D+
WT,c(T,Q).

The above equivalence of derived categories preserves both the standard t-structures
and the t-structures obtained by gluing.

Proof. Since there is no direct map between the simplicial varieties EW×
W

(ET×
T

T)

and EWT ×
WT

T, we make use of the intermediate simplicial variety: EWT ×
WT

(ET×

T) which maps to both the above simplicial varieties. Let

p1 : EWT ×
WT

(ET× T)→ EW×
W

(ET×
T

T) and

p2 : EWT ×
WT

(ET× T)→ EWT ×
WT

(T)
(2.5.3)

denote the maps defined as follows. p1 is induced by the maps sending EWT to EW
by taking the quotient by T and ET×T to ET×

T
T. (Recall (EWT ×

WT
(ET×T))n =

(WT)n ×Tn+1×T, while (EW×
W

(ET×
T

T))n = Wn ×Tn ×T, so it should be clear

what p1,n is.) The second map p2 is induced by the map that drops the factor ET.
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One may observe the need to work with the simplicial model of classifying
spaces in being able to define the first map p1. The fibers of both these simplicial
maps are ET which is acyclic. Moreover, these maps are cohomologically proper
and the projection formula holds for both of the maps, so that one concludes
readily that the natural map K → Rp1∗p

∗
1(K) is a quasi-isomorphism for any

complex K ∈ D+
cart,c(EW×

W
(ET×

T
T),Q) and that the natural map K → Rp2∗p

∗
2(K)

is a quasi-isomorphism for any complex K ∈ D+
WT,c(EWT ×

WT
T,Q). Therefore, it

follows that both the functors p∗i are fully-faithful at the level of the bounded
below derived categories. The heart of both the above bounded derived categories
is the category of WT-equivariant sheaves on T. (This is clear for the derived
category Db

WT,c(EWT ×
WT

T,Q). To see the same for Db
cart,c(EW×

W
(ET×

T
T),Q), one

makes use of Proposition 2.14.) Therefore, both the functors p∗i are equivalences of
the bounded derived categories, thereby proving the first statement in the lemma.
Since both the functors p∗i are exact, it is clear that they preserve the standard
t-structures. It is clear that the maps pi preserve the stratification on T by WT-
orbits. Since the map (p1)n = WTn × Tn+1 × T→Wn × Tn × T is given by the
identity map on the factor T, one may readily see that the functor p∗1 commutes
with the functors j!, j

∗, Rj∗ and Rj! associated to the locally closed immersion
j : Ui → Ui+1 of strata appearing in the stratification of T by WT-orbits. The same
holds for the functor p∗2. These observations then show that the above equivalences
preserve the t-structures obtained by gluing.

To extend this equivalence for the corresponding bounded below derived cate-
gories, one proceeds as follows. Let D = D+

cart,c(EWT ×
WT

(ET × T),Q). Observe

that the inclusion functor D≤n → D has a right adjoint given by the cohomology
truncation functor σ≤n: here D≤n denotes the full subcategory of D consisting of
complexes that have trivial cohomology above degree n. Next observe that the
functors Rpi∗ = pi∗, i = 1, 2, and hence are exact functors. Similarly p∗i , i = 1, 2,
are exact functors. Therefore all of the above functors commute with the functors
σ≤n and if K ∈ D, then pi∗(σ≤nK) are bounded complexes for each n. Since p∗i is
an equivalence at the level of the above bounded derived categories with inverse pi∗,
it follows that K = lim

n→∞
σ≤n(K) ' lim

n→∞
p∗i (pi∗σ≤nK) ' p∗i ( lim

n→∞
pi∗(σ≤nK)) and

that K ' lim
n→∞

σ≤nK
'−→ lim

n→∞
Rpi∗p

∗
i (σ≤nK) ' Rpi∗p∗i ( lim

n→∞
σ≤nK) = Rpi∗p

∗
i (K),

thereby proving that the functors p∗i also induce equivalences of the corresponding
bounded below derived categories. �

Next we consider the subcategory D+
WT,c(T,Rψ∗(Q)). Now Rp1∗(p

∗
2(Rψ∗(Q))

defines a sheaf of dgas on EW×
W

(ET×
T

T).

Definition 2.17. Henceforth, we will denote the sheaf of dgas Rp1∗p
∗
2(Rψ∗(Q))

on EW×
W

(ET×
T

T) by A.

Recall that Rψ∗(Q) is a complex of sheaves on EWT ×
WT

(T) and that A =

Rp1∗p
∗
2(Rψ∗(Q)) is a complex of sheaves on EW×

W
(ET×

T
T).
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Corollary 2.18. The equivalence of categories in Lemma 2.16 extends to an equi-
valence of categories:

D+
cart,c(EW×

W
(ET×

T
T),A)'D+

WT,c(EWT ×
WT

T,Rψ∗(Q)=D+
WT,c(T,Rψ∗(Q)) and

D+,o
cart,c(EW×

W
(ET×

T
T),A)'D+,o

WT,c(EWT ×
WT

T,Rψ∗(Q)=D+,o
WT,c(T,Rψ∗(Q))

where D+,o
cart,c(EW×

W
(ET×

T
T),A) is the full subcategory of D(EW×

W
(ET×

T
T),A) ge-

nerated by the functor Rp1∗p
∗
2 applied to the generators {Rψ∗(j!j∗(Q|O)) | O is an

WT-orbit on T} of the subcategory D+,o
WT,c(T, Rψ∗(Q)).

The t-structures on the derived categories on the left are obtained by transferring
the t-structures on the corresponding derived categories on the right. Moreover,

Rp1∗p
∗
2(Rψ∗(IC

Ñ(OÑ))) = ICW,T(OWT)⊗Rp1∗p
∗
2(Rψ∗(Q)),

where ICW,T(OWT) denotes the same equivariant intersection cohomology complex
ICWT(OWT) for the action WT, but viewed as an object on EW×

W
(ET×

T
T).

Proof. All but the last conclusions are clear in view of the observations above, and
also from the observation that the composite functors Rpi∗ ◦ p∗i and p∗i ◦Rpii∗ are
still the identity at the level of the above derived categories of dg-modules. To see
the last conclusion, first observe that

ICWT(OWT) =
⊕

w∈W/WOT
ICT(wOT), (2.5.4)

where WOT
denotes the stabilizer in W of the T-orbit OT, and ICT(wOT) denotes

the intersection cohomology complex obtained by extending the constant local
system on wOT. (This may be deduced from the fact that the equivariant intersec-
tion cohomology complexes ICWT(OWT) are perverse extensions of the constant
sheaf QOWT =

⊕
w∈W/WOT

QOT .) Therefore, p∗2(ICWT(OWT))=p∗1(ICW,T(OWT)):

recall ICW,T(OWT) denotes the same equivariant intersection cohomology complex
ICWT(OWT) for the action WT, but viewed as an object on EW×

W
(ET×

T
T). This

is possible, in view of (2.5.4).

Next observe from Corollary 2.12 that Rψ∗(IC
Ñ(OÑ))=ICWT(OWT)⊗Rψ∗(Q).

Therefore, the last identification in the corollary follows from a projection formula.
�

Let T/T denote the space whose points correspond to the T-orbits on T equip-
ped with the topology as in the introduction. Let

π : ET×
T

T→ T/T (2.5.5)

denote the obvious map. The fact that the action of T on T is equivariant with
respect to the W-action shows that one has an induced action of W on the set of T-
orbits on T. Denoting this W-action on T/T also by ◦, observe that w◦[x] = [w◦x],
for any w ∈ W and x ∈ T, where [x] denotes the T-orbit of x. Now W acts on
both ET×

T
T and T/T.
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Lemma 2.19. Assume the above situation. Then, with respect to the above acti-
ons, the map π is W-equivariant.

Proof. Observe that the map π sends (t1, t2, . . . , tn−1, x) ∈ (ET×
T

T)n to [x]. Now

one verifies that

π(w, (t1, . . . , tn−1, x)) = π(w ◦ t1, . . . , w ◦ tn−1, w ◦ x) = [w ◦ x] = w ◦ [x]

= w ◦ π(t1, . . . , tn−1, x).

This proves the map π is W-equivariant. �

Therefore, we will also let the map EW×
W

(ET×
T

T)→ EW×
W

(T/T) induced by π

be denoted π.

Definition 2.20. We define D+,o
cart,c(EW×

W
(T/T),Rπ∗(A)) to be the full subcate-

gory of D(EW×
W

(T/T),Rπ∗(A)) generated by Rπ∗(Gα), as Gα varies over the

generators of the derived category D+,o
cart,c(EW×

W
(ET×

T
T),A) as in Corollary 2.18.

One may now define

Rπ∗ : D+,o
cart,c(EW×

W
(ET×

T
T),A)→ D+,o

cart,c(EW×
W

(T/T),Rπ∗(A))

by once again making use of the canonical Godement resolutions. A left derived
functor

Lπ∗ : D+,o
cart,c(EW×

W
(T/T),Rπ∗(A))→ D+,o

cart,c(EW×
W

(ET×
T

T),A)

may be defined by taking flat-resolutions of M ∈ D+
cart,c(EW×

W
(T/T),Rπ∗(A)) and

letting

Lπ∗(M) = A
L
⊗

π−1Rπ∗(A)
π−1(M).

So defined, Lπ∗ will send objects in Dcart,c(EW×
W

(T/T),Rπ∗(A)) to objects in

Dcart,c(EW×
W

(ET×
T

T),A).

Remark 2.21. Observe that we define Rπ∗ making use of the canonical Godement
resolution. Therefore Rπ∗ will be functorial at the level of complexes. Similarly, by
making use of functorial flat resolutions, one makes the functor Lπ∗ also functorial
at the level of complexes.

Since Lπ∗ will be left adjoint to a functor Rπ∗ (defined at the level of the
corresponding unbounded derived categories), one obtains natural transformations
Lπ∗ ◦ Rπ∗ → id and id → Rπ∗ ◦ Lπ∗. To show these are quasi-isomorphisms, it
suffices to restrict to the hearts of the corresponding derived categories. For this,
we will resort to a variant of the arguments used for toric (and also horospherical)
varieties.
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In fact the W-symmetric toric variety T is a toric variety for the torus T provided
with an extra action by the finite group W that permutes the various T-orbits of the
same type. Therefore let Y denote a T-orbit in T and let UY denote the (unique)
affine open T-stable neighborhood in T so that Y is the only closed T-orbit in UY.
Similarly, let Y′ denote a T-orbit on T and let UY′ denote the affine open T-stable
neighborhood of Y′ in T so that Y′ is the only closed T-orbit in UY′ . Assume that

either Y
′ − Y′ ⊇ Y (in which case UY′ ⊆ UY), or that Y * UY′ . Observe that

under the W-action on T, the T-orbit Y (Y′) is sent to another T-orbit wY (wY′,
respectively) depending on w ∈ W. Therefore, as shown in [Lu95, proof of Thm.
2.6] we observe that the restriction

H∗T(UY,A)→ H∗T(UY −UY′ ,A) (2.5.6)

is an isomorphism: to see this one may observe that Y is a deformation retract of
both UY and UY − U′Y and Rψ∗(Q), and therefore A have constant cohomology
sheaves. (See (3.0.3) for the latter.) Then each w ∈W sends this to the restriction-
isomorphism:

H∗T(wUY,A)→ H∗T(wUY − wU′Y,A). (2.5.7)

Next let Y′ be as before, but choose Y to be another T-orbit on T so that
Y * UY′ . Let j : UY′ → T denote the open immersion and let i : T − UY′ → X
denote the corresponding closed immersion. Let π : ET×

T
T→ T/T denote the map

considered in (2.5.5). We will consider the following commutative diagram

ET×
T

UwY′
jwY′ //

πU
wY′

��

ET×
T

T

π

��
UwY′/T

jwY′/T // T/T

(2.5.8)

where the maps jwY′ , jwY′/T and πUwY′ are defined by the above diagram.

Lemma 2.22. Assume the above situation. Then

(i) Rπ∗jwY′!j
∗
wY′(A) ' jwY′/T!j

∗
wY′/TRπ∗(A).

(ii) The equivariant derived category D+,o
cart,c(EW×

W
(ET×

T
T),A) is generated by

objects of the form
⊕

w∈W/WY′
jwY′!j

∗
wY′(A), where WY′ denotes the stabilizer in

W of the T-orbit Y′.

Proof. (i) We obtain this from the isomorphism (2.5.7), by observing that, there-
fore, H∗T,wUY−wU′Y

(wUY,A) = 0.

(ii) Recall that the generators of the derived category D+,o
cart,c(EW×

W
(ET×

T
T),A)

are obtained by applying the functor Rp1∗p
∗
2 to the generators of the derived

category D+,o
WT,c(EWT ×

WT
T,Rψ∗(Q)). The generators of the latter category are

Rψ∗(jOWT!(Q|OWT
)) as one varies over the WT-orbits OWT on T. But each WT-

orbit OWT =
⊔
w∈W/WY′

wY′, where Y′ is a T-orbit on T, with WY′ denoting the

stabilizer of the T-orbit Y′ for the action of W on T/T. �
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Proposition 2.23. The natural transformations

K → Rπ∗Lπ
∗(K), K ∈ D+,o

cart,c(EW×
W

(ET×
T

T),A) and Lπ∗Rπ∗(L)→ L

for any L ∈ D+,o
cart,c(EW×

W
(T/T),Rπ∗(A)) are quasi-isomorphisms. Therefore, the

functors Rπ∗ and Lπ∗ induce an equivalence of categories.

Proof. The key observation (see Lemma (2.22)(ii)) is that the derived category
D+,o

cart,c(EW×
W

(ET×
T

T),A) is generated by the objects
⊕

w∈W/WY′
jwY′!j

∗
wY′(A),

while the derived category D+,o
cart,c(EW×

W
(T/T),Rπ∗(A)) is generated by the objects⊕

w∈W/WY′
jwY′/T!j

∗
wY′/TRπ∗(A) as Y′ varies among the T-orbits on T. Lemma

2.22 shows that the functor Rπ∗ sends⊕
w∈W/WY′

jwY′!j
∗
wY′(A) to

⊕
w∈W/WY′

jwY′/T!j
∗
wY′/TRπ∗(A).

One may readily see that

Lπ∗(
⊕

w∈W/WY′
jwY′/T!j

∗
wY′/TRπ∗(A)) =

⊕
w∈W/WY′

jwY′!j
∗
wY′Lπ

∗Rπ∗(A)

=
⊕

w∈W/WY′
jwY′!j

∗
wY′(A).

Therefore, one readily sees that the natural transformations Lπ∗ ◦ Rπ∗ → id and
id→ Rπ∗ ◦ Lπ∗ are isomorphisms proving the proposition. �

Proof of Theorem 1.3. Combining Proposition 2.23, Corollaries 2.12 and 2.18, we
obtain Theorem 1.3. �

3. Proof of Theorem 1.2: Step 4

The remainder of this section is devoted to a proof of the remaining aspects
of Theorem 1.2. We begin with the following result, which applies to any group
action.

Lemma 3.1. Let G denote a linear algebraic group acting on a variety X. Then
for the action of G on (EG×

G
X)n given by

g ◦ (g0, . . . , gn−1, x) = (gg0g
−1, . . . , ggn1

g−1, g ◦ x),

with (g0, . . . , gn−1, x) ∈ Gn×X, g ∈ G, the structure maps of the simplicial variety
EG×

G
X are all G-equivariant.

Proof. We first verify this for n = 1. In this case, the face map d0 = pr2 (which is
the projection to the second factor G×X → X), and d1 = µ : G×X→ X (which
is the group action). Then g ◦ d0(g0, x) = g ◦x = d0(gg0g

−1, g ◦x) = d0(g ◦ (g0, x))
and g ◦ d1(g0, x) = g ◦ (g0 ◦ x) = (gg0) ◦ x = d1(gg0g

−1, g ◦ x) = d1(g ◦ (g0, x)).
The face map s0 sends x ∈ X to (e, x) ∈ G × X = (EG×

G
X)1. Now, g ◦ s0(x) =

g ◦ (e, x) = (geg−1, g ◦x) = (e, g ◦x) = s0(g ◦ (e, x)). The proof that the remaining
structure maps are all G-equivariant is similar, and is therefore skipped. �
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Next we show that the category of equivariant sheaves admits a simpler formu-
lation when the group is a discrete group. This seems to be rather well-known: see
[BL94, Chap. I, Sect. 8] for related results. Let W denote a discrete group acting
on a variety X and let R denote a commutative Noetherian ring. We will assume
X is provided with a (Grothendieck) topology Top(X). Let ShW(X,R) = ShW(X)
denote the following category. Its objects are sheaves of F of R-modules on Top(X)
so that one is provided with a homomorphism W → Aut(F ), where Aut(F ) denotes
the automorphism group of F as a sheaf of R-modules. Morphisms between two
such sheaves F ′ and F are morphisms of sheaves compatible with the given extra
structure.

Lemma 3.2. Assume the above situation.

(i) Then the categories ShW(X) and ShW(EW×
W

X) are equivalent, where the

category ShW(EW×
W

X) denotes the full subcategory of cartesian sheaves of

R-modules on the simplicial variety EW×
W

X.

(ii) If F = {Fn | n} ∈ ShW(EW×
W

X), then each Fn ∈ ShW((EW×
W

X)n), when

(EW×
W

X)n is provided with the W-action as in Lemma 3.1.

(iii) If X = {xo} denotes a point, then we obtain the equivalence: ShW(BW) '
ShW({xo}), and the latter category is the category of R-modules provided
with W-actions.

Proof. For each w ∈ W, we let w : X → X denote the automorphism induced by
w. Now, one may observe that giving a homomorphism W → Aut(F) corresponds
to giving for each w ∈ W, an isomorphism w−1(F ) → F (or equivalently an
isomorphism F → w∗(F )) of sheaves of R-modules, and which are compatible as
w varies in W. In view of the fact that the group W is discrete, one may now
readily show that the category ShW(X) is equivalent to the category of sheaves
F0 on Top(X) provided with an isomorphism φ : µ∗(F0) → pr∗2(F0), satisfying
a cocycle condition on further pull-back to (EW×

W
X)2, and so that s∗0(φ) is the

identity. (Here µ, pr2 : G × X → X are the group action and projection to the
second factor, respectively, while s0 : X → G × X is the map x 7→ (x, e), where e
denotes the identity of G and x ∈ X.)

It is well-known that this latter category is equivalent to ShW(EW×
W

X). In fact,

given an F0 ∈ ShW(X), one defines F = {Fn | n} ∈ ShW(EW×
W

X), by letting

Fn = ((d0)n)∗(F0). The inverse of this functor sends any such F = {Fn | n}
to F0. Finally, one may see from the above description that if F = {Fn | n}
belongs to ShW(EW×

W
X), then F0 ∈ ShW(X). Since all the structure maps of the

simplicial variety EW×
W

X have been shown to be W-equivariant (see Lemma 3.1),

it follows that Fn = ((d0)n)∗(F0) ∈ ShW((EW×
W

X)n). The last statement is clear

since EW×
W
{xo} = BW. �

Step 4.1. The first result we proceed to establish in this section is that the dga A,
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considered in Definition 2.17 and the dga Rπ∗(A), (considered in Definition 2.20)
are formal as dgas.

Definition 3.3. A complex of sheaves K of Q-vector spaces on EW×
W

X is W-

equivariant, if each term Kn in the complex is a W-equivariant sheaf and the
differentials of K are also W-equivariant, that is, K• is a complex in the abelian
category ShW(EW×

W
X,Q).

We next consider the commutative diagram

EÑ×
Ñ

T

ψ

��

α // BÑ

ψ

��

β // BWdiag(T)

ψ̃

��
EWT ×

WT
T

α // BWT
β // BW.

. (3.0.1)

Here Ñ = (T × T)diag(N) and the torus T in WT denotes the quotient torus
(T×T)/diag(T). One may identify this torus with the sub-torus (1×T) ⊆ T×T ⊆
(T×T)diagN(T). Wdiag(T) denotes the quotient ((T×T)diag(N)/(1×T)). The
maps α and α are the obvious maps. The map β corresponds to taking the quotient
of Ñ by (1× T) and the map β corresponds to taking the quotient of WT by the
corresponding torus which also identifies with (1 × T).

Next, one may observe that the composite map

β ◦ α ◦ p2 : EWT ×
WT

(ET× T)→ EWT ×
WT

T→ BW

factors also as the composite map φ ◦ π ◦ p1, where φ : EW×
W

(T/T)→ BW is the

map induced sending all of T/T to a point, pi, i = 1, 2 are the maps defined in
(2.5.3) and π is the map in (2.5.5). Therefore,

A = Rp1∗p
∗
2(α∗β

∗
(Rψ̃∗(Q)))

= Rp1∗p
∗
1π
∗φ∗(Rψ̃∗(Q))

= π∗φ∗(Rψ̃∗(Q))⊗Q Rp1∗(Q)

= π∗φ∗(Rψ̃∗(Q)).

(3.0.2)

The last equality follows from the observation that Rp1∗(Q) ' Q.

Proposition 3.4. 5

(i) The sheaf of commutative dgas, Rψ̃∗(Q) = ψ̃∗G
•(Q) (where G• is the cano-

nical Godement resolution), is W-equivariant and formal as a sheaf of commutative
dgas and whose dga-structure is compatible with the W-action.

(ii) The corresponding statements also hold for Rψ∗(Q) on EWT ×
WT

T, A on

EW×
W

(ET×
T

T) and Rπ∗(A) on EW×
W

(T/T).

5As pointed out by one of the referees, it is not essential in this Proposition that
W be the Weyl group N(T)/T. The same arguments should work if W is replaced by
a finite group (which we will continue to denote by W for want of a better notation),
so that Wdiag(T) is the semi-direct product of W and diag(T), with diag(T) normal in
Wdiag(T).
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Proof.
Step 4.1.1. The two squares in the diagram (3.0.1) are clearly cartesian. Observe

that the map

ψn : (EÑ×
Ñ

T)n = Ñn−1 × T→ (WT)n−1 × T = (EWT ×
WT

T)n

is a principal bundle with fiber (diag(T))n−1. The same holds for each of the

maps ψn and ψ̃n. Therefore, one has base-change, and one obtains the quasi-
isomorphisms:

α∗β
∗
Rψ̃∗(Q)

'−→ α∗Rψ∗(β
∗Q) = Rψ∗(α

∗β∗(Q)) = Rψ∗(Q). (3.0.3)

Moreover, the above isomorphisms are compatible with the structure of sheaves
of dg-algebras. Therefore, the statements in (ii) for Rψ∗(Q) follow from those in
(i). Proof of (i) will occupy the remaining part of Step 4.1.1 and Step 4.1.2. Steps
4.1.3 and 4.1.4 below provide a detailed proof of the statements in (ii) for A and
Rπ∗(A).

Next observe from Lemma 3.1 that each (BWdiag(T))n has a W-action (induced
from the action of the bigger group Wdiag(T)) and that the structure maps of the
simplicial variety BWdiag(T) are compatible with these W-actions. Therefore,
W acts on the simplicial variety BWdiag(T). In fact, the above action identifies
with the action of W induced by the conjugation action of W on Wdiag(T). 6

Moreover, the simplicial map ψ̃ : BWdiag(T) → BW is a W-equivariant map in

each simplicial degree. Therefore, Rψ̃∗(Q) = ψ̃∗G
•(ψ∗(Q)) is a complex of W-

equivariant sheaves on BW.
One may also observe that the pairing ψ̃∗(Q) � ψ̃∗(Q)→ ∆∗(ψ̃

∗(Q)) is compa-
tible with the W-actions, when W-acts diagonally on BWdiag(T) × BWdiag(T).

Next the commutative diagram

BWdiag(T)
∆ //

��

BWdiag(T)× BWdiag(T)

��
BW

∆ // BW × BW

,

and the pairing ψ̃∗(Q) � ψ̃∗(Q) → ∆∗(ψ̃∗(Q)), (along with the fact that the
Godement resolution G• is functorial in its argument and preserves multiplicative
pairings), shows that one obtains the pairings

Rψ̃∗(Q) �Rψ̃∗(Q)→ ∆∗(Rψ̃∗(Q)), (3.0.4)

which are also compatible with the W-actions when W acts diagonally on the left.
Therefore, it follows that the dga-structure on Rψ̃∗(Q) is compatible with the W-
action. Since the maps α, β, φ and π are all W-equivariant maps, it also follows

6In particular, this also shows that one gets an induced action of W on Bdiag(T),
(viewed as a sub-simplicial scheme of BWdiag(T)), which is in fact induced by the
conjugation action of W on diag(T).
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that the dga-structures on Rψ∗(Q), A and on Rπ∗(A) are also compatible with
the W-action.

Step 4.1.2. Next we show the sheaf of commutative dg-algebras Rψ∗(Q) is
formal. In view of the fact that the quasi-isomorphisms in (3.0.3) are compatible

with the dga-structures, it suffices to show that Rψ̃∗(Q) is formal as a sheaf of
dgas.

Let H(Bdiag(T)) = Rψ̃∗(Q)xo where the right-hand side denotes the stalk at
the base point xo in BW. (Observe that this identification of the stalks is possible
because we are using the simplicial topology as in 2.1 and because (BW)0 = {xo}.)
This is a commutative dga provided with an action by W and whose cohomology
is H∗(Bdiag(T)). A key point to observe in view of the equivalence of categories in

Lemma 3.2(iii) is that, in order to show the sheaf of dgas Rψ̃∗(Q) on BW is formal
as a sheaf of dgas, and compatible with the given W-action, it suffices to show that
dga at the stalk H(Bdiag(T)) = Rψ̃∗(Q)xo is formal, and compatible with the given
W-action.

We adopt a rather standard argument to do this: see [Lu95, (3.5) Lem.]. Key
use is made of the fact that the cohomology of this dga is a polynomial ring
generated by elements in degree 2. Let Z2 denote the cycles in degree 2 of the
dga H(Bdiag(T)). Let K = d−1(Z2) ⊆ H(Bdiag(T))1 and N = ker(d : K → Z2).
Since H(Bdiag(T)) has no cohomology in degree 1, one can find a W-stable subring
S of H(Bdiag(T))0 so that d(S) = N . (In fact, let S = d−1(N).) Since the dga
H(Bdiag(T)) has an action by W, the differentials of the dga H(Bdiag(T)) are
compatible with the W-action and therefore, K, N and S all are stable with respect
to the given action of W.

Now one lets B denote the free graded commutative (or super-commutative)
algebra on S ⊕ K ⊕ Z2, with the differential d : S → N ⊆ K and d : K → Z2

defined to be induced by the differential of H(Bdiag(T)). Then the map sending
S (K, Z2) to S (K, Z2) defines a map of dg-algebras B → H(Bdiag(T)) which is
a quasi-isomorphism. The quotient of B by the ideal generated by S, K and d(K)
will then map isomorphically to the cohomology algebra H∗(Bdiag(T)). Since all
the objects above are stable with respect to the action of W, we observe that
the quasi-isomorphisms H(Bdiag(T)) ← B → H∗(Bdiag(T)) are compatible with

the W-actions. This completes the proof that Rψ̃∗(Q) is formal as a dga on BW,
and that therefore Rψ∗(Q) is formal as a sheaf of dgas on EWT ×

WT
T, thereby

completing the proof of (i).

Step 4.1.3. Recall that A is defined as Rp1∗p
∗
2(Rψ∗(Q)) (using the terminology

as in the proof of Lemma 2.16). Next we consider the sheaf of commutative dg-
algebras p∗2(Rψ∗(Q)) on EWT ×

WT
(ET × T) which is formal. Recall this means,

there exists a sheaf of commutative dg-algebras K ∈ D(EWT ×
WT

(ET × T),Q)

so that there exists a diagram p∗2(Rψ∗(Q) ← K → H∗(p∗2(Rψ∗(Q))) of sheaves
of commutative dgas, where the maps are all quasi-isomorphisms of sheaves of
dgas and H∗(p∗2(Rψ∗(Q))) is the cohomology algebra of p∗2(Rψ∗(Q). Observe that
Rp1∗(K) is a sheaf of commutative dg-algebras on EW×

W
(ET×

T
T). Next we make

use of the observation that the fibers of p1 are all ET and hence acyclic, so that
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Rnp1∗(Q) = 0 for n 6= 0 and = Q for n = 0. Since Rnp1∗(Q) = 0 for all n > 0, it
follows that the natural map p1∗(H∗(p∗2(Rψ∗(Q)))) → Rp1∗(H∗(p∗2(Rψ∗(Q)))) is
a quasi-isomorphism. It follows that we obtain the diagram of sheaves of commu-
tative dgas on EW×

W
(ET×

T
T):

Rp1∗(p
∗
2(Rψ∗(Q)))

'←−Rp1∗(K)
'−→Rp1∗(H∗(p∗2(Rψ∗(Q))))

'←−p1∗(H∗(p∗2(Rψ∗(Q)))).

Clearly the last sheaf of dgas is formal. This completes the proof of the statement
that the sheaf of commutative dgas A = Rp1∗(p

∗
2(Rψ∗(Q))) on EW×

W
(ET×

T
T) is

formal. Since A is formal it is quasi-isomorphic as a sheaf of commutative dgas to
its cohomology algebra, which is H∗(A), which is the constant sheaf associated to
H∗(Bdiag(T),Q).

Step 4.1.4. Since T is a projective toric variety for the torus T, the arguments
in [Lu95, Thm. 3.1] or [Gu05, Sect. 5] apply verbatim to prove that Rπ∗(H∗(A)) is
formal as a sheaf of commutative dgas. In fact Rπ∗(H∗(A)) = Rπ∗(Q)⊗QH∗(A),
where A is defined in the line following (3.0.5). Therefore, it suffices to observe
that the arguments in [Lu95, Thm. 3.1] or [Gu05, Sect. 5] are compatible with
the action of W. Recall these arguments are essentially a sheafified variant of the
arguments discussed above in Step 2, sheafified on the space T/T. As discussed in
(2.5.6), each T-orbit Y on T has an open T-stable neighborhood UY of which Y is
a deformation retract and the W-action sends the T-orbit Y to another T-orbit wY
and the neighborhood UY to a neighborhood UwY of wY. The sheafified variant
of the argument in Step 2 is carried out by applying the constructions in Step 2
to the sheaf of dg-algebras Rπ∗(Q|UY

), which produces a free graded commutative
dga BUY

on the image of UY in T and then by showing that for a smaller open
neighborhood UY′ ⊆ UY associated to another T-orbit Y′, the dg-algebra BUY

restricts to BUY′ . Since the W-action preserves the type of the T-orbits, it preserves
the closure relations among these T-orbits, sending the neighborhood UY′ to UwY′

and UY to UwY. Therefore it is clear that the above restrictions are compatible
with the W-action. This completes the proof of the proposition. �

Step 4.2. As observed in Proposition 3.4, Rψ∗(Q) is obtained as the pull-back

α∗(β
∗
(Rψ̃∗(Q)). Since Rψ̃∗(Q)) is formal, we may in fact replace this by its

cohomology. Therefore, by applying the projection formula to (3.0.2), one may
also observe that

Rπ∗(A) = φ∗(Rψ̃∗(Q)))⊗Q Rπ∗(Q). (3.0.5)

We will denote

φ∗(Rψ̃∗(Q))) by A. (3.0.6)

Lemma 3.5. Rπ∗(IC
W,T(OW,T)⊗A) = Rπ∗(IC

W,T)(OW,T)⊗A.

Proof. Observe that A being formal, we may replace A by its cohomology sheaves.
The arguments in (3.0.2) show that A is also constant, that is, we may replace A
by a graded Q-vector space. Then the conclusion follows readily. �
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Identifications of dg-algebras. Recall that we showed in Step 4 (see 1.4), that
the dgas BG×G(G) and BW,T(T) are quasi-isomorphic, where the dga BW,T(T)
is defined in Step 4(iii) as

RHom(
⊕
O Rπ∗(IC

W,T)(OW,T ⊗A),
⊕
O Rπ∗(IC

W,T)(OW,T ⊗A). (3.0.7)

In view of Lemma 3.5, this identifies with

RHom(
⊕
O Rπ∗(IC

W,T)(OW,T)⊗A,
⊕
O Rπ∗(IC

W,T)(OW,T)⊗A). (3.0.8)

Step 4.3. Formality of the dg-algebra BW,T(T). In order to establish this formality,
we consider projective resolutions in Lemma 3.6 and Proposition 3.7, discussed
below.

Lemma 3.6. Let C+,o
cart,c(EW×

W
(ET×

T
T),A) (C+,o

cart,c(EW×
W

(T/T),Rπ∗(A)) denote

the category of complexes whose associated derived category is

D+,o
cart,c(EW×

W
(ET×

T
T),A) (respectively,D+,o

cart,c(EW×
W

(T/T),Rπ∗(A)).

(i) Let Y′ denote a T-orbit on T. Let WY′ denote the stabilizer of Y′ in W. Then
P =

⊕
w∈W/WY′

jwY′!j
∗
wY′(A) is a projective object in C+,o

cart,c(EW×
W

(ET×
T

T),A) in

the sense that HomA(P, ) preserves quasi-isomorphisms in the second argument,
where HomA denotes the Hom in the category C+,o

cart,c(EW×
W

(ET×
T

T),A) of sheaves

of dg-modules over A. Similarly,

Q =
⊕

w∈W/WY′
jwY′/T!j

∗
wY′/T(Rπ∗(A))

is a projective object in C+,o
cart,c(EW×

W
(T/T),Rπ∗(A)).

(ii) Every sheaf of dg-modules over H∗(A) has a bounded above resolution by
projectives as in (i). The same holds for sheaves of dg-modules over H∗(Rπ∗(A)).

Proof. In view of the equivalence of categories provided by Proposition 2.23 and
Remark 2.21, the first assertion in (i) follows from the second assertion in (i). For
the second assertion in (i), we simply observe that

HomRπ∗(A)(
⊕

w∈W/WY′
jwY′/T!j

∗
wY′/T(Rπ∗(A)),K)

=
⊕

w∈W/WY′/T
HomRπ∗(A)(j ∗wY′/T(Rπ∗(A)), j ∗wY′/T(K )).

But j∗wY′/T(Rπ∗(A)) (j∗wY′/T(K)) is the stalk of Rπ∗(A) (K, respectively) at

the orbit wY′. This proves the second assertion in (i). We skip the proof of the
assertions in (ii). �

Let OWT denote a WT-orbit on T. Then OWT is a disjoint union of T-orbits on
T permuted under the action of W: therefore, we denote OWT = W.OT. Observe
also that the dg-algebra Rπ∗(A) being formal can be viewed as a dg-algebra over
H∗(BT). Recall that ICW,T(OWT) denotes the equivariant intersection cohomology
complex on the WT-orbit OWT for the action of the group WT (and extending
the constant sheaf Q on OWT), but viewed as a complex on EW×

W
(ET×

T
T).
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Proposition 3.7.

(i) Let x ∈ T
T

denote a fixed point. Let Wx denote the stabilizer of x in W and
Wx = W/Wx the corresponding W-orbit. Then denoting the sum⊕

w∈W/Wx
Rπ∗(IC

W,T(OWT)⊗A)wx

by Rπ∗(IC
W,T(OWT)⊗A)Wx , we obtain:

Rπ∗(IC
W,T(OWT)⊗A)Wx =

⊕
w∈W/Wx

Rπ∗(WICT(OT))wx ⊗Q A (3.0.9)

where WICT(OT) denotes a sum of intersection cohomology complexes ⊕ICT(OT)
where the sum varies over all the disjoint W-translates of a given T-orbit OT.
Therefore, the cohomology H∗(Rπ∗(IC

W,T(OWT))⊗A)Wx forms a projective mo-
dule over H∗(BT)⊗H∗(A).

(ii) Every object Rπ∗(IC
W,T(OWT)) ⊗ A has a projective resolution {· · · →

P−n → P−n+1 → · · · → P 0} in DW(T/T,H∗(Rπ∗(Q) ⊗ A)) so that the given
augmentation P 0 → Rπ∗(IC

W,T(OWT))⊗A is a quasi-isomorphism at each stalk

of the form Wx , x ∈ T
T

, it induces a surjection at each stalk Wx, x ∈ T and each
P−i is of the form⊕

w∈W/Wx
jUwx !j

∗
Uwx

(H∗(Rπ∗(Q)⊗A))[nUwx
]

as Uwx varies over neighborhoods of points wx ∈ T/T and where nUwx are integers.

(iii) The complexes P i, for i < 0, are supported at points in T− T
T

and hence
viewed as modules over H∗(BT,Q)⊗Q H∗(A) are torsion.

Proof. (i) is a straightforward calculation making use Proposition 3.5(iii) and the
following observation. If OT denotes an orbit of T on T, and W.OT = OWT denotes
the orbit for the corresponding WT-action, then as observed in (2.5.4),

ICW,T(OWT) =
⊕

w∈W/WOT
ICT(OT), (3.0.10)

where WOT
denotes the stabilizer of the OT -orbit in W. Applying Rπ∗, and making

use of (3.0.2), we therefore obtain:

Rπ∗(IC
W,T(OWT)⊗A) = Rπ∗(WICT(OT))⊗Q A.

Then take the stalks at wx and the sum
⊕

w∈W/Wx
to obtain (3.0.9).

Next use the fact that the global equivariant intersection cohomology of a
projective toric variety is a free module over the cohomology ring of the classifying
space of the torus, and the stalk cohomology of the intersection cohomology comp-
lex at a T-fixed point on T is isomorphic to the global intersection cohomology of
the link at that point: see [Lu95, (4.0.4) Thm. and (4.2.2)] and also [BJ04, Thm.
1.1]. This completes the proof of (i).

Then (ii) is an immediate consequence of (i), Lemma 3.6 and the formality
of the dgas Rπ∗(A) = Rπ∗(Q) ⊗ A. (ii) shows that the augmentation P 0 →
Rπ∗(IC

W,T(OWT)) ⊗ A induces a quasi-isomorphism at every Wx , for every x ∈
T

T
. Therefore, it follows that each Hi(P •), for i < 0, are torsion modules over

H∗(BT,Q)⊗Q H∗(A). �
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Recall that T is the closure in the projective variety G of the torus T: therefore,
T is projective. Next recall from (3.0.2) that φ denotes the map φ : EW×

W
(T/T)→

BW sending T/T to the base point in BW.

Lemma 3.8. The stalk of

Rφ∗(RHomRπ∗(Q)(
⊕

Rπ∗(IC
W,T(OWT),

⊕
Rπ∗(IC

W,T(OWT))))

at the base point in BW, where the sum varies over all the WT-orbits in T,
identifies with the dg-algebra BT(T), which is the dg-algebra considered in Theo-
rem 1.2 for the projective toric variety T, viewed as an imbedding of the torus T.
In particular, its cohomology is a torsion-free module over H∗(BT,Q).

Proof. The decomposition of the WT-orbits into the corresponding T-orbits and
therefore, the induced decomposition as in (3.0.10) shows that the sum⊕

Rπ∗(IC
W,T(OWT))

in fact, runs over all the T-equivariant intersection cohomology complexes on the
T-orbits on T. Then the stalk considered above (using the simplicial topology as
in 2.1) identifies with the dg-algebra

RHomRπo∗(Q)(
⊕
Rπo∗(IC

T(OT)),
⊕
Rπo∗(IC

T(OT))),

where πo : ET×
T

T→ T/T is the quotient map. By [Lu95, the proof of (0.1.1) Thm.]

this identifies with the dg-algebra BT(T). The last statement is then deduced as in
[Lu95, (4.0.3) Thm.] from the observation that the global equivariant intersection
cohomology complex of a projective toric variety is a free module over the cohomo-
logy ring of the classifying space of the torus as observed earlier. One applies this
observation to the projective toric varieties forming the closures of the T-orbits
on T. �

Remark 3.9. In keeping with the terminology used in Theorem 1.2, the dg -algebra
BT(T) should be denoted BT×T(T). However, since in this case T is commutative,
we adopt the simpler notation as above.

Theorem 3.10. Assume next that the toroidal imbedding G and therefore, the
toric variety T is projective. Then

(i) the dg algebra BW,T(T) is formal and

(ii) BW,T(T) = (BT(T)⊗Rψ̃∗(Q))W.

Proof. Let P • →
⊕
Rπ∗(IC

W,T(OWT))⊗A denote a projective resolution, where
each P−i is a sum of terms of the form as in Proposition 3.7(ii) and where the sum
varies over all the WT-orbits in T. Therefore,

P =
⊕

i P
−i[i]→

⊕
Rπ∗(IC

W,T(OWT))⊗A

is a quasi-isomorphism with P a projective object in CW(T/T,H∗(Rπ∗(Q)⊗A)).
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Observe next that the dga A is formal, and since each P−i is of the form given
in Proposition 3.7(ii), the differentials of each P−i are in fact trivial. Therefore, the
spectral sequence for the total complex for Hom(P •, P •) degenerates. Therefore,
now BW,T(T) identifies with the total complex of Hom(P •, P •), where the differen-
tials of P • (that is, {d : Pn → Pn+1 | n}) provide the structure of a chain-complex
on Hom(P •, P •).

We will presently provide two somewhat different proofs to show that the dg
algebra BW,T(T) is formal. The first starts with the observation that the dg-algebra

BW,T(T) = RΓ(BW, B̃W,T(T)) = (B̃W,T(T))W for the sheaf of dgas B̃W,T(T) =
Hom(P •, P •) on BW.

A key observation we make is that the stalk of H∗(B̃W,T(T)) (at the base point

in BW) is a torsion-free module over H∗(BT,Q) ⊗Q H∗(Rψ̃∗(Q)). When G and
hence T are projective, this is clear in view of the identification of the stalks of

Rφ∗(RHomRπ∗(Q)(
⊕

Rπ∗(IC
W,T(OWT)),

⊕
Rπ∗(IC

W,T(OWT))))

at the base point in BW with the dg-algebra BT(T) as shown in Lemma 3.8, along

with the observation that A = φ∗(Rψ̃∗(Q)). (In fact, see (3.0.11) below.) Therefore,

Proposition 3.7 shows that the cohomology of the sheaf of dg-algebras B̃W,T(T),
which identifies with the cohomology of the complex Hom(P •, P •), vanishes in
all degrees except 0. (Here, we again make use of the observation that the dga
A is formal, and since each P−i is of the form given in Proposition 3.7(ii), the
differentials of each P−i are in fact trivial.)

Now the diagram of dgas

H0(B̃W,T(T))← σ≤0(B̃W,T(T))→ B̃W,T(T)

(where σ≤0 is the functor that kills the above cohomology in negative degrees)

shows that the sheaf of dg-algebras B̃W,T(T) is formal on BW. Finally one simply
takes W-invariants, observing that taking W-invariants is an exact functor since
we are working with rational coefficients. This proves (i).

We will next provide a proof of (ii). Now one may observe that with A =

φ∗(Rψ̃∗(Q)), and IC =
⊕
Rπ∗(IC

W,T(OWT)),

BW,T(T) = RΓ(BW,Rφ∗(RHomRπ∗(Q)⊗A(IC ⊗Q A, S⊗Q A)))

= RΓ(BW,Rφ∗(RHomRπ∗(Q)(IC , IC ⊗Q A)))

= RΓ(BW,Rφ∗(RHomRπ∗(Q)(IC , IC )⊗Q Rψ̃∗(Q))).

(3.0.11)

The last equality follows from the projection formula as well as the observation that
A is formal and constant (see (3.0.5)), while the one above follows from standard
properties of RHom. Here the sum ⊕ varies over all WT-orbits in T. Now observe
that

Rφ∗(RHomRπ∗(Q)(
⊕

Rπ∗(IC
W,T(OWT)),

⊕
Rπ∗(IC

W,T(OWT)))) (3.0.12)
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is a complex of W-equivariant sheaves on BW. Lemma 3.8 shows that its stalk at
the base point identifies with the dga BT(T) associated to T, viewed as a toric
variety for T. Therefore, we obtain (ii), that is, the dga equality

BW,T(T) = (BT(T)⊗Rψ̃∗(Q))W .

Finally we will provide a second proof of (i). Since Rψ̃∗(Q) was already observed
to be formal as a dga on BW (that is, as a dga with W-action), it suffices to show
that BT(T) is formal as a dga with W-action. The arguments for the formality of
BT(T) (see for example, the proof of [Lu95, Prop. 4.1.2]) show that Hi(BT(T)) = 0
for all i 6= 0, where Hi denotes the cohomology of the corresponding complex
Hom(P•,P•).

Next let σ≤0BT(T) denote the truncation functor that kills the cohomology
above degree 0. Then it is clear that we obtain maps of dgas

H0(BT(T))← σ≤0(BT(T))→ BT(T)

which are both quasi-isomorphisms and compatible with the given W-actions. (The
compatibility with the W-action should be clear from (3.0.10), which shows that
the T-orbits on T may be grouped into WT-orbits.) Therefore, the induced maps
of dgas

H0(BT(T))⊗QH∗(Rψ̃∗(Q))←σ≤0(BT(T))⊗QH∗(Rψ̃∗(Q))→BT(T)⊗QH∗(Rψ̃∗(Q))

are also quasi-isomorphisms and compatible with the W-actions. Since Rψ̃∗(Q)

was observed to be formal as a dga on BW, one may now replace H∗(Rψ̃∗(Q))

by Rψ̃∗(Q)) and obtain the same conclusions. Therefore, we see that BW,T(T) =

(BT(T)⊗Q Rψ̃∗(Q))W is formal as a dga. �

In view of the isomorphisms in (3.0.7) and (3.0.8), this completes the proof of
Theorem 1.2.

4. A general obstruction theory for formality of the dg-algebra B and
conclusions for scs varieties

We start with the observation that the dg-algebra BG(X) in Theorem 1.1 is only
an A∞-dg-algebra (or only an associative dg-algebra), because the multiplicative
structure is given by composition and hence not commutative in general. (Recall
that an A∞-dg algebra means a dg-algebra where the multiplication is coherently
homotopy associative.) A well-known result of Kadeishvili (see [Ka80]) shows that,
nevertheless for any A∞ dg-algebra B (over Q) there exists an A∞-structure on the
cohomology algebra H∗(B), so that B is quasi-isomorphic as an A∞-dg-algebra to
H∗(B) with the above A∞-structure. We follow the exposition of [LPWZ09, Sect.
2] for this. Since we are working over Q, we obtain a (non-canonical) decomposition
of each Q-vector space Bn as

Bn = Zn ⊕ Ln = Cn ⊕Hn ⊕ Ln. (4.0.1)
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Here Cn denotes the co-boundaries, Zn the co-cycles and Hn = Zn/Cn. We will
identify

⊕
nH

n(B) as imbedded in B by co-cycle-sections Hn ⊂ Bn. Clearly there
are many different choices of Hn and Ln. Let p : B → B be a projection to
H :=

⊕
nH

n, and let G : B → B be a homotopy from idB to p. Hence we
have idB − p = ∂G + G∂. We will define the map G as follows: for every n,
Gn : Bn → Bn−1 is the map which satisfies

• Gn = 0 when restricted to Ln and Hn, and

• Gn = (∂n−1|Ln−1)−1 when restricted to Cn.

(Observe that ∂n−1|Ln−1 : Ln−1 → Cn is a bijection.) Therefore, the image of Gn is
Ln−1. It follows that Gn+1∂n = PrLn and ∂n−1Gn = PrCn , where PrLn : Bn → Ln

and PrCn : Bn → Cn are the projections.

Next we define a sequence of linear maps λn : B⊗n → B of degree 2−n as follows.
There is no map λ1, but we formally define the “composite” Gλ1 by Gλ1 = −idB.
λ2 is the multiplication of B, namely, λ2(a1⊗a2) = a1 ·a2. For n ≥ 3, λn is defined
by the recursive formula

λn =
∑

s+t=n,
s,t≥1

(−1)s+1λ2 ◦ (Gλs ⊗Gλt). (4.0.2)

Using p to denote both the map B → B and also (since the image of p is H∗(B)) the
map B → H∗(B); we also use λi both for the map B⊗i → B and for its restriction
(H∗(B))⊗i → H∗(B)→ B. Then the above mentioned result of Kadeishvili can be
stated as follows:

Theorem 4.1 ((See [LPWZ09, Thm. 2.2, Prop. 2.3]).

(i) Let mi = pλi. Then (H∗(B),m2,m3, . . .) is an A∞-algebra.

(ii) Let {λn} be defined as above. For i ≥ 1 let fi = −Gλi : (H∗(B))⊗i → B.
Then f := {fi} is a map of A∞ dg-algebras so that f1 is a quasi-isomorphism.

We define the A∞-dg-algebra B to be formal, if all the mi = 0 for i > 2. Now
we conclude this discussion with the

Proof of Theorem 1.5

(i) follows readily from the fact that the mi = pλi and that the map λi : B⊗i →
B has degree 2 − i which is odd if i is odd. Now the map mi is the composition

H∗(B)⊗i → B⊗i λi−→ B p−→ H∗(B). Therefore, when Hi(B) = 0 for all odd i, one
may readily see that the map mi is trivial for all odd i.

(ii) Let X denote a projective G-spherical variety as in (ii). Then it was shown in
[BJ04, Lem. 3.6] and [BJ01, Thm. 4] that the only G-equivariant local systems on
the G-orbits O on X are constant, that the odd dimensional intersection cohomo-
logy sheavesHi(IC(Q|O)), as well as that the odd dimensional intersection cohomo-

logy groups IHi(O) vanish. (Here Q|O denotes the constant sheaf Q on the G-orbit
O in X.) A spectral sequence argument now shows that Hi(BG(X)) = 0 for all odd
i, for the corresponding dg-algebra BG(X). Therefore, the result in (i) applies.
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Remark 4.2. One may interpret the conclusion of the last theorem as saying that
half the obstructions for the formality of the dg-algebra BG vanish for the spherical
varieties considered there. Clearly, this includes a large class of spherical varieties.

5. Comparison of Equivariant Derived Categories

The equivariant derived categories associated to the action of a group G on a
space are usually defined as certain full subcategories of the derived category on
the Borel construction associated to the group action. Different models for the
Borel construction therefore provide different models for the equivariant derived
categories. The geometric model which had been introduced in [BL94] in the
topological framework and in the scheme-theoretic framework in [To99] and [MV99]
complements the simplicial model which was discussed in [De74], [Fr83] and [Jo93],
each with its own advantages and disadvantages. For example, the discussion of
the Weyl-group action in Section 3 (see Lemma 2.16) as well as the need to handle
modules over sheaves of dgas that are only bounded below, seems to require the
simplicial model. In fact the situation considered in Proposition 2.10 and Lemma
2.16 is a special case of a more general situation where one needs to consider
actions of two groups G and H provided with a surjective map from G to H
acting on spaces compatibly and then relate the corresponding equivariant derived
categories. In this case, the simplicial model seems to be able to handle the situation
easily, while the approach making use of geometric classifying spaces simply does
not work, since one has to find representations of both G and H and relate them
suitably. We encounter several instances of such situations in Section 2, which is
the reason we have chosen to work with the simplicial model.

However, since the geometric model is perhaps more suited for handling pro-
perties like the weight filtration (used in [Jo17]), and also more commonly used
in the literature dealing with equivariant derived categories, we felt it important
to provide a comparison between the two models, which is what is done in the
rest of this section. In view of the various applications, we have decided to make
the discussion in this section general enough so that it applies to actions of linear
algebraic groups defined over fields that are perfect and of finite ` cohomological
dimension for some ` 6= char(k).

5.1. Equivariant Derived Categories: version I

Presently we proceed to define a model for the equivariant derived category that
is valid in all characteristics, making use of an algebraic model for the classifying
space BG for a linear algebraic group as in [MV99] and [To99]. (The construction in
[BL94] is similar in spirit, and may have served as a motivation for the constructions
in [MV99] and [To99], but applies mostly to actions of topological groups on
topological spaces.)

Definition 5.1. We will often use EGgm,m to denote the mth term of an admis-
sible gadget {Um | m}: the superscript gm stands for geometric. This is discussed
in more detail in Definition 6.2. (Recall this means Um = EGgm,m is an open
G-stable subvariety of a representation Wm of G, so that (i) G acts freely on Um

and a geometric quotient Um/G exists as a variety and (ii) so that in the family
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{(Wm ,Um) | m ∈ N}, the codimension of Wm − Um in Wm goes to ∞ as m
approaches ∞.)

Making use of EGgm,m we may now define a characteristic free algebraic model
for the equivariant derived category.

Convention. Henceforth, we will adopt the following conventions. If X is a variety
defined over k, we will consider `-adic sheaves on Xet, which denotes the étale site
of X. (One may also consider sheaves of Z/`ν-modules, or sheaves of R-modules
for a commutative Noetherian ring that is torsion with torsion prime to char(k).
This way, it becomes possible to consider `-adic sheaves where Q` is replaced by
Q`, which is the algebraic closure of Q`: see [BBD82, 2.2.18].) If X is a variety
defined over the complex numbers, we may consider sheaves of Q-vector spaces
on the transcendental site of X(C) or `-adic sheaves on Xet. We will denote by
D(X) (D+(X), Db(X)) the unbounded derived category (the bounded below derived
category, the bounded derived category, respectively) of complexes of sheaves of
Q-vector spaces on X(C) or `-adic sheaves on Xet depending on the context.

Observe that, if k is algebraically closed,

Hi
et(EGgm,m ,Q`) = 0 for all 0 < i ≤ 2m − 2 and H0

et(EGgm,m ,Q`) = Q`.

This follows from the fact that EGgm,m = Um which is an open G-stable subvariety
of codimension at least m > 1. (It may be deduced from the hypothesis in the
definition of the admissible gadgets in Definition 6.2 that codimWm (Wm \Um) =
m(codimW(Z)).) The corresponding results also hold with Z or Q-coefficients over
an algebraically closed field of characteristic 0. (Here we apply Lemma 6.1 with
c = m.) Therefore, for each fixed finite interval I = [a, b] of integers, a ≤ b, and
each integer m ≥ 0, we now define

DI(EGgm,m×
G

X) = {K ∈ D(EGgm,m×
G

X)) | Hi(K) = 0, i /∈ I}.

Now we let, for each I, with 2m− 2 ≥ |I| = b− a,

DI,gm
G,m(X)=the full subcategory of DI(EGgm,m×

G
X) consisting of those K

such that there exists an L ∈ D(X) so that π∗m(K)
'←− p∗2,m(L).

(5.1.1)

Here πm : EGgm,m × X → EGgm,m×
G

X is the quotient map and p2,m : EGgm,m ×
X → X is the projection. In case we need to clarify the choice of the geometric
classifying spaces, we will denote DI,gm

G,m(X) by DI
G(EGgm,m×

G
X). One observes that

if I ⊆ J, then one obtains a fully faithful imbedding DI,gm
G,m(X)→ DJ,gm

G,m (X), so that

varying I, one obtains a filtration of Db,gm
G,m (X), which is defined as above except

the vanishing of the cohomology sheaves Hi(K) is for all i outside of some finite
interval I depending on K.

Next let iGm = im×
G

idX : EGgm,m×
G

X → EGgm,m+1×
G

X denote the map induced

by the regular immersion im : EGgm,m → EGgm,m+1, which is the map defined in
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Definition 6.2(5). Pullback along this map defines the inverse system {DI,gm
G,m(X) |

m}. We proceed to take the limit of this inverse system of categories: we discuss
this in a more general setting as follows. Given an inverse system of categories
{Ci | i ∈ N} and functors Fi−1,i : Ci → Ci−1 for each i ∈ N, we define the inverse
limit category lim

i
Ci to be the following category:

(1) The objects are pairs ({Ci | i}, {φi−1,i | i}) where Ci ∈ Ci for each i ∈ N
and φi−1,i : Fi−1,i(Ci)

∼=−→ Ci−1 for any i ≥ 2.

(2) A morphism f between two objects ({Ci | i},{φi−1,i | i}), ({Di | i},{ψi−1,i |
i}) is a set of arrows {fi : Ci → Di | i} so that the diagram

Fi−1,i(Ci)
φi−1,i //

Fi−1,i(fi)

��

Ci−1

fi−1

��
Fi−1,i(Di)

ψi−1,i // Di−1

commutes. Composition of morphisms is component-wise.

Similarly if {Fα,β : Cα → Cβ | α, β ∈ J} is a sequence of functors indexed by
the filtered category J, the category colim

J
Cα may be described as follows: objects

have the form (C,α) for some α ∈ J and C ∈ Ob(Cα). The set of morphisms from
(C,α) to (D,β) is given by colim

γ≥α,β
HomCγ (Fα,γ(C),Fβ,γ(D)).

Let I = [a, b], a < b denote a finite interval of integers. Now one defines

DI,gm
G (X) = lim

∞←m
{DI,gm

G,m(X) | m} and Db,gm
G (X) = colim

I
DI,gm

G (X) (5.1.2)

where the last colimit is over all finite intervals I = [a, b]. Making use of the above
discussion, we define for each prime ` different from the residue characteristics,
and each finite interval I = [a, b] of integers

DI,gm
G (X,Z`) = lim

∞←ν
{DI,gm

G (X,Z/`ν) | ν} and

DI,gm
G (X,Q`) = DI,gm

G (X,Z`)⊗Q`.
(5.1.3)

One also defines the `-adic derived categories

Db,gm
G,m (X,Q`) = colim

I
{DI,gm

G,m(X,Q`) | I}. (5.1.4)

When everything is defined over the complex numbers, one may define DI,gm
G (X,Q)

and Db,gm
G,m (X,Q) similarly.

Proposition 5.2. Let R denote a commutative Noetherian ring that is torsion,
with torsion prime to char(k).
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(i) Let {ẼG
gm,m

| m} denote the geometric classifying space defined with respect
to the choice of another admissible gadget. Then, for each fixed I = [a, b] with
2m− 2 ≥ |I| = b− a, the projections

pr1 : (EGgm,m × ẼG
gm,m

)×
G

X→ EGgm,m×
G

X and

pr2 : (EGgm,m × ẼG
gm,m

)×
G

X→ ẼG
gm,m

×
G

X

induce equivalences

pr∗1 : DI
G(EGgm,m×

G
X,R)→ DI

G((EGgm,m × ẼG
gm,m

)×
G

X,R) and

pr∗2 : DI
G(ẼG

gm,m
×
G

X,R)→ DI
G((EGgm,m × ẼG

gm,m
)×

G
X,R).

(ii) For a fixed I = [a, b], with 2m− 2 ≥ |I| = b− a, the induced map

iG,∗m : DI,gm
G,m+1(X,R)→ DI,gm

G,m(X,R)

is an equivalence of categories.

Proof. (i) follows readily since both EGgm,m and ẼG
gm,m

are 2m−2-connected. In
view of this, the functor pr∗i (for i = 1, 2) has an inverse given by τ≤bRpri∗, where
τ≤b denotes the cohomology truncation to degrees ≤ b. Therefore, the functors pr∗i
are fully-faithful. Now to see these functors are equivalences of derived categories,
it suffices to observe that all complexes in the above equivariant derived categories
are quasi-isomorphic to complexes obtained by pull-back from X.

Next we consider (ii). One may take ẼG
gm,m

= EGgm,m+1 which show the
projections pr1 : (EGgm,m × (EG)gm,m+1)×

G
X→ EGgm,m×

G
X and pr2 : (EGgm,m ×

(EG)gm,m+1)×
G

X→ EGgm,m+1×
G

X both induce equivalences:

pr∗1 : DI
G(EGgm,m×

G
X,R)→ DI

G((EGgm,m × EGgm,m+1)×
G

X,R) and

pr∗2 : DI
G(EGgm,m+1×

G
X,R)→ DI

G((EGgm,m × EGgm,m+1)×
G

X,R).

If ∆ : EGgm,m×
G

X→ (EGgm,m × (EG)gm,m+1)×
G

X is the diagonal imbedding, then

∆ is a section to pr1 and iGm = pr2 ◦∆. Since pr∗1 is an equivalence, so is ∆∗; since
∆∗ and pr∗2 are equivalences, it follows so is iG∗m . (Here, it may be worthwhile to
observe that for every complex K ∈ DI

G(EGgm,m+1×
G

X,R) there exists a complex

L ∈ DI(X,R) so that π∗m+1(K)
'←− p∗2,m+1(L) following the notations as in (5.1.1).)

�

Remark 5.3. Observe that, for each fixed m, and each fixed finite interval I, one
obtains the equivalences:

DI,gm
G (X,Q`)= lim

∞←m
DI,gm

G,m(X,Q`)= lim
∞←m

( lim
∞←ν

DI,gm
G,m(X,Z/`ν))⊗Q`)

∼=( lim
∞←m

lim
∞←ν

DI,gm
G,m(X,Z/`ν))⊗Q`∼=( lim

∞←ν
lim
∞←m

DI,gm
G,m(X,Z/`ν))⊗Q`.

All but the next-to-last equivalence are clear from the definition, and this equiva-
lence follows from Proposition 5.2(ii).
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5.2. The role of stratifications

Next we will consider the role of stratifications. A G-stratification of the variety
X is a decomposition of X into finitely many disjoint locally closed smooth equi-
dimensional and G-stable subvarieties called strata. Let the stratification be de-
noted S = {Sα | α}. Since the Borel construction is functorial, and EGgm,m/G is
smooth, such a stratification of X defines a stratification {EGgm,m×

G
Sα | α} of the

Borel construction EGgm,m×
G

X for each m. This stratification of EGgm,m×
G

X will

be denoted SG,m. These are evidently compatible as m varies.

Given an interval I of the integers, we let DI,gm
G,m(X,SG,m) denote the full sub-

category of DI,gm(EGgm,m×
G

X,SG,m) consisting of complexes K whose cohomology

sheaves are G-equivariant.

Db,gm
G,m (X,SG,m) will denote the full subcategory of complexes K that belong

to DI,gm(EGgm,m×
G

X,SG,m) for some I. One takes the 2-limit of the categories

{DI,gm
G,m(EGgm,m×

G
X,SG,m) | m} as m→∞ to define DI,gm

G (X,S).

Next we discuss how the t-structures on Db,gm
G,m (X,SG,m), the equivariant derived

category, behave as one varies m and also the stratifications.

First observe that the map im : EGgm,m → EGgm,m+1 is a regular closed
immersion, for each m. Therefore so is the induced map iGm : EGgm,m×

G
X →

EGgm,m+1×
G

X. Given a G-stratification S = {Sα | α} of X, let i
(m)
Sα

= id×
G
i :

EGgm,m×
G
Sα → EGgm,m×

G
X denote the induced closed immersion.

A perversity function p defined on a stratified variety Y will be defined as a
non-decreasing function on codimension of the strata, so that the value on the
open stratum will be 0. We will view p as defined on the strata themselves. (For
the most part, we will only consider the middle perversity, which is defined by
m(S) = the codimension of S in Y.) Recall that the standard t-structure on
a derived category of complexes with bounded cohomology is one whose heart
consists of complexes that have non-trivial cohomology only in degree 0. Then one
may start with standard t-structures defined on each of the strata S shifted by
the perversity p(S) and obtain a non-standard t-structure on the bounded derived
category, Db(Y) by gluing as in [BBD82, Def. 2.1.2].

Proposition 5.4. Let SG denote a fixed G-stable stratification of the G-variety X
and let SG,m denote the induced stratification on EGgm,m×

G
X for the action of G

on X.

(i) Let the derived categories Db,gm
G,m+1(X,SG,m+1) and Db,gm

G,m (X,SG,m) be pro-
vided with the t-structures obtained by gluing with respect to a fixed perversity
function and with respect to a G-stable stratification of X. Then the functor iG,∗m
preserves the above t-structures.

(ii) Let TG = {Tβ | β} denote a G-stable stratification that is a refinement of

the stratification SG. Then any complex in Db,gm
G,m (X) whose cohomology sheaves are

local systems on each stratum of SG,m clearly belongs in Db,gm(EGgm,m×
G

X, TG,m).
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This induces the inclusion functor

Db,gm
G,m (X,SG,m)→ Db,gm

G,m (X, TG,m).

This functor preserves the t-structures on either side obtained by gluing.

Proof. We will first consider (i). Let i denote generically the closed immersions
EGgm,m×

G
S → EGgm,m+1×

G
S and EGgm,m×

G
X → EGgm,m+1×

G
X. Recall the t-

structure obtained by gluing on Db,gm
G,m (X) is such that

Db,gm
G,m (X,SG,m)

≤0
= {K ∈ Db,gm

G,m (X,SG,m) | Hi(i
(m)
S )∗(K)) = 0, i > p(S)} and

Db,gm
G,m (X,SG,m)

≥0
= {K ∈ Db,gm

G,m (X,SG,m) | Hi(Ri
(m)
S )!(K)) = 0, i < p(S)}

Here i
(m)
S : EGgm,m×

G
S → EGgm,m×

G
X is the closed immersion corresponding to a

stratum S. Since i
(m)∗
S i∗ = i∗i

(m+1)∗
S , it follows readily that

i∗ sends DI,gm
G,m+1(X,SG,m)≤0 to DI,gm

G,m(X,SG,m)≤0.

To see that i∗ sends DI,gm
G,m+1(X,SG,m)≥0 to DI,gm

G,m(X,SG,m)≥0, one needs to observe

that i
(m)
S = idEGgm,m ×

G
iS, i

(m+1)
S = idEGgm,m+1 ×

G
iS and that i = i′ ×

G
id, where

i′ : EGgm,m → EGgm,m+1 is the closed immersion. One also needs the fact that
for every complex K ∈ DI,gm

G,m(X,SG,m) there exists a complex L ∈ DI(X) so that
p∗2(L) ' π∗m(K).

(ii) follows from [BBD82, Prop. 2.1.14]. �

Proposition 5.5. Assume in addition to the above hypotheses that G acts with
finitely many orbits on the variety X. Let S denote the stratification of X by the
G-orbits. Then Db,gm

G,m (X,SG,m) = Db,gm
G,m (X), for every m.

Proof. This is clear since any G equivariant sheaf is a local system on each orbit.
�

5.3. Equivariant Derived Categories: version II

This is based on the simplicial model of the Borel construction and we discussed
this already in Section 2.1. Therefore, we proceed to discuss the proof of Theorem
1.6, next.

Proof of Theorem 1.6. (i) The fact that p∗1 is fully faithful follows from the
observation that the geometric fibers of the map p1 are EGgm,m (base extended to
the algebraic closure of the base field) which is acyclic in degrees 1 through 2m−2.
(See Lemma 6.1.) Its inverse is the functor τ≤bRp1∗, where τ≤b is the functor
killing cohomology above degree b. Now the fact that p∗1 is an equivalence follows
from observing that it induces an equivalence on the hearts of the corresponding
derived categories provided with the usual t-structures, where the heart consists
of complexes with trivial cohomology in all degrees except 0. Both p1 and p2 are
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simplicial maps which are smooth in each degree: therefore, both p∗1 and p∗2 send
complexes that are mixed and pure to complexes that are mixed and pure.

The geometric fibers of the map p2 identify with the simplicial variety EG
(base extended to the algebraic closure of the base field) which is acyclic. The
equivalence in (5.4.1) and [Jo02, Thm. 4.2], show readily that the functor p∗2 is fully-
faithful. That it is also an equivalence now follows by observing that p∗2 induces an
equivalence on the hearts of the corresponding derived categories provided with the
usual t-structures, where the heart consists of complexes with trivial cohomology
in all degrees except 0. These observations complete the proof of the statements
in (i).

(ii) We make use of the construction of the geometric classifying spaces through
the admissible gadgets discussed in (6.1.1), but first over the algebraic closure
of the base field. In the terminology there, if we are working over the complex
numbers, then with the complex topology, we now observe that Um+1 is in fact
the join of Um with U, where the join Um ∗U denotes the homotopy pushout

Um ×U //

��

U

��
Um

// Um ∗U

(5.3.1)

In the étale framework, the corresponding statement holds when Um (U) is replaced
by the completed étale topological types, with the completion at a prime ` different
from the characteristic. Thus, in case the base field is the complex numbers, Um is
the iterated join of U m-times and in positive characteristics, (Um)et ̂̀ ' (Uet ̂̀) ∗
· · · ∗ (Uet ̂̀) (the m-fold join). Therefore EGgm,m (EGgm,m

et ̂̀) is highly connected
in the first case (the second case respectively) in the sense that the homotopy
groups are all trivial through a sufficiently high degree. (A point to observe here is
that the join of any two connected simplicial sets is simply connected. Completion
preserves a simplicial set being connected. Therefore, since the join is already
simply connected, one may check if the join (Um)et ̂̀ ∗ (Uet)̂̀ is `-complete on
homology with Z/lν-coefficients. Therefore, the join of two `-complete simplicial
sets is `-complete.)

Next observe that the map p1 is a map of simplicial varieties, which in degree
n is given by the map

p1,n : Gn−1 × (EGgm,m ×X)→ Gn−1 ×X.

Therefore, taking the completed étale topological types provides an inverse system
of maps of simplicial sets for each fixed n:

p1,n,et : (G)et ̂̀n−1 × (EGgm,m
et ̂̀)×Xet ̂̀ → (G)et ̂̀n−1 ×Xet ̂̀ . (5.3.2)

This is simply the projection to all factors except EGgm,m
et ̂̀ , so that the fibers

identify with EGgm,m
et ̂̀ . Varying n, this defines an inverse system of maps of

bisimplicial sets
{Eα•,• → Bα•,• | α} (5.3.3)
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with the second index corresponding to the n in (5.3.2). Since all the varieties
are connected, it follows that for each fixed n and α, the simplicial set Bα•,n is
connected. Therefore, one may invoke [Wa78, Lem. 5.2] to conclude that on taking
the diagonals, we obtain an inverse system of fibrations {∆(E•,•)

α → ∆(B•,•)
α |

α}. The fibers are clearly EGgm,m
et ̂̀ , which we have observed above are highly

connected if m is sufficiently large. Therefore it follows that the map p1 induces
an isomorphism on the fundamental groups completed at `, when everything is
defined over the algebraic closure of k.

Observe that the map EGgm,m × X → EGgm,m×
G

X is a locally trivial principal

fibration in the étale topology. Therefore, a similar analysis as for the case of the
map p1, will prove that the map p2 will induce an isomorphism on the fundamental
groups completed at `, again when everything is defined over the algebraic closure
of k.

Next we consider the general case, where the base field k is no longer required
to be algebraically closed. In this case we will let k denote the algebraic closure of
k. For this discussion we will denote all objects defined over the base field k with
a subscript o, while objects over k will be denoted as before. It suffices to show
that local systems on EGo×

Go
Xo and EGgm,m

o ×
Go

Xo correspond 1 − 1 if m >> 0.

Observe a local system on either of these defines, by pull-back a local system on
EGo×

Go
(EGgm,m

o ×Xo) and by further pull-back a local system on EG×
G

(EGgm,m ×

X). Observe that the group of automorphisms of the latter over EGo×
Go

(EGgm,m
o ×

Xo) is the Galois group Galk(k). By what we just proved in the paragraphs above,
local systems on EG×

G
(EGgm,m×X) correspond 1−1 with local systems on EG×

G
X

as well as local systems on EGgm,m×
G

X which are also equivariant for the action of

Galk(k). Therefore, by Galk(k)-equivariance, these local systems descend to local
systems on EGo×

Go
Xo and EGgm,m

o ×
Go

Xo. This completes the proof of the second

statement and hence of the theorem.

5.4. Derived functors for maps of simplicial varieties

It is shown in [Jo02] and also ([Jo93]), that associated to any given Grothendieck
topology on varieties, there is another Grothendieck topology that one can put
on any simplicial variety X•. As we show below, this topology plays a key role in
being able to define derived functors of the direct image functor for maps between
simplicial varieties, and therefore often comes in handy. Therefore, we proceed to
summarize the main features of this construction. Let Top denote a Grothendieck
topology defined on algebraic varieties over the given field k. Let X• denote a
simplicial variety over k. Then we define the objects of the topology, STop(X•), to
consist of all maps u• : U• → X• of simplicial varieties so that each un : Un → Xn

belongs to the topology Top(Xn). Morphisms between two such objects will be
defined to be commutative triangles. One defines a family of maps {v•α : V•α →
U• | α} to be a covering if each {vnα : Vnα → Un | α} is a covering in Top(Xn). We
will often call this the simplicial topology associated to the given topology Top. It is
shown in [Jo02, Sect. 1] that the topology STop and the associated topos of sheaves

Author's personal copy



ROY JOSHUA

on it inherits all the good properties from the given topology Top: for example,
the category underlying STop(X•) is closed under finite inverse limits and there
are enough points on the site STop(X•) if each Top(Xn) has the corresponding
property.

Observe that for each fixed integer n ≥ 0, there is a map of sites ηn : Top(Xn)→
STop(X•) defined by sending the (simplicial) object U• in STop(X•) to Un. Let R
denote a commutative Noetherian ring and let C+(Sh(Top(X•),R)) (respectively,
C+(Sh(STop(X•),R))) denote the category of all complexes of sheaves of R-modu-
les on Top(X•) (respectively, STop(X•)) that are bounded below. Then one defines
a functor

η : C+(Sh(Top(X•),R))→ C+(Sh(STop(X•),R))

by sending a complex of sheaves {Kn | n} on Top(X•) to the total complex of the
double complex {ηn∗(Kn) | n}. One verifies readily the following properties of this
functor (see [Jo02, Sects. 1 and 3]):

(i) If f : X• → Y• is a map of simplicial varieties, then

η(f∗(K)) = sf∗(η(K)), K ∈ C+(Sh(STop(X•),R)) and

η(f∗(L)) = sf
∗(η(L)), L ∈ C+(Sh(STop(Y•),R)).

Here sf∗ (sf
∗) denotes the push-forward functor (the pull-back functor) associated

to f on the simplicial topology. Both of these statements may be checked at the
stalks and may be deduced from the basic properties of stalks of sheaves computed
on the simplicial topology as in [Jo02, Sect. 3].

(ii) If j : U• → X• is an open immersion in each degree, then η(j!(K)) =

sj!(η(K)), K ∈ C+(Sh(STop(U•),R)) and sj! is the corresponding functor on the
simplicial topology.

(iii) If f : X•→Y• is a map of simplicial varieties and K∈C+(Sh(STop(X•),R))
so that (Kn, fn) is cohomologically proper, that is, satisfies the conclusions of
the proper base-change theorem, then the cohomology of the stalks of Rf∗(K)
computed on the simplicial topology STop(Y•) identify with the cohomology of
the fibers of the simplicial map f with respect to K. (See [Jo02, (4.2) Theorem].)

Next let G denote a linear algebraic group acting on a variety X. Then it
is shown in [Jo02, (3.8.2) Def., (3.10) Cor.] that one may define the notion of
sheaves with descent (or cartesian sheaves) on the site STop(EG×

G
X) and that if

DG(STop(EG×
G

X)) denotes the full subcategory of D(STop(EG×
G

X)) consisting of

complexes whose cohomology sheaves have descent, then the functor η induces a
fully-faithful functor (where the superscript + denotes the bounded below derived
categories):

D+
G(X)→ D+

G(STop(EG×
G

X)). (5.4.1)

Remark 5.6. Therefore, if X is a variety for which the derived category D+
G(X) is

generated by a collection of complexes {Kα | α}, by taking the full subcategory of
D+

G(STop(EG×
G

X)) generated by the images of these complexes, one obtains an

equivalence of categories. Therefore, we will henceforth denote this subcategory by

Author's personal copy



EQUIVARIANT DERIVED CATEGORIES

D+
G(STop(EG×

G
X)) which enables us to work with the simplicial topology through-

out.

6. Appendix: background material

Next we consider the following background material needed for the definition of
the geometric classifying spaces in Section 2. We start with the following lemma.

Lemma 6.1. Let V denote a representation of the linear algebraic group G, all
defined over a perfect field k of finite `-cohomological dimension for some prime
` 6= char(k). Let U ⊆ V denote an open G-stable subvariety so that the complement
V −U has codimension c > 1 in V.

(i) Then denoting by k the algebraic closure of k,

Hn
et(U ×

Spec k
Spec k ,Z/`ν) = 0 for all 0 < n < 2c − 1 and

H0
et(U ×

Spec k
Spec k ,Z/`ν) = Z/`ν .

(ii) For any variety X,

Rnf∗(Z/`ν) = 0 for all 0 < n < 2c− 1, and

R0f∗(Z/`ν) = Z/`ν

where f : U×X→ X denotes the projection.
(iii) In case the field k = C, the corresponding results also hold for Z and Q in

the place of Z/`ν .

Proof. (i) It suffices to consider the case k is algebraically closed. Then (i) follows
from the long-exact sequence

· · ·→Hn
et,V−U(V,Z/`ν)→Hn

et(V,Z/`ν)→Hn
et(U,Z/`ν)→Hn+1

et,V−U(V,Z/`ν)· · ·→

and the fact that Hi
et,V−U(V,Z/`ν) = 0 for all i < 2c while Hi

et(V,Z/`ν) = 0 for

all i > 0, H0
et(V,Z/`ν) = Z/`ν . These complete the proof of (i).

The assertion Hi
et,V−U(V,Z/`ν) = 0 for all i < 2c is a cohomological semi-

purity statement. We provide a short proof of this statement due to the lack of an
adequate reference. Since the base field is assumed to be perfect, one may find an
open subvariety V0 of V so that Y0 = (V−U)∩V0 is smooth and nonempty. Now
one has a long-exact sequence in cohomology:

· · ·→Hi
et,Y1

(V,Z/`ν)→Hi
et,Y(V,Z/`ν)→Hi

et,Y0
(V0,Z/`ν)→Hi+1

et,Y1
(V,Z/`ν)→· · ·

where Y = V − U, Y1 = Y − Y0. We may also assume without loss of generality
that Y is irreducible. By cohomological purity, Hi

et,Y0
(V0,Z/`ν) = 0 for all i < 2c

(in fact, for all i 6= 2c). Since Y1 is of dimension strictly less than the dimension
of Y, an ascending induction on the dimension of Y enables one to assume that
Hi

et,Y1
(V,Z/`ν) = 0 for all i < 2 codimY1

(V). (One may start the induction when
dim(Y ) = 0, since in that case Y is smooth.) Since codimY(V) < codimY1(V), the
long exact sequence above now proves Hi

et,Y(V,Z/`ν) = 0 for all i < 2codimY(V).
(ii) follows readily from (i). We skip the proof of (iii) which follows along the

same lines as the proofs of (i) and (ii). �
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Since different choices are possible for such geometric classifying spaces, we
proceed to consider this in the more general framework of admissible gadgets as
defined in [MV99, Sect. 4.2]. The following definition is a variation of the above
definition in [MV99].

6.1. Admissible gadgets associated to a given G-variety

We shall say that a pair (W,U) of smooth varieties over k is a good pair for G if
W is a k-rational representation of G and U ( W is a G-invariant non-empty open
subset on which G acts freely and so that U/G is a variety. It is known (cf. [To99,
Rem. 1.4]) that a good pair for G always exists.

Definition 6.2. A sequence of pairs {(Wm,Um) | m ≥ 1} of smooth varieties
over k is called an admissible gadget for G, if there exists a good pair (W,U) for
G such that Wm = W×

m

and Um ( Wm is a G-invariant open subset such that
the following hold for each m ≥ 1.

(1) (Um ×W ) ∪ (W ×Um) ⊆ Um+1 as G-invariant open subvarieties.
(2) {codimUm+1 (Um+1 \ (Um ×W)) | m} is a strictly increasing sequence,

that is,

codimUm+2 (Um+2 \ (Um+1 ×W)) > codimUm+1 (Um+1 \ (Um ×W)) .

(3) {codimWm (Wm \Um) | m} is a strictly increasing sequence, that is,

codimWm+1
(Wm+1 \Um+1) > codimWm

(Wm \Um) .

(4) Um has a free G-action, the quotient Um/G is a smooth quasi-projective
variety over k and Um → Um/G is a principal G-bundle.

Lemma 6.3. Let U denote a smooth quasi-projective variety over a field K with
a free action by the linear algebraic group G so that the quotient U/G exists as a
smooth quasi-projective variety over K. Then if X is any smooth quasi-projective
variety over K, the quotient U×

G
X ∼= (U ×

Spec K
X)/G (for the diagonal action of G)

exists as a scheme over K.

Proof. This follows, for example, from [MFK94, Prop. 7.1]. �

An example of an admissible gadget for G can be constructed as follows: start
with a good pair (W,U) for G. The choice of such a good pair will vary depending
on G. Choose a faithful k-rational representation R of G of dimension n, that is,
G admits a closed immersion into GL(R). Then G acts freely on an open subset U
of W = R⊕n = End(R) so that U/G is a variety, e.g., U = GL(R). Let Z = W \U.

Given a good pair (W,U), we now let

Wm = W×m,U1 = U and Um+1 = (Um ×W) ∪ (W ×Um) for m ≥ 1. (6.1.1)

Setting Z1 = Z and Zm+1 = Um+1 \ (Um ×W) for m ≥ 1, one checks that
Wm \ Um = Zm and Zm+1 = Zm × U. In particular, codimWm

(Wm \Um) =
m(codimW(Z)) and codimUm+1

(Zm+1)=(m+1)d−m(dim(Z))−d =m(codimW(Z)),
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where d = dim(W). Moreover, Um → Um/G is a principal G-bundle and the
quotient Vm = Um/G exists as a smooth quasi-projective scheme.

We conclude with the following Proposition that shows how t-structures may be
transferred under an equivalence of derived categories. Though this result is fairly
well known, we could not find a suitable reference: that is the reason for including
it here. But we skip its proof.

Proposition 6.4. Let T and T′ denote two triangulated categories, with F : T′ →
T an equivalence of categories together with a left-adjoint G : T→ T′, so that the
natural transformations idT → F ◦G and G ◦F → idT′ are natural isomorphisms.
Let (T′≤0,T′≥0) denote a t-structure on T′. Then (T≤0,T≥0) is a t-structure on
T where T≤0 (T≥0) is defined as the strict full subcategory of T whose objects are
isomorphic to objects of the form F (A), A an object of T′≤0 (A an object of T′≥0,
respectively).

References

[AKP] K. Altmann, V. Kiritchenko, L. Petersen, Merging divisorial with colored fans,
arXiv:1210.4523v3 (2015).

[BBD82] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100
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