Christopher Scheper

Title of Poster Presentation: N-Dimensional Medians and Convex Functions

Abstract

: The classical definition of a median in $\mathrm{R}^{\wedge} 1$ is defined in the following way: Given a set S, where $S=\left\{\mathrm{x} 1, \mathrm{x} 2, \sum, \mathrm{xk}\right\}$ and $\mathrm{x} 1<\mathrm{x} 2<\sum<\mathrm{xk}$, the median is the middle term. The idea of a middle term does not work well in more than one dimension, for the median will not be preserved through coordinate changes. The median can be described as the point z that minimizes the following function, $\mathrm{f}(\mathrm{z})=|\mathrm{z}-\mathrm{x} 1|+|\mathrm{z}-\mathrm{x} 2|+\sum+|\mathrm{z}-\mathrm{xk}|$. Using this definition, the median will be preserved through any kind of coordinate changes, translational, and rotational motion. This definition applies to all spaces $R \wedge n$.

The goal of the project is to construct an algorithm that will find the median given a random number of points in $\mathrm{R}^{\wedge} \mathrm{n}$, where n is randomly generated also. Because the minimizing function is comprised of convex functions, we can exploit this in order to prove that the function f gives a unique median.

