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JORDAN STRUCTURES OF STRICTLY LOWER TRIANGULAR 
COMPLETIONS OF NILPOTENT MATRICES 

M. Krupnik 1 and A. Leibman 2 

We prove the following theorem, conjectured by Rodman and Shalom: Let A be an n x n 
nilpotent matrix with Jordan blocks of sizes ql > �9 - - > qs- Ifpz > . . .  > p, is a sequence of positive 
integers such that {P~}[=I majorizes {qJ}~=l, then there exists a strictly lower triangular matrix T 
such that A + T is nilpotent and Pl, �9 - . ,  Pr are the sizes of Jordan blocks of A + T. 

1 INTRODUCTION 

A partial triangular matrix is a matr ix  in which the upper tr iangular part  (including the main 
diagonal) is specified, and the strictly lower tr iangular part  is unspecified and considered as 
a set of free independent variables. 

All  matrices in this paper  are over a field ~ .  
A completion of a part ia l  mat r ix  is any matr ix  which is obtained by replacing the 

unspecified entries with elements from 9 v. A matr ix  completion problem is a problem of 
finding all completions with specific properties of a given part ia l  matrix.  

Various matr ix  completion problems for part ia l  t r iangular  matrices have been stud- 
ied in [1, 3, 5, 6, 7, 8, 10, 11, 12], including the problems concerning ranks, eigenvalues, Jordan 
forms, singular values, as well as applications to controllability of linear systems. 

In [1, 11] the problem of the existence of a strictly lower tr iangular completion 
with given characteristic polynomial  of the completed matr ix  has been completely solved. 
Generally speaking, such a completion is not unique (if exists). In [71, the possible geometric 
multiplicities of the eigenvalues of a completed matr ix  was studied. The Jordan forms of 
strictly lower tr iangular  completions were investigated for different part icular  cases in [8, 10]. 

In this paper  it is more convenient for us to consider strictly lower tr iangular 
completions as additive per turbat ions of full (not part ial)  matrices. The goal of this paper 
is to prove a proposition describing the general sufficient condition on Jordan structures of 
strictly lower tr iangular additive per turbat ions of a nilpotent matrix.  These conditions were 
conjectured by Rodman and Shalom in [10]. 

Given two nonincreasing sequences of positive integers {P~},"=I and {qj}~=l, the 
sequence {p~}[:~ majorizes {qJ};: l  if r ~ s, E~=I P~ _> E}=~ qj for t = 1 , . . . ,  r,  and E~=~ Pl = 
E~=I qj (see, for example, [9]). 

1This work is part of a doctoral thesis, written under the supervision of Prof. A.Berman. It was supported 
by the Fund for Promotion of Research at the Technion. 

2Supported by British Technion Society. 
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THEOREM 1.1 (Conjecture of Rodman and Shalom) Let A be an n • n nilpotent 
matrix and let ql ~_ . . .  )_ q, be the sizes of  its Jordan blocks. I f  {P~}~=I is a nonincreasing 
sequence of positive integers majorizing {qj}~=~, then there exists a strictly lower triangular 
matrix T such that A + T is nilpotent with Jordan blocks of  sizes P l , . . . ,  P,. 

A c k n o w l e d g e m e n t .  We would like to acknowledge a very helpful and constructive referee's 
report. 

2 ADMISSIBLE CORRECTIONS AND TRANSFORMATIONS 

Two matrices A, A' are called upper equivalent if there exist a nondegenerate lower triangular 
matrix S and a strictly lower triangular matrix R such that A' = S - 1 A S  + R (see [4]). 

Given a nilpotent matrix A, we will look for a strictly lower triangular matrix T 
with a specified Jordan structure of A + T. But we may do it not for A itself, but for any 
nilpotent matrix from the class of matrices upper equivalent to A. Indeed, let A' be upper 
equivalent to A, namely A ~ = S - 1 A S  + R, where S is a nondegenerate lower triangular 
matrix and R is strictly lower triangular. Then the matrix T ~ = S - 1 T S  - R is strictly lower 
triangular and 

A' + T'  = S - I ( A  + T ) S  

has the same Jordan structure as A + T. 
We will call the transformation S - 1 A S  of a matrix A for a nondegenerate lower 

triangular matrix S an admissible transformation of A. The additive perturbation A + T of 
A with a strictly lower triangular matrix T will be called an admissible correction of A. 

Let p ~ q be two elements of a (nonincreasing) sequence of positive integers. 
Replacing p by p + 1 and q by q - 1 (or deleting q in the case q = 1) we obtain, after 
ordering its elements, a new nonincreasing sequence of positive numbers, which majorizes 
the previous one. It is easy to see that any sequence majorizing a given one can be obtained 
by a finite number of such operations. 

Now, we may reformulate Theorem 1.1 in the following way: 

THEOREM 2.1 Let A be a nilpotent square matrix, let p, q, h i , . . . ,  ht, with p >_ q, 
be the sizes of the Jordan blocks of  A. Then a nilpotent matrix whose Jordan blocks have 
sizes p + 1, q - 1, h i , . . . ,  ht (or p + 1, h i , . . . ,  ht in the case q = 1) can be obtained from A by 
a sequence of admissible transformations and admissible corrections. 

Let A = [c~m.z]~,z=l be an n x n nilpotent matrix. We fix an n-dimensional vector 
space L over ~ and an ordered basis V = {v~,...,v,~} in L with n(v)  being the ordinal 
number in Y of v E V (we do not suppose n(vk) = k). We denote by V(l)  the l-th element 
of V: n(V( l ) )  = l, l = 1 , . . . ,  n. Then we can associate with A an endomorphism A of L: 

n 

A ( y ( m ) )  --  m = 1 , . . . ,  n 

l=l 

(A acts on the rows of coordinates of vectors of L from the right). When we reconstruct A 
from fi[, we have to follow the ordering V ( I ) , . . . ,  V(n)  of the elements of V; another ordering 



Krupnik and Leibman 461 

gives a mat r ix  obtained from A by a permuta t ion  of its rows and the same permutat ion of 

its columns. 
Now, admissible corrections of A correspond to changes of ,4 of the form 

.a ' (V(m))  = . a (V(m))  + ~ e~.,V(1), ,~ = 1 , . . . ,  n, 
l < m  

for some r E ~-. Admissible transformations of A correspond to changes of the basis V of 
the form 

V ' ( m )  = ~ A,~.~V(1), ~,~,m r O, m = 1 , . . . , n ;  
l < m  

w e  will call such changes admissible changes of  basis. 

PROPOSITION 2.2 Let L1 C L2 C . . .  C L= = L, dimLk = k, k = 1 , . . . , n ,  
be a sequence of  linear subspaces of  L.  Then there exists an admissible change of  basis 
V ~-* Y ' =  { v [ , . . . , v ~ }  such tha tv~  E L k ,  k = 1 , . . . , n .  In particular, for  any 1 < k < n, 

the set { v ~ , . . . ,  v~} is a basis of  Lk. 

PROOF:  It  is enough to prove that  there exists an admissible change of basis 
V H V' such tha t  v [ E  La; then the s ta tement  of the  proposit ion can be obtained by the 
factorization L/L1  and an induction process on dim L. 

Let u ~ = ~  fl~ (1) C Lx and let k max{l  : fl~ r 0}. Then the admissible 
change of basis 

v' l = v t ( k )  = u, Vt(1) = V(l ) ,  l # k, 

gives the desired result. �9 

COROLLARY 2.3 Let Y be a c-dimensional linear space Over .~, let B : Y -+ L 
be a linear embedding. Let U = { u l , . . . , u r  be a basis of  Y and let 1 <_ dl < . . .  < d~ < n 

I be arbitrary integers. Then there exists an admissible change of  basis V ~-~ V'  = {v~, . . . , v~} 
in L such that 

= v '  ' di + i,jvj, i = l ,  . . . , c, 
j<,i~ 

for  some 13~,j C .~. 

PROOF:  Denote wd, = B(ui) ,  i = 1 , . . . ,  e, and complete the set {Wd , , . . . , w ar  
up to a basis {w~, . . . ,w~}  of L. Put  Lk = S p a n ( w ~ , . . . , w k ) ,  k = 1 , . . . , n .  Using Proposi- 
tion 2.2 finishes the proof. �9 

Under the notat ion of Corollary 2.3, the matr ix  B = [fl~d]i=l ...... of B in the bases 

. ~ has the form U, taken in the ordering u~ , . . .  ,u~, and V ~, taken in the ordering v l , . .  , v , ,  

dl d2 

1 0 

*I0 

d~ 

0 
. . .  0 

1 0 . . . 0  

(2.1) 
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(we put  fli.di = 1, ]31.j = 0 for j > d i ,  i = 1 , . . .  ,p). (B  acts on the  rows of coordinates of 
vectors in L' from the  right.) We will call the mat r ix  of the  form (2.1) a ( a l l , . . . ,  dp)-lower- 
triangular matrix�9 

Now we are ready to describe a relatively simple form to which any ni lpotent  
mat r ix  can be reduced by admissible changes of basis. Let A be nilpotell t ,  let ,A be the 
corresponding endomorphism of a space L with an ordered basis V. Let r E N be such that  
A" = 0, A ' - I  # 0. 

Denote  Lk = K e r , 4  k C L; then  

L1 C L2 C . . .  C L,  = L, and A(Lk+l) C Lk, k = 1 , . . .  , r  - 1. 

Using Proposi t ion 2.2, we may assume tha t ,  for ek = dim Lk, k = 1 , . . . ,  r, the set 
{ v l , . . . , v ~ k }  is a basis of Lk. For every k = 1 , . . . , r ,  denote 

For k = 1 , . . . , r -  1 denote  

C k  : e k  - -  e k - 1 ,  

k vj = ve~_l+j, j : 1 , . . . , c k ,  

v~ { ~ , . .  ~ 

Yk = Span Vk. 

Ak = Projv~ o AILk+I, 

where P ro jy  k is the project ion of L onto Yk agreed with V. Then,  for any 1 < k < r,  
c~ = dim Yk is the n u m b e r  of the Jordan  blocks of A whose sizes are not  less t han  k, 
Lk = Y1 |  @ Y~, and,  for k = 1 , . . . ,  r - 1, A(Yk+I) C_ Lk and .Ak is an embedding  of Yk+l 
into Yk. 

r r r - 1  . V r - - 1  Hence, i n  t h e  b a s i s  V t a k e n  i n  t h e  ordering "01,  . . . , "Oct , "01 ' '  " ' . . . . .  " ' '  "O11'" " :  v l  
�9 " r 

A has the form 
O,A~_I  , 

O r _ 2  �9 . . 

"'. A1 
01 

(2.2) 

where Ok, k = 1 , . . .  , r ,  is the c~ x ck zero ma t r ix  and  Ak, k = 1 , . . . , r  - 1, is the ek+l x ck 
mat r ix  of rank c~+1 which corresponds to Ak. 

We will now describe some possible forms of the matr ices Ak, k = 1 , . . . ,  r - 1, 
which they  can take under  further  admissible t ransformat ions .  Let, for k = 1 , . . . , r  - 1, 
one have some integers 1 < dl k < < d k < ck. Using Corollary 2.3, one can make an 

_ _  �9 . . O k +  1 - -  

admissible change of the  basis V~-I of Y~-I such tha t  

A , - I ( ~ )  ,-1 ,-1 =van_l+ ~ a~,j~-lvj~-l, i = l , . ,  c,, a~.j E 5  ~, 
j<d:. -1 

tha t  is the ma t r ix  A~-I of .A,_I in this new basis is ( d~ - l , . .  , d:~-l)-lower-triangular.  
In  the same way, one can make an admissible change of the basis V,-2 in Y,-2 

such that  the mat r ix  A~-2 of .AU_2 in the basis V~_I of Y~-I and  the  new basis V,_2 is 
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~--2  (d~ , . . . ,  d;~-2 )-lower-triangular. Continuing this process, we obtain as a result a new basis 

Y = {v), j = 1 , . . . , ck ,  k = 1 , . . . , r }  such that 

k+l Vdkk+ ~ k k i = 1 , . . . ,  ~k- Ak(v~ ) = ~ a~,~vj, c~+~, .,~ c ~ ,  
~<d~ 

for every k = 1 , . . . ,  r - 1. We have proved the following theorem: 

THEOREM 2.4 Let A be a square nilpotent matrix, let r G N be such that A ~ = O, 
A ~-1 ~ O, and let ck for k = 1 , . . . , r  be the number of the Jordan blocks of A whose sizes 
are not less than k. Then, for any integers 1 < d~ < < d k < ck, k = 1,. .  r -  1, 
there exists an admissible transformation of A which has, up to a permutation of its rows 
and columns, the form (2.2) with every A~, k = 1 , . . .  ,r  - 1, being (d~,. . . ,d~+~)-lower- 
triangular. 

3 GRAPHS OF MATRICES 

Let A = [OLrn,l]~n,l=l be an n • n matrix over 9c; we now associate with A its graph r(A). It 
is a directed graph whose set of vertices V = { v l , . . . ,  v,,} is ordered; we denote by n(v) the 
ordinal number in V of v ~ V. Two vertices u, w C V of r(A) are joined by a directed edge 
(or an arrow) u~-~w if and only if a~(~),n(~) # 0; the weight of the arrow is a,~(~,),~(,~) E jc. 

Now the statement "there is an arrow u ~ w "  means just  that a,~(,,),n(,o) = cz 7~ 0. We say 
that the arrow u~-*w passes from u to w. 

It is clear that the graph F(A) is simply another description of the matrix A, 
and A can be easily reconstructed from F(A). Moreover, we can consider the set V of the 
vertices of the graph F(A) as an ordered basis of an n dimensional space. Now, admissible 
transformations of A lead to some transformations of F(A); hence, we may regard changes 
of the basis V as transformations of F(A). 

In Section 4 we shall use admissible changes of basis of the form u' = au + flw, 
u,w E V with n(u) > n(w). In terms of graph F(A), this change deals with only arrows 

passing from and to u and w. Namely, if v~-+u and v ~ w  are the arrows passing from a 
vertex v E V to u and w, then in the new graph P(A') obtained from r(A) by the admissible 

;~ ~ .-.xo/,~ (for convenience, in change of basis u I = c~u +/~w, there will be arrows vX/~u ' and v ~-~ w 
this paragraph we allow to arrows to have zero weights). If the arrows passing from u and 

w to a vertex z C V in F(A) are u~-~z and w~-+z, in r (A ' )  there will be u'~r and w~-~z 
(see Fig. 1). 

The admissible corrections of A correspond in the graph r(A) to changing the 
weight of arrows passing from vertices with greater numbers to vertices with smaller ones: 
for u, w E V satisfying n(u) > n(w) we may change the weight ~ of the arrow u~-~w, up to 
deleting or adding this arrow. 

To make the geometric form of the graph F(A) more clear, we embed its vertices 
into the Cartesian product N~ • N u. The first coordinate x = , (v )  of this coordinate system 
will be called the position, the second coordinate y = y(v) will be called the level. We are 
completely free to make geometric transformations of F(A), that is to change the coordinates 
of vertices of F(A) (we will say ~Iso that we move the vertices); it is clear that geometric 
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Z z 

Figure 1: An admissible change of basis: u ~ = au + flw 

transformations of a graph preserve the matr ix  corresponding to the graph. The embedded 
graph will be still called the graph of A and denoted by F(A).  

We will say that :  
a vertex u E V is on the level k (or, simple saying, of level k) if y(u) = k; 
a vertex u E Y is higher (lower) than a vertex w E V if y(u) > y(w) (respectively, 

y(u) < y(w)); 
a vertex u is on the I r  (on the right) of w if ~(u) < ~(w) (respectively, ~(u)  > ~(w)); 
a vertex u is above (under) w if ~(u)  = ~(w) and y(u) = y(w) + 1 (respectively, y(u) = 

y(w) - 1); 
an arrow u~-+w goes down if y(u) > y(w); goes directly down if y(u) > y(w) and x(u) = 

�9 (w); ,oes  d o w , - l r  if y(u) > y(w) and : (u)  > ~(w).  
If U is a subset of V, we denote by # U  the number of elements of U, and by Us 

the subset of U consisting of the vertices of level k: Us = {u e Y : y(u) = k}. For U, W C V, 
the arrows passing from U to W are the arrows u~--~w with u E U, w C W. 

Let us give now some more technical definitions. We say that  F(A) is downward 
if all its arrows go down (Fig. 2). Note that  such a graph contains no loops. 

Figure 2: A downward graph 

Let U, W C V. We say that  U ~ W  is properly downward if the arrows passing 
from U to W go down, for any k > 1 the arrows passing from Uk+l to I/Vk go down-left and 
for every u C Us+l there is w E Ws under u with an arrow u~+w. 

We say that  the graph F(A) is properly downward if v A v  is properly downward. 
In particular,  the properly downward graph is downward and under every its vertex whose 
level is greater than one there is another vertex (Fig. 3). 

The column is a subset of V consisting of all vertices having the same position. In 
the properly downward graph the levels of the elements of a column pass over all positive 
integers from 1 up to the height of the column. If b is a column, bs denotes the element of b 
of level k. 
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Figure 3: A properly downward graph 

For U c V, let Z~r = {n(u) : u E U}. For U, W C V, we denote 

A(U, W)  = [~,,]m~-=.; 

A(U, W )  is a ( # U )  • ( # W )  submatr ix  of A. 

Given U, W C V, we say that  u A w  is nondegenerately downward if 

rank A(U, W )  = #U.  

A The graph F(A) is nondegenerately downward if it is downward and Vk+l---~Vk is nondegen- 
erately downward for any k > 1. 

LEMMA 3.1 Let U C Vk+l, W C_ Vk for some k >_ 1. I f  u A w  is properly down- 
ward then it is nondegenerately downward. In particularj i f  r(A) is properly downward then 
it is nondegenerately downward. 

PROOF:  Let W ~ be the set of the elements of W located under elements of U. 
Then, up to a permuta t ion  of its rows and columns, the square snbmatr ix  A ( U , W  I) of 
A(U, W )  is upper  tr iangular with all nonzero elements on its main diagonal. Hence, the 
rank of A(U, W ~) is equal to its size # U .  �9 

To start  the proof of Theorem 2.1 we need two more statements,  the first of which 
is trivial  and the second being a simple corollary of the results of the previous section. 

P R O P O S I T I O N  3.2 I f  the graph r(A) of a matrix A is downward then A is nilpo- 
tent. I f  r(A) is nondegenerately downward then the number of Jordan blocks of A of size k 
is ( # v ~ )  - ( #v~+~ ) .  

P R O P O S I T I O N  3.3 Let A be a nilpotent matrix, let the sizes of its Jordan blocks 
be h~, . . . , ht in an arbitrary ordering. Then there exist an admissible transformation A I of A 
and an embedding o f r (A ' )  into ~t • N such that r(A') is properly downward and the heights 
of its columns from the left to the right are h i , . . . ,  hr. 

PROOF:  Let r = max{hl,  l = 1 , . . . , t } .  For every k = 1 , . . . , r ,  let ck be the 
number of the Jordan blocks of A whose sizes are not less than k, and, for 1 < k < r - 1, let 
1~ < < I k be all the integers satisfying ht~ > k + 1. We define a set of positive integers 

�9 . . C k + l  �9 - -  

(d~, i = 1 , . . . ,  r  ]r = 1 , . . . ,  r -- 1} by 

d~=#(leN: l<l<l~,hz>k). 
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Using Theorem 2.4, we make an admissible change of basis in L in order to obtain 
a basis {v], j = 1 , . . . , c k ,  k = 1 , . . . , r }  in which A has the form (2.2) such that  every Ak, 

d k k = 1 , . . .  r - 1, is ( 1, ,d~t:+~)-lower-triangular. For k = 1, , r ,  we place v k /* 
7 . . . . . .  1 ~ " " " ' V e t :  

onto the level k from the left to the right in such a way that  Vdkt: is under v# +1, i = 1 , . . . ,  ck+l, 

k = 1 , . . . ,  r - 1. The obtained graph satisfies the demands of the proposition. �9 

4 P R O O F  O F  R O D M A N - S H A L O M  C O N J E C T U R E  

In Section 2 we gave several propositions, which allowed us to prove Theorem 2.1 for matrices 
of some special form. In Section 3 we associated with every nilpotent matr ix  an ordered 
directed multigraph, embedded in I~ x N, which contains all the information on matr ix  A. 
This graph has an especially suitable structure for the matrices constructed in Section 2. We 
interpreted admissible corrections and admissible transformations of a matr ix  in terms of the 
corresponding graph (we will call such transformations admissible corrections and admissible 
transformations of the graph, respectively). Now we are ready to reformulate Theorem 2.1 
in terms of graphs. 

Let A be a nilpotent matr ix  and let F(A) be a corresponding graph. According 
to Proposition 3.3, we may and will assume that ,  up to some admissible corrections of A, 
F(A) is properly downward and that  the heights of its columns from the left to the right are 
q, h l , . . . , h , , p .  

THEOREM 4.1 There exists a sequence of admissible corrections, admissible trans- 
formations and geometric transformations of r(A) giving as a result a nondegenerately 
downward graph F(A') such that the heights of its columns from the left to the right are 
q -  1, h l , . . . , h t , p  + 1 (or h l , . . . , h t , p +  1, in the case q = 1). 

Let A' be the matr ix  corresponding to the graph lP(A') from the s tatement  of 
Theorem 4.1. Then A'  is obtained from A by a sequence of admissible corrections and 
admissible transformations. Furthemore,  from Proposition 3.2 follows that  A t is nilpotent 
with the sizes of Jordan blocks q - 1, h i , . . . ,  ht,p + 1 (or h i , . . . ,  ht,p + 1 in the case q = 1). 
It follows that  Theorem 4.1 implies Theorem 2.1 and, so, gives an affirmative answer to 
Conjecture of Rodman and Shalom (Theorem i.I). 

In order to prove Theorem 4.1 we will first describe a geometric transformation of 

the graph F(A) of a matr ix  A with a marked vertex s, which will be called the insertion of 
s into the right column of F(A). The insertion can be done under the assumption that  F(A) 
satisfies some conditions of insertion, which will be formulated now. 

Let F(A) be a graph, let s be a vertex of F(A) of level k E iN and let D be the set 
of all vertices of F(A) excluding s. Let there be a vertex under every vertex v E D, let a be 
the extreme right column of F(A) and let p >_ k - 1 be its height. Denote H = D \ a. 

T h e  e o n d i t l o n s  o f  i n s e r t i o n  o f  s i n to  a. If F(A) does not contain the vertex ak (that 
is, if p = k - 1), then F(A) is downward. If r(A) does contain ak (that is, if p _> k), then 
F(A) contains an arrow ak~-~s, and the graph obtained from r(A) by deleting this arrow is 

A A 
downward. In addition, D~+I--~D~ for 1 < i < k - 2  and Hk O{s}--~Dk-1 are nondegenerately 

downward, and D~+lAD~ for i >_ k is properly downward. 
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In the assumption that  the conditions of insertion are satisfied, the insertion of s 
into the column a is the following procedure: the level of each ai, i > k, increases by 1 and 
s is placed into a on the level k (Fig. 4). 

~ ak§ 

ak~ 

Figure 4: The insertion of s into the column a 

LEMMA 4.2 Let P(A) satisfy the conditions of insertion. Then the graph r(A') 
obtained from r(A) by the insertion of s into a is nondegenerately downward. 

Note that  the insertion of s into a is a geometric transformation of I ' (A) and, hence, the 
matr ix  A'  corresponding to F(A' )  coincides with A. 

PROOF:  Let V'  be the set of vertices of F(A') .  We have V~' = D~ for 1 < i < k - 1 
and i > p + 1, V; = Hk U{s} ,  V / =  Hi U{a~-l}  for k + t _< i _< p + 1. 

Since for k < i < p there are no arrows passing from HA+I to ak (as D~+I~D~ is 
properly downward), F(A' )  is downward. We also have: 

/ A r / 

1. V/+I--+V / for 1 < i < k - 2  and i > p + l  is the same as Di+zADi and, so, nondegenerately 
downward. 

TrlAITrl 2. Vk~Vk_ 1 is nondegeneratety downward by the assumptions. 
A t 

3. HA+I--+Hk is properly downward and, so, is nondegenerately downward by Lemma 3.1; if 

p > k, there are no arrows passing from aA to HA and there is an arrow ak~-+s. Therefore, 
the submatr ix  A(HA+I U{aA}, Hk U{s}) of mat r ix  A has (up to a permuta t ion  of its rows 
and columns) the following form: 

and, so, its rank is eqn~d to rankA(HA§ HA)+ 1 = #(HA U{s}) .  T ~ s  shows that V~§ = 

Hk+l U{aA}s = HA U{s} is nondegenerately downward. 

4. The same argument shows that  g/~_ 1 = gi+l U{ai}~ i' = Hi U { a i _ l } ,  k + 1 ~ i < p -~ 1, 

and V~+ 2 = gp+2s  = H~+I U{a , }  are nondegene~ately downward. 
Thus, ,r, A',rt V;+I--~V ~ is nondegenerately downward for any i > 1 and, so, F(A ~) is non- 

degenerately downward. �9 

P R O O F  OF THEOREM 4.1: We denote by a the  right column of F(A),  by s 
the upper  vertex of the left column of r ( A ) ,  D = v \ {~} and H = D \ a. 



468 Krupnik and Leibman 

We will describe now a finite algorithm, consisting of admissible transformations, 
admissible corrections and some geometric transformations of F(A),  giving as a result a new 
graph, satisfying the conditions of insertion of the vertex s into the right column a. We will 
move s to the right (in a level) and up (from a level to the next one). At the same t ime 
all other vertices of A, up to changes of notation, will stay at their former places. The final 
insertion will increment the height of the right column of F(A) and the obtained graph will 
have the heights of columns q -  1, h i , . . . ,  h,,p + 1 and be nondegenerately downward by 
Lemma 4.2. These imply the desired result. 

At every step of the algorithm, the following conditions will hold: 
I. F(A) is downward; 
II. s is on the left of a; 
and, furtermore, when s is on the level k, k _< p, 

III. DI+IADI is properly downward for any i ~ 1, i ~ k - 1; 

IV. Dk+IA--~D~ [.J{s} is properly downward; 
A 

V. Dk U{s}-+Dk-1 depends on a parameter  ~ E .T in such a way that  

a) when )~k = 0, DkADk_I is properly downward and the arrows passing from s to Dk-1 
go down-left; 

b) when ~k ~ 0, Hk U{s} A~Dk-~ is nondegenerately downward. 

At the beginning, s is on the level q and the conditions I -V  hold independently of the value 
of a formal parameter  .~q. 

S t e p  1. T h e  m o v e m e n t  o f  s to  t h e  r i gh t  in a leve l .  
Let s be on the level k for some q < k _< p. Assume that  on the right of s there is the vertex 
bk of a column b # a. We have one of the following two cases: 

1. The height of b is k, or the arrow bk+l~-+s does not exist. We move s to the right of b~; 
this does not fail the conditions I -V  (Fig. 5). 

Tb~., ~bk+ ~ 

k, b. 

Figure 5: The movement of s to the right, case 1 

2. There is an arrow bk+l~s. Since Dk+l~Dk is assumed to be properly downward, there 
fl 

is also some bk+l ~--~b~. 
a) Let n(s) < n(bk). We make an admissible change of basis: b~ = flb~ + as. In the obtained 

1 t graph F(A t) there does not already exist the arrow bk+l~-+s and there is bk+l~--~b~. Move s to 
the right of b~ (Fig. 6). 

The conditions I -V hold for F(A~): it is downward, s is on the left of a. We will 
use the notation D~, Hi, i = 1,. . . ,  r, for subsets of F ( X )  as well. Doing the above change of 

A '  
basis, we dealt  with the vertices of the level k of F(A) only and, so, D~+I--+D~ for i # k - 1, k 
remain properly downward. All the arrows passing from Dk+l to Dk l.J{s} go still down-left, 
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b'= c~+ ~b ~ "  yb" 
@s 

Figure 6: The movement of s to the right, case 2a 

and for any u E Dk+l there is an arrow passing to Dk and going directly down, that is 
A t A I 

Dk+l~Dk U{s} and Dk+l--*Dk are properly downward. 

We have two cases, depending on the value of ha. If Dk~Dk-1 is properly down- 
ward (in the case ha = 0), then all the arrows passing from b~ and s to Dk-1 in F(A') hold 

going down-left, and there is an arrow, namely t '  ~ -  %~-+ok-1, passing from b~ directly down, that 

is DkA~Dk_~ is properly downward. If H~ U{s}ADk_~ is nondegenerately downward (in 
A ~ the case hk # 0), then Ha U{s}--+Dk-~ is nondegenerately downward as well, because our 

changes of basis dealt only with Ha U{s} and, so, could not change the rank of the matrix 
A(Hk U{s}, Dk_~). 

b) Let n(s) > n(bk). We make an admissible change of basis: s" = flbk § change notation: 
b~ = s ' ,  s ~ = bk, and move s' and b~ to the right in such a way that b~ will be under bk+l 
(Fig. 7). Using the argument involved in a), we see that the conditions I -V hold for the 
obtained graph. 

a_~  b,., 1~ b,., k'=~+~k 
bk > y b : / ' s  

7 s '= b ~ 7 ~ / 7  

Figure 7: The movement of s to the right, case 2b 

W e  r e p e a t  S tep  1 till t h e r e  are no t  a ny  ve r t i ces  of  l eve l  k b e t w e e n  s and  ak. Let 
us keep notation F(A) and A for the obtained graph and the corresponding matrix. 

S t ep  2. T h e  in se r t i on  o f  s in to  a, or  m o v i n g  of  s to  t h e  nex t  level. 
We have one of the following three cases: 

1. n(ak) > n(s). 
We add a new arrow akFS~s, r E ~ ,  ~ ~ 0, (this is an admissible correction) and put hk ~ 0. 
The conditions of insertion of s into a hold; the insertion finishes the proof. 

2. n(ak) < n(s) and either p = k, or there is an arrow ak+l~--~s. 
We lift s onto the level k + 1, add an arrow s ~ a k ,  e E 9 v, r ~ 0, (this is an admissible 

A I correction) and put hk = 0. In the obtained graph F(X) ,  Dk---~Dk-1 is properly downward 
and the only arrow passing from s to Ok is sA~ak. The submatrix A'(Hk+I U(s}, Hk U{ak}) 
of the matrix A' corresponding to F(A') has, up to a permutation of its rows and columns, 
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the form 
(A(Hk+I,Hk)o ~*) 

A ~ and, since Hk+l--~Hk is properly downward, A(Hk+I, Hk) is of full rank, rank A(Hk+I, Hk) = 
#Hk+l. Hence, rank A'(Hk+I U{s}, Hk U{ak}) -- #nk+l  + 1 and, so, Hk+l U{s}A~ok ---- 
Hk U{ak} is nondegenerately downward. So, we may insert s into a and finish the proof. 

3. n(ak) < n(s), p > k and the arrow ak+lHs does not exist. 

We put Ak ---- 0, add the arrow s~#-$1ak (the value of Ak+l will be determinated during the 
further steps of the algorithm), and move 8 onto the level k + 1 to the left of Dk+l. The 

A t 
conditions I-V hold: the obtained graph r ( x )  remains downward, Dk--~Dk-1 is properly 
downward. In case )~k+l -- 0 there are no arrows passing from s to Dk. In case Ak+l # 0 the 

only arrow passing from s to Dk is s~lak, so, the matrix A'(Hk+x U{s}, Dk) has the form 

( A(Hk+I,Hk) * ) 
0 )~k+l 

and, hence, Hk+~ [J{s}ADk is nondegenerately downward. Now, we restore the old notation 
F(A) and A for F(A') and A' respectively, and repeat the procedure of movement to the 
right, Step 1 of the algorithm, for s being on the level k + 1. �9 
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