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Abstract

Let T be an invertible measure preserving transformation of a probability measure
space X. Generalizing a recent result of Host and Kra, we prove that the averages

1
|ΦN |

∑
u∈ΦN

T p1(u)f1 · . . . · T pr(u)fr converge in L1(X) for any f1, . . . , fr ∈ L∞(X),

any polynomials p1, . . . , pr:Z
d −→ Z and any Følner sequence {ΦN}∞N=1 in Z

d.

Throughout the paper, (X,µ) is a probability measure space and T is an invertible
measure preserving transformation of X. Our goal is to prove the following:

Theorem 1. For any f1, . . . , fr ∈ L∞(X), any polynomials p1, . . . , pr:Z
d −→ Z and any

Følner sequence {ΦN}∞N=1 in Z
d the averages

1

|ΦN |

∑

u∈ΦN

T p1(u)f1 · T
p2(u)f2 · . . . · T

pr(u)fr (1)

converge in L1(X) as N → ∞.

The “multiple ergodic averages”

1

N

MN+N
∑

n=MN+1

Tnf1 · T
2nf2 · . . . · T

rnfr, f1, . . . , fr ∈ L∞(X), (2)

were introduced by H. Furstenberg in his ergodic theoretical proof of Szemerédi’s theorem
([F]). In the situation where T is weakly mixing the L1-convergence of the averages (2) as
N → ∞ was proved in [F]. For general T , the L1-convergence of these averages was proved
for r = 2 in [F]; for r = 3 in the case of a totally ergodic T by Conze and Lesigne ([CL1],
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[CL2]), in the case of general T by Furstenberg and Weiss ([FW]), and by Host and Kra
([HK1]); for r = 4 by Ziegler ([Z1]). Finally, the L1-convergence of the averages (2) for
arbitrary r was proved by Host and Kra ([HK3]), and independently by Ziegler ([Z2]).

The L1-convergence of the “polynomial” multiple ergodic averages

1

N

MN+N
∑

n=MN+1

T p1(n)f1 · T
p2(n)f2 · . . . · T

pr(n)fr, f1, . . . , fr ∈ L∞(X), p1, p2, . . . , pr ∈ Z[n],

(3)
in the case of a weakly mixing T was established by Bergelson in [B1]. For general T , the

convergence of the simplest nonlinear multiple ergodic averages 1
N

∑MN+N
n=MN+1 T

n2

f1 ·T
nf2

was proved by Furstenberg and Weiss ([FW]). The 2-parameter multiple ergodic averages
1

N2

∑MN+N
n1,n2=MN+1 f0,0 ·T

n1f1,0 ·T
n2f0,1 ·T

n1+n2f1,1 were introduced and proven to converge
by Bergelson ([B2]). Host and Kra proved the convergence of the d-parameter averages of
this sort, 1

|ΦN |

∑

u∈ΦN

∏

ǫ∈{0,1}d T ǫ·ufǫ, where ΦN ⊂ Z
d is a sequence of rectangles whose

sizes tend to infinity in all directions, for d = 3 in [HK2] and for arbitrary d in [HK3]. The
theory of “nilpotent factors” established by Host and Kra in [HK3] allowed the authors
to prove in [HK4] the L1-convergence of the polynomial (one-parameter) multiple ergodic
averages (3) (in the case T is totally ergodic, or under some negligible restrictions on the
system of polynomials {p1, . . . , pr}.)

Our proof of Theorem 1 is very similar to the proof in [HK4]; dealing with the multi-
parameter situation simplifies it a little bit and allows one to extend it to the cases missed
in [HK4].

We first remind the reader some elements of the Host-Kra theory from [HK3]. The
measure preserving systems (X [k], µ[k], T [k]), k = 0, 1, 2, . . ., are constructed inductively;
one puts (X [0], µ[0], T [0]) = (X,µ, T ). When (X [k], µ[k], T [k]) has already been defined for
certain k, let Ik be the σ-algebra of measurable subsets of X [k] invariant under the action
of T [k], and let Ik be the factor of X [k] associated with Ik. Then (X [k+1], µ[k+1]) is the
relative product (X [k], µ[k]) ×Ik (X [k], µ[k]), with T [k+1] = T [k] × T [k] naturally acting on
X [k+1]. For F,G ∈ L∞(X [k]) this means that

∫

X[k+1]

F ⊗Gdµ[k+1] =

∫

Ik

E(F |Ik) · E(G|Ik) dµ
[k].

For k ≥ 0, let Zk be the minimal σ-algebra on X such that Ik ⊆ Z⊗2k

k . The k-th

Host-Kra factor Zk is the factor of X associated with Zk. In particular, Z0 is the trivial
(one-point) factor and Z1 is the Kronecker factor of X. The factors Zk form an increasing
sequence: for any k ≥ 1, Zk is an extension of Zk−1. A k-step nilmanifold is a homogeneous
space of a nilpotent Lie group of nilpotency class k equipped with the Haar measure, and
a k-step pro-nilmanifold is the inverse limit of a sequence of k-step nilmanifolds. The
central result of the Host-Kra theory is that, for any k, Zk possesses a natural structure
of a compact k-step pro-nilmanifold such that T acts on Zk as a translation.

For a bounded measurable real-valued function f on X and k = 0, 1, 2, . . . one defines

|||f |||k =
(

∫

X[k]

f⊗2kdµ[k]
)1/2k

.
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In particular, |||f |||0 =
∫

X
f dµ. The seminorms |||f |||k form a nondecreasing sequence:

|||f |||0 ≤ |||f |||1 and 0 ≤ |||f |||1 ≤ |||f |||2 ≤ . . . ≤ ‖f‖L∞(X), and are T -invariant: |||Tf |||k =

|||f |||k for any k. By the definition of µ[k+1], |||f |||
2k+1

k+1 =
∫

Ik
E
(

f⊗2k |Ik
)2
dµ[k]. Thus,

|||f |||k+1 = 0 if E(f |Zk) = 0, that is, if f ⊥ L2(Zk) in L2(X).
For k ≥ 0 and n ∈ Z one has

|||f · Tnf |||
2k

k =

∫

X[k]

f⊗2k · (T [k])nf⊗2kdµ[k].

By the ergodic theorem, limN→∞
1
N

∑N
n=1(T

[k])nf⊗2k= E
(

f⊗2k |Ik
)

in L1(X [k]), and thus

lim
N→∞

1

N

N
∑

n=1

|||f · Tnf |||
2k

k = lim
N→∞

1

N

N
∑

n=1

∫

X[k]

f⊗2k · (T [k])nf⊗2kdµ[k]

=

∫

Ik

E
(

f⊗2k |Ik
)2
dµ[k] = |||f |||

2k+1

k+1 .

This provides one with an inductive definition of the seminorms ||| · |||k that is extremely
convenient in applications.

Let us return to Theorem 1. FixK ∈ N. Because of the multilinearity of the expression
in (1), it suffices to prove the theorem only in the case where each fi either belongs to
L2(ZK) or is orthogonal to this space in L2(X). If all f1, . . . , fr ∈ L2(ZK) one may replace
X by ZK and assume that X is a pro-nilmanifold, or even a nilmanifold. In this situation
Theorem 1 is a corollary of the following fact:

Theorem 2. ([Le1]) Let N be a compact homogeneous space of a nilpotent Lie group G, let

T1, . . . , Tr ∈ G and let p1, . . . , pr be polynomials Z
d −→ Z. Then as N → ∞ the averages

1
|ΦN |

∑

u∈ΦN
T

p1(u)
1 . . . T

pr(u)
r f converge pointwise for any f ∈ C(X) and any Følner sequence

{ΦN}∞N=1 in Z
d.

Applying Theorem 2 to N = Xr, T1 = T× IdX × . . .× IdX , . . . , Tr = IdX × . . .× IdX ×T

and f = f1⊗. . .⊗fr we obtain the pointwise convergence of the averages (1) for continuous
f1, . . . , fr; the L

1-convergence of the averages (1) for arbitrary f1, . . . , fr ∈ L∞(X) follows.
The problem is therefore reduced to the case where one of fi, say f1, is orthogonal

to L2(ZK); we then have |||f1|||K+1 = 0. Clearly, we may assume that the polynomials
p1, . . . , pr in the formulation of Theorem 1 are nonconstant and essentially distinct, that
is, pi − pj 6= const for i 6= j. We will prove the following:

Theorem 3. For any r, b ∈ N there exists k ∈ N such that for any system of nonconstant

essentially distinct polynomials p1, . . . , pr:Z
d −→ Z of degree ≤ b and any f1, . . . , fr ∈

L∞(X) with |||f1|||k = 0 one has limN→∞
1

|ΦN |

∑

u∈ΦN
T p1(u)f1 · . . . ·T

pr(u)fr = 0 in L1(X)

for any Følner sequence {ΦN}∞N=1 in Z
d.

Remark. The integer k in Theorem 3 depends on neither the measure preserving system
(X,T ) nor d.

In the proof of Theorem 3 we will use the following version of the van der Corput
lemma:
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Lemma 4. (Cf. [BMQ], Lemma 4.2) Let {gu}u∈G be a bounded family of elements of a

Hilbert space indexed by elements of a finitely generated abelian group G and let {ΦN}∞N=1

be a Følner sequence in G.

(i) For any finite set F ⊆ G,

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

gu

∥

∥

∥

2

≤ lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

〈gu+v, gu+w〉 ∈ R.

(ii) There exists a Følner sequence {ΘM}∞M=1 in G3 such that

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

gu

∥

∥

∥

2

≤ lim sup
M→∞

1

|ΘM |

∑

(u,v,w)∈ΘM

〈gu+v, gu+w〉 ∈ R.

Proof. (i) Let F ⊆ G, |F | < ∞. For every u ∈ Z
d and v ∈ F put gu,v = gu. For any

N ∈ N we have

1

|ΦN |

∑

u∈ΦN

gu =
1

|F |

∑

v∈F

1

|ΦN |

∑

u∈ΦN

gu,v =
( 1

|F |

∑

v∈F

1

|ΦN |

∑

u∈ΦN

gu+v,v

)

−AN +BN ,

where AN = 1
|F |

∑

v∈F
1

|ΦN |

∑

u∈ΦN

u+v 6∈ΦN

gu+v and BN = 1
|F |

∑

v∈F
1

|ΦN |

∑

u 6∈ΦN

u+v∈ΦN

gu+v. Since

{ΦN}∞N=1 is a Følner sequence and {gu}u∈Gis a bounded set, ‖AN‖, ‖BN‖ → 0 as N → ∞.
Thus,

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

gu

∥

∥

∥
= lim sup

N→∞

∥

∥

∥

1

|F |

∑

v∈F

1

|ΦN |

∑

u∈ΦN

gu+v

∥

∥

∥
.

And by the Cauchy-Schwarz inequality,

∥

∥

∥

1

|F |

∑

v∈F

1

|ΦN |

∑

u∈ΦN

gu+v

∥

∥

∥

2

=
1

|F |2

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

∑

v∈F

gu+v

∥

∥

∥

2

≤
1

|F |2
1

|ΦN |

∑

u∈ΦN

∥

∥

∥

∑

v∈F

gu+v

∥

∥

∥

2

=
1

|F |2
1

|ΦN |

∑

u∈ΦN

∑

v,w∈F

〈gu+v, gu+w〉.

(ii) Put S = lim supN→∞

∥

∥

1
|ΦN |

∑

u∈ΦN
gu
∥

∥

2
. Choose any Følner sequence {ΨM}∞M=1 in G

and, using (i), find an increasing sequence N1, N2, . . . ∈ N such that for each M ∈ N

1

|ΨM |2

∑

v,w∈ΨM

1

|ΦNM
|

∑

u∈ΦNM

〈gu+v, gu+w〉 > S − 1
M .

Define ΘM = ΦNM
×Ψ2

M , M = 1, 2, . . .. Then {ΘM}∞M=1 is a Følner sequence in G3 and

lim sup
M→∞

1

|ΘM |

∑

(u,v,w)∈ΘM

〈gu+v, gu+w〉 = lim sup
M→∞

1

|ΨM |2 · |ΦNM
|

∑

v,w∈ΨM

u∈ΦNM

〈gu+v, gu+w〉 ≥ S.
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Agreement. For simplicity, starting from this point we will assume all functions on X

we deal with to be real-valued.

We first prove Theorem 3 for polynomials of degree 1, which we will call linear func-

tions.

Proposition 5. Let p1, . . . , pr:Z
d −→ Z be nonconstant essentially distinct linear func-

tions. There exists a constant C such that

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

T p1(u)f1 · . . . · T
pr(u)fr

∥

∥

∥

L2(X)
≤ C|||f1|||r+1 ·

r
∏

i=2

‖fi‖L∞(X)

for any f1, . . . , fr ∈ L∞(X) and any Følner sequence {ΦN}∞N=1 in Z
d.

Corollary 6. Let p1, . . . , pr:Z
d −→ Z be nonconstant essentially distinct linear functions.

For any f1, . . . , fr ∈ L∞(X) with |||f1|||r+1 = 0 one has limN→∞
1

|ΦN |

∑

u∈ΦN
T p1(u)f1 · . . . ·

T pr(u)fr = 0 in L1(X) for any Følner sequence {ΦN}∞N=1 in Z
d.

Remark. Actually, if r ≥ 2, for limN→∞
1

|ΦN |

∑

u∈ΦN
T p1(u)f1 · . . . · T pr(u)fr = 0 it is

enough that |||f1|||r = 0, but proving this fact requires a more careful investigation. (See
[Le2].)

Lemma 7. Let p:Zd −→ Z be a nonconstant linear function. There exists a con-

stant c such that for any f ∈ L∞(X) and any Følner sequence {ΦN}∞N=1 in Z
d one has

limN→∞

∥

∥

1
|ΦN |

∑

u∈ΦN
T p(u)f

∥

∥

L2(X)
≤ c|||f |||2.

Proof. In coordinates, let p(u) = a1u1 + . . . + adud + a0, u = (u1, . . . , ud) ∈ Z
d, with

a1, . . . , ad ∈ Z. After replacing f by T a0f we may assume that a0 = 0. Put a =
gcd(a1, . . . , ad). Then, in L1(X), limN→∞

1
|ΦN |

∑

u∈ΦN
T p(u)f = E(f |Ja) where Ja is

the factor of X associated with the σ-algebra of T a-invariant measurable subsets of X.
Recalling that ||| · |||0 ≤ ||| · |||1 and ||| · |||1 ≥ 0, we get

lim
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

T p(u)f
∥

∥

∥

2

L2(X)
=

∥

∥E(f |Ja)
∥

∥

2

L2(X)
= lim

N→∞

1

N

N
∑

n=1

∫

X

f · T anf dµ

= lim
N→∞

1

N

N
∑

n=1

|||f · T anf |||0 ≤ lim
N→∞

1

N

N
∑

n=1

|||f · T anf |||1 ≤ a lim
N→∞

1

N

N
∑

n=1

|||f · Tnf |||1

≤ a
(

lim
N→∞

1

N

N
∑

n=1

|||f · Tnf |||
2
1

)1/2

= a|||f |||
2
2.

Lemma 8. Let p:Zd −→ Z be a nonconstant linear function. There exists a constant c

such that for any f ∈ L∞(X), any k ≥ 1 and any Følner sequence {ΦN}∞N=1 in Z
d one

has limN→∞
1

|ΦN |

∑

u∈ΦN
|||f · T p(u)f |||

2k

k ≤ c|||f |||
2k+1

k+1 .
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Proof. Let, again, p(u) = a1u1 + . . .+ adud and a = gcd(a1, . . . , ad). Denote by Jk,a the
factor of X [k] associated with the σ-algebra of (T [k])a-invariant measurable subsets of X [k].
We have

lim
N→∞

1

|ΦN |

∑

u∈ΦN

|||f · T p(u)f |||
2k

k = lim
N→∞

1

|ΦN |

∑

u∈ΦN

∫

X[k]

f⊗2k · (T [k])p(u)f⊗2kdµ[k]

=

∫

X[k]

E
(

f⊗2k |Jk,a
)2
dµ[k] = lim

N→∞

1

N

N
∑

n=1

∫

X[k]

f⊗2k · (T [k])anf⊗2kdµ[k]

= lim
N→∞

1

N

N
∑

n=1

|||f · T anf |||
2k

k ≤ a lim
N→∞

1

N

N
∑

n=1

|||f · Tnf |||
2k

k = a|||f |||
2k+1

k+1 .

Proof of Proposition 5. We proceed by induction on r. For r = 1 the statement is given
by Lemma 7. Let r ≥ 2, let f1, . . . , fr ∈ L∞(X) and let {ΦN}∞N=1 be a Følner sequence in
Z
d. We will assume that |f2|, . . . , |fr| ≤ 1. We will also assume that p1(0) = . . . = pr(0) =

0. By Lemma 4(i), applied to the elements gu = T p1(u)f1 · . . . ·T
pr(u)fr, u ∈ Z

d, of L2(X),
for any finite F ⊂ Z

d we get

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r
∏

i=1

T pi(u)fi

∥

∥

∥

2

L2(X)

≤ lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

r
∏

i=1

T pi(u+v)fi ·

r
∏

i=1

T pi(u+w)fi dµ

= lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

r
∏

i=1

T pi(u)
(

T pi(v)fi · T
pi(w)fi

)

dµ

= lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

(

r−1
∏

i=1

T (pi−pr)(u)
(

T pi(v)fi · T
pi(w)fi

)

)

·
(

T pr(v)fr · T
pr(w)fr

)

dµ

≤
1

|F |2

∑

v,w∈F

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r−1
∏

i=1

T (pi−pr)(u)
(

T pi(v)fi · T
pi(w)fi

)

∥

∥

∥

L2(X)
.

By the induction hypothesis there exists a constant C ′, independent on f1, . . . , fr and
{ΦN}∞N=1, such that

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r−1
∏

i=1

T (pi−pr)(u)
(

T pi(v)fi · T
pi(w)fi

)

∥

∥

∥

L2(X)
≤ C ′

∣

∣

∣

∣

∣

∣T p1(v)f1 · T
p1(w)f1

∣

∣

∣

∣

∣

∣

r
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for all v, w ∈ Z
d. Thus, for any finite set F ⊂ Z

d,

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r
∏

i=1

T pi(u)fi

∥

∥

∥

L2(X)
≤

( C ′

|F |2

∑

v,w∈F

∣

∣

∣

∣

∣

∣T p1(v)f1 · T
p1(w)f1

∣

∣

∣

∣

∣

∣

r

)1/2

= C ′1/2
( 1

|F |2

∑

v,w∈F

∣

∣

∣

∣

∣

∣f1 · T
p1(w−v)f1

∣

∣

∣

∣

∣

∣

r

)1/2

≤ C ′1/2
( 1

|F |2

∑

v,w∈F

∣

∣

∣

∣

∣

∣f1 · T
p1(w−v)f1

∣

∣

∣

∣

∣

∣

2r

r

)(1/2)r+1

.

(4)

Let {ΨM}∞M=1 be any Følner sequence in Z
d. Then {Ψ2

M}∞M=1 is a Følner sequence in Z
2d,

and since (v, w) 7→ p1(w−v) is a nonconstant linear function on Z
2d, by Lemma 8 we have

lim sup
M→∞

1

|ΨM |2

∑

v,w∈ΨM

∣

∣

∣

∣

∣

∣f1 · T
p1(w−v)f1

∣

∣

∣

∣

∣

∣

2r

r
≤ c|||f1|||

2r+1

r+1 ,

with c independent on f1. Substituting the sets ΨM , M ∈ N, for F in (4) we obtain

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r
∏

i=1

T pi(u)fi

∥

∥

∥

L2(X)
≤ C ′1/2c(1/2)

r+1

|||f1|||r+1.

We now turn to the case of nonlinear pi. We will call a system any finite set of
polynomials on a space Z

d. The degree, degP , of a system P is the maximum of the
degrees of its elements. The weight, ω(P ), of a system P is defined in the following way.
We will say that polynomials p, q are equivalent if deg p = deg q and deg(p−q) < deg p; the
degree of a class of equivalent polynomials is the degree of its elements. P is partitioned
into equivalence classes; for each positive integer l ≤ degP let ωl be the number of classes
of degree l in P . Then ω(P ) is the vector

(

ω1, . . . , ωdegP

)

. For two integer vectors ω =
(ω1, . . . , ωm) and ω′ = (ω′

1, . . . , ω
′
m′) we will write ω < ω′ if either m < m′, or m = m′ and

there is n ≤ m such that ωn < ω′
n and ωl = ω′

l for l = n + 1, . . . ,m. Under this relation
the set of weights of systems of polynomials becomes well ordered. The PET-induction,
introduced in [B1], is an induction on this well ordered set.

An ordered system P = {p1, . . . , pr} will be said to be standard if all pi are nonconstant
and essentially distinct (that is, pi − pj 6= const for i 6= j), and deg p1 = degP . We will be
proving the following:

Proposition 9. For any r ∈ N and any integer vector ω = (ω1, . . . , ωl) there is k ∈ N

such that for any standard system
{

p1, . . . , pr:Z
d −→ Z

}

of weight ω and any f1, . . . , fr ∈

L∞(X) with |||f1|||k = 0 one has limN→∞
1

|ΦN |

∑

u∈ΦN
T p1(u)f1 · . . . ·T

pr(u)fr = 0 in L1(X)

for any Følner sequence {ΦN}∞N=1 in Z
d.

We will say that a certain property holds for almost all v ∈ Z
d if the set of elements

of Zd for which it does not hold is contained in the set of zeroes of a nontrivial polynomial
on Z

d (or in the union of such sets, which is the same). Note that the set of zeroes of a
nontrivial polynomial has zero density with respect to any Følner sequence in Z

d.
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Proof of Proposition 9. We will proceed by PET-induction. For systems of degree 1 the
proposition is given by Corollary 6. Let P = {p1, . . . , pr:Z

d −→ Z} be a standard system of
degree ≥ 2 and of weight ω. There are only finitely many integer vectors ω′ < ω which are
the weights of systems with s < 2r elements. By our PET-induction hypothesis there exists
k ∈ N such that for any standard system

{

q1, . . . , qs:Z
d −→ Z

}

with s ≤ 2r of weight ω′ <

ω and any h1, . . . , hs ∈ L∞(X) with |||h1|||k = 0 one has limN→∞
1

|ΦN |

∑

u∈ΦN
T q1(u)h1 ·

. . . · T qs(u)hs = 0 in L1(X) for any Følner sequence {ΦN}∞N=1 in Z
d.

Let I1 =
{

i ∈ {1, . . . , r} : deg pi = 1
}

and I2 =
{

i ∈ {1, . . . , r} : deg pi ≥ 2
}

. Choose
i0 ∈ {2, . . . , r} such that pi0 has the minimal degree in P ; if all polynomials in P have
the same degree, choose i0 so that pi0 is not equivalent to p1; if all polynomials in P are
equivalent, choose i0 arbitrarily. For each v, w ∈ Z

d define

Pv,w =
{

pi(u+ v), pi(u+ w) : i ∈ I2
}

⋃

{

pi(u+ w) : i ∈ I1
}

(where pi(u + v), pi(u + w) are considered as polynomials in u), and order the system
Pv,w = {qv,w,1, . . . , qv,w,s} so that qv,w,1(u) = p1(u+ v) and qv,w,s(u) = pi0(u+ w). Then
Pv,w is a standard system for almost all (v, w) ∈ Z

2d. Since for any v, w ∈ Z
d and

i ∈ {1, . . . , r} the polynomials pi(u + v) and pi(u + w) are equivalent to pi(u), we have
ω(Pv,w) = ω(P ) = ω for all v, w ∈ Z

d.

For v, w ∈ Z
d define

P ′
v,w =

{

qv,w,1 − qv,w,s, . . . , qv,w,s−1 − qv,w,s

}

.

Then for almost all (v, w) ∈ Z
d, P ′

v,w is a standard system. (Indeed, the polynomials
qv,w,j − qv,w,s, j = 1, . . . , s − 1, are nonconstant and essentially distinct whenever qv,w,j

are. If pi0 is not equivalent to p1, then deg(qv,w,1− qv,w,s) = deg
(

p1(u+v)−pi0(u+w)
)

=
deg p1 = degPv,w for all v, w; otherwise deg(qv,w,1 − qv,w,s) = deg p1 − 1 = degPv,w for
almost all (v, w).) Also, for all (v, w) ∈ Z

2d, ω(P ′
v,w) < ω. (Indeed, the equivalence

classes in P ′
v,w and their degrees remain the same as in Pv,w, except that the class in Pv,w

containing qs splits into several new classes of less degree.)

Now let f1, . . . , fr ∈ L∞(X) with |||f1|||k = 0, and let {ΦN}∞N=1 be a Følner sequence
in Z

d. We will assume that |f2|, . . . , |fr| ≤ 1. By Lemma 4(i), for any finite set F ⊂ Z
d we
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get

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r
∏

i=1

T pi(u)fi

∥

∥

∥

2

L2(X)

≤ lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

r
∏

i=1

T pi(u+v)fi ·

r
∏

i=1

T pi(u+w)fi dµ

= lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

∏

i∈I2

T pi(u+v)fi ·
∏

i∈I2

T pi(u+w)fi·

∏

i∈I1

T pi(u+w)(fi · T
pi(v)−pi(w)fi) dµ

= lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

s
∏

j=1

T qv,w,j(u)hv,w,j dµ

= lim sup
N→∞

1

|F |2

∑

v,w∈F

1

|ΦN |

∑

u∈ΦN

∫

X

(

s−1
∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j

)

· hv,w,s dµ

≤
1

|F |2

∑

v,w∈F

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

s−1
∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j

∥

∥

∥

L1(X)
,

where, for v, w ∈ Z
d, qv,w,1, . . . , qv,w,s are the elements of the system Pv,w, and hv,w,j

is either fi for certain i ∈ I2 or fi · T
pi(v)−pi(w)fi for certain i ∈ I1; note that, since

deg p1 = degP ≥ 2, 1 ∈ I2 and hv,w,1 = f1. By the induction hypothesis applied to the
systems P ′

v,w,

lim
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

s−1
∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j

∥

∥

∥

L1(X)
= 0

for all (v, w) ∈ Z
2d for which P ′

v,w is standard, that is, for almost all (v, w). Since for all
other (v, w) this norm is bounded by 1,

inf
F

1

|F |2

∑

(v,w)∈F

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

s−1
∏

j=1

T (qv,w,j−qv,w,s)(u)hv,w,j

∥

∥

∥

L1(X)
= 0.

Proof of Theorem 3. Proposition 9 implies Theorem 3 for standard systems, and our goal
is to reduce the general case to this one. Let P = {p1, . . . , pr} be a (nonstandard) system
of nonconstant essentially distinct polynomials Z

d −→ Z of degree ≤ b, let f1, . . . , fr ∈
L∞(X) and let {ΦN}∞N=1 be a Følner sequence in Z

d. By Lemma 4(ii) there exists a Følner

9



sequence {ΘM}∞M=1 in Z
3d such that

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

r
∏

i=1

T pi(u)fi

∥

∥

∥

2

L2(X)

≤ lim sup
M→∞

1

|ΘM |

∑

(u,v,w)∈ΘM

∫ r
∏

i=1

T pi(u+v)fi ·
r
∏

i=1

T pi(u+w)fi dµ

= lim sup
M→∞

1

|ΘM |

∑

(u,v,w)∈ΘM

∫ r
∏

i=1

T pi(u+v)+q(u)fi ·
r
∏

i=1

T pi(u+w)+q(u)fi dµ

≤ lim sup
M→∞

∥

∥

∥

1

|ΘM |

∑

(u,v,w)∈ΘM

r
∏

i=1

T pi(u+v)+q(u)fi ·
r
∏

i=1

T pi(u+w)+q(u)fi

∥

∥

∥

L1(X)

where q is any polynomial Zd −→ Z of degree b. The set

{

p1(u+ v) + q(u), . . . , pr(u+ v) + q(u), p1(u+ w) + q(u), . . . , pr(u+ w) + q(u)
}

of polynomials Z
3d −→ Z is a standard system of degree b with 2r elements, thus there

exists k ∈ N (depending on r and b only) such that

lim
M→∞

1

|ΘM |

∑

(u,v,w)∈ΘM

r
∏

i=1

T pi(u+v)+q(u)fi ·
r
∏

i=1

T pi(u+w)+q(u)fi = 0

in L1(X).
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