Convergence of multiple ergodic averages along polynomials of several variables

A. Leibman
Department of Mathematics
The Ohio State University
Columbus, OH 43210, USA
e-mail: leibman@math.ohio-state.edu

February 15, 2004

Abstract

Let T be an invertible measure preserving transformation of a probability measure space X. Generalizing a recent result of Host and Kra, we prove that the averages $\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \cdot \ldots \cdot T^{p_{r}(u)} f_{r}$ converge in $L^{1}(X)$ for any $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$, any polynomials $p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.

Throughout the paper, (X, μ) is a probability measure space and T is an invertible measure preserving transformation of X. Our goal is to prove the following:

Theorem 1. For any $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$, any polynomials $p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d} the averages

$$
\begin{equation*}
\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \cdot T^{p_{2}(u)} f_{2} \cdot \ldots \cdot T^{p_{r}(u)} f_{r} \tag{1}
\end{equation*}
$$

converge in $L^{1}(X)$ as $N \rightarrow \infty$.
The "multiple ergodic averages"

$$
\begin{equation*}
\frac{1}{N} \sum_{n=M_{N}+1}^{M_{N}+N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{r n} f_{r}, \quad f_{1}, \ldots, f_{r} \in L^{\infty}(X) \tag{2}
\end{equation*}
$$

were introduced by H. Furstenberg in his ergodic theoretical proof of Szemerédi's theorem ([F]). In the situation where T is weakly mixing the L^{1}-convergence of the averages (2) as $N \rightarrow \infty$ was proved in [F]. For general T, the L^{1}-convergence of these averages was proved for $r=2$ in $[\mathrm{F}]$; for $r=3$ in the case of a totally ergodic T by Conze and Lesigne ([CL1],

Supported by NSF grant DMS-0345350.
[CL2]), in the case of general T by Furstenberg and Weiss ([FW]), and by Host and Kra ([HK1]); for $r=4$ by Ziegler ([Z1]). Finally, the L^{1}-convergence of the averages (2) for arbitrary r was proved by Host and Kra ([HK3]), and independently by Ziegler ([Z2]).

The L^{1}-convergence of the "polynomial" multiple ergodic averages

$$
\begin{equation*}
\frac{1}{N} \sum_{n=M_{N}+1}^{M_{N}+N} T^{p_{1}(n)} f_{1} \cdot T^{p_{2}(n)} f_{2} \cdot \ldots \cdot T^{p_{r}(n)} f_{r}, \quad f_{1}, \ldots, f_{r} \in L^{\infty}(X), p_{1}, p_{2}, \ldots, p_{r} \in \mathbb{Z}[n] \tag{3}
\end{equation*}
$$

in the case of a weakly mixing T was established by Bergelson in [B1]. For general T, the convergence of the simplest nonlinear multiple ergodic averages $\frac{1}{N} \sum_{n=M_{N}+1}^{M_{N}+N} T^{n^{2}} f_{1} \cdot T^{n} f_{2}$ was proved by Furstenberg and Weiss ([FW]). The 2-parameter multiple ergodic averages $\frac{1}{N^{2}} \sum_{n_{1}, n_{2}=M_{N}+1}^{M_{N}+N} f_{0,0} \cdot T^{n_{1}} f_{1,0} \cdot T^{n_{2}} f_{0,1} \cdot T^{n_{1}+n_{2}} f_{1,1}$ were introduced and proven to converge by Bergelson ([B2]). Host and Kra proved the convergence of the d-parameter averages of this sort, $\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{\epsilon \in\{0,1\}^{d}} T^{\epsilon \cdot u} f_{\epsilon}$, where $\Phi_{N} \subset \mathbb{Z}^{d}$ is a sequence of rectangles whose sizes tend to infinity in all directions, for $d=3$ in [HK2] and for arbitrary d in [HK3]. The theory of "nilpotent factors" established by Host and Kra in [HK3] allowed the authors to prove in [HK4] the L^{1}-convergence of the polynomial (one-parameter) multiple ergodic averages (3) (in the case T is totally ergodic, or under some negligible restrictions on the system of polynomials $\left\{p_{1}, \ldots, p_{r}\right\}$.)

Our proof of Theorem 1 is very similar to the proof in [HK4]; dealing with the multiparameter situation simplifies it a little bit and allows one to extend it to the cases missed in [HK4].

We first remind the reader some elements of the Host-Kra theory from [HK3]. The measure preserving systems $\left(X^{[k]}, \mu^{[k]}, T^{[k]}\right), k=0,1,2, \ldots$, are constructed inductively; one puts $\left(X^{[0]}, \mu^{[0]}, T^{[0]}\right)=(X, \mu, T)$. When $\left(X^{[k]}, \mu^{[k]}, T^{[k]}\right)$ has already been defined for certain k, let \mathcal{I}_{k} be the σ-algebra of measurable subsets of $X^{[k]}$ invariant under the action of $T^{[k]}$, and let I_{k} be the factor of $X^{[k]}$ associated with \mathcal{I}_{k}. Then $\left(X^{[k+1]}, \mu^{[k+1]}\right)$ is the relative product $\left(X^{[k]}, \mu^{[k]}\right) \times_{I_{k}}\left(X^{[k]}, \mu^{[k]}\right)$, with $T^{[k+1]}=T^{[k]} \times T^{[k]}$ naturally acting on $X^{[k+1]}$. For $F, G \in L^{\infty}\left(X^{[k]}\right)$ this means that

$$
\int_{X^{[k+1]}} F \otimes G d \mu^{[k+1]}=\int_{I_{k}} E\left(F \mid I_{k}\right) \cdot E\left(G \mid I_{k}\right) d \mu^{[k]}
$$

For $k \geq 0$, let \mathcal{Z}_{k} be the minimal σ-algebra on X such that $\mathcal{I}_{k} \subseteq \mathcal{Z}_{k}^{\otimes 2^{k}}$. The k-th Host-Kra factor Z_{k} is the factor of X associated with \mathcal{Z}_{k}. In particular, Z_{0} is the trivial (one-point) factor and Z_{1} is the Kronecker factor of X. The factors Z_{k} form an increasing sequence: for any $k \geq 1, Z_{k}$ is an extension of Z_{k-1}. $A k$-step nilmanifold is a homogeneous space of a nilpotent Lie group of nilpotency class k equipped with the Haar measure, and a k-step pro-nilmanifold is the inverse limit of a sequence of k-step nilmanifolds. The central result of the Host-Kra theory is that, for any k, Z_{k} possesses a natural structure of a compact k-step pro-nilmanifold such that T acts on Z_{k} as a translation.

For a bounded measurable real-valued function f on X and $k=0,1,2, \ldots$ one defines

$$
\|f\|_{k}=\left(\int_{X^{[k]}} f^{\otimes 2^{k}} d \mu^{[k]}\right)^{1 / 2^{k}}
$$

In particular, $\|f f\|_{0}=\int_{X} f d \mu$. The seminorms $\|f f\|_{k}$ form a nondecreasing sequence: $\|f\|_{0} \leq\|f\|_{1}$ and $0 \leq\|f\|_{1} \leq\|f\|_{2} \leq \ldots \leq\|f\|_{L^{\infty}(X)}$, and are T-invariant: $\|T f\|_{k}=$ $\|f\|_{k}$ for any k. By the definition of $\mu^{[k+1]},\|f\|_{k+1}^{2^{k+1}}=\int_{I_{k}} E\left(f^{\otimes 2^{k}} \mid I_{k}\right)^{2} d \mu^{[k]}$. Thus, $\|f\|_{k+1}=0$ if $E\left(f \mid Z_{k}\right)=0$, that is, if $f \perp L^{2}\left(Z_{k}\right)$ in $L^{2}(X)$.

For $k \geq 0$ and $n \in \mathbb{Z}$ one has

$$
\left\|f \cdot T^{n} f\right\|_{k}^{2^{k}}=\int_{X^{[k]}} f^{\otimes 2^{k}} \cdot\left(T^{[k]}\right)^{n} f^{\otimes 2^{k}} d \mu^{[k]}
$$

By the ergodic theorem, $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(T^{[k]}\right)^{n} f^{\otimes 2^{k}}=E\left(f^{\otimes 2^{k}} \mid I_{k}\right)$ in $L^{1}\left(X^{[k]}\right)$, and thus

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|f \cdot T^{n} f\right\|_{k}^{2^{k}}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X^{[k]}} f^{\otimes 2^{k}} \cdot\left(T^{[k]}\right)^{n} f^{\otimes 2^{k}} d \mu^{[k]} \\
&=\int_{I_{k}} E\left(f^{\otimes 2^{k}} \mid I_{k}\right)^{2} d \mu^{[k]}=\|f\|_{k+1}^{2^{k+1}}
\end{aligned}
$$

This provides one with an inductive definition of the seminorms $\left\|\|\cdot\|_{k}\right.$ that is extremely convenient in applications.

Let us return to Theorem 1. Fix $K \in \mathbb{N}$. Because of the multilinearity of the expression in (1), it suffices to prove the theorem only in the case where each f_{i} either belongs to $L^{2}\left(Z_{K}\right)$ or is orthogonal to this space in $L^{2}(X)$. If all $f_{1}, \ldots, f_{r} \in L^{2}\left(Z_{K}\right)$ one may replace X by Z_{K} and assume that X is a pro-nilmanifold, or even a nilmanifold. In this situation Theorem 1 is a corollary of the following fact:

Theorem 2. ([Le1]) Let N be a compact homogeneous space of a nilpotent Lie group G, let $T_{1}, \ldots, T_{r} \in G$ and let p_{1}, \ldots, p_{r} be polynomials $\mathbb{Z}^{d} \longrightarrow \mathbb{Z}$. Then as $N \rightarrow \infty$ the averages $\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T_{1}^{p_{1}(u)}{ }^{\ldots} T_{r}^{p_{r}(u)} f$ converge pointwise for any $f \in C(X)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.
Applying Theorem 2 to $N=X^{r}, T_{1}=T \times \operatorname{Id}_{X} \times \ldots \times \operatorname{Id}_{X}, \ldots, T_{r}=\operatorname{Id}_{X} \times \ldots \times \operatorname{Id}_{X} \times T$ and $f=f_{1} \otimes \ldots \otimes f_{r}$ we obtain the pointwise convergence of the averages (1) for continuous f_{1}, \ldots, f_{r}; the L^{1}-convergence of the averages (1) for arbitrary $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$ follows.

The problem is therefore reduced to the case where one of f_{i}, say f_{1}, is orthogonal to $L^{2}\left(Z_{K}\right)$; we then have $\left\|f_{1}\right\|_{K+1}=0$. Clearly, we may assume that the polynomials p_{1}, \ldots, p_{r} in the formulation of Theorem 1 are nonconstant and essentially distinct, that is, $p_{i}-p_{j} \neq$ const for $i \neq j$. We will prove the following:

Theorem 3. For any $r, b \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that for any system of nonconstant essentially distinct polynomials $p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ of degree $\leq b$ and any $f_{1}, \ldots, f_{r} \in$ $L^{\infty}(X)$ with $\left\|f_{1}\right\|_{k}=0$ one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \cdot \ldots \cdot T^{p_{r}(u)} f_{r}=0$ in $L^{1}(X)$ for any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.
Remark. The integer k in Theorem 3 depends on neither the measure preserving system (X, T) nor d.

In the proof of Theorem 3 we will use the following version of the van der Corput lemma:

Lemma 4. (Cf. [BMQ], Lemma 4.2) Let $\left\{g_{u}\right\}_{u \in G}$ be a bounded family of elements of a Hilbert space indexed by elements of a finitely generated abelian group G and let $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ be a Følner sequence in G.
(i) For any finite set $F \subseteq G$,

$$
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u}\right\|^{2} \leq \limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}}\left\langle g_{u+v}, g_{u+w}\right\rangle \in \mathbb{R} .
$$

(ii) There exists a Følner sequence $\left\{\Theta_{M}\right\}_{M=1}^{\infty}$ in G^{3} such that

$$
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u}\right\|^{2} \leq \limsup _{M \rightarrow \infty} \frac{1}{\left|\Theta_{M}\right|} \sum_{(u, v, w) \in \Theta_{M}}\left\langle g_{u+v}, g_{u+w}\right\rangle \in \mathbb{R}
$$

Proof. (i) Let $F \subseteq G,|F|<\infty$. For every $u \in \mathbb{Z}^{d}$ and $v \in F$ put $g_{u, v}=g_{u}$. For any $N \in \mathbb{N}$ we have

$$
\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u}=\frac{1}{|F|} \sum_{v \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u, v}=\left(\frac{1}{|F|} \sum_{v \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u+v, v}\right)-A_{N}+B_{N}
$$

where $A_{N}=\frac{1}{|F|} \sum_{v \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{\substack{u \in \Phi_{N} \\ u+v \notin \Phi_{N}}} g_{u+v}$ and $B_{N}=\frac{1}{|F|} \sum_{v \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{\substack{u \notin \Phi_{N} \Phi_{N} \\ u+v+\Phi_{N}}} g_{u+v}$. Since $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ is a Følner sequence and $\left\{g_{u}\right\}_{u \in G}$ is a bounded set, $\left\|A_{N}\right\|,\left\|B_{N}\right\| \rightarrow 0$ as $N \rightarrow \infty$. Thus,

$$
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u}\right\|=\limsup _{N \rightarrow \infty}\left\|\frac{1}{|F|} \sum_{v \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u+v}\right\| .
$$

And by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
&\left\|\frac{1}{|F|} \sum_{v \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u+v}\right\|^{2}=\frac{1}{|F|^{2}}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \sum_{v \in F} g_{u+v}\right\|^{2} \\
& \leq \frac{1}{|F|^{2}} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}}\left\|\sum_{v \in F} g_{u+v}\right\|^{2}=\frac{1}{|F|^{2}} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \sum_{v, w \in F}\left\langle g_{u+v}, g_{u+w}\right\rangle
\end{aligned}
$$

(ii) Put $S=\lim \sup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} g_{u}\right\|^{2}$. Choose any Følner sequence $\left\{\Psi_{M}\right\}_{M=1}^{\infty}$ in G and, using (i), find an increasing sequence $N_{1}, N_{2}, \ldots \in \mathbb{N}$ such that for each $M \in \mathbb{N}$

$$
\frac{1}{\left|\Psi_{M}\right|^{2}} \sum_{v, w \in \Psi_{M}} \frac{1}{\left|\Phi_{N_{M}}\right|} \sum_{u \in \Phi_{N_{M}}}\left\langle g_{u+v}, g_{u+w}\right\rangle>S-\frac{1}{M} .
$$

Define $\Theta_{M}=\Phi_{N_{M}} \times \Psi_{M}^{2}, M=1,2, \ldots$ Then $\left\{\Theta_{M}\right\}_{M=1}^{\infty}$ is a Følner sequence in G^{3} and

$$
\limsup _{M \rightarrow \infty} \frac{1}{\left|\Theta_{M}\right|} \sum_{(u, v, w) \in \Theta_{M}}\left\langle g_{u+v}, g_{u+w}\right\rangle=\limsup _{M \rightarrow \infty} \frac{1}{\left|\Psi_{M}\right|^{2} \cdot\left|\Phi_{N_{M}}\right|} \sum_{\substack{v, w \in \Psi_{M} \\ u \in \Phi_{N_{M}}}}\left\langle g_{u+v}, g_{u+w}\right\rangle \geq S .
$$

Agreement. For simplicity, starting from this point we will assume all functions on X we deal with to be real-valued.

We first prove Theorem 3 for polynomials of degree 1, which we will call linear functions.

Proposition 5. Let $p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ be nonconstant essentially distinct linear functions. There exists a constant C such that

$$
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \cdot \ldots \cdot T^{p_{r}(u)} f_{r}\right\|_{L^{2}(X)} \leq C\left\|f_{1}\right\|_{r+1} \cdot \prod_{i=2}^{r}\left\|f_{i}\right\|_{L^{\infty}(X)}
$$

for any $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.
Corollary 6. Let $p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ be nonconstant essentially distinct linear functions. For any $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$ with $\left\|f_{1}\right\|_{r+1}=0$ one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \ldots$. $T^{p_{r}(u)} f_{r}=0$ in $L^{1}(X)$ for any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.

Remark. Actually, if $r \geq 2$, for $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \cdot \ldots \cdot T^{p_{r}(u)} f_{r}=0$ it is enough that $\left\|f_{1}\right\|_{r}=0$, but proving this fact requires a more careful investigation. (See [Le2].)

Lemma 7. Let $p: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ be a nonconstant linear function. There exists a constant c such that for any $f \in L^{\infty}(X)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d} one has $\lim _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p(u)} f\right\|_{L^{2}(X)} \leq c\|f f\|_{2}$.

Proof. In coordinates, let $p(u)=a_{1} u_{1}+\ldots+a_{d} u_{d}+a_{0}, u=\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{Z}^{d}$, with $a_{1}, \ldots, a_{d} \in \mathbb{Z}$. After replacing f by $T^{a_{0}} f$ we may assume that $a_{0}=0$. Put $a=$ $\operatorname{gcd}\left(a_{1}, \ldots, a_{d}\right)$. Then, in $L^{1}(X), \lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p(u)} f=E\left(f \mid J_{a}\right)$ where J_{a} is the factor of X associated with the σ-algebra of T^{a}-invariant measurable subsets of X. Recalling that $\|\mid \cdot\|_{0} \leq\| \| \cdot \|_{1}$ and $\|\cdot \cdot\|_{1} \geq 0$, we get

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p(u)} f\right\|_{L^{2}(X)}^{2}=\left\|E\left(f \mid J_{a}\right)\right\|_{L^{2}(X)}^{2}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f \cdot T^{a n} f d \mu \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|f \cdot T^{a n} f\right\|_{0} \leq \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\| \| f \cdot T^{a n} f\left\|_{1} \leq a \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\right\| f \cdot T^{n} f \|_{1} \\
& \leq a\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|f \cdot T^{n} f\right\|_{1}^{2}\right)^{1 / 2}=a\|f\|_{2}^{2}
\end{aligned}
$$

Lemma 8. Let $p: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ be a nonconstant linear function. There exists a constant c such that for any $f \in L^{\infty}(X)$, any $k \geq 1$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d} one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}}\left\|f \cdot T^{p(u)} f\right\|_{k}^{2^{k}} \leq c\|f\|_{k+1}^{2^{k+1}}$.

Proof. Let, again, $p(u)=a_{1} u_{1}+\ldots+a_{d} u_{d}$ and $a=\operatorname{gcd}\left(a_{1}, \ldots, a_{d}\right)$. Denote by $J_{k, a}$ the factor of $X^{[k]}$ associated with the σ-algebra of $\left(T^{[k]}\right)^{a}$-invariant measurable subsets of $X^{[k]}$. We have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}}\left\|f \cdot T^{p(u)} f\right\|_{k}^{2^{k}}=\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X^{[k]}} f^{\otimes 2^{k}} \cdot\left(T^{[k]}\right)^{p(u)} f^{\otimes 2^{k}} d \mu^{[k]} \\
& =\int_{X[k]} E\left(f^{\otimes 2^{k}} \mid J_{k, a}\right)^{2} d \mu^{[k]}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X^{[k]}} f^{\otimes 2^{k}} \cdot\left(T^{[k]}\right)^{a n} f^{\otimes 2^{k}} d \mu^{[k]} \\
& \quad=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|f \cdot T^{a n} f\right\|_{k}^{2^{k}} \leq a \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|f \cdot T^{n} f\right\|_{k}^{2^{k}}=a\|f\|_{k+1}^{2^{k+1}}
\end{aligned}
$$

Proof of Proposition 5. We proceed by induction on r. For $r=1$ the statement is given by Lemma 7 . Let $r \geq 2$, let $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$ and let $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ be a F \varnothing lner sequence in \mathbb{Z}^{d}. We will assume that $\left|f_{2}\right|, \ldots,\left|f_{r}\right| \leq 1$. We will also assume that $p_{1}(0)=\ldots=p_{r}(0)=$ 0 . By Lemma 4(i), applied to the elements $g_{u}=T^{p_{1}(u)} f_{1} \cdot \ldots \cdot T^{p_{r}(u)} f_{r}, u \in \mathbb{Z}^{d}$, of $L^{2}(X)$, for any finite $F \subset \mathbb{Z}^{d}$ we get

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \| \frac{1}{\left|\Phi_{N}\right|} & \sum_{u \in \Phi_{N}} \prod_{i=1}^{r} T^{p_{i}(u)} f_{i} \|_{L^{2}(X)}^{2} \\
& \leq \limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X} \prod_{i=1}^{r} T^{p_{i}(u+v)} f_{i} \cdot \prod_{i=1}^{r} T^{p_{i}(u+w)} f_{i} d \mu \\
& =\limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X} \prod_{i=1}^{r} T^{p_{i}(u)}\left(T^{p_{i}(v)} f_{i} \cdot T^{p_{i}(w)} f_{i}\right) d \mu \\
& =\limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X}\left(\prod_{i=1}^{r-1} T^{\left(p_{i}-p_{r}\right)(u)}\left(T^{p_{i}(v)} f_{i} \cdot T^{p_{i}(w)} f_{i}\right)\right) \\
& \left.\leq \frac{1}{|F|^{2}} \sum_{v, w \in F} \limsup _{N \rightarrow \infty} \| \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{i=1}^{r-1} T^{p_{r}(v)} f_{r} \cdot T^{p_{r}(w)} f_{r}\right) d \mu
\end{aligned}
$$

By the induction hypothesis there exists a constant C^{\prime}, independent on f_{1}, \ldots, f_{r} and $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$, such that

$$
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{i=1}^{r-1} T^{\left(p_{i}-p_{r}\right)(u)}\left(T^{p_{i}(v)} f_{i} \cdot T^{p_{i}(w)} f_{i}\right)\right\|_{L^{2}(X)} \leq C^{\prime}\left\|T^{p_{1}(v)} f_{1} \cdot T^{p_{1}(w)} f_{1}\right\| \|_{r}
$$

for all $v, w \in \mathbb{Z}^{d}$. Thus, for any finite set $F \subset \mathbb{Z}^{d}$,

$$
\begin{align*}
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{i=1}^{r} T^{p_{i}(u)} f_{i}\right\|_{L^{2}(X)} & \leq\left(\frac{C^{\prime}}{|F|^{2}} \sum_{v, w \in F}\left\|\mid T^{p_{1}(v)} f_{1} \cdot T^{p_{1}(w)} f_{1}\right\| \|_{r}\right)^{1 / 2} \\
& =C^{\prime 1 / 2}\left(\frac{1}{|F|^{2}} \sum_{v, w \in F}\| \| f_{1} \cdot T^{p_{1}(w-v)} f_{1}\| \|_{r}\right)^{1 / 2} \tag{4}\\
& \leq C^{1 / 2}\left(\frac{1}{|F|^{2}} \sum_{v, w \in F}\left\|f_{1} \cdot T^{p_{1}(w-v)} f_{1}\right\| \|_{r}^{2^{r}}\right)^{(1 / 2)^{r+1}}
\end{align*}
$$

Let $\left\{\Psi_{M}\right\}_{M=1}^{\infty}$ be any Følner sequence in \mathbb{Z}^{d}. Then $\left\{\Psi_{M}^{2}\right\}_{M=1}^{\infty}$ is a F $ø$ lner sequence in $\mathbb{Z}^{2 d}$, and since $(v, w) \mapsto p_{1}(w-v)$ is a nonconstant linear function on $\mathbb{Z}^{2 d}$, by Lemma 8 we have

$$
\limsup _{M \rightarrow \infty} \frac{1}{\left|\Psi_{M}\right|^{2}} \sum_{v, w \in \Psi_{M}}\left\|f_{1} \cdot T^{p_{1}(w-v)} f_{1}\right\|\left\|_{r}^{2^{r}} \leq c\right\|\left\|f_{1}\right\|_{r+1}^{2^{r+1}}
$$

with c independent on f_{1}. Substituting the sets $\Psi_{M}, M \in \mathbb{N}$, for F in (4) we obtain

$$
\limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{i=1}^{r} T^{p_{i}(u)} f_{i}\right\|_{L^{2}(X)} \leq C^{\prime 1 / 2} c^{(1 / 2)^{r+1}}\left\|f_{1}\right\|_{r+1} .
$$

We now turn to the case of nonlinear p_{i}. We will call a system any finite set of polynomials on a space \mathbb{Z}^{d}. The degree, $\operatorname{deg} P$, of a system P is the maximum of the degrees of its elements. The weight, $\omega(P)$, of a system P is defined in the following way. We will say that polynomials p, q are equivalent if $\operatorname{deg} p=\operatorname{deg} q$ and $\operatorname{deg}(p-q)<\operatorname{deg} p$; the degree of a class of equivalent polynomials is the degree of its elements. P is partitioned into equivalence classes; for each positive integer $l \leq \operatorname{deg} P$ let ω_{l} be the number of classes of degree l in P. Then $\omega(P)$ is the vector $\left(\omega_{1}, \ldots, \omega_{\operatorname{deg} P}\right)$. For two integer vectors $\omega=$ $\left(\omega_{1}, \ldots, \omega_{m}\right)$ and $\omega^{\prime}=\left(\omega_{1}^{\prime}, \ldots, \omega_{m^{\prime}}^{\prime}\right)$ we will write $\omega<\omega^{\prime}$ if either $m<m^{\prime}$, or $m=m^{\prime}$ and there is $n \leq m$ such that $\omega_{n}<\omega_{n}^{\prime}$ and $\omega_{l}=\omega_{l}^{\prime}$ for $l=n+1, \ldots, m$. Under this relation the set of weights of systems of polynomials becomes well ordered. The PET-induction, introduced in [B1], is an induction on this well ordered set.

An ordered system $P=\left\{p_{1}, \ldots, p_{r}\right\}$ will be said to be standard if all p_{i} are nonconstant and essentially distinct (that is, $p_{i}-p_{j} \neq$ const for $i \neq j$), and $\operatorname{deg} p_{1}=\operatorname{deg} P$. We will be proving the following:
Proposition 9. For any $r \in \mathbb{N}$ and any integer vector $\omega=\left(\omega_{1}, \ldots, \omega_{l}\right)$ there is $k \in \mathbb{N}$ such that for any standard system $\left\{p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}\right\}$ of weight ω and any $f_{1}, \ldots, f_{r} \in$ $L^{\infty}(X)$ with $\left\|f_{1}\right\|_{k}=0$ one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{p_{1}(u)} f_{1} \ldots \ldots \cdot T^{p_{r}(u)} f_{r}=0$ in $L^{1}(X)$ for any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.

We will say that a certain property holds for almost all $v \in \mathbb{Z}^{d}$ if the set of elements of \mathbb{Z}^{d} for which it does not hold is contained in the set of zeroes of a nontrivial polynomial on \mathbb{Z}^{d} (or in the union of such sets, which is the same). Note that the set of zeroes of a nontrivial polynomial has zero density with respect to any Følner sequence in \mathbb{Z}^{d}.

Proof of Proposition 9. We will proceed by PET-induction. For systems of degree 1 the proposition is given by Corollary 6 . Let $P=\left\{p_{1}, \ldots, p_{r}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}\right\}$ be a standard system of degree ≥ 2 and of weight ω. There are only finitely many integer vectors $\omega^{\prime}<\omega$ which are the weights of systems with $s<2 r$ elements. By our PET-induction hypothesis there exists $k \in \mathbb{N}$ such that for any standard system $\left\{q_{1}, \ldots, q_{s}: \mathbb{Z}^{d} \longrightarrow \mathbb{Z}\right\}$ with $s \leq 2 r$ of weight $\omega^{\prime}<$ ω and any $h_{1}, \ldots, h_{s} \in L^{\infty}(X)$ with $\left\|h_{1}\right\|_{k}=0$ one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} T^{q_{1}(u)} h_{1}$. $\ldots \cdot T^{q_{s}(u)} h_{s}=0$ in $L^{1}(X)$ for any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d}.

Let $I_{1}=\left\{i \in\{1, \ldots, r\}: \operatorname{deg} p_{i}=1\right\}$ and $I_{2}=\left\{i \in\{1, \ldots, r\}: \operatorname{deg} p_{i} \geq 2\right\}$. Choose $i_{0} \in\{2, \ldots, r\}$ such that $p_{i_{0}}$ has the minimal degree in P; if all polynomials in P have the same degree, choose i_{0} so that $p_{i_{0}}$ is not equivalent to p_{1}; if all polynomials in P are equivalent, choose i_{0} arbitrarily. For each $v, w \in \mathbb{Z}^{d}$ define

$$
P_{v, w}=\left\{p_{i}(u+v), p_{i}(u+w): i \in I_{2}\right\} \bigcup\left\{p_{i}(u+w): i \in I_{1}\right\}
$$

(where $p_{i}(u+v), p_{i}(u+w)$ are considered as polynomials in u), and order the system $P_{v, w}=\left\{q_{v, w, 1}, \ldots, q_{v, w, s}\right\}$ so that $q_{v, w, 1}(u)=p_{1}(u+v)$ and $q_{v, w, s}(u)=p_{i_{0}}(u+w)$. Then $P_{v, w}$ is a standard system for almost all $(v, w) \in \mathbb{Z}^{2 d}$. Since for any $v, w \in \mathbb{Z}^{d}$ and $i \in\{1, \ldots, r\}$ the polynomials $p_{i}(u+v)$ and $p_{i}(u+w)$ are equivalent to $p_{i}(u)$, we have $\omega\left(P_{v, w}\right)=\omega(P)=\omega$ for all $v, w \in \mathbb{Z}^{d}$.

For $v, w \in \mathbb{Z}^{d}$ define

$$
P_{v, w}^{\prime}=\left\{q_{v, w, 1}-q_{v, w, s}, \ldots, q_{v, w, s-1}-q_{v, w, s}\right\} .
$$

Then for almost all $(v, w) \in \mathbb{Z}^{d}, P_{v, w}^{\prime}$ is a standard system. (Indeed, the polynomials $q_{v, w, j}-q_{v, w, s}, j=1, \ldots, s-1$, are nonconstant and essentially distinct whenever $q_{v, w, j}$ are. If $p_{i_{0}}$ is not equivalent to p_{1}, then $\operatorname{deg}\left(q_{v, w, 1}-q_{v, w, s}\right)=\operatorname{deg}\left(p_{1}(u+v)-p_{i_{0}}(u+w)\right)=$ $\operatorname{deg} p_{1}=\operatorname{deg} P_{v, w}$ for all v, w; otherwise $\operatorname{deg}\left(q_{v, w, 1}-q_{v, w, s}\right)=\operatorname{deg} p_{1}-1=\operatorname{deg} P_{v, w}$ for almost all (v, w).) Also, for all $(v, w) \in \mathbb{Z}^{2 d}, \omega\left(P_{v, w}^{\prime}\right)<\omega$. (Indeed, the equivalence classes in $P_{v, w}^{\prime}$ and their degrees remain the same as in $P_{v, w}$, except that the class in $P_{v, w}$ containing q_{s} splits into several new classes of less degree.)

Now let $f_{1}, \ldots, f_{r} \in L^{\infty}(X)$ with $\left\|f_{1}\right\|_{k}=0$, and let $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ be a F $ø$ lner sequence in \mathbb{Z}^{d}. We will assume that $\left|f_{2}\right|, \ldots,\left|f_{r}\right| \leq 1$. By Lemma 4(i), for any finite set $F \subset \mathbb{Z}^{d}$ we
get

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \| \frac{1}{\left|\Phi_{N}\right|} & \sum_{u \in \Phi_{N}} \prod_{i=1}^{r} T^{p_{i}(u)} f_{i} \|_{L^{2}(X)}^{2} \\
& \leq \limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X} \prod_{i=1}^{r} T^{p_{i}(u+v)} f_{i} \cdot \prod_{i=1}^{r} T^{p_{i}(u+w)} f_{i} d \mu \\
& =\limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X} \prod_{i \in I_{2}} T^{p_{i}(u+v)} f_{i} \cdot \prod_{i \in I_{2}} T^{p_{i}(u+w)} f_{i} . \\
& \prod_{i \in I_{1}} T^{p_{i}(u+w)}\left(f_{i} \cdot T^{p_{i}(v)-p_{i}(w)} f_{i}\right) d \mu \\
& =\limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X} \prod_{j=1}^{s} T^{q_{v, w, j}(u)} h_{v, w, j} d \mu \\
& =\limsup _{N \rightarrow \infty} \frac{1}{|F|^{2}} \sum_{v, w \in F} \frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \int_{X}\left(\prod_{j=1}^{s-1} T^{\left(q_{v, w, j}-q_{v, w, s}\right)(u)} h_{v, w, j}\right) \cdot h_{v, w, s} d \mu \\
& \leq \frac{1}{|F|^{2}} \sum_{v, w \in F} \limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{j=1}^{s-1} T^{\left(q_{v, w, j}-q_{v, w, s}\right)(u)} h_{v, w, j}\right\|_{L^{1}(X)},
\end{aligned}
$$

where, for $v, w \in \mathbb{Z}^{d}, q_{v, w, 1}, \ldots, q_{v, w, s}$ are the elements of the system $P_{v, w}$, and $h_{v, w, j}$ is either f_{i} for certain $i \in I_{2}$ or $f_{i} \cdot T^{p_{i}(v)-p_{i}(w)} f_{i}$ for certain $i \in I_{1}$; note that, since $\operatorname{deg} p_{1}=\operatorname{deg} P \geq 2,1 \in I_{2}$ and $h_{v, w, 1}=f_{1}$. By the induction hypothesis applied to the systems $P_{v, w}^{\prime}$,

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{j=1}^{s-1} T^{\left(q_{v, w, j}-q_{v, w, s}\right)(u)} h_{v, w, j}\right\|_{L^{1}(X)}=0
$$

for all $(v, w) \in \mathbb{Z}^{2 d}$ for which $P_{v, w}^{\prime}$ is standard, that is, for almost all (v, w). Since for all other (v, w) this norm is bounded by 1 ,

$$
\inf _{F} \frac{1}{|F|^{2}} \sum_{(v, w) \in F} \limsup _{N \rightarrow \infty}\left\|\frac{1}{\left|\Phi_{N}\right|} \sum_{u \in \Phi_{N}} \prod_{j=1}^{s-1} T^{\left(q_{v, w, j}-q_{v, w, s}\right)(u)} h_{v, w, j}\right\|_{L^{1}(X)}=0 .
$$

Proof of Theorem 3. Proposition 9 implies Theorem 3 for standard systems, and our goal is to reduce the general case to this one. Let $P=\left\{p_{1}, \ldots, p_{r}\right\}$ be a (nonstandard) system of nonconstant essentially distinct polynomials $\mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ of degree $\leq b$, let $f_{1}, \ldots, f_{r} \in$ $L^{\infty}(X)$ and let $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ be a F \varnothing lner sequence in \mathbb{Z}^{d}. By Lemma 4(ii) there exists a Følner
sequence $\left\{\Theta_{M}\right\}_{M=1}^{\infty}$ in $\mathbb{Z}^{3 d}$ such that

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \| \frac{1}{\left|\Phi_{N}\right|} & \sum_{u \in \Phi_{N}} \prod_{i=1}^{r} T^{p_{i}(u)} f_{i} \|_{L^{2}(X)}^{2} \\
& \leq \limsup _{M \rightarrow \infty} \frac{1}{\left|\Theta_{M}\right|} \sum_{(u, v, w) \in \Theta_{M}} \int \prod_{i=1}^{r} T^{p_{i}(u+v)} f_{i} \cdot \prod_{i=1}^{r} T^{p_{i}(u+w)} f_{i} d \mu \\
& =\limsup _{M \rightarrow \infty} \frac{1}{\left|\Theta_{M}\right|} \sum_{(u, v, w) \in \Theta_{M}} \int \prod_{i=1}^{r} T^{p_{i}(u+v)+q(u)} f_{i} \cdot \prod_{i=1}^{r} T^{p_{i}(u+w)+q(u)} f_{i} d \mu \\
& \leq \limsup _{M \rightarrow \infty}\left\|\frac{1}{\left|\Theta_{M}\right|} \sum_{(u, v, w) \in \Theta_{M}} \prod_{i=1}^{r} T^{p_{i}(u+v)+q(u)} f_{i} \cdot \prod_{i=1}^{r} T^{p_{i}(u+w)+q(u)} f_{i}\right\|_{L^{1}(X)}
\end{aligned}
$$

where q is any polynomial $\mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ of degree b. The set

$$
\left\{p_{1}(u+v)+q(u), \ldots, p_{r}(u+v)+q(u), p_{1}(u+w)+q(u), \ldots, p_{r}(u+w)+q(u)\right\}
$$

of polynomials $\mathbb{Z}^{3 d} \longrightarrow \mathbb{Z}$ is a standard system of degree b with $2 r$ elements, thus there exists $k \in \mathbb{N}$ (depending on r and b only) such that

$$
\lim _{M \rightarrow \infty} \frac{1}{\left|\Theta_{M}\right|} \sum_{(u, v, w) \in \Theta_{M}} \prod_{i=1}^{r} T^{p_{i}(u+v)+q(u)} f_{i} \cdot \prod_{i=1}^{r} T^{p_{i}(u+w)+q(u)} f_{i}=0
$$

in $L^{1}(X)$.
Acknowledgment. I thank B. Kra for her comments on the preprint.

Bibliography

[B1] V. Bergelson, Weakly mixing PET, Erg. Th. and Dyn. Sys. 7 (1987), 337-349.
[B2] V. Bergelson, The multifarious Poincaré recurrence theorem, Descriptive set theory and dynamical systems, 31-57, London Math. Soc. Lecture Note Ser. 277, Cambridge Univ. Press, Cambridge, 2000.
[BMQ] V. Bergelson, R. McCutcheon and Q. Zhang, A Roth theorem for amenable groups, Amer. J. Math. 119 (1997), 1173-1211.
[CL1] J.-P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143-175.
[CL2] J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, Publications de l'Institut de Recherche de Mathématiques de Rennes, Probabilités, 1987.
[F] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math. 31 (1977), 204-256.
[FW] H. Furstenberg and B. Weiss, A mean ergodic theorem for $\frac{1}{N} \sum_{n=1}^{N} f\left(T^{n} x\right) g\left(T^{n^{2}} x\right)$, Convergence in Ergodic Theory and Probability, Walter de Gruyter, 1996, 193-227.
[HK1] B. Host and B. Kra, Convergence of Conze-Lesigne averages, Erg. Th. and Dyn. Sys. 21 (2001), 493-509.
[HK2] B. Host and B. Kra, Averaging along cubes, Dynamical Systems and Related Topics, Cambridge University Press.
[HK3] B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, to appear in Annals of Math.
[HK4] B. Host and B. Kra, Convergence of polynomial ergodic averages, to appear in Israel J. of Math.
[Le1] A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^{d} by translations on a nilmanifold, to appear in Ergodic Theory and Dynamical Systems. Available at http://www.math.ohio-state.edu/~leibman/preprints
[Le2] A. Leibman, Host-Kra factors for the powers of a transformation, preprint.
[Z1] T. Ziegler, Nonconventional Ergodic Averages, Ph.D. Thesis, Technion, 2002.
[Z2] T. Ziegler, Universal characteristic factors and non-conventional ergodic averages, preprint.

