Convergence of multiple ergodic averages along polynomials of several variables

A. Leibman

Department of Mathematics The Ohio State University Columbus, OH 43210, USA *e-mail*: leibman@math.ohio-state.edu

February 15, 2004

Abstract

Let T be an invertible measure preserving transformation of a probability measure space X. Generalizing a recent result of Host and Kra, we prove that the averages $\frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p_1(u)} f_1 \cdot \ldots \cdot T^{p_r(u)} f_r$ converge in $L^1(X)$ for any $f_1, \ldots, f_r \in L^{\infty}(X)$, any polynomials $p_1, \ldots, p_r: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

Throughout the paper, (X, μ) is a probability measure space and T is an invertible measure preserving transformation of X. Our goal is to prove the following:

Theorem 1. For any $f_1, \ldots, f_r \in L^{\infty}(X)$, any polynomials $p_1, \ldots, p_r: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d the averages

$$\frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p_1(u)} f_1 \cdot T^{p_2(u)} f_2 \cdot \ldots \cdot T^{p_r(u)} f_r \tag{1}$$

converge in $L^1(X)$ as $N \to \infty$.

The "multiple ergodic averages"

$$\frac{1}{N} \sum_{n=M_N+1}^{M_N+N} T^n f_1 \cdot T^{2n} f_2 \cdot \ldots \cdot T^{rn} f_r, \quad f_1, \ldots, f_r \in L^{\infty}(X),$$
(2)

were introduced by H. Furstenberg in his ergodic theoretical proof of Szemerédi's theorem ([F]). In the situation where T is weakly mixing the L^1 -convergence of the averages (2) as $N \to \infty$ was proved in [F]. For general T, the L^1 -convergence of these averages was proved for r = 2 in [F]; for r = 3 in the case of a totally ergodic T by Conze and Lesigne ([CL1],

Supported by NSF grant DMS-0345350.

[CL2]), in the case of general T by Furstenberg and Weiss ([FW]), and by Host and Kra ([HK1]); for r = 4 by Ziegler ([Z1]). Finally, the L^1 -convergence of the averages (2) for arbitrary r was proved by Host and Kra ([HK3]), and independently by Ziegler ([Z2]).

The L^1 -convergence of the "polynomial" multiple ergodic averages

$$\frac{1}{N} \sum_{n=M_N+1}^{M_N+N} T^{p_1(n)} f_1 \cdot T^{p_2(n)} f_2 \cdot \ldots \cdot T^{p_r(n)} f_r, \quad f_1, \ldots, f_r \in L^{\infty}(X), \ p_1, p_2, \ldots, p_r \in \mathbb{Z}[n],$$
(3)

in the case of a weakly mixing T was established by Bergelson in [B1]. For general T, the convergence of the simplest nonlinear multiple ergodic averages $\frac{1}{N} \sum_{n=M_N+1}^{M_N+N} T^{n^2} f_1 \cdot T^n f_2$ was proved by Furstenberg and Weiss ([FW]). The 2-parameter multiple ergodic averages $\frac{1}{N^2} \sum_{n_1,n_2=M_N+1}^{M_N+N} f_{0,0} \cdot T^{n_1} f_{1,0} \cdot T^{n_2} f_{0,1} \cdot T^{n_1+n_2} f_{1,1}$ were introduced and proven to converge by Bergelson ([B2]). Host and Kra proved the convergence of the *d*-parameter averages of this sort, $\frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{\epsilon \in \{0,1\}^d} T^{\epsilon \cdot u} f_{\epsilon}$, where $\Phi_N \subset \mathbb{Z}^d$ is a sequence of rectangles whose sizes tend to infinity in all directions, for d = 3 in [HK2] and for arbitrary d in [HK3]. The theory of "nilpotent factors" established by Host and Kra in [HK3] allowed the authors to prove in [HK4] the L^1 -convergence of the polynomial (one-parameter) multiple ergodic averages (3) (in the case T is totally ergodic, or under some negligible restrictions on the system of polynomials $\{p_1, \ldots, p_r\}$.)

Our proof of Theorem 1 is very similar to the proof in [HK4]; dealing with the multiparameter situation simplifies it a little bit and allows one to extend it to the cases missed in [HK4].

We first remind the reader some elements of the Host-Kra theory from [HK3]. The measure preserving systems $(X^{[k]}, \mu^{[k]}, T^{[k]}), k = 0, 1, 2, \ldots$, are constructed inductively; one puts $(X^{[0]}, \mu^{[0]}, T^{[0]}) = (X, \mu, T)$. When $(X^{[k]}, \mu^{[k]}, T^{[k]})$ has already been defined for certain k, let \mathcal{I}_k be the σ -algebra of measurable subsets of $X^{[k]}$ invariant under the action of $T^{[k]}$, and let I_k be the factor of $X^{[k]}$ associated with \mathcal{I}_k . Then $(X^{[k+1]}, \mu^{[k+1]})$ is the relative product $(X^{[k]}, \mu^{[k]}) \times_{I_k} (X^{[k]}, \mu^{[k]})$, with $T^{[k+1]} = T^{[k]} \times T^{[k]}$ naturally acting on $X^{[k+1]}$. For $F, G \in L^{\infty}(X^{[k]})$ this means that

$$\int_{X^{[k+1]}} F \otimes G \, d\mu^{[k+1]} = \int_{I_k} E(F|I_k) \cdot E(G|I_k) \, d\mu^{[k]}.$$

For $k \geq 0$, let \mathcal{Z}_k be the minimal σ -algebra on X such that $\mathcal{I}_k \subseteq \mathcal{Z}_k^{\otimes 2^k}$. The k-th Host-Kra factor Z_k is the factor of X associated with \mathcal{Z}_k . In particular, Z_0 is the trivial (one-point) factor and Z_1 is the Kronecker factor of X. The factors Z_k form an increasing sequence: for any $k \geq 1$, Z_k is an extension of Z_{k-1} . A k-step nilmanifold is a homogeneous space of a nilpotent Lie group of nilpotency class k equipped with the Haar measure, and a k-step pro-nilmanifold is the inverse limit of a sequence of k-step nilmanifolds. The central result of the Host-Kra theory is that, for any k, Z_k possesses a natural structure of a compact k-step pro-nilmanifold such that T acts on Z_k as a translation.

For a bounded measurable real-valued function f on X and k = 0, 1, 2, ... one defines

$$||\!| f |\!|\!|_k = \left(\int_{X^{[k]}} f^{\otimes 2^k} d\mu^{[k]}\right)^{1/2^k}$$

In particular, $|||f|||_0 = \int_X f d\mu$. The seminorms $|||f|||_k$ form a nondecreasing sequence: $|||f|||_0 \le |||f|||_1$ and $0 \le |||f|||_1 \le |||f|||_2 \le \ldots \le ||f||_{L^{\infty}(X)}$, and are *T*-invariant: $|||Tf|||_k = |||f|||_k$ for any *k*. By the definition of $\mu^{[k+1]}$, $|||f||_{k+1}^{2^{k+1}} = \int_{I_k} E(f^{\otimes 2^k} |I_k)^2 d\mu^{[k]}$. Thus, $|||f|||_{k+1} = 0$ if $E(f|Z_k) = 0$, that is, if $f \perp L^2(Z_k)$ in $L^2(X)$.

For $k \ge 0$ and $n \in \mathbb{Z}$ one has

$$|||f \cdot T^n f|||_k^{2^k} = \int_{X^{[k]}} f^{\otimes 2^k} \cdot (T^{[k]})^n f^{\otimes 2^k} d\mu^{[k]}.$$

By the ergodic theorem, $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} (T^{[k]})^n f^{\otimes 2^k} = E(f^{\otimes 2^k} | I_k)$ in $L^1(X^{[k]})$, and thus

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \left\| f \cdot T^{n} f \right\|_{k}^{2^{k}} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X^{[k]}} f^{\otimes 2^{k}} \cdot (T^{[k]})^{n} f^{\otimes 2^{k}} d\mu^{[k]} = \int_{I_{k}} E \left(f^{\otimes 2^{k}} |I_{k}\right)^{2} d\mu^{[k]} = \left\| f \right\|_{k+1}^{2^{k+1}}.$$

This provides one with an inductive definition of the seminorms $\| \cdot \|_k$ that is extremely convenient in applications.

Let us return to Theorem 1. Fix $K \in \mathbb{N}$. Because of the multilinearity of the expression in (1), it suffices to prove the theorem only in the case where each f_i either belongs to $L^2(Z_K)$ or is orthogonal to this space in $L^2(X)$. If all $f_1, \ldots, f_r \in L^2(Z_K)$ one may replace X by Z_K and assume that X is a pro-nilmanifold, or even a nilmanifold. In this situation Theorem 1 is a corollary of the following fact:

Theorem 2. ([Le1]) Let N be a compact homogeneous space of a nilpotent Lie group G, let $T_1, \ldots, T_r \in G$ and let p_1, \ldots, p_r be polynomials $\mathbb{Z}^d \longrightarrow \mathbb{Z}$. Then as $N \to \infty$ the averages $\frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T_1^{p_1(u)} \ldots T_r^{p_r(u)} f$ converge pointwise for any $f \in C(X)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

Applying Theorem 2 to $N = X^r$, $T_1 = T \times \operatorname{Id}_X \times \ldots \times \operatorname{Id}_X, \ldots, T_r = \operatorname{Id}_X \times \ldots \times \operatorname{Id}_X \times T$ and $f = f_1 \otimes \ldots \otimes f_r$ we obtain the pointwise convergence of the averages (1) for continuous f_1, \ldots, f_r ; the L^1 -convergence of the averages (1) for arbitrary $f_1, \ldots, f_r \in L^{\infty}(X)$ follows.

The problem is therefore reduced to the case where one of f_i , say f_1 , is orthogonal to $L^2(Z_K)$; we then have $|||f_1|||_{K+1} = 0$. Clearly, we may assume that the polynomials p_1, \ldots, p_r in the formulation of Theorem 1 are nonconstant and *essentially distinct*, that is, $p_i - p_j \neq \text{const for } i \neq j$. We will prove the following:

Theorem 3. For any $r, b \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that for any system of nonconstant essentially distinct polynomials $p_1, \ldots, p_r: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ of degree $\leq b$ and any $f_1, \ldots, f_r \in L^{\infty}(X)$ with $|||f_1|||_k = 0$ one has $\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p_1(u)} f_1 \cdots T^{p_r(u)} f_r = 0$ in $L^1(X)$ for any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

Remark. The integer k in Theorem 3 depends on neither the measure preserving system (X, T) nor d.

In the proof of Theorem 3 we will use the following version of the van der Corput lemma:

Lemma 4. (Cf. [BMQ], Lemma 4.2) Let $\{g_u\}_{u \in G}$ be a bounded family of elements of a Hilbert space indexed by elements of a finitely generated abelian group G and let $\{\Phi_N\}_{N=1}^{\infty}$ be a Følner sequence in G.

(i) For any finite set $F \subseteq G$,

$$\limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_u \right\|^2 \le \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v, w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \langle g_{u+v}, g_{u+w} \rangle \in \mathbb{R}.$$

(ii) There exists a Følner sequence $\{\Theta_M\}_{M=1}^{\infty}$ in G^3 such that

$$\limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_u \right\|^2 \le \limsup_{M \to \infty} \frac{1}{|\Theta_M|} \sum_{(u,v,w) \in \Theta_M} \langle g_{u+v}, g_{u+w} \rangle \in \mathbb{R}.$$

Proof. (i) Let $F \subseteq G$, $|F| < \infty$. For every $u \in \mathbb{Z}^d$ and $v \in F$ put $g_{u,v} = g_u$. For any $N \in \mathbb{N}$ we have

$$\frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_u = \frac{1}{|F|} \sum_{v \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_{u,v} = \left(\frac{1}{|F|} \sum_{v \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_{u+v,v}\right) - A_N + B_N,$$

where $A_N = \frac{1}{|F|} \sum_{v \in F} \frac{1}{|\Phi_N|} \sum_{\substack{u \in \Phi_N \\ u+v \notin \Phi_N}} g_{u+v}$ and $B_N = \frac{1}{|F|} \sum_{v \in F} \frac{1}{|\Phi_N|} \sum_{\substack{u \notin \Phi_N \\ u+v \in \Phi_N}} g_{u+v}$. Since $\{\Phi_N\}_{N=1}^{\infty}$ is a Følner sequence and $\{g_u\}_{u \in G}$ is a bounded set, $||A_N||, ||B_N|| \to 0$ as $N \to \infty$. Thus,

$$\limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_u \right\| = \limsup_{N \to \infty} \left\| \frac{1}{|F|} \sum_{v \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_{u+v} \right\|.$$

And by the Cauchy-Schwarz inequality,

$$\begin{split} \left\| \frac{1}{|F|} \sum_{v \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_{u+v} \right\|^2 &= \frac{1}{|F|^2} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \sum_{v \in F} g_{u+v} \right\|^2 \\ &\leq \frac{1}{|F|^2} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \left\| \sum_{v \in F} g_{u+v} \right\|^2 = \frac{1}{|F|^2} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \sum_{v, w \in F} \langle g_{u+v}, g_{u+w} \rangle. \end{split}$$

(ii) Put $S = \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} g_u \right\|^2$. Choose any Følner sequence $\{\Psi_M\}_{M=1}^{\infty}$ in G and, using (i), find an increasing sequence $N_1, N_2, \ldots \in \mathbb{N}$ such that for each $M \in \mathbb{N}$

$$\frac{1}{|\Psi_M|^2} \sum_{v,w \in \Psi_M} \frac{1}{|\Phi_{N_M}|} \sum_{u \in \Phi_{N_M}} \langle g_{u+v}, g_{u+w} \rangle > S - \frac{1}{M}.$$

Define $\Theta_M = \Phi_{N_M} \times \Psi_M^2$, $M = 1, 2, \dots$ Then $\{\Theta_M\}_{M=1}^{\infty}$ is a Følner sequence in G^3 and

$$\limsup_{M \to \infty} \frac{1}{|\Theta_M|} \sum_{(u,v,w) \in \Theta_M} \langle g_{u+v}, g_{u+w} \rangle = \limsup_{M \to \infty} \frac{1}{|\Psi_M|^2 \cdot |\Phi_{N_M}|} \sum_{\substack{v,w \in \Psi_M \\ u \in \Phi_{N_M}}} \langle g_{u+v}, g_{u+w} \rangle \ge S.$$

Agreement. For simplicity, starting from this point we will assume all functions on X we deal with to be real-valued.

We first prove Theorem 3 for polynomials of degree 1, which we will call *linear func*tions.

Proposition 5. Let $p_1, \ldots, p_r: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ be nonconstant essentially distinct linear functions. There exists a constant C such that

$$\limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p_1(u)} f_1 \cdot \ldots \cdot T^{p_r(u)} f_r \right\|_{L^2(X)} \le C \|\|f_1\|\|_{r+1} \cdot \prod_{i=2}^r \|f_i\|_{L^\infty(X)}$$

for any $f_1, \ldots, f_r \in L^{\infty}(X)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

Corollary 6. Let $p_1, \ldots, p_r: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ be nonconstant essentially distinct linear functions. For any $f_1, \ldots, f_r \in L^{\infty}(X)$ with $|||f_1|||_{r+1} = 0$ one has $\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p_1(u)} f_1 \cdots T^{p_r(u)} f_r = 0$ in $L^1(X)$ for any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

Remark. Actually, if $r \geq 2$, for $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} T^{p_1(u)} f_1 \cdot \ldots \cdot T^{p_r(u)} f_r = 0$ it is enough that $|||f_1|||_r = 0$, but proving this fact requires a more careful investigation. (See [Le2].)

Lemma 7. Let $p: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ be a nonconstant linear function. There exists a constant c such that for any $f \in L^{\infty}(X)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d one has $\lim_{N\to\infty} \left\|\frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} T^{p(u)} f\right\|_{L^2(X)} \leq c \|\|f\||_2$.

Proof. In coordinates, let $p(u) = a_1u_1 + \ldots + a_du_d + a_0$, $u = (u_1, \ldots, u_d) \in \mathbb{Z}^d$, with $a_1, \ldots, a_d \in \mathbb{Z}$. After replacing f by $T^{a_0}f$ we may assume that $a_0 = 0$. Put $a = \gcd(a_1, \ldots, a_d)$. Then, in $L^1(X)$, $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} T^{p(u)}f = E(f|J_a)$ where J_a is the factor of X associated with the σ -algebra of T^a -invariant measurable subsets of X. Recalling that $\| \cdot \|_0 \leq \| \cdot \|_1$ and $\| \cdot \|_1 \geq 0$, we get

$$\begin{split} \lim_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p(u)} f \right\|_{L^2(X)}^2 &= \left\| E(f|J_a) \right\|_{L^2(X)}^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \int_X f \cdot T^{an} f \, d\mu \\ &= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \left\| f \cdot T^{an} f \right\|_0 \le \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \left\| f \cdot T^{an} f \right\|_1 \le a \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \left\| f \cdot T^n f \right\|_1 \\ &\le a \Big(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \left\| f \cdot T^n f \right\|_1^2 \Big)^{1/2} = a \| f \|_2^2. \end{split}$$

Lemma 8. Let $p: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ be a nonconstant linear function. There exists a constant c such that for any $f \in L^{\infty}(X)$, any $k \geq 1$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d one has $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} \|f \cdot T^{p(u)}f\|_k^{2^k} \leq c \|\|f\|_{k+1}^{2^{k+1}}$.

Proof. Let, again, $p(u) = a_1u_1 + \ldots + a_du_d$ and $a = \gcd(a_1, \ldots, a_d)$. Denote by $J_{k,a}$ the factor of $X^{[k]}$ associated with the σ -algebra of $(T^{[k]})^a$ -invariant measurable subsets of $X^{[k]}$. We have

$$\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \| f \cdot T^{p(u)} f \|_k^{2^k} = \lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_{X^{[k]}} f^{\otimes 2^k} \cdot (T^{[k]})^{p(u)} f^{\otimes 2^k} d\mu^{[k]}$$
$$= \int_{X^{[k]}} E (f^{\otimes 2^k} | J_{k,a})^2 d\mu^{[k]} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \int_{X^{[k]}} f^{\otimes 2^k} \cdot (T^{[k]})^{an} f^{\otimes 2^k} d\mu^{[k]}$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \| f \cdot T^{an} f \|_k^{2^k} \le a \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \| f \cdot T^n f \|_k^{2^k} = a \| f \|_{k+1}^{2^{k+1}}.$$

Proof of Proposition 5. We proceed by induction on r. For r = 1 the statement is given by Lemma 7. Let $r \ge 2$, let $f_1, \ldots, f_r \in L^{\infty}(X)$ and let $\{\Phi_N\}_{N=1}^{\infty}$ be a Følner sequence in \mathbb{Z}^d . We will assume that $|f_2|, \ldots, |f_r| \le 1$. We will also assume that $p_1(0) = \ldots = p_r(0) =$ 0. By Lemma 4(i), applied to the elements $g_u = T^{p_1(u)} f_1 \cdot \ldots \cdot T^{p_r(u)} f_r$, $u \in \mathbb{Z}^d$, of $L^2(X)$, for any finite $F \subset \mathbb{Z}^d$ we get

$$\begin{split} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^r T^{p_i(u)} f_i \right\|_{L^2(X)}^2 \\ &\leq \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v, w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \prod_{i=1}^r T^{p_i(u+v)} f_i \cdot \prod_{i=1}^r T^{p_i(u+w)} f_i \, d\mu \\ &= \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v, w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \prod_{i=1}^r T^{p_i(u)} \left(T^{p_i(v)} f_i \cdot T^{p_i(w)} f_i \right) \, d\mu \\ &= \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v, w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \left(\prod_{i=1}^{r-1} T^{(p_i - p_r)(u)} \left(T^{p_i(v)} f_i \cdot T^{p_i(w)} f_i \right) \right) \\ &\cdot \left(T^{p_r(v)} f_r \cdot T^{p_r(w)} f_r \right) \, d\mu \\ &\leq \frac{1}{|F|^2} \sum_{v, w \in F} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^{r-1} T^{(p_i - p_r)(u)} \left(T^{p_i(v)} f_i \cdot T^{p_i(w)} f_i \right) \right\|_{L^2(X)}. \end{split}$$

By the induction hypothesis there exists a constant C', independent on f_1, \ldots, f_r and $\{\Phi_N\}_{N=1}^{\infty}$, such that

$$\lim_{N \to \infty} \sup \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^{r-1} T^{(p_i - p_r)(u)} \left(T^{p_i(v)} f_i \cdot T^{p_i(w)} f_i \right) \right\|_{L^2(X)} \le C' \left\| T^{p_1(v)} f_1 \cdot T^{p_1(w)} f_1 \right\|_r$$

for all $v, w \in \mathbb{Z}^d$. Thus, for any finite set $F \subset \mathbb{Z}^d$,

$$\begin{aligned} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^r T^{p_i(u)} f_i \right\|_{L^2(X)} &\leq \left(\frac{C'}{|F|^2} \sum_{v,w \in F} \left\| \left\| T^{p_1(v)} f_1 \cdot T^{p_1(w)} f_1 \right\|_r \right)^{1/2} \right. \\ &= C'^{1/2} \left(\frac{1}{|F|^2} \sum_{v,w \in F} \left\| \left\| f_1 \cdot T^{p_1(w-v)} f_1 \right\|_r \right)^{1/2} \right. \\ &\leq C'^{1/2} \left(\frac{1}{|F|^2} \sum_{v,w \in F} \left\| \left\| f_1 \cdot T^{p_1(w-v)} f_1 \right\|_r^{2^r} \right)^{(1/2)^{r+1}} \end{aligned}$$

Let $\{\Psi_M\}_{M=1}^{\infty}$ be any Følner sequence in \mathbb{Z}^d . Then $\{\Psi_M^2\}_{M=1}^{\infty}$ is a Følner sequence in \mathbb{Z}^{2d} , and since $(v, w) \mapsto p_1(w-v)$ is a nonconstant linear function on \mathbb{Z}^{2d} , by Lemma 8 we have

$$\limsup_{M \to \infty} \frac{1}{|\Psi_M|^2} \sum_{v, w \in \Psi_M} \left\| \left\| f_1 \cdot T^{p_1(w-v)} f_1 \right\| \right\|_r^{2^r} \le c \left\| \left\| f_1 \right\| \right\|_{r+1}^{2^{r+1}},$$

with c independent on f_1 . Substituting the sets Ψ_M , $M \in \mathbb{N}$, for F in (4) we obtain

$$\limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^r T^{p_i(u)} f_i \right\|_{L^2(X)} \le C'^{1/2} c^{(1/2)^{r+1}} |||f_1|||_{r+1}.$$

We now turn to the case of nonlinear p_i . We will call a system any finite set of polynomials on a space \mathbb{Z}^d . The degree, deg P, of a system P is the maximum of the degrees of its elements. The weight, $\omega(P)$, of a system P is defined in the following way. We will say that polynomials p, q are equivalent if deg $p = \deg q$ and deg $(p-q) < \deg p$; the degree of a class of equivalent polynomials is the degree of its elements. P is partitioned into equivalence classes; for each positive integer $l \leq \deg P$ let ω_l be the number of classes of degree l in P. Then $\omega(P)$ is the vector $(\omega_1, \ldots, \omega_{\deg P})$. For two integer vectors $\omega =$ $(\omega_1, \ldots, \omega_m)$ and $\omega' = (\omega'_1, \ldots, \omega'_{m'})$ we will write $\omega < \omega'$ if either m < m', or m = m' and there is $n \leq m$ such that $\omega_n < \omega'_n$ and $\omega_l = \omega'_l$ for $l = n + 1, \ldots, m$. Under this relation the set of weights of systems of polynomials becomes well ordered. The *PET-induction*, introduced in [B1], is an induction on this well ordered set.

An ordered system $P = \{p_1, \ldots, p_r\}$ will be said to be *standard* if all p_i are nonconstant and essentially distinct (that is, $p_i - p_j \neq \text{const}$ for $i \neq j$), and deg $p_1 = \text{deg } P$. We will be proving the following:

Proposition 9. For any $r \in \mathbb{N}$ and any integer vector $\omega = (\omega_1, \ldots, \omega_l)$ there is $k \in \mathbb{N}$ such that for any standard system $\{p_1, \ldots, p_r: \mathbb{Z}^d \longrightarrow \mathbb{Z}\}$ of weight ω and any $f_1, \ldots, f_r \in L^{\infty}(X)$ with $|||f_1|||_k = 0$ one has $\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{p_1(u)} f_1 \cdots T^{p_r(u)} f_r = 0$ in $L^1(X)$ for any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

We will say that a certain property holds for almost all $v \in \mathbb{Z}^d$ if the set of elements of \mathbb{Z}^d for which it does not hold is contained in the set of zeroes of a nontrivial polynomial on \mathbb{Z}^d (or in the union of such sets, which is the same). Note that the set of zeroes of a nontrivial polynomial has zero density with respect to any Følner sequence in \mathbb{Z}^d . **Proof of Proposition 9.** We will proceed by PET-induction. For systems of degree 1 the proposition is given by Corollary 6. Let $P = \{p_1, \ldots, p_r : \mathbb{Z}^d \longrightarrow \mathbb{Z}\}$ be a standard system of degree ≥ 2 and of weight ω . There are only finitely many integer vectors $\omega' < \omega$ which are the weights of systems with s < 2r elements. By our PET-induction hypothesis there exists $k \in \mathbb{N}$ such that for any standard system $\{q_1, \ldots, q_s : \mathbb{Z}^d \longrightarrow \mathbb{Z}\}$ with $s \leq 2r$ of weight $\omega' < \omega$ and any $h_1, \ldots, h_s \in L^{\infty}(X)$ with $|||h_1|||_k = 0$ one has $\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{q_1(u)} h_1 \cdot \ldots \cdot T^{q_s(u)} h_s = 0$ in $L^1(X)$ for any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d .

Let $I_1 = \{i \in \{1, \ldots, r\} : \deg p_i = 1\}$ and $I_2 = \{i \in \{1, \ldots, r\} : \deg p_i \ge 2\}$. Choose $i_0 \in \{2, \ldots, r\}$ such that p_{i_0} has the minimal degree in P; if all polynomials in P have the same degree, choose i_0 so that p_{i_0} is not equivalent to p_1 ; if all polynomials in P are equivalent, choose i_0 arbitrarily. For each $v, w \in \mathbb{Z}^d$ define

$$P_{v,w} = \{ p_i(u+v), p_i(u+w) : i \in I_2 \} \bigcup \{ p_i(u+w) : i \in I_1 \}$$

(where $p_i(u+v), p_i(u+w)$ are considered as polynomials in u), and order the system $P_{v,w} = \{q_{v,w,1}, \ldots, q_{v,w,s}\}$ so that $q_{v,w,1}(u) = p_1(u+v)$ and $q_{v,w,s}(u) = p_{i_0}(u+w)$. Then $P_{v,w}$ is a standard system for almost all $(v,w) \in \mathbb{Z}^{2d}$. Since for any $v,w \in \mathbb{Z}^d$ and $i \in \{1, \ldots, r\}$ the polynomials $p_i(u+v)$ and $p_i(u+w)$ are equivalent to $p_i(u)$, we have $\omega(P_{v,w}) = \omega(P) = \omega$ for all $v,w \in \mathbb{Z}^d$.

For $v, w \in \mathbb{Z}^d$ define

$$P'_{v,w} = \{q_{v,w,1} - q_{v,w,s}, \dots, q_{v,w,s-1} - q_{v,w,s}\}.$$

Then for almost all $(v, w) \in \mathbb{Z}^d$, $P'_{v,w}$ is a standard system. (Indeed, the polynomials $q_{v,w,j} - q_{v,w,s}$, $j = 1, \ldots, s - 1$, are nonconstant and essentially distinct whenever $q_{v,w,j}$ are. If p_{i_0} is not equivalent to p_1 , then $\deg(q_{v,w,1} - q_{v,w,s}) = \deg(p_1(u+v) - p_{i_0}(u+w)) = \deg p_1 = \deg P_{v,w}$ for all v, w; otherwise $\deg(q_{v,w,1} - q_{v,w,s}) = \deg p_1 - 1 = \deg P_{v,w}$ for almost all (v, w).) Also, for all $(v, w) \in \mathbb{Z}^{2d}$, $\omega(P'_{v,w}) < \omega$. (Indeed, the equivalence classes in $P'_{v,w}$ and their degrees remain the same as in $P_{v,w}$, except that the class in $P_{v,w}$ containing q_s splits into several new classes of less degree.)

Now let $f_1, \ldots, f_r \in L^{\infty}(X)$ with $|||f_1|||_k = 0$, and let $\{\Phi_N\}_{N=1}^{\infty}$ be a Følner sequence in \mathbb{Z}^d . We will assume that $|f_2|, \ldots, |f_r| \leq 1$. By Lemma 4(i), for any finite set $F \subset \mathbb{Z}^d$ we

$$\begin{split} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^r T^{p_i(u)} f_i \right\|_{L^2(X)}^2 \\ &\leq \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v,w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \prod_{i=1}^r T^{p_i(u+v)} f_i \cdot \prod_{i=1}^r T^{p_i(u+w)} f_i \, d\mu \\ &= \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v,w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \prod_{i \in I_2} T^{p_i(u+v)} f_i \cdot \prod_{i \in I_2} T^{p_i(u+w)} f_i \cdot \prod_{i \in I_2} T^{p_i(u+w)} f_i \cdot \prod_{i \in I_2} T^{p_i(u+w)} f_i \cdot d\mu \\ &= \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v,w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \prod_{j=1}^s T^{q_{v,w,j}(u)} h_{v,w,j} \, d\mu \\ &= \limsup_{N \to \infty} \frac{1}{|F|^2} \sum_{v,w \in F} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \int_X \left(\prod_{j=1}^{s-1} T^{(q_{v,w,j}-q_{v,w,s})(u)} h_{v,w,j} \right) \cdot h_{v,w,s} \, d\mu \\ &\leq \frac{1}{|F|^2} \sum_{v,w \in F} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{j=1}^{s-1} T^{(q_{v,w,j}-q_{v,w,s})(u)} h_{v,w,j} \right\|_{L^1(X)}, \end{split}$$

where, for $v, w \in \mathbb{Z}^d$, $q_{v,w,1}, \ldots, q_{v,w,s}$ are the elements of the system $P_{v,w}$, and $h_{v,w,j}$ is either f_i for certain $i \in I_2$ or $f_i \cdot T^{p_i(v)-p_i(w)}f_i$ for certain $i \in I_1$; note that, since $\deg p_1 = \deg P \ge 2, 1 \in I_2$ and $h_{v,w,1} = f_1$. By the induction hypothesis applied to the systems $P'_{v,w}$,

$$\lim_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{j=1}^{s-1} T^{(q_{v,w,j} - q_{v,w,s})(u)} h_{v,w,j} \right\|_{L^1(X)} = 0$$

for all $(v, w) \in \mathbb{Z}^{2d}$ for which $P'_{v,w}$ is standard, that is, for almost all (v, w). Since for all other (v, w) this norm is bounded by 1,

$$\inf_{F} \frac{1}{|F|^2} \sum_{(v,w)\in F} \limsup_{N\to\infty} \left\| \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} \prod_{j=1}^{s-1} T^{(q_{v,w,j}-q_{v,w,s})(u)} h_{v,w,j} \right\|_{L^1(X)} = 0.$$

Proof of Theorem 3. Proposition 9 implies Theorem 3 for standard systems, and our goal is to reduce the general case to this one. Let $P = \{p_1, \ldots, p_r\}$ be a (nonstandard) system of nonconstant essentially distinct polynomials $\mathbb{Z}^d \longrightarrow \mathbb{Z}$ of degree $\leq b$, let $f_1, \ldots, f_r \in L^{\infty}(X)$ and let $\{\Phi_N\}_{N=1}^{\infty}$ be a Følner sequence in \mathbb{Z}^d . By Lemma 4(ii) there exists a Følner

9

sequence $\{\Theta_M\}_{M=1}^{\infty}$ in \mathbb{Z}^{3d} such that

$$\begin{split} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \prod_{i=1}^r T^{p_i(u)} f_i \right\|_{L^2(X)}^2 \\ & \leq \limsup_{M \to \infty} \frac{1}{|\Theta_M|} \sum_{(u,v,w) \in \Theta_M} \int \prod_{i=1}^r T^{p_i(u+v)} f_i \cdot \prod_{i=1}^r T^{p_i(u+w)} f_i \, d\mu \\ & = \limsup_{M \to \infty} \frac{1}{|\Theta_M|} \sum_{(u,v,w) \in \Theta_M} \int \prod_{i=1}^r T^{p_i(u+v) + q(u)} f_i \cdot \prod_{i=1}^r T^{p_i(u+w) + q(u)} f_i \, d\mu \\ & \leq \limsup_{M \to \infty} \left\| \frac{1}{|\Theta_M|} \sum_{(u,v,w) \in \Theta_M} \prod_{i=1}^r T^{p_i(u+v) + q(u)} f_i \cdot \prod_{i=1}^r T^{p_i(u+w) + q(u)} f_i \right\|_{L^1(X)} \end{split}$$

where q is any polynomial $\mathbb{Z}^d \longrightarrow \mathbb{Z}$ of degree b. The set

$$\left\{p_1(u+v) + q(u), \dots, p_r(u+v) + q(u), p_1(u+w) + q(u), \dots, p_r(u+w) + q(u)\right\}$$

of polynomials $\mathbb{Z}^{3d} \longrightarrow \mathbb{Z}$ is a standard system of degree *b* with 2r elements, thus there exists $k \in \mathbb{N}$ (depending on *r* and *b* only) such that

$$\lim_{M \to \infty} \frac{1}{|\Theta_M|} \sum_{(u,v,w) \in \Theta_M} \prod_{i=1}^r T^{p_i(u+v)+q(u)} f_i \cdot \prod_{i=1}^r T^{p_i(u+w)+q(u)} f_i = 0$$

in $L^1(X)$.

Acknowledgment. I thank B. Kra for her comments on the preprint.

Bibliography

- [B1] V. Bergelson, Weakly mixing PET, Erg. Th. and Dyn. Sys. 7 (1987), 337–349.
- [B2] V. Bergelson, The multifarious Poincaré recurrence theorem, Descriptive set theory and dynamical systems, 31–57, London Math. Soc. Lecture Note Ser. 277, Cambridge Univ. Press, Cambridge, 2000.
- [BMQ] V. Bergelson, R. McCutcheon and Q. Zhang, A Roth theorem for amenable groups, Amer. J. Math. 119 (1997), 1173–1211.
- [CL1] J.-P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143-175.
- [CL2] J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, Publications de l'Institut de Recherche de Mathématiques de Rennes, Probabilités, 1987.
- [F] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math. 31 (1977), 204–256.
- [FW] H. Furstenberg and B. Weiss, A mean ergodic theorem for $\frac{1}{N} \sum_{n=1}^{N} f(T^n x) g(T^{n^2} x)$, Convergence in Ergodic Theory and Probability, Walter de Gruyter, 1996, 193–227.
- [HK1] B. Host and B. Kra, Convergence of Conze-Lesigne averages, Erg. Th. and Dyn. Sys. 21 (2001), 493-509.
- [HK2] B. Host and B. Kra, Averaging along cubes, Dynamical Systems and Related Topics, Cambridge University Press.
- [HK3] B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, to appear in *Annals of Math.*
- [HK4] B. Host and B. Kra, Convergence of polynomial ergodic averages, to appear in *Israel J. of* Math.
- [Le1] A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^d by translations on a nilmanifold, to appear in *Ergodic Theory and Dynamical Systems*. Available at *http://www.math.ohio-state.edu/~leibman/preprints*
- [Le2] A. Leibman, Host-Kra factors for the powers of a transformation, preprint.
- [Z1] T. Ziegler, Nonconventional Ergodic Averages, Ph.D. Thesis, Technion, 2002.
- [Z2] T. Ziegler, Universal characteristic factors and non-conventional ergodic averages, preprint.