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The nonconventional, or multiple ergodic averages

1

N

N
∑

n=1

Tnf1 · . . . · T
knfk, (1)

where T is a measure preserving transformation of a probability measure space X and
f1, . . . , fk are (bounded) measurable functions on X, were introduced by H. Furstenberg
in his ergodic theoretical proof of Szemerédi’s theorem ([F]). For the needs of Szemerédi’s
theorem it was sufficent to show that, in the case f1 = . . . = fk > 0, the liminf of the aver-
ages (1) is nonzero, and Furstenberg had confined himself to proving this fact. The question
whether the limit of the multiple ergodic averages exists in L1-sense was an open problem
for more than twenty years, until it was answered positively by Host and Kra ([HK1])
and, independently, by Ziegler ([Z]). The way of solving this problem was prompted by
Furstenberg: one has to determine a factor Z of X which is characteristic for the averages
(1), which means that the limiting behavior of (1) only depends on the expectation of fi
with respect to Z:

∥

∥

1
N

∑N
n=1

(

Tnf1 · . . . ·T
knfk−TnE(f1|Z) · . . . ·T knE(fk|Z)

)∥

∥

L1(X)
−→ 0

for any f1, . . . , fk ∈ L∞(X). Once a characteristic factor Z has been found, the problem
is restricted to the system (Z, T ); one therefore succeeds if he/she manages to show that
every system (X,T ) possesses a characteristic factor with a relatively simple structure, so
that the convergence of averages (1) can be easily established for it. For example, under
the assumption that T is ergodic (which always may be done due to the ergodic decom-
position theorem), one can show that the Kronecker factor K of X is characteristic for

the two-term averages 1
N

∑N
n=1 T

nf1 ·T
2nf2 (see [F]). Since K has structure of a compact

abelian group on which T acts as a translation, it is not hard to see that the averages
above converge for f1, f2 ∈ L∞(K).

A k-step nilsystem is a pair (N,T ) where N is a compact homogeneous space of a k-
step nilpotent group G and T is a translation of N defined by an element of G. In the case
G is a nilpotent Lie group, N is called a nilmanifold , and N is called a pro-nilmanifold if
it is representable as an inverse limit of nilmanifolds. After Conze and Lesigne had shown
([CL1], [CL2], [CL3]) that the characteristic factor for the three-term multiple ergodic
averages is a two-step nilsystem, it was natural to conjecture that the characteristic factor
for the averages (1) with arbitrary k is a (k−1)-step nilsystem. Host-Kra and Ziegler have
confirmed this conjecture by constructing such factors.

Ziegler’s factors Yk−1(X,T ), k = 2, 3, . . ., are characteristic for the averages of the
form

1

N

N
∑

n=1

T a1nf1 · . . . · T
aknfk (2)
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for any a1, . . . , ak ∈ Z. Ziegler’s construction is a (very complicated) extension of Conze-
Lesigne’s one: she obtains the factor Yk(X,T ) as a product of Yk−1(X,T ) and a com-
pact abelian group H so that T acts as a skew-shift on Yk(X,T ) = Yk−1(X,T ) × H,
T (y, h) = (Ty, h+ ρ(y)), with ρ satisfying certain conditions that allow one to impose on
Yk(X,T ) the structure of a k-step pro-nilmanifold with T being a translation on it. She
also shows that Yk−1(X,T ) is the minimal factor of X which is characteristic for all aver-
ages of the form (2), and the maximal factor of X having the structure of a (k − 1)-step
pro-nilmanifold.

Host and Kra used another, very elegant construction. They first describe the char-
acteristic factor for the (numerical) averages of the form

lim
Nk→∞

1

Nk

Nk
∑

nk=1

. . . lim
N1→∞

1

N1

N1
∑

n1=1

∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1n1+...+ǫknkfǫ1,...,ǫk .

Though this expression looks frightening, it is quite natural (for the case k = 2 it is sim-

ply lim
N2→∞

1
N2

Nk
∑

nk=1
lim

N1→∞

1
N1

N1
∑

n1=1

∫

X
f0,0T

n1f1,0T
n2f0,1T

n1+n2f1,1) and the corresponding

characteristic factor, which will be denoted by Zk−1(X,T ), can be easily constructed.
Then Host and Kra prove that, for each k, the factor Zk(X,T ) possess structure of a
k-step pro-nilmanifold, and that it is characteristic for ergodic averages of other sorts. In
particular, it is shown in [HK1] that Zk−1(X,T ) is characteristic for the averages (1), and
in [HK1] that Zk(X,T ) is characteristic for the averages of the form (2). We will undertake
an alittle bit more detailed analysis to show that, actually, for k ≥ 2 already Zk−1(X,T ) is
characteristic for the averages (2). This will imply that the Host-Kra factors Zk−1(X,T )
coincide with the corresponding Ziegler factors Yk−1(X,T ). Indeed, being a (k − 1)-step
pro-nilmanifold, Zk−1(X,T ) is a factor of Yk−1(X,T ); on the other hand, since Yk−1(X,T )
is the minimal characteristic factor for the averages (2), it is a factor of Zk−1(X,T ).

Let us settle terminology and notation. We will assume the measure spaces we deal
with to be regular, that is, compact metric endowed with probability Borel measures.
Though some specific measure on each measure space is meant, to simplify notation we
will not usually specify it.

Given a measurable mapping p:X −→ Y from a measure space (X,B) onto a measure
space (Y,D), we will call Y a factor of X. p−1(D) is a sub-σ-algebra of B, which we will
identify with D. Conversely, with any sub-σ-algebra of B a factor of X is associated. Let
Y be a factor of (X,B, µ) and let p:X −→ Y be the factorization mapping. We then have
the decomposition X =

⋃

y∈Y Xy of X with respect to Y , where we put Xy = p−1(y),

y ∈ Y , and equip each Xy with a Borel measure µy so that
∫

Y
µy = µ.

Let Y be a factor of (X,B, µ) and of (X ′,B′, µ′) and let p:X −→ Y and p′:X ′ −→ Y be
the factorization mappings. The relative product X ×Y X ′ is the space

{

(x, x′) ∈ X ×X ′ :

p(x) = p′(x′)
}

. Y is a factor of X ×Y X ′, and if X =
⋃

y∈Y Xy, X
′ =

⋃

y∈Y X ′
y are the

decompositins of X and of X ′ with respect to Y , then X×Y X ′ =
⋃

y∈Y (Xy ×Y X ′
y) is the

decomposition of X ×Y X ′. The measure on X ×Y X ′ is defined as
∫

Y
µy × µ′

y. X ×Y X ′

is a joining of X and X ′, which means that both X and X ′ are factors of X ×Y X ′ and
B ⊗ B′ coincides with the Borel σ-algebra of this space.
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Let T be a measure preserving transformation of a measure space (X,B). If Y is a
factor of X associated with a T -invariant sub-σ-algebra of B, then the action of T reduces
to a measure preserving action on Y , which we will also denote by T . In this situation,
the restriction of T × T on X ×Y X is a measure preserving transformation of this space.

We will denote by I(X,T ) the σ-algebra of T -invariant measurable subsets of X and
by I(X,T ) the factor of X associated with I(X,T ). To simplify notation, we will write
X ×T X for X ×I(X,T ) X.

The Host-Kra factors of X with respect to T are constructed in the following way.

One puts X
[0]
T = X, T [0] = T , and when X

[k]
T and T [k] have been defined for certain k, let

X
[k+1]
T = X

[k]
T ×T [k] X

[k]
T and let T [k+1] be the restriction of T [k] × T [k] on X

[k+1]
T . Then,

for any k = 0, 1, . . ., X
[k]
T is a joining of 2k copies of X. For k = 0, 1, . . ., let Zk(X,T ) be

the minimal σ-algebra on X such that I(X
[k]
T , T [k]) ⊆ Zk(X,T )⊗2k . The k-th Host-Kra

factor Zk(X,T ) of X with respect to T is the factor of X associated with Zk(X,T ). (See
[HK1].)

Let X =
⋃

α∈J Xα be a partition of X into T -ivariant subsets. Since in distinct sets
Xα “life goes independently”, we have:

Lemma 1. For any k, the spaces X
[k]
T , I(X

[k]
T , T [k]) and Zk(X,T ) partition, respectively,

to
⋃

α∈J(Xα)
[k]
T ,

⋃

α∈J I((Xα)
[k]
T , T [k]) and

⋃

α∈J Zk(Xα, T ).

In particular, when J is finite, this implies I(X
[k]
T , T [k]) =

∏

α∈J I((Xα)
[k]
T , T [k]) and

Zk(X,T ) =
∏

α∈J Zk(Xα, T ).

Our first goal is to show that the Host-Kra factors associated with any nontrivial power
of a measure preserving transformation are the same as for the transformation itself. In
[HK2] this fact was established for totally ergodic transformations; we extend it to the
general case.

Theorem 2. For any l 6= 0 and k ≥ 1 the k-th Host-Kra factor Zk(X,T l) of X with
respect to T l coincides with the k-th Host-Kra factor Zk(X,T ) of X with respect to T .

We fix a nonzero integer l. It follows from Lemma 1 that it suffices to prove Theorem 2
for an ergodic T only. We first assume that T l is also ergodic. Given a measure preserving
transformation S of a measure space Y , let us denote by Eλ(Y, S) the eigenspace of S
in L1(Y ) corresponding to the eigenvalue λ, Eλ(Y, S) =

{

f ∈ L1(Y ) : S(f) = λf
}

. In
particular, E1(Y, S) is the space of S-invariant integrable functions on Y , which we will
denote by L(Y, S).

Lemma 3. ([HK2]) Let S be a measure preserving transformation of a measure space Y .
If Sl is ergodic, then I(Y × Y, Sl × Sl) = I(Y × Y, S × S).

Proof. Sl is ergodic means that Eλ(Y, S) = {0} for all λ 6= 1 with λl = 1. We have
L(Y × Y, (S × S)l) ⊆ Span

{

Eλ(Y × Y, S × S) : λl = 1
}

. For any λ ∈ C, |λ| = 1, the space
Eλ(Y ×Y, S×S) is spanned by the the functions of the form f⊗g where f ∈ Eλ1(Y, S) and
g ∈ Eλ2(Y, S) with λ1 + λ2 = λ. For such a function, fg ∈ Eλ(Y, S). Thus, for any λ 6= 1
with λl = 1 we have Eλ(Y ×Y, S×S) = {0}. Hence, L(Y ×Y, Sl×Sl) ⊆ E1(Y ×Y, S×S) =
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L(Y ×Y, S×S). With the evident opposite inclusion L(Y ×Y, S×S) ⊆ L(Y ×Y, Sl ×Sl)
this implies I(Y × Y, Sl × Sl) = I(Y × Y, S × S).

Lemma 4. ([HK2]) Let T be a measure preserving transformation of a measure space X.

If T l is ergodic then X
[k]

T l = X
[k]
T and I

(

X
[k]

T l , (T
l)[k]

)

= I
(

X
[k]
T , T [k]

)

for all k ≥ 0.

Proof. For k = 0 the statement is trivial. Assume by induction that, for some k ≥ 0,

Y = X
[k]

T l = X
[k]
T and I = I(Y, (T l)[k]) = I(Y, T [k]). Then X

[k+1]

T l = X
[k+1]
T = Y ×I Y .

Let Y =
⋃

α∈I Yα be the decomposition of Y with respect to I and for each α ∈ I let

Sα = T [k]
|Yα

. By the induction assumption Sl
α is ergodic on Yα for every α ∈ I, thus by

Lemma 1 and Lemma 3 applied to the systems (Yα, Sα),

I(Y ×I Y, (T
l)[k] × (T l)[k]) =

⋃

α∈I

I
(

Yα × Yα, S
l
α × Sl

α

)

=
⋃

α∈I

I
(

Yα × Yα, Sα × Sα

)

= I(Y ×I Y, T
[k] × T [k]).

It follows that Zk(X,T l) = Zk(X,T ) for all k ≥ 0, which proves Theorem 2 in the
case T l is ergodic.

Now assume that T is ergodic whereas T l is not. We may assume that l is a prime
integer. In this case X is partitioned, up to a subset of measure 0, to measurable subsets
X0, . . . , Xl−1 such that T (Xi) = Xi+1 for all i ∈ Zl. (We identify {0, . . . , l − 1} with
Zl = Z/(lZ) in order to have (l − 1) + 1 = 0.)

Lemma 5. Let X be a disjoint union of measure spaces X0, . . . , Xl−1 and let T be an
invertible measure preserving transformation of X such that T (Xi) = Xi+1, i ∈ Zl. Then
X0, . . . , Xl−1 ∈ Z1(X,T ).

Proof. We may assume that T is ergodic; otherwise we pass to the ergodic components

of X with respect to T . Then X
[1]
T = X2 and T [1] = T × T . The “diagonal” W =

X2
0∪. . .∪X

2
l−1 ⊆ X

[1]
T is T [1]-invariant and thereforeW is Z1(X,T )⊗Z1(X,T )-measurable.

By the Fubini theorem the “fibers” X0, . . . , Xl−1 of W are Z1(X,T )-measurable.

Lemma 6. Let Y be a disjoint union of measure spaces Y0, . . . , Yl−1 and let S be an
invertible measure preserving transformation of Y such that S(Yi) = Yi+1, i ∈ Zl. Then
Y ×S Y is partitioned to

⋃

i,j∈Zl
Yi,j where Yi,i = Yi ×Sl Yi for all i ∈ Z

l, and for all

i, j, s, t ∈ Zl, (Ss × St)|Yj,j
is an isomorphism between Yi,j and Yi+s,j+t. In particular,

(S × S)(Yi,j) = Yi+1,j+1 for all i, j, thus the subsets Vi =
⋃

j∈Zl
Yj,j+i, i ∈ Zl are S × S-

invariant and partition Y ×S Y , and IdY0 ×Si is an isomorphism between V0 and Vi.

Proof. We first determine I(Y, S). Let A be a measurable S-invariant subset of Y . Let
Ai = A ∩ Yi, i ∈ Zl. Then A0 is Sl-invariant, and Ai = Si(A0) for i ∈ Zl. So, the
mapping A 7→ A ∩ Y0 is an isomorphism between I(Y, S) and I(Y0, S

l), which induces an
isomorphism (up to measure scaling) between I(Y, S) and I(Y0, S

l).

Let Y0 =
⋃

α∈I Y0,α be the decomposition of Y0 with respect to I = I(Y0, S
l). For

every α ∈ I and i ∈ Zl\{0} define Yi,α = Si(Y0,α) and Yα =
⋃

i∈Zl
Yi,α. Then Y =

⋃

α∈I Yα
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is the decomposition of Y with respect to I. We have

Y
[1]
S =

⋃

α∈I

Yα ×S Yα =
⋃

α∈I

⋃

i,j∈Zl

Yi,α × Yj,α =
⋃

i,j∈Zl

⋃

α∈I

Yi,α × Yj,α =
⋃

i,j∈Zl

Yi,j ,

where Yi,j =
⋃

α∈I Yi,α × Yj,α. In particular, Yi,i =
⋃

α∈I Yi,α × Yi,α = Yi ×Sl Yi for all
i ∈ Zl.

Lemma 7. Let X be a disjoint union of measure spaces X0, . . . , Xl−1 and let T be an
invertible measure preserving transformation of X such that T (Xi) = Xi+1, i ∈ Zl. Then

for any k ≥ 0, X
[k]
T can be partitioned, X

[k]
T =

⋃lk

j=1 Wj, into T [k]-invariant measurable

subsets W1, . . . ,Wlk , such that W1 =
⋃

i∈Zl
(Xi)

[k]

T l with T [k]
(

(Xi)
[k]

T l

)

= (Xi+1)
[k]

T l for each

i, and for each j = 2, . . . , lk there exists an isomorphism τj :W1 −→ Wj, which in each
coordinate is given by a power of T (that is, if πn:X

[k] −→ X, n = 1, . . . , 2k, are the
projection mappings, for each n there exists m ∈ Z such that πn◦τj = Tm

◦πn|W1
).

Proof. We use induction on k; for k = 0 the statement is trivial. Assume that it holds

for some k ≥ 0. Then by Lemma 1, X
[k+1]
T =

⋃lk

j=1 Wj ×T [k] Wj . The isomorophisms τj

between W1 and Wj , commuting with T [k], induce isomorphisms τj × τj between W1×T [k]

W1 and Wj ×T [k] Wj , j = 1, . . . , lk, and τj × τj act on coordinates as powers of T if τj do.
Thus, we may focus on W1 ×T [k] W1 only.

By Lemma 6 applied to W1 =
⋃

i∈Zl
(Xi)

[k]

T l and T [k]
|W1

, W1 ×T [k] W1 is partitioned

into T [k] × T [k] = T [k+1]-invariant subsets V0, . . . , Vl−1 such that

V0 =
⋃

i∈Zl

(Xi)
[k]

T l ×(T [k])l (Xi)
[k]

T l =
⋃

i∈Zl

(Xi)
[k+1]

T l

and V1, . . . , Vl−1 are isomorphic to V0 by isomorphisms whose projections on the factors

(Xi)
[k]

T l coincide with some powers of T [k].

End of the proof of Theorem 2. Assume that T is ergodic on X, l is a prime integer
and T l is not ergodic on X. Let k ≥ 1. Ignoring a subset of measure 0 in X, partition
X to measurable subsets X0, . . . , Xl−1 such that, for each i, T (Xi) = Xi+1. Let k ≥ 1
and let W1, . . . ,Wlk be as in Lemma 7. Since X0, . . . , Xl−1 are T l-invariant, by Lemma 1

we have I(X [k], (T l)[k]) =
∏

i∈Zl
I(X

[k]
i , (T l)[k]) and Zk(X,T l) =

∏

i∈Zl
Zk(Xi, T

l). Any

T [k]-invariant measurbale subset A of W1 =
⋃

i∈Zl
(Xi)

[k]

T l has form A =
⋃

i∈Zl
Ai where

Ai ∈ I(Xi, (T
l)[k]) and T [k](Ai) = Ai+1, i ∈ Zl. Thus, I(W1, T

[k]) ⊆ I(X [k], (T l)[k]) ⊆

Zk(X,T l)⊗2k . Since Zk(X,T l) is T -invariant and Wn = τn(W1) where τn is an isomor-

phism acting on each coordinate as a power of T , I(Wn, T
[k]) ⊆ Zk(X,T l)⊗2k for any n.

Hence, Zk(X,T ) ⊆ Zk(X,T l).

We will now show that for any i ∈ Zl and any B ∈ I(X
[k]
i , (T l)[k]) one has B ∈

Zk(X,T )⊗2k ; this will imply that Zk(X,T l) ⊆ Zk(X,T ). Put Aj = (T [k])j−i(B), j ∈ Zl,

and A =
⋃

j∈Zl
Aj . Then A ∈ I(W1, T

[k]) ⊆ Zk(X,T )⊗2k . By Lemma 5, Xi ∈ Z1(X,T ) ⊆

Zk(X,T ), thus (Xi)
[k]

T l ∈ Zk(X,T )⊗2k , and therefore B = Ai = A∩ (Xi)
[k]

T l ∈ Zk(X,T )⊗2k .
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We now pass to our second result:

Theorem 8. For any k ≥ 2, any d ∈ N, any linear functions ϕ1, . . . , ϕk:Z
d −→ Z and

any Følner sequence {ΦN}∞N=1 in Z
d, Zk−1(X,T ) is a characteristic factor for the averages

1
|ΦN |

∑

u∈ΦN
Tϕ1(u)f1 · . . . · T

ϕk(u)fk in L1(X), that is,

lim
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

Tϕ1(u)f1 · . . . · T
ϕk(u)fk

−
1

|ΦN |

∑

u∈ΦN

Tϕ1(u)E
(

f1|Zk−1(X,T )
)

· . . . · Tϕk(u)E
(

fk|Zk−1(X,T )
)

∥

∥

∥

L1(X)
= 0

(3)

for any f1, . . . , fk ∈ L∞(X).

In order to prove Theorem 8 we will first show that Zk−1(X,T ) is a characteristic factor
for averages of a very special form. Let us bring more facts from [HK1]. Starting from this
moment, we will only be considering real-valued functions on X. Given f0, f1 ∈ L∞(X),
by the ergodic theorem we have

lim
N→∞

1

N

N
∑

n=1

∫

X

f0 · T
nf1 =

∫

I(X,T )

E
(

f0, I(X,T )
)

· E
(

f1, I(X,T )
)

=

∫

X
[1]

T

f0 ⊗ f1.

Applying this twice we get, for f0,0, f0,1, f1,0, f1,1 ∈ L∞(X),

lim
N2→∞

1

N2

N2
∑

n2=1

lim
N1→∞

1

N1

N2
∑

n1=1

∫

X

f0,0 · T
n1f1,0 · T

n2f3 · T
n1+n2f1,1

= lim
N2→∞

1

N2

N2
∑

n2=1

lim
N1→∞

1

N1

N2
∑

n1=1

∫

X

(f0,0 · T
n2f0,1) · T

n1(f1,0 · T
n2f1,1)

= lim
N2→∞

1

N2

N2
∑

n2=1

∫

X[1]

(f0,0⊗f1,0) ·T
n2(f0,1⊗f1,1) =

∫

X[2]

(f0,0⊗f1,0)⊗(f0,1⊗f1,1).

By induction, for any k and any collection fǫ1,...,ǫk ∈ L∞(X), ǫ1, . . . , ǫk ∈ {0, 1},

lim
Nk→∞

1

Nk

Nk
∑

nk=1

. . . lim
N1→∞

1

N1

N1
∑

n1=1

∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1n1+...+ǫknkfǫ1,...,ǫk

=

∫

X[k]

⊗

ǫ1,...,ǫk∈{0,1}

fǫ1,...,ǫk

(where the tensor product is taken in a certain order, which we do not specify here).
For k ∈ N and f ∈ L∞(X) the seminorm |||f |||T,k associated with T is defined by

|||f |||T,k =
(∫

X
[k]

T

f⊗2k
)1/2k

. Equivalently,

|||f |||
2k

T,k = lim
Nk→∞

1

Nk

Nk
∑

nk=1

. . . lim
N1→∞

1

N1

N1
∑

n1=1

∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1n1+...+ǫknkf.
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It is proved in [HK1] that for any f1, . . . , f2k ∈ L∞(X) one has

∣

∣

∣

∫

X
[k]

T

2k
⊗

j=1

fj

∣

∣

∣
≤

2k
∏

j=1

|||fj |||T,k.

For any k ∈ N and f ∈ L∞(X) we have

|||f |||
2k

T,k =

∫

X
[k]

T

f⊗2k =

∫

I(X
[k−1]

T
,T [k−1])

E
(

f⊗2k−1

|I(X
[k−1]
T , T [k−1])

)2
.

Since I(X
[k−1]
T , T [k−1]) ⊆ Zk−1(X,T )⊗2k−1

, |||f |||T,k = 0 whenever E
(

f |Zk−1(X,T )
)

= 0.

Proposition 9. For any k ≥ 2, nonzero integers l1, . . . , lk and a collection fǫ1,...,ǫk ∈
L∞(X), ǫ1, . . . , ǫk ∈ {0, 1}, if E

(

fǫ1,...,ǫk |Zk−1(X,T )
)

= 0 for some ǫ1, . . . , ǫk then

lim
Nk→∞

1

Nk

Nk
∑

nk=1

. . . lim
N1→∞

1

N1

N1
∑

n1=1

∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1l1n1+...+ǫklknkfǫ1,...,ǫk = 0.

Proof. Let l be a common multiple of l1, . . . , lk. Since, by Theorem 2, Zk−1(X,T l) =
Zk−1(X,T ), E

(

fǫ1,...,ǫk |Zk−1(X,T )
)

= 0 implies |||fǫ1,...,ǫk |||T l,k = 0.

Let ri = l/li, i = 1, . . . , k. We have

lim
Nk→∞

1

Nk

Nk
∑

nk=1

. . . lim
N1→∞

1

N1

N1
∑

n1=1

∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1l1n1+...+ǫklknkfǫ1,...,ǫk

=
1

r1 . . . rk

rk−1
∑

mk=0

. . .

r1−1
∑

m1=0

lim
Nk→∞

1

Nk

Nk
∑

nk=1

. . . lim
N1→∞

1

N1

N1
∑

n1=1
∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1ln1+...+ǫklnk(T ǫ1l1m1+...+ǫklkmkfǫ1,...,ǫk)

=
1

r1 . . . rk

rk−1
∑

mk=0

. . .

r1−1
∑

m1=0

∫

X
[k]

Tl

⊗

ǫ1,...,ǫk∈{0,1}

T ǫ1l1m1+...+ǫklkmkfǫ1,...,ǫk .

And for any mǫ1,...,ǫk ∈ Z, ǫ1, . . . , ǫk ∈ {0, 1},

∣

∣

∣

∫

X
[k]

Tl

⊗

ǫ1,...,ǫk∈{0,1}

Tmǫ1,...,ǫk fǫ1,...,ǫk

∣

∣

∣
≤

∏

ǫ1,...,ǫk∈{0,1}

|||Tmǫ1,...,ǫk fǫ1,...,ǫk |||T l,k

=
∏

ǫ1,...,ǫk∈{0,1}

|||fǫ1,...,ǫk |||T l,k = 0.
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Let ϕ:Zd −→ Z be a nonzero linear function, that is, a function of the form
ϕ(n1, . . . , nd) = a1n1 + . . . + adnd with a1, . . . , ad ∈ Z not all zero. Then for any mea-
sure preserving system (Y, S), any f ∈ L1(Y ) and any Følner sequence {ΦN}∞N=1 in Z

d

one has limN→∞
1

|ΦN |

∑

u∈ΦN
Sϕ(u)f = E(f |I(Y, Sl)) = limN→∞

1
N

∑N
n=1 S

lnf , where

l = gcd(a1, . . . , ad). Applying this fact k times, we come to the following generalization of
Proposition 9:

Proposition 10. For any k ≥ 2, positive integers di ∈ N, nonzero linear functions
ϕi:Z

di −→ Z, Følner sequences {Φi,N}∞N=1 in Z
di , i = 1, . . . , k, and a collection fǫ1,...,ǫk ∈

L∞(X), ǫ1, . . . , ǫk ∈ {0, 1}, if E
(

fǫ1,...,ǫk |Zk−1(X,T )
)

= 0 for some ǫ1, . . . , ǫk then

lim
Nk→∞

1

|Φk,Nk
|

∑

uk∈Φk,Nk

. . . lim
N1→∞

1

|Φ1,N1 |

∑

u1∈Φ1,N1
∫

X

∏

ǫ1,...,ǫk∈{0,1}

T ǫ1ϕ1(u1)+...+ǫkϕk(uk)fǫ1,...,ǫk = 0.

The proof of Theorem 8 will be based on the following lemma:

Lemma 11. For any linear funcions ϕ1, . . . , ϕk:Z
d −→ Z and any f1, . . . , fk ∈ L∞(X),

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

Tϕ1(u)f1 · . . . · T
ϕk(u)fk

∥

∥

∥

L2(X)

≤
(

lim
N1→∞

1

|ΦN1 |
2

∑

(v1,w1)∈Φ2
N1

lim
Nk→∞

1

|ΦNk
|2

∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2 |
2

∑

(v2,w2)∈Φ2
N2

∫

X

∏

ǫ1,ǫ2,...,ǫk∈{0,1}

T ǫ1ϕ1(v1−w1)+ǫ2(ϕ1−ϕ2)(v2−w2)+...+ǫk(ϕ1−ϕk)(vk−wk)f1

)1/2k

·
k
∏

i=2

‖fi‖L∞(X).

Proof. Let {ΦN}∞N=1 be a Følner sequence in Z
d. We will use the van der Corput lemma

in the following form: if {fu}u∈Zd is a bounded family of elements of a Hilbert space, then

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

fu

∥

∥

∥

2

≤ lim sup
N1→∞

1

|ΦN1 |
2

∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |

∑

u∈ΦN

〈fu, fu+v−w〉.
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We may assume that |f2|, . . . , |fk| ≤ 1. By the van der Corput lemma we have:

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

Tϕ1(u)f1 · . . . · T
ϕk(u)fk

∥

∥

∥

2

L2(X)

≤ lim sup
N1→∞

1

|ΦN1 |
2

∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |

∑

u∈ΦN

∫

X

Tϕ1(u)f1 · . . . · T
ϕk(u)fk

·Tϕ1(u+v−w)f1 · . . . · T
ϕk(u+v−w)fk

= lim sup
N1→∞

1

|ΦN1 |
2

∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |

∑

u∈ΦN

∫

X

Tϕ1(u)(f1 · T
ϕ1(v−w)f1) · . . .

·Tϕk(u)(fk · Tϕk(v−w)fk)

= lim sup
N1→∞

1

|ΦN1 |
2

∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |

∑

u∈ΦN

∫

X

Tϕ1(u)−ϕk(u)(f1 · T
ϕ1(v−w)f1) · . . .

·Tϕk−1(u)−ϕk(u)(fk−1 · T
ϕk−1(v−w)fk−1) · (fk · Tϕk(v−w)fk)

= lim sup
N1→∞

1

|ΦN1 |
2

∑

v,w∈ΦN1

lim sup
N→∞

∫

X

( 1

|ΦN |

∑

u∈ΦN

T (ϕ1−ϕk)(u)(f1 · T
ϕ1(v−w)f1) · . . .

·T (ϕk−1−ϕk)(u)(fk−1 · T
ϕk−1(v−w)fk−1)

)

· (fk · Tϕk(v−w)fk)

≤ lim sup
N1→∞

1

|ΦN1 |
2

∑

(v,w)∈Φ2
N1

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

T (ϕ1−ϕk)(u)(f1 · T
ϕ1(v−w)f1) · . . .

·T (ϕk−1−ϕk)(u)(fk−1 · T
ϕk−1(v−w)fk−1)

∥

∥

∥

L2(X)
.

By the induction hypothesis, applied to the linear functions ϕi − ϕk:Z
d −→ Z and to the

functions fi · T
ϕi(v−w)fi ∈ L∞(X), i = 1, . . . , k − 1, for any (v, w) ∈ Z

2d we have

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

T (ϕ1−ϕk)(u)(f1 · T
ϕ1(v−w)f1) · . . .

·T (ϕk−1−ϕk)(u)(fk−1 · T
ϕk−1(v−w)fk−1)

∥

∥

∥

L2(X)

≤
(

lim
Nk→∞

1

|ΦNk
|2

∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2 |
2

∑

(v2,w2)∈Φ2
N2

∫

X

∏

ǫ2,...,ǫk∈{0,1}

T ǫ2(ϕ1−ϕ2)(v2−w2)+...+ǫk(ϕ1−ϕk)(vk−wk)(f1 · T
ϕ1(v−w)f1)

)1/2k−1

=
(

lim
Nk→∞

1

|ΦNk
|2

∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2 |
2

∑

(v2,w2)∈Φ2
N2

∫

X

∏

ǫ1,ǫ2,...,ǫk∈{0,1}

T ǫ1ϕ1(v−w)+ǫ2(ϕ1−ϕ2)(v2−w2)+...+ǫk(ϕ1−ϕk)(vk−wk)f1

)1/2k−1

.
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Thus,

lim sup
N→∞

∥

∥

∥

1

|ΦN |

∑

u∈ΦN

Tϕ1(u)f1 · . . . · T
ϕk(u)fk

∥

∥

∥

L2(X)

≤
(

lim sup
N1→∞

1

|ΦN1 |
2

∑

(v,w)∈Φ2
N1

(

lim
Nk→∞

1

|ΦNk
|2

∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2 |
2

∑

(v2,w2)∈Φ2
N2

∫

X

∏

ǫ1,ǫ2,...,ǫk∈{0,1}

T ǫ1ϕ1(v−w)+ǫ2(ϕ1−ϕ2)(v2−w2)+...+ǫk(ϕ1−ϕk)(vk−wk)f1

)1/2k−1
)1/2

≤
(

lim
N1→∞

1

|ΦN1 |
2

∑

(v,w)∈Φ2
N1

lim
Nk→∞

1

|ΦNk
|2

∑

(vk,wk)∈Φ2
Nk

. . . lim
N2→∞

1

|ΦN2 |
2

∑

(v2,w2)∈Φ2
N2

∫

X

∏

ǫ1,ǫ2,...,ǫk∈{0,1}

T ǫ1ϕ1(v−w)+ǫ2(ϕ1−ϕ2)(v2−w2)+...+ǫk(ϕ1−ϕk)(vk−wk)f1

)1/2k

.

Proof of Theorem 8. Because of the multilinearity of (3), it suffices to show that
limN→∞

1
|ΦN |

∑

u∈ΦN
Tϕ1(u)f1 · . . . ·T

ϕk(u)fk = 0 in L1(X) whenever E
(

f1|Zk−1(X,T )
)

=

0. We may assume that the functions ϕ1, . . . , ϕk are all nonzero and distinct. Then, com-
bining Lemma 11 and Proposition 10, applied to the nonzero linear functions ϕ1(v − w),
(ϕ1 − ϕ2)(v − w), . . ., (ϕ1 −ϕk)(v−w) on Z2d and the Følner sequence {Φ2

N}∞N=1 in Z
2d,

we get limN→∞
1

|ΦN |

∑

u∈ΦN
Tϕ1(u)f1 · . . . · T

ϕk(u)fk = 0 in L2(X) and so, in L1(X).

Bibliography
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