Host-Kra-Ziegler factors

by A. Leibman

The nonconventional, or multiple ergodic averages
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where T is a measure preserving transformation of a probability measure space X and
fi,..., fr are (bounded) measurable functions on X, were introduced by H. Furstenberg
in his ergodic theoretical proof of Szemerédi’s theorem ([F]). For the needs of Szemerédi’s
theorem it was sufficent to show that, in the case f; = ... = fx > 0, the liminf of the aver-

ages (1) is nonzero, and Furstenberg had confined himself to proving this fact. The question
whether the limit of the multiple ergodic averages exists in L!-sense was an open problem
for more than twenty years, until it was answered positively by Host and Kra ([HK1])
and, independently, by Ziegler ([Z]). The way of solving this problem was prompted by
Furstenberg: one has to determine a factor Z of X which is characteristic for the averages
(1), which means that the limiting behavior of (1) only depends on the expectation of f;
with respect to Z: || % PO (T"fr-...-T*" fo=T"E(f1|Z)-...-T*"E(f3| Z)) HLI(X) —0
for any f1,..., fr € L°°(X). Once a characteristic factor Z has been found, the problem
is restricted to the system (Z,T'); one therefore succeeds if he/she manages to show that
every system (X, T') possesses a characteristic factor with a relatively simple structure, so
that the convergence of averages (1) can be easily established for it. For example, under
the assumption that T" is ergodic (which always may be done due to the ergodic decom-
position theorem), one can show that the Kronecker factor K of X is characteristic for
the two-term averages - 25:1 T f1-T? f5 (see [F]). Since K has structure of a compact
abelian group on which T acts as a translation, it is not hard to see that the averages
above converge for fi, fo € L=(K).

A k-step nilsystem is a pair (N, T) where N is a compact homogeneous space of a k-
step nilpotent group GG and T is a translation of N defined by an element of GG. In the case
G is a nilpotent Lie group, N is called a nilmanifold, and N is called a pro-nilmanifold if
it is representable as an inverse limit of nilmanifolds. After Conze and Lesigne had shown
([CL1], [CL2], [CL3]) that the characteristic factor for the three-term multiple ergodic
averages is a two-step nilsystem, it was natural to conjecture that the characteristic factor
for the averages (1) with arbitrary k is a (k —1)-step nilsystem. Host-Kra and Ziegler have
confirmed this conjecture by constructing such factors.

Ziegler’s factors Yp_1(X,T), k = 2,3,..., are characteristic for the averages of the
form
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for any ay,...,ar € Z. Ziegler’s construction is a (very complicated) extension of Conze-
Lesigne’s one: she obtains the factor Yy (X,T) as a product of Y;_1(X,T) and a com-
pact abelian group H so that T acts as a skew-shift on Y, (X,T) = Y;,_1(X,T) x H,
T(y,h) = (Ty,h + p(y)), with p satisfying certain conditions that allow one to impose on
Y (X, T) the structure of a k-step pro-nilmanifold with 7" being a translation on it. She
also shows that Yj_1(X,T) is the minimal factor of X which is characteristic for all aver-
ages of the form (2), and the maximal factor of X having the structure of a (k — 1)-step
pro-nilmanifold.

Host and Kra used another, very elegant construction. They first describe the char-
acteristic factor for the (numerical) averages of the form
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Though this expression looks frightening, it is quite natural (for the case k = 2 it is sim-
N
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Characterlstic factor, which will be denoted by Zy_1(X,T), can be easily constructed.
Then Host and Kra prove that, for each k, the factor Z;(X,T) possess structure of a
k-step pro-nilmanifold, and that it is characteristic for ergodic averages of other sorts. In
particular, it is shown in [HK1] that Z;_1(X,T) is characteristic for the averages (1), and
in [HK1] that Z, (X, T) is characteristic for the averages of the form (2). We will undertake
an alittle bit more detailed analysis to show that, actually, for k > 2 already Zx_1(X,T) is
characteristic for the averages (2). This will imply that the Host-Kra factors Zy_1(X,T)
coincide with the corresponding Ziegler factors Y;_1(X,T). Indeed, being a (k — 1)-step
pro-nilmanifold, Zy_1(X,T) is a factor of Y;_1(X,T); on the other hand, since Y;_1(X,T)
is the minimal characteristic factor for the averages (2), it is a factor of Z;_1(X,T).

Let us settle terminology and notation. We will assume the measure spaces we deal
with to be regular, that is, compact metric endowed with probability Borel measures.
Though some specific measure on each measure space is meant, to simplify notation we
will not usually specify it.

Given a measurable mapping p: X — Y from a measure space (X, B) onto a measure
space (Y, D), we will call Y a factor of X. p~!(D) is a sub-c-algebra of B, which we will
identify with D. Conversely, with any sub-o-algebra of B a factor of X is associated. Let
Y be a factor of (X, B, u) and let p: X — Y be the factorization mapping. We then have
the decomposition X = Uer X, of X with respect to Y, where we put X, = p~1(y),
y € Y, and equip each X, with a Borel measure p, so that fY fy = [

Let Y be a factor of (X, B, 1) and of (X', B’ p/) and let p: X — Y and p: X’ — Y be
the factorization mappings. The relative product X xy X' is the space { r, ') e X x X
p(z) = p'(2')}. Y is a factor of X xy X', and if X = EYX X' =,ey X, are the
decomposmns of X and of X' with respect to Y, then X xy X’ = {J, oy (Xy Xy X)) is the
decomposition of X xy X’. The measure on X xy X' is defined as fY [y X u;. X xy X'
is a joining of X and X', which means that both X and X’ are factors of X xy X’ and
B ® B’ coincides with the Borel o-algebra of this space.
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Let T be a measure preserving transformation of a measure space (X,B). If Y is a
factor of X associated with a T-invariant sub-c-algebra of B, then the action of T" reduces
to a measure preserving action on Y, which we will also denote by 7T'. In this situation,
the restriction of 7' x T on X xy X is a measure preserving transformation of this space.

We will denote by Z(X,T') the o-algebra of T-invariant measurable subsets of X and
by I(X,T) the factor of X associated with Z(X,T). To simplify notation, we will write
X xp X for X XI(X,T) X.

The Host-Kra factors of X with respect to T are constructed in the following way.
One puts XFEFO - x , T = T, and when ch } and T™ have been defined for certain k, let
XPE,{HH = Xj[lﬂ X k] ng] and let 71 be the restriction of T x Tk on XPE,{CJFH. Then,
for any £k =0,1,..., ch} is a joining of 2% copies of X. For k = 0,1,..., let Z,(X,T) be
the minimal o-algebra on X such that I(XJ[F],T[’“]) C Zi(X, T)®2k. The k-th Host-Kra
factor Zi(X,T) of X with respect to T is the factor of X associated with Zi(X,T). (See
[HK1].)

Let X = {J,c; Xa be a partition of X into T-ivariant subsets. Since in distinct sets
X, “life goes independently”, we have:

Lemma 1. For any k, the spaces Xgpk}, I(XFE,{G],TW) and Z (X, T) partition, respectively,
k k
to Upe s (Xa)® Upey T(X)EL THY and U, o, Zi(Xa, T).

In particular, when J is finite, this implies I(XFE,{“],T[H) = HQGJI((XQ)[ij],T[k]) and
Zp(X,T) = [lpes 21(Xa,T).

Our first goal is to show that the Host-Kra factors associated with any nontrivial power
of a measure preserving transformation are the same as for the transformation itself. In
[HK2] this fact was established for totally ergodic transformations; we extend it to the
general case.

Theorem 2. For anyl # 0 and k > 1 the k-th Host-Kra factor Zy(X,T') of X with
respect to T' coincides with the k-th Host-Kra factor Z,(X,T) of X with respect to T.

We fix a nonzero integer [. It follows from Lemma 1 that it suffices to prove Theorem 2
for an ergodic T only. We first assume that 7" is also ergodic. Given a measure preserving
transformation S of a measure space Y, let us denote by £\(Y,S) the eigenspace of S
in L*(Y) corresponding to the eigenvalue X, Ex(Y,S) = {f € LY(Y) : S(f) = Af}. In
particular, & (Y, 5) is the space of S-invariant integrable functions on Y, which we will
denote by L(Y,S).

Lemma 3. ([HK2]) Let S be a measure preserving transformation of a measure space Y .

If S is ergodic, then I(Y xY,S' x SH =I(Y xY,S x 9).

Proof. S! is ergodic means that £,(Y,S) = {0} for all A # 1 with \! = 1. We have
LY xY,(Sx8)") CSpan{&x(Y xY,S x S): Al =1}. For any A € C, |A| =1, the space
Ex(Y xY, S xS) is spanned by the the functions of the form f® g where f € &, (Y, S) and
g € Ex,(Y,S) with Ay + Ay = A. For such a function, fg € (Y, S). Thus, for any A # 1
with Al = 1 we have £,\(Y x Y, S x S) = {0}. Hence, L(Y xY,S'xS!) C & (Y xY,Sx8) =
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L(Y xY,8 x S). With the evident opposite inclusion L(Y x Y, S x S) C L(Y x Y, S! x §')
this implies Z(Y x YV, 8! x S) =Z(Y x Y, S x S5). m

Lemma 4. ([HK2|) Let T' be a measure preserving transformation of a measure space X .

If T' is ergodic then Xq[ﬁ] = XFE,{C] and I(Xq[f:l], (Tl)[k]) = I(XQ[E},T[’“]) for all k > 0.

Proof. For k£ = 0 the statement is trivial. Assume by induction that, for some k& > 0,
v = x¥ = XM and 1 = 1(v,(T)™) = 1(y,T™). Then X = X — vy »; v,
Let Y = (J,c; Yo be the decomposition of Y with respect to I and for each a € I let
S, = T ly, - By the induction assumption S, is ergodic on Y, for every a € I, thus by
Lemma 1 and Lemma 3 applied to the systems (Y, S4),

I(Y x Y, (THM x (THW) = | J I(Ya x Ya, 8, x SL) = [ T(Ya X Ya, Sa x Sa)
acl acl
= I(Y x; Y, T x Tk,

It follows that Zy(X,T') = Z,(X,T) for all k > 0, which proves Theorem 2 in the
case T! is ergodic.

Now assume that 7T is ergodic whereas T is not. We may assume that [ is a prime
integer. In this case X is partitioned, up to a subset of measure 0, to measurable subsets
Xo,...,X;—1 such that T(X;) = X;4; for all i € Z;. (We identify {0,...,l — 1} with
Zy =Z/(IZ) in order to have (I —1)+1=0.)

Lemma 5. Let X be a disjoint union of measure spaces Xg,...,X;_1 and let T be an
invertible measure preserving transformation of X such that T(X;) = X411, 1 € Zy. Then
Xo,..., X1 € Zl(X, T)

Proof. We may assume that 7' is ergodic; otherwise we pass to the ergodic components
of X with respect to T'. Then X[Tl] = X2 and T = T x T. The “diagonal” W =
X2U...UX?  C er] is T invariant and therefore W is Z; (X, T)® 21 (X, T)-measurable.
By the Fubini theorem the “fibers” Xo,..., X;_1 of W are Z;(X,T)-measurable. g

Lemma 6. Let Y be a disjoint union of measure spaces Yy,...,Y;—1 and let S be an
invertible measure preserving transformation of Y such that S(Y;) = Y;i1, i € Z;. Then
Y xgY is partitioned to Uz‘,jezz Yi; where Y;; = Y; xq Y for all i € 7', and for all
i,7,8,t € Zy, (S° X St)|Ym is an isomorphism between Y; ; and Y s j4¢. In particular,
(S x 8)(Yi;) = Yit1,41 for all i, j, thus the subsets V; = UjEZl Yj jti, t € Zy are S x S-
wnvariant and partition Y xgY, and Idy, xS is an isomorphism between Vi and V;.

Proof. We first determine I(Y,S). Let A be a measurable S-invariant subset of Y. Let
A; = ANY;, i € Z;. Then Ag is Sl-invariant, and A; = S%(Ag) for i € Z;. So, the
mapping A — AN Yy is an isomorphism between Z(Y, S) and Z(Yp, S'), which induces an
isomorphism (up to measure scaling) between I(Y,S) and I(Yp, S").

Let Yo = U,es Yo,o be the decomposition of Yy with respect to I = I(Yo, SY. For
every a € I 'and i € Z;\{0} define Y; o = S*(Y0,0) and Yo, = Uj;ey, Yia- ThenY =, ;Yo
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is the decomposition of Y with respect to I. We have

YS[I]:UYQXSYaZU U Yia X Yja = U UY;fO‘XYj’O‘: U Yig,

acl acl i,jEZ, i,jE€Z acl i,jEZ
where Y; ; = U,cs Yiia X Yjo. In particular, Yi; = (J,c; Yiia X Yia = Yi Xg Y; for all
i€Z;. m
Lemma 7. Let X be a disjoint union of measure spaces Xg,...,X;—1 and let T be an

invertible measure preserving transformation of X such that T(X;) = X;11, @ € Z;. Then

k
for any k > 0, Xéiﬂ can be partitioned, Xj[fc] = U;Zl W;, into T¥ invariant measurable

subsets Wi, ..., Wi, such that W1 = Uz, (X,)[q]fl] with TF! ((Xz)gfl]) = (Xi+1)[qlfl] for each
i, and for each j = 2,...,1% there exists an isomorphism 7i: Wi — W;, which in each

coordinate is given by a power of T (that is, if T XM — X no=1,...,2% are the

projection mappings, for each n there exists m € Z such that m,or; = Tmo’/'('n|wl).

Proof. We use induction on k; for k = 0 the statement is trivial. Assume that it holds

for some £ > 0. Then by Lemma 1, ch 1 _ U§i1 W; Xpuw Wj. The isomorophisms 7;

between W; and W;, commuting with Tl induce isomorphisms Tj X T; between W1 X
Wiand Wi xqpm Wy, j=1,... , 1%, and T; X 7; act on coordinates as powers of 7' if 7; do.
Thus, we may focus on Wy X Wi only.

By Lemma 6 applied to W; = UieZl (Xi)[k,] and T W1 xpw Wi is partitioned

]|W1’

T
into Tk x T = T+ _invariant subsets Vj,. .., Vi_1 such that
k k k+1
Vo = U (Xz)[Tz] X (TR (Xz)[Tz] = U (Xi)[Tz ]
1€ 1€
and Vq,...,V;_1 are isomorphic to V by isomorphisms whose projections on the factors

(XZ)[Tkl} coincide with some powers of T, g

End of the proof of Theorem 2. Assume that T is ergodic on X, [ is a prime integer
and T' is not ergodic on X. Let k > 1. Ignoring a subset of measure 0 in X, partition
X to measurable subsets Xy, ..., X;_1 such that, for each i, T(X;) = X;41. Let £ > 1
and let W1,..., Wy be as in Lemma, 7. Since Xy, ..., X;_; are T'-invariant, by Lemma 1
we have Z(XM (THH) = T],, Z(X", (TH)M) and 24(X, T') = [T;cp, Z0(Xi, TY). Any
Tl invariant measurbale subset A of W = Usez, (Xz)gfl] has form A = ;.5 Ai where
A; € T(Xy, (TH¥)) and TW(A) = Agyq, i € Zy. Thus, Z(Wy, TFY) € Z(XH (T C
Zr(X, Tl)®2k. Since Z5,(X,T") is T-invariant and W,, = 7,,(W;) where 7,, is an isomor-
phism acting on each coordinate as a power of T, Z(W,, T*l) C Z,(X, Tl)®2k for any n.
Hence, Z,(X,T) C Z,(X,Th).

We will now show that for any ¢ € Z; and any B € I(Xi{k], (TH*]) one has B €
Zi(X, T)®2k; this will imply that 2 (X, T") C Zx(X,T). Put A; = (T —4(B), j € 7,
and A = ;.5 A;. Then A € Z(Wy,T¥)) C 2,(X,T)%?". By Lemma 5, X; € 21(X,T) C
Z(X,T), thus (X)) € 2,(X,7)2", and therefore B = A; = AN (X)) € 2,(X,T)92".



We now pass to our second result:

Theorem 8. For any k > 2, any d € N, any linear functions ¢1,...,pp: 2% — Z and
any Folner sequence {®n}3S_, in 2%, Z,_1(X,T) is a characteristic factor for the averages
BT Lucwy T2 i T fin LN(X), that is,

1
I H— § T f s
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for any f1,..., fr € L>°(X).

In order to prove Theorem 8 we will first show that Zy_ (X, T) is a characteristic factor
for averages of a very special form. Let us bring more facts from [HK1]. Starting from this
moment, we will only be considering real-valued functions on X. Given fy, f1 € L>=(X),
by the ergodic theorem we have

1 N
lim N;/Xfo.jmfl:/I(XI)E(fO,I(X,T)).E(fl,I(X,T)) fo® f1.

N0 XU

Applying this twice we get, for f()’o, f071, f1,07 f171 e L™ (X),
1
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— LS i Z/MT%onT%ﬁ
ni=1

N1—>oo Nl
= lim Z/ (foo® f10)- nz(fo,1®f1,1):/X[z](fo,o®f1,o)®(f0,1®f1,1)~

By induction, for any k and any collection fe, . ., € L™(X), €1,...,€x € {0,1},
1
i = li T€1n1—|— tepng
Nklinoo Nk Z N11£>noo N1 Z / H fel’
nEg=1 €1 5unny eke{O 1}
/ ® Forren
X

€ kE{O 1}

(where the tensor product is taken in a certain order, which we do not specify here).
For £ € N and f € L*°(X) the seminorm ||f||,, associated with T' is defined by

ky1/2F .
f s, = (fxgq fe27) /?" . Equivalently,

Ny
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It is proved in [HK1] that for any fi,..., for € L°°(X) one has

Tk

2" 2"
| < .
. &n|= 1T
T 7=1 7j=1
For any k € N and f € L*°(X) we have

i k k—1 k— _ 2
W= [0 = [ B )
Xy 1(xF= rie-1)

2k‘—1

Since Z(XJ !, T=1) € 23 (X, )% || fll, = 0 whenever E(f|Zy_1(X,T)) =0.

Proposition 9. For any k > 2, nonzero integers li,...,l;, and a collection fe, e €
L>(X), e1,...,e, € {0,1}, if E(fq,m,ek]Zk_l(X,T)) =0 for some €q,...,€ then

Ny

Ny

1 1 I
. L . - erlini+...Feplpng —
NI SIS D DY N | B Joren =0
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Proof. Let [ be a common multiple of I1,...,l;. Since, by Theorem 2, Z,_1(X,T') =
Zk—l(X; T), E(fel,...,ek|Zk—1(Xa T)) =0 imphes H‘fﬁla-uaek H‘Tl,k =0.

Let r; =1/l;,i=1,..., k. We have
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And for any me, .. ¢, €Z, €1,...,€; € {0,1},
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Let ¢:Z¢ — 7 be a nonzero linear function, that is, a function of the form
o(ni,...,ng) = aing + ... + agng with ai,...,aq € Z not all zero. Then for any mea-
sure preserving system (Y, S), any f € L*(Y) and any Fglner sequence {®x}3°_, in Z4
one has limy_, oo @—1N| Y ucon Se f = BE(fII(Y,S") = Imy_oo + 27]:;1 Sinf . where
I =ged(ay,...,aq). Applying this fact k times, we come to the following generalization of
Proposition 9:

Proposition 10. For any k > 2, positive integers d; € N, nonzero linear functions
i1 2% —s 7, Folner sequences {®; n}35_, inZ%,i=1,...,k, and a collection f., . ., €
L>®(X), €1,...,e, € {0,1}, if E(j}hm’qc | Zk—1(X, T)) =0 for some €1, ...,€ then

/X H T51%91(u1)+-~-+€k§0k(uk)f€1’“.7€k —0.

The proof of Theorem 8 will be based on the following lemma:

Lemma 11. For any linear funcions @1, ..., pr: 2% — Z and any fi,..., fr € L®(X),
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Proof. Let {®y}3_, be a Fglner sequence in Z¢. We will use the van der Corput lemma
in the following form: if { f,,},cz« is a bounded family of elements of a Hilbert space, then
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We may assume that |f3],...,|fx] < 1. By the van der Corput lemma we have:
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By the induction hypothesis, applied to the linear functions ¢; — vp: Z% — Z and to the
functions f; - 7%= f; € L®(X), i =1,...,k — 1, for any (v,w) € Z*? we have
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Thus,
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Ni—oo [P | (v,w)EPY, Nemvoo |y | (v, wk)ERY, Navoo [@ | (v2,w2) EPR,

k-1
T€1<P1('U_w)+€2(901—902)(U2_w2)+.--+6k(g01—tpk)(vk—wk)fl> 1/2 ) 1/2

X 61,62,...,€k€{0,1}

1 1 1
< L —_ li T R | —_
= <NRELO B 2, lm [E 2. Nasoo [@y, |2 2
(U,w)e'@?\ll (vk,wk)eI)?\,k (112,102)6@?\,2

1/2"
H Terer(v—w)+tea(pr —¢2)(02—w2)+»~~+€k(<P1—90k)(vk—wk)f1)

X 61,62,..-,6k€{0,1}

|
Proof of Theorem 8. Because of the multilinearity of (3), it suffices to show that
limpy 00 @—1N| Y ucon To W fy - TeW fi =0 in LY(X) whenever E(f1|Zy—1(X,T)) =
0. We may assume that the functions ¢, ..., ¢ are all nonzero and distinct. Then, com-
bining Lemma 11 and Proposition 10, applied to the nonzero linear functions ¢ (v — w),
(o1 — @2)(v —w), ..., (p1 — i) (v —w) on Z>? and the Folner sequence {®3 }35_, in Z2%,
we get Hmy o0 gy Cucay 191 - T2 fr = 0in L*(X) and so, in L'(X). m
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