Host-Kra-Ziegler factors

by A. Leibman

The nonconventional, or multiple ergodic averages

$$\frac{1}{N}\sum_{n=1}^{N}T^{n}f_{1}\cdot\ldots\cdot T^{kn}f_{k},$$
(1)

where T is a measure preserving transformation of a probability measure space X and f_1, \ldots, f_k are (bounded) measurable functions on X, were introduced by H. Furstenberg in his ergodic theoretical proof of Szemerédi's theorem ([F]). For the needs of Szemerédi's theorem it was sufficient to show that, in the case $f_1 = \ldots = f_k > 0$, the limit of the averages (1) is nonzero, and Furstenberg had confined himself to proving this fact. The question whether the limit of the multiple ergodic averages exists in L^1 -sense was an open problem for more than twenty years, until it was answered positively by Host and Kra ([HK1]) and, independently, by Ziegler ([Z]). The way of solving this problem was prompted by Furstenberg: one has to determine a factor Z of X which is *characteristic* for the averages (1), which means that the limiting behavior of (1) only depends on the expectation of f_i with respect to Z: $\left\|\frac{1}{N}\sum_{n=1}^{N} \left(T^n f_1 \cdot \ldots \cdot T^{kn} f_k - T^n E(f_1|Z) \cdot \ldots \cdot T^{kn} E(f_k|Z)\right)\right\|_{L^1(X)} \longrightarrow 0$ for any $f_1, \ldots, f_k \in L^{\infty}(X)$. Once a characteristic factor Z has been found, the problem is restricted to the system (Z, T); one therefore succeeds if he/she manages to show that every system (X,T) possesses a characteristic factor with a relatively simple structure, so that the convergence of averages (1) can be easily established for it. For example, under the assumption that T is ergodic (which always may be done due to the ergodic decomposition theorem), one can show that the Kronecker factor K of X is characteristic for the two-term averages $\frac{1}{N} \sum_{n=1}^{N} T^n f_1 \cdot T^{2n} f_2$ (see [F]). Since K has structure of a compact abelian group on which T acts as a translation, it is not hard to see that the averages above converge for $f_1, f_2 \in L^{\infty}(K)$.

A k-step nilsystem is a pair (N, T) where N is a compact homogeneous space of a kstep nilpotent group G and T is a translation of N defined by an element of G. In the case G is a nilpotent Lie group, N is called a nilmanifold, and N is called a pro-nilmanifold if it is representable as an inverse limit of nilmanifolds. After Conze and Lesigne had shown ([CL1], [CL2], [CL3]) that the characteristic factor for the three-term multiple ergodic averages is a two-step nilsystem, it was natural to conjecture that the characteristic factor for the averages (1) with arbitrary k is a (k-1)-step nilsystem. Host-Kra and Ziegler have confirmed this conjecture by constructing such factors.

Ziegler's factors $Y_{k-1}(X,T)$, k = 2, 3, ..., are characteristic for the averages of the form

$$\frac{1}{N}\sum_{n=1}^{N}T^{a_1n}f_1\cdot\ldots\cdot T^{a_kn}f_k\tag{2}$$

for any $a_1, \ldots, a_k \in \mathbb{Z}$. Ziegler's construction is a (very complicated) extension of Conze-Lesigne's one: she obtains the factor $Y_k(X,T)$ as a product of $Y_{k-1}(X,T)$ and a compact abelian group H so that T acts as a skew-shift on $Y_k(X,T) = Y_{k-1}(X,T) \times H$, $T(y,h) = (Ty, h + \rho(y))$, with ρ satisfying certain conditions that allow one to impose on $Y_k(X,T)$ the structure of a k-step pro-nilmanifold with T being a translation on it. She also shows that $Y_{k-1}(X,T)$ is the minimal factor of X which is characteristic for all averages of the form (2), and the maximal factor of X having the structure of a (k-1)-step pro-nilmanifold.

Host and Kra used another, very elegant construction. They first describe the characteristic factor for the (numerical) averages of the form

$$\lim_{N_k \to \infty} \frac{1}{N_k} \sum_{n_k=1}^{N_k} \dots \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_1} \int_X \prod_{\epsilon_1, \dots, \epsilon_k \in \{0,1\}} T^{\epsilon_1 n_1 + \dots + \epsilon_k n_k} f_{\epsilon_1, \dots, \epsilon_k}$$

Though this expression looks frightening, it is quite natural (for the case k = 2 it is simply $\lim_{N_2 \to \infty} \frac{1}{N_2} \sum_{n_k=1}^{N_k} \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_1} \int_X f_{0,0} T^{n_1} f_{1,0} T^{n_2} f_{0,1} T^{n_1+n_2} f_{1,1}$) and the corresponding characteristic factor, which will be denoted by $Z_{k-1}(X,T)$, can be easily constructed. Then Host and Kra prove that, for each k, the factor $Z_k(X,T)$ possess structure of a k-step pro-nilmanifold, and that it is characteristic for ergodic averages of other sorts. In particular, it is shown in [HK1] that $Z_{k-1}(X,T)$ is characteristic for the averages (1), and in [HK1] that $Z_k(X,T)$ is characteristic for the averages of the form (2). We will undertake an alittle bit more detailed analysis to show that, actually, for $k \geq 2$ already $Z_{k-1}(X,T)$ is characteristic for the averages (2). This will imply that the Host-Kra factors $Z_{k-1}(X,T)$ coincide with the corresponding Ziegler factors $Y_{k-1}(X,T)$. Indeed, being a (k-1)-step pro-nilmanifold, $Z_{k-1}(X,T)$ is a factor of $Y_{k-1}(X,T)$; on the other hand, since $Y_{k-1}(X,T)$.

Let us settle terminology and notation. We will assume the measure spaces we deal with to be *regular*, that is, compact metric endowed with probability Borel measures. Though some specific measure on each measure space is meant, to simplify notation we will not usually specify it.

Given a measurable mapping $p: X \longrightarrow Y$ from a measure space (X, \mathcal{B}) onto a measure space (Y, \mathcal{D}) , we will call Y a factor of X. $p^{-1}(\mathcal{D})$ is a sub- σ -algebra of \mathcal{B} , which we will identify with \mathcal{D} . Conversely, with any sub- σ -algebra of \mathcal{B} a factor of X is associated. Let Y be a factor of (X, \mathcal{B}, μ) and let $p: X \longrightarrow Y$ be the factorization mapping. We then have the decomposition $X = \bigcup_{y \in Y} X_y$ of X with respect to Y, where we put $X_y = p^{-1}(y)$, $y \in Y$, and equip each X_y with a Borel measure μ_y so that $\int_Y \mu_y = \mu$.

Let Y be a factor of (X, \mathcal{B}, μ) and of (X', \mathcal{B}', μ') and let $p: X \longrightarrow Y$ and $p': X' \longrightarrow Y$ be the factorization mappings. The relative product $X \times_Y X'$ is the space $\{(x, x') \in X \times X' : p(x) = p'(x')\}$. Y is a factor of $X \times_Y X'$, and if $X = \bigcup_{y \in Y} X_y$, $X' = \bigcup_{y \in Y} X'_y$ are the decompositions of X and of X' with respect to Y, then $X \times_Y X' = \bigcup_{y \in Y} (X_y \times_Y X'_y)$ is the decomposition of $X \times_Y X'$. The measure on $X \times_Y X'$ is defined as $\int_Y \mu_y \times \mu'_y$. $X \times_Y X'$ is a joining of X and X', which means that both X and X' are factors of $X \times_Y X'$ and $\mathcal{B} \otimes \mathcal{B}'$ coincides with the Borel σ -algebra of this space. Let T be a measure preserving transformation of a measure space (X, \mathcal{B}) . If Y is a factor of X associated with a T-invariant sub- σ -algebra of \mathcal{B} , then the action of T reduces to a measure preserving action on Y, which we will also denote by T. In this situation, the restriction of $T \times T$ on $X \times_Y X$ is a measure preserving transformation of this space.

We will denote by $\mathcal{I}(X,T)$ the σ -algebra of T-invariant measurable subsets of X and by I(X,T) the factor of X associated with $\mathcal{I}(X,T)$. To simplify notation, we will write $X \times_T X$ for $X \times_{I(X,T)} X$.

The Host-Kra factors of X with respect to T are constructed in the following way. One puts $X_T^{[0]} = X$, $T^{[0]} = T$, and when $X_T^{[k]}$ and $T^{[k]}$ have been defined for certain k, let $X_T^{[k+1]} = X_T^{[k]} \times_{T^{[k]}} X_T^{[k]}$ and let $T^{[k+1]}$ be the restriction of $T^{[k]} \times T^{[k]}$ on $X_T^{[k+1]}$. Then, for any $k = 0, 1, \ldots, X_T^{[k]}$ is a joining of 2^k copies of X. For $k = 0, 1, \ldots$, let $\mathcal{Z}_k(X, T)$ be the minimal σ -algebra on X such that $\mathcal{I}(X_T^{[k]}, T^{[k]}) \subseteq \mathcal{Z}_k(X, T)^{\otimes 2^k}$. The k-th Host-Kra factor $Z_k(X, T)$ of X with respect to T is the factor of X associated with $\mathcal{Z}_k(X, T)$. (See [HK1].)

Let $X = \bigcup_{\alpha \in J} X_{\alpha}$ be a partition of X into T-ivariant subsets. Since in distinct sets X_{α} "life goes independently", we have:

Lemma 1. For any k, the spaces $X_T^{[k]}$, $I(X_T^{[k]}, T^{[k]})$ and $Z_k(X, T)$ partition, respectively, to $\bigcup_{\alpha \in J} (X_\alpha)_T^{[k]}$, $\bigcup_{\alpha \in J} I((X_\alpha)_T^{[k]}, T^{[k]})$ and $\bigcup_{\alpha \in J} Z_k(X_\alpha, T)$.

In particular, when J is finite, this implies $\mathcal{I}(X_T^{[k]}, T^{[k]}) = \prod_{\alpha \in J} \mathcal{I}((X_\alpha)_T^{[k]}, T^{[k]})$ and $\mathcal{Z}_k(X,T) = \prod_{\alpha \in J} \mathcal{Z}_k(X_\alpha, T).$

Our first goal is to show that the Host-Kra factors associated with any nontrivial power of a measure preserving transformation are the same as for the transformation itself. In [HK2] this fact was established for totally ergodic transformations; we extend it to the general case.

Theorem 2. For any $l \neq 0$ and $k \geq 1$ the k-th Host-Kra factor $Z_k(X, T^l)$ of X with respect to T^l coincides with the k-th Host-Kra factor $Z_k(X, T)$ of X with respect to T.

We fix a nonzero integer l. It follows from Lemma 1 that it suffices to prove Theorem 2 for an ergodic T only. We first assume that T^l is also ergodic. Given a measure preserving transformation S of a measure space Y, let us denote by $\mathcal{E}_{\lambda}(Y,S)$ the eigenspace of Sin $L^1(Y)$ corresponding to the eigenvalue λ , $\mathcal{E}_{\lambda}(Y,S) = \{f \in L^1(Y) : S(f) = \lambda f\}$. In particular, $\mathcal{E}_1(Y,S)$ is the space of S-invariant integrable functions on Y, which we will denote by $\mathcal{L}(Y,S)$.

Lemma 3. ([HK2]) Let S be a measure preserving transformation of a measure space Y. If S^l is ergodic, then $I(Y \times Y, S^l \times S^l) = I(Y \times Y, S \times S)$.

Proof. S^l is ergodic means that $\mathcal{E}_{\lambda}(Y,S) = \{0\}$ for all $\lambda \neq 1$ with $\lambda^l = 1$. We have $\mathcal{L}(Y \times Y, (S \times S)^l) \subseteq \text{Span}\{\mathcal{E}_{\lambda}(Y \times Y, S \times S) : \lambda^l = 1\}$. For any $\lambda \in \mathbb{C}, |\lambda| = 1$, the space $\mathcal{E}_{\lambda}(Y \times Y, S \times S)$ is spanned by the functions of the form $f \otimes g$ where $f \in \mathcal{E}_{\lambda_1}(Y,S)$ and $g \in \mathcal{E}_{\lambda_2}(Y,S)$ with $\lambda_1 + \lambda_2 = \lambda$. For such a function, $fg \in \mathcal{E}_{\lambda}(Y,S)$. Thus, for any $\lambda \neq 1$ with $\lambda^l = 1$ we have $\mathcal{E}_{\lambda}(Y \times Y, S \times S) = \{0\}$. Hence, $\mathcal{L}(Y \times Y, S^l \times S^l) \subseteq \mathcal{E}_1(Y \times Y, S \times S) = \{0\}$.

 $\mathcal{L}(Y \times Y, S \times S). \text{ With the evident opposite inclusion } \mathcal{L}(Y \times Y, S \times S) \subseteq \mathcal{L}(Y \times Y, S^l \times S^l) \text{ this implies } \mathcal{I}(Y \times Y, S^l \times S^l) = \mathcal{I}(Y \times Y, S \times S).$

Lemma 4. ([HK2]) Let T be a measure preserving transformation of a measure space X. If T^l is ergodic then $X_{T^l}^{[k]} = X_T^{[k]}$ and $I(X_{T^l}^{[k]}, (T^l)^{[k]}) = I(X_T^{[k]}, T^{[k]})$ for all $k \ge 0$.

Proof. For k = 0 the statement is trivial. Assume by induction that, for some $k \ge 0$, $Y = X_{T^l}^{[k]} = X_T^{[k]}$ and $I = I(Y, (T^l)^{[k]}) = I(Y, T^{[k]})$. Then $X_{T^l}^{[k+1]} = X_T^{[k+1]} = Y \times_I Y$. Let $Y = \bigcup_{\alpha \in I} Y_\alpha$ be the decomposition of Y with respect to I and for each $\alpha \in I$ let $S_\alpha = T^{[k]}|_{Y_\alpha}$. By the induction assumption S_α^l is ergodic on Y_α for every $\alpha \in I$, thus by Lemma 1 and Lemma 3 applied to the systems (Y_α, S_α) ,

$$I(Y \times_I Y, (T^l)^{[k]} \times (T^l)^{[k]}) = \bigcup_{\alpha \in I} I(Y_\alpha \times Y_\alpha, S^l_\alpha \times S^l_\alpha) = \bigcup_{\alpha \in I} I(Y_\alpha \times Y_\alpha, S_\alpha \times S_\alpha)$$
$$= I(Y \times_I Y, T^{[k]} \times T^{[k]}).$$

It follows that $Z_k(X, T^l) = Z_k(X, T)$ for all $k \ge 0$, which proves Theorem 2 in the case T^l is ergodic.

Now assume that T is ergodic whereas T^l is not. We may assume that l is a prime integer. In this case X is partitioned, up to a subset of measure 0, to measurable subsets X_0, \ldots, X_{l-1} such that $T(X_i) = X_{i+1}$ for all $i \in \mathbb{Z}_l$. (We identify $\{0, \ldots, l-1\}$ with $\mathbb{Z}_l = \mathbb{Z}/(l\mathbb{Z})$ in order to have (l-1) + 1 = 0.)

Lemma 5. Let X be a disjoint union of measure spaces X_0, \ldots, X_{l-1} and let T be an invertible measure preserving transformation of X such that $T(X_i) = X_{i+1}$, $i \in \mathbb{Z}_l$. Then $X_0, \ldots, X_{l-1} \in \mathcal{Z}_1(X, T)$.

Proof. We may assume that T is ergodic; otherwise we pass to the ergodic components of X with respect to T. Then $X_T^{[1]} = X^2$ and $T^{[1]} = T \times T$. The "diagonal" $W = X_0^2 \cup \ldots \cup X_{l-1}^2 \subseteq X_T^{[1]}$ is $T^{[1]}$ -invariant and therefore W is $\mathcal{Z}_1(X,T) \otimes \mathcal{Z}_1(X,T)$ -measurable. By the Fubini theorem the "fibers" X_0, \ldots, X_{l-1} of W are $\mathcal{Z}_1(X,T)$ -measurable.

Lemma 6. Let Y be a disjoint union of measure spaces Y_0, \ldots, Y_{l-1} and let S be an invertible measure preserving transformation of Y such that $S(Y_i) = Y_{i+1}$, $i \in \mathbb{Z}_l$. Then $Y \times_S Y$ is partitioned to $\bigcup_{i,j\in\mathbb{Z}_l} Y_{i,j}$ where $Y_{i,i} = Y_i \times_{S^l} Y_i$ for all $i \in \mathbb{Z}^l$, and for all $i, j, s, t \in \mathbb{Z}_l$, $(S^s \times S^t)|_{Y_{j,j}}$ is an isomorphism between $Y_{i,j}$ and $Y_{i+s,j+t}$. In particular, $(S \times S)(Y_{i,j}) = Y_{i+1,j+1}$ for all i, j, thus the subsets $V_i = \bigcup_{j\in\mathbb{Z}_l} Y_{j,j+i}$, $i \in \mathbb{Z}_l$ are $S \times S^{-1}$ invariant and partition $Y \times_S Y$, and $\mathrm{Id}_{Y_0} \times S^i$ is an isomorphism between V_0 and V_i .

Proof. We first determine I(Y, S). Let A be a measurable S-invariant subset of Y. Let $A_i = A \cap Y_i$, $i \in \mathbb{Z}_l$. Then A_0 is S^l -invariant, and $A_i = S^i(A_0)$ for $i \in \mathbb{Z}_l$. So, the mapping $A \mapsto A \cap Y_0$ is an isomorphism between $\mathcal{I}(Y, S)$ and $\mathcal{I}(Y_0, S^l)$, which induces an isomorphism (up to measure scaling) between I(Y, S) and $I(Y_0, S^l)$.

Let $Y_0 = \bigcup_{\alpha \in I} Y_{0,\alpha}$ be the decomposition of Y_0 with respect to $I = I(Y_0, S^l)$. For every $\alpha \in I$ and $i \in \mathbb{Z}_l \setminus \{0\}$ define $Y_{i,\alpha} = S^i(Y_{0,\alpha})$ and $Y_\alpha = \bigcup_{i \in \mathbb{Z}_l} Y_{i,\alpha}$. Then $Y = \bigcup_{\alpha \in I} Y_\alpha$ is the decomposition of Y with respect to I. We have

$$Y_S^{[1]} = \bigcup_{\alpha \in I} Y_\alpha \times_S Y_\alpha = \bigcup_{\alpha \in I} \bigcup_{i,j \in \mathbb{Z}_l} Y_{i,\alpha} \times Y_{j,\alpha} = \bigcup_{i,j \in \mathbb{Z}_l} \bigcup_{\alpha \in I} Y_{i,\alpha} \times Y_{j,\alpha} = \bigcup_{i,j \in \mathbb{Z}_l} Y_{i,j},$$

where $Y_{i,j} = \bigcup_{\alpha \in I} Y_{i,\alpha} \times Y_{j,\alpha}$. In particular, $Y_{i,i} = \bigcup_{\alpha \in I} Y_{i,\alpha} \times Y_{i,\alpha} = Y_i \times_{S^l} Y_i$ for all $i \in \mathbb{Z}_l$.

Lemma 7. Let X be a disjoint union of measure spaces X_0, \ldots, X_{l-1} and let T be an invertible measure preserving transformation of X such that $T(X_i) = X_{i+1}$, $i \in \mathbb{Z}_l$. Then for any $k \ge 0$, $X_T^{[k]}$ can be partitioned, $X_T^{[k]} = \bigcup_{j=1}^{l^k} W_j$, into $T^{[k]}$ -invariant measurable subsets W_1, \ldots, W_{l^k} , such that $W_1 = \bigcup_{i \in \mathbb{Z}_l} (X_i)_{T^l}^{[k]}$ with $T^{[k]}((X_i)_{T^l}^{[k]}) = (X_{i+1})_{T^l}^{[k]}$ for each *i*, and for each $j = 2, \ldots, l^k$ there exists an isomorphism $\tau_j \colon W_1 \longrightarrow W_j$, which in each coordinate is given by a power of T (that is, if $\pi_n \colon X^{[k]} \longrightarrow X$, $n = 1, \ldots, 2^k$, are the projection mappings, for each n there exists $m \in \mathbb{Z}$ such that $\pi_n \circ \tau_j = T^m \circ \pi_n|_{W_1}$).

Proof. We use induction on k; for k = 0 the statement is trivial. Assume that it holds for some $k \ge 0$. Then by Lemma 1, $X_T^{[k+1]} = \bigcup_{j=1}^{l^k} W_j \times_{T^{[k]}} W_j$. The isomorphisms τ_j between W_1 and W_j , commuting with $T^{[k]}$, induce isomorphisms $\tau_j \times \tau_j$ between $W_1 \times_{T^{[k]}} W_j$, $j = 1, \ldots, l^k$, and $\tau_j \times \tau_j$ act on coordinates as powers of T if τ_j do. Thus, we may focus on $W_1 \times_{T^{[k]}} W_1$ only.

By Lemma 6 applied to $W_1 = \bigcup_{i \in \mathbb{Z}_l} (X_i)_{T^l}^{[k]}$ and $T^{[k]}|_{W_1}$, $W_1 \times_{T^{[k]}} W_1$ is partitioned into $T^{[k]} \times T^{[k]} = T^{[k+1]}$ -invariant subsets V_0, \ldots, V_{l-1} such that

$$V_0 = \bigcup_{i \in \mathbb{Z}_l} (X_i)_{T^l}^{[k]} \times_{(T^{[k]})^l} (X_i)_{T^l}^{[k]} = \bigcup_{i \in \mathbb{Z}_l} (X_i)_{T^l}^{[k+1]}$$

and V_1, \ldots, V_{l-1} are isomorphic to V_0 by isomorphisms whose projections on the factors $(X_i)_{T^l}^{[k]}$ coincide with some powers of $T^{[k]}$.

End of the proof of Theorem 2. Assume that T is ergodic on X, l is a prime integer and T^{l} is not ergodic on X. Let $k \geq 1$. Ignoring a subset of measure 0 in X, partition X to measurable subsets X_{0}, \ldots, X_{l-1} such that, for each $i, T(X_{i}) = X_{i+1}$. Let $k \geq 1$ and let $W_{1}, \ldots, W_{l^{k}}$ be as in Lemma 7. Since X_{0}, \ldots, X_{l-1} are T^{l} -invariant, by Lemma 1 we have $\mathcal{I}(X^{[k]}, (T^{l})^{[k]}) = \prod_{i \in \mathbb{Z}_{l}} \mathcal{I}(X_{i}^{[k]}, (T^{l})^{[k]})$ and $\mathcal{Z}_{k}(X, T^{l}) = \prod_{i \in \mathbb{Z}_{l}} \mathcal{Z}_{k}(X_{i}, T^{l})$. Any $T^{[k]}$ -invariant measurbale subset A of $W_{1} = \bigcup_{i \in \mathbb{Z}_{l}} (X_{i})_{T^{l}}^{[k]}$ has form $A = \bigcup_{i \in \mathbb{Z}_{l}} A_{i}$ where $A_{i} \in \mathcal{I}(X_{i}, (T^{l})^{[k]})$ and $T^{[k]}(A_{i}) = A_{i+1}, i \in \mathbb{Z}_{l}$. Thus, $\mathcal{I}(W_{1}, T^{[k]}) \subseteq \mathcal{I}(X^{[k]}, (T^{l})^{[k]}) \subseteq$ $\mathcal{Z}_{k}(X, T^{l})^{\otimes 2^{k}}$. Since $\mathcal{Z}_{k}(X, T^{l})$ is T-invariant and $W_{n} = \tau_{n}(W_{1})$ where τ_{n} is an isomorphism acting on each coordinate as a power of $T, \mathcal{I}(W_{n}, T^{[k]}) \subseteq \mathcal{Z}_{k}(X, T^{l})^{\otimes 2^{k}}$ for any n. Hence, $\mathcal{Z}_{k}(X, T) \subseteq \mathcal{Z}_{k}(X, T^{l})$.

We will now show that for any $i \in \mathbb{Z}_l$ and any $B \in \mathcal{I}(X_i^{[k]}, (T^l)^{[k]})$ one has $B \in \mathcal{Z}_k(X,T)^{\otimes 2^k}$; this will imply that $\mathcal{Z}_k(X,T^l) \subseteq \mathcal{Z}_k(X,T)$. Put $A_j = (T^{[k]})^{j-i}(B), j \in \mathbb{Z}_l$, and $A = \bigcup_{j \in \mathbb{Z}_l} A_j$. Then $A \in \mathcal{I}(W_1, T^{[k]}) \subseteq \mathcal{Z}_k(X,T)^{\otimes 2^k}$. By Lemma 5, $X_i \in \mathcal{Z}_1(X,T) \subseteq \mathcal{Z}_k(X,T)$, thus $(X_i)_{T^l}^{[k]} \in \mathcal{Z}_k(X,T)^{\otimes 2^k}$, and therefore $B = A_i = A \cap (X_i)_{T^l}^{[k]} \in \mathcal{Z}_k(X,T)^{\otimes 2^k}$. We now pass to our second result:

Theorem 8. For any $k \geq 2$, any $d \in \mathbb{N}$, any linear functions $\varphi_1, \ldots, \varphi_k : \mathbb{Z}^d \longrightarrow \mathbb{Z}$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d , $Z_{k-1}(X,T)$ is a characteristic factor for the averages $\frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{\varphi_1(u)} f_1 \cdot \ldots \cdot T^{\varphi_k(u)} f_k$ in $L^1(X)$, that is,

$$\lim_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{\varphi_1(u)} f_1 \cdot \ldots \cdot T^{\varphi_k(u)} f_k - \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} T^{\varphi_1(u)} E(f_1 | Z_{k-1}(X, T)) \cdot \ldots \cdot T^{\varphi_k(u)} E(f_k | Z_{k-1}(X, T)) \right\|_{L^1(X)} = 0$$
(3)

for any $f_1, \ldots, f_k \in L^{\infty}(X)$.

In order to prove Theorem 8 we will first show that $Z_{k-1}(X,T)$ is a characteristic factor for averages of a very special form. Let us bring more facts from [HK1]. Starting from this moment, we will only be considering real-valued functions on X. Given $f_0, f_1 \in L^{\infty}(X)$, by the ergodic theorem we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_0 \cdot T^n f_1 = \int_{I(X,T)} E(f_0, I(X,T)) \cdot E(f_1, I(X,T)) = \int_{X_T^{[1]}} f_0 \otimes f_1.$$

Applying this twice we get, for $f_{0,0}, f_{0,1}, f_{1,0}, f_{1,1} \in L^{\infty}(X)$,

$$\lim_{N_2 \to \infty} \frac{1}{N_2} \sum_{n_2=1}^{N_2} \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_2} \int_X f_{0,0} \cdot T^{n_1} f_{1,0} \cdot T^{n_2} f_3 \cdot T^{n_1+n_2} f_{1,1}$$

$$= \lim_{N_2 \to \infty} \frac{1}{N_2} \sum_{n_2=1}^{N_2} \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_2} \int_X (f_{0,0} \cdot T^{n_2} f_{0,1}) \cdot T^{n_1} (f_{1,0} \cdot T^{n_2} f_{1,1})$$

$$= \lim_{N_2 \to \infty} \frac{1}{N_2} \sum_{n_2=1}^{N_2} \int_{X^{[1]}} (f_{0,0} \otimes f_{1,0}) \cdot T^{n_2} (f_{0,1} \otimes f_{1,1}) = \int_{X^{[2]}} (f_{0,0} \otimes f_{1,0}) \otimes (f_{0,1} \otimes f_{1,1}).$$

By induction, for any k and any collection $f_{\epsilon_1,\ldots,\epsilon_k} \in L^{\infty}(X), \epsilon_1,\ldots,\epsilon_k \in \{0,1\},\$

$$\lim_{N_k \to \infty} \frac{1}{N_k} \sum_{n_k=1}^{N_k} \dots \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_1} \int_X \prod_{\epsilon_1, \dots, \epsilon_k \in \{0, 1\}} T^{\epsilon_1 n_1 + \dots + \epsilon_k n_k} f_{\epsilon_1, \dots, \epsilon_k}$$
$$= \int_{X^{[k]}} \bigotimes_{\epsilon_1, \dots, \epsilon_k \in \{0, 1\}} f_{\epsilon_1, \dots, \epsilon_k}$$

(where the tensor product is taken in a certain order, which we do not specify here).

For $k \in \mathbb{N}$ and $f \in L^{\infty}(X)$ the seminorm $|||f|||_{T,k}$ associated with T is defined by $|||f|||_{T,k} = \left(\int_{X_T^{[k]}} f^{\otimes 2^k}\right)^{1/2^k}$. Equivalently,

$$|||f|||_{T,k}^{2^{k}} = \lim_{N_{k} \to \infty} \frac{1}{N_{k}} \sum_{n_{k}=1}^{N_{k}} \cdots \lim_{N_{1} \to \infty} \frac{1}{N_{1}} \sum_{n_{1}=1}^{N_{1}} \int_{X} \prod_{\epsilon_{1}, \dots, \epsilon_{k} \in \{0,1\}} T^{\epsilon_{1}n_{1}+\dots+\epsilon_{k}n_{k}} f.$$

It is proved in [HK1] that for any $f_1, \ldots, f_{2^k} \in L^{\infty}(X)$ one has

$$\left| \int_{X_T^{[k]}} \bigotimes_{j=1}^{2^k} f_j \right| \le \prod_{j=1}^{2^k} |||f_j|||_{T,k}.$$

For any $k \in \mathbb{N}$ and $f \in L^{\infty}(X)$ we have

$$|||f|||_{T,k}^{2^{k}} = \int_{X_{T}^{[k]}} f^{\otimes 2^{k}} = \int_{I(X_{T}^{[k-1]}, T^{[k-1]})} E(f^{\otimes 2^{k-1}} | I(X_{T}^{[k-1]}, T^{[k-1]}))^{2}.$$

Since $\mathcal{I}(X_T^{[k-1]}, T^{[k-1]}) \subseteq \mathcal{Z}_{k-1}(X, T)^{\otimes 2^{k-1}}, |||f|||_{T,k} = 0$ whenever $E(f|Z_{k-1}(X, T)) = 0.$

Proposition 9. For any $k \geq 2$, nonzero integers l_1, \ldots, l_k and a collection $f_{\epsilon_1, \ldots, \epsilon_k} \in L^{\infty}(X)$, $\epsilon_1, \ldots, \epsilon_k \in \{0, 1\}$, if $E(f_{\epsilon_1, \ldots, \epsilon_k} | Z_{k-1}(X, T)) = 0$ for some $\epsilon_1, \ldots, \epsilon_k$ then

$$\lim_{N_k \to \infty} \frac{1}{N_k} \sum_{n_k=1}^{N_k} \dots \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_1} \int_X \prod_{\epsilon_1, \dots, \epsilon_k \in \{0,1\}} T^{\epsilon_1 l_1 n_1 + \dots + \epsilon_k l_k n_k} f_{\epsilon_1, \dots, \epsilon_k} = 0.$$

Proof. Let l be a common multiple of l_1, \ldots, l_k . Since, by Theorem 2, $Z_{k-1}(X, T^l) = Z_{k-1}(X,T), E(f_{\epsilon_1,\ldots,\epsilon_k}||Z_{k-1}(X,T)) = 0$ implies $|||f_{\epsilon_1,\ldots,\epsilon_k}||_{T^l,k} = 0$. Let $r_i = l/l_i, i = 1, \ldots, k$. We have

$$\begin{split} \lim_{N_k \to \infty} \frac{1}{N_k} \sum_{n_k=1}^{N_k} \cdots \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_1} \int_X \prod_{\epsilon_1, \dots, \epsilon_k \in \{0, 1\}} T^{\epsilon_1 l_1 n_1 + \dots + \epsilon_k l_k n_k} f_{\epsilon_1, \dots, \epsilon_k} \\ &= \frac{1}{r_1 \dots r_k} \sum_{m_k=0}^{r_k - 1} \cdots \sum_{m_1=0}^{r_1 - 1} \lim_{N_k \to \infty} \frac{1}{N_k} \sum_{n_k=1}^{N_k} \cdots \lim_{N_1 \to \infty} \frac{1}{N_1} \sum_{n_1=1}^{N_1} \int_X \prod_{\epsilon_1, \dots, \epsilon_k \in \{0, 1\}} T^{\epsilon_1 ln_1 + \dots + \epsilon_k ln_k} (T^{\epsilon_1 l_1 m_1 + \dots + \epsilon_k l_k m_k} f_{\epsilon_1, \dots, \epsilon_k}) \\ &= \frac{1}{r_1 \dots r_k} \sum_{m_k=0}^{r_k - 1} \cdots \sum_{m_1=0}^{r_1 - 1} \int_{X_{T^l}} \bigotimes_{\epsilon_1, \dots, \epsilon_k \in \{0, 1\}} T^{\epsilon_1 l_1 m_1 + \dots + \epsilon_k l_k m_k} f_{\epsilon_1, \dots, \epsilon_k}. \end{split}$$

And for any $m_{\epsilon_1,\ldots,\epsilon_k} \in \mathbb{Z}, \epsilon_1,\ldots,\epsilon_k \in \{0,1\},\$

$$\left| \int_{X_{T^{l}}^{[k]}} \bigotimes_{\epsilon_{1},\ldots,\epsilon_{k} \in \{0,1\}} T^{m_{\epsilon_{1},\ldots,\epsilon_{k}}} f_{\epsilon_{1},\ldots,\epsilon_{k}} \right| \leq \prod_{\epsilon_{1},\ldots,\epsilon_{k} \in \{0,1\}} \left\| T^{m_{\epsilon_{1},\ldots,\epsilon_{k}}} f_{\epsilon_{1},\ldots,\epsilon_{k}} \right\|_{T^{l},k} = \prod_{\epsilon_{1},\ldots,\epsilon_{k} \in \{0,1\}} \left\| f_{\epsilon_{1},\ldots,\epsilon_{k}} \right\|_{T^{l},k} = 0.$$

Let $\varphi: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ be a nonzero linear function, that is, a function of the form $\varphi(n_1, \ldots, n_d) = a_1 n_1 + \ldots + a_d n_d$ with $a_1, \ldots, a_d \in \mathbb{Z}$ not all zero. Then for any measure preserving system (Y, S), any $f \in L^1(Y)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d one has $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} S^{\varphi(u)} f = E(f|I(Y,S^l)) = \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^N S^{ln} f$, where $l = \gcd(a_1, \ldots, a_d)$. Applying this fact k times, we come to the following generalization of Proposition 9:

Proposition 10. For any $k \geq 2$, positive integers $d_i \in \mathbb{N}$, nonzero linear functions $\varphi_i: \mathbb{Z}^{d_i} \longrightarrow \mathbb{Z}$, Følner sequences $\{\Phi_{i,N}\}_{N=1}^{\infty}$ in \mathbb{Z}^{d_i} , $i = 1, \ldots, k$, and a collection $f_{\epsilon_1,\ldots,\epsilon_k} \in L^{\infty}(X)$, $\epsilon_1,\ldots,\epsilon_k \in \{0,1\}$, if $E(f_{\epsilon_1,\ldots,\epsilon_k}|Z_{k-1}(X,T)) = 0$ for some $\epsilon_1,\ldots,\epsilon_k$ then

$$\lim_{N_k \to \infty} \frac{1}{|\Phi_{k,N_k}|} \sum_{u_k \in \Phi_{k,N_k}} \dots \lim_{N_1 \to \infty} \frac{1}{|\Phi_{1,N_1}|} \sum_{u_1 \in \Phi_{1,N_1}} \int_{X} \prod_{\epsilon_1,\dots,\epsilon_k \in \{0,1\}} T^{\epsilon_1 \varphi_1(u_1) + \dots + \epsilon_k \varphi_k(u_k)} f_{\epsilon_1,\dots,\epsilon_k} = 0.$$

The proof of Theorem 8 will be based on the following lemma:

Lemma 11. For any linear functions $\varphi_1, \ldots, \varphi_k \colon \mathbb{Z}^d \longrightarrow \mathbb{Z}$ and any $f_1, \ldots, f_k \in L^{\infty}(X)$,

$$\begin{split} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} T^{\varphi_{1}(u)} f_{1} \cdot \ldots \cdot T^{\varphi_{k}(u)} f_{k} \right\|_{L^{2}(X)} \\ &\leq \left(\lim_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{(v_{1}, w_{1}) \in \Phi_{N_{1}}^{2}} \lim_{N_{k} \to \infty} \frac{1}{|\Phi_{N_{k}}|^{2}} \sum_{(v_{k}, w_{k}) \in \Phi_{N_{k}}^{2}} \cdots \lim_{N_{2} \to \infty} \frac{1}{|\Phi_{N_{2}}|^{2}} \sum_{(v_{2}, w_{2}) \in \Phi_{N_{2}}^{2}} \int_{X} \prod_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k} \in \{0, 1\}} T^{\epsilon_{1}\varphi_{1}(v_{1} - w_{1}) + \epsilon_{2}(\varphi_{1} - \varphi_{2})(v_{2} - w_{2}) + \ldots + \epsilon_{k}(\varphi_{1} - \varphi_{k})(v_{k} - w_{k})} f_{1} \right)^{1/2^{k}} \cdot \prod_{i=2}^{k} \|f_{i}\|_{L^{\infty}(X)}. \end{split}$$

Proof. Let $\{\Phi_N\}_{N=1}^{\infty}$ be a Følner sequence in \mathbb{Z}^d . We will use the van der Corput lemma in the following form: if $\{f_u\}_{u\in\mathbb{Z}^d}$ is a bounded family of elements of a Hilbert space, then

$$\limsup_{N \to \infty} \left\| \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} f_u \right\|^2 \le \limsup_{N_1 \to \infty} \frac{1}{|\Phi_{N_1}|^2} \sum_{v, w \in \Phi_{N_1}} \limsup_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{u \in \Phi_N} \langle f_u, f_{u+v-w} \rangle.$$

We may assume that $|f_2|, \ldots, |f_k| \leq 1$. By the van der Corput lemma we have:

$$\begin{split} & \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} T^{\varphi_{1}(u)} f_{1} \cdot \ldots \cdot T^{\varphi_{k}(u)} f_{k} \right\|_{L^{2}(X)}^{2} \\ & \leq \limsup_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{v,w \in \Phi_{N_{1}}} \limsup_{N \to \infty} \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} \int_{X} T^{\varphi_{1}(u)} f_{1} \cdot \ldots \cdot T^{\varphi_{k}(u)} f_{k} \\ & = \limsup_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{v,w \in \Phi_{N_{1}}} \limsup_{N \to \infty} \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} \int_{X} T^{\varphi_{1}(u)} (f_{1} \cdot T^{\varphi_{1}(v-w)} f_{1}) \cdot \ldots \\ & \cdot T^{\varphi_{k}(u)} (f_{k} \cdot T^{\varphi_{k}(v-w)} f_{k}) \\ & = \limsup_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{v,w \in \Phi_{N_{1}}} \limsup_{N \to \infty} \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} \int_{X} T^{\varphi_{1}(u) - \varphi_{k}(u)} (f_{1} \cdot T^{\varphi_{1}(v-w)} f_{1}) \cdot \ldots \\ & \cdot T^{\varphi_{k}(u)} (f_{k} \cdot T^{\varphi_{k}(v-w)} f_{k}) \\ & = \limsup_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{v,w \in \Phi_{N_{1}}} \limsup_{N \to \infty} \int_{X} (\frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} T^{(\varphi_{1} - \varphi_{k})(u)} (f_{1} \cdot T^{\varphi_{1}(v-w)} f_{1}) \cdot \ldots \\ & \cdot T^{(\varphi_{k-1} - \varphi_{k})(u)} (f_{k-1} \cdot T^{\varphi_{k-1}(v-w)} f_{k-1})) \cdot (f_{k} \cdot T^{\varphi_{k}(v-w)} f_{k}) \\ & \leq \limsup_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{(v,w) \in \Phi_{N_{1}}} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} T^{(\varphi_{1} - \varphi_{k})(u)} (f_{1} \cdot T^{\varphi_{1}(v-w)} f_{1}) \cdot \ldots \\ & \cdot T^{(\varphi_{k-1} - \varphi_{k})(u)} (f_{k-1} \cdot T^{\varphi_{k-1}(v-w)} f_{k-1}) \right\|_{L^{2}(X)}. \end{split}$$

By the induction hypothesis, applied to the linear functions $\varphi_i - \varphi_k : \mathbb{Z}^d \longrightarrow \mathbb{Z}$ and to the functions $f_i \cdot T^{\varphi_i(v-w)} f_i \in L^{\infty}(X), i = 1, ..., k-1$, for any $(v, w) \in \mathbb{Z}^{2d}$ we have

$$\begin{split} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} T^{(\varphi_{1} - \varphi_{k})(u)}(f_{1} \cdot T^{\varphi_{1}(v-w)}f_{1}) \cdot \dots \right. \\ \left. \cdot T^{(\varphi_{k-1} - \varphi_{k})(u)}(f_{k-1} \cdot T^{\varphi_{k-1}(v-w)}f_{k-1}) \right\|_{L^{2}(X)} \\ &\leq \left(\lim_{N_{k} \to \infty} \frac{1}{|\Phi_{N_{k}}|^{2}} \sum_{(v_{k}, w_{k}) \in \Phi_{N_{k}}^{2}} \cdots \lim_{N_{2} \to \infty} \frac{1}{|\Phi_{N_{2}}|^{2}} \sum_{(v_{2}, w_{2}) \in \Phi_{N_{2}}^{2}} \right. \\ &\int_{X} \prod_{\epsilon_{2}, \dots, \epsilon_{k} \in \{0, 1\}} T^{\epsilon_{2}(\varphi_{1} - \varphi_{2})(v_{2} - w_{2}) + \dots + \epsilon_{k}(\varphi_{1} - \varphi_{k})(v_{k} - w_{k})}(f_{1} \cdot T^{\varphi_{1}(v-w)}f_{1}) \right)^{1/2^{k-1}} \\ &= \left(\lim_{N_{k} \to \infty} \frac{1}{|\Phi_{N_{k}}|^{2}} \sum_{(v_{k}, w_{k}) \in \Phi_{N_{k}}^{2}} \cdots \lim_{N_{2} \to \infty} \frac{1}{|\Phi_{N_{2}}|^{2}} \sum_{(v_{2}, w_{2}) \in \Phi_{N_{2}}^{2}} \right. \\ &\int_{X} \prod_{\epsilon_{1}, \epsilon_{2}, \dots, \epsilon_{k} \in \{0, 1\}} T^{\epsilon_{1}\varphi_{1}(v-w) + \epsilon_{2}(\varphi_{1} - \varphi_{2})(v_{2} - w_{2}) + \dots + \epsilon_{k}(\varphi_{1} - \varphi_{k})(v_{k} - w_{k})}f_{1} \right)^{1/2^{k-1}}. \end{split}$$

Thus,

$$\begin{split} \limsup_{N \to \infty} \left\| \frac{1}{|\Phi_{N}|} \sum_{u \in \Phi_{N}} T^{\varphi_{1}(u)} f_{1} \cdot \ldots \cdot T^{\varphi_{k}(u)} f_{k} \right\|_{L^{2}(X)} \\ &\leq \left(\limsup_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{(v,w) \in \Phi_{N_{1}}^{2}} \left(\lim_{N_{k} \to \infty} \frac{1}{|\Phi_{N_{k}}|^{2}} \sum_{(v_{k},w_{k}) \in \Phi_{N_{k}}^{2}} \cdots \lim_{N_{2} \to \infty} \frac{1}{|\Phi_{N_{2}}|^{2}} \sum_{(v_{2},w_{2}) \in \Phi_{N_{2}}^{2}} \right) \\ &\int_{X} \prod_{\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{k} \in \{0,1\}} T^{\epsilon_{1}\varphi_{1}(v-w) + \epsilon_{2}(\varphi_{1}-\varphi_{2})(v_{2}-w_{2}) + \ldots + \epsilon_{k}(\varphi_{1}-\varphi_{k})(v_{k}-w_{k})} f_{1} \right)^{1/2^{k-1}})^{1/2} \\ &\leq \left(\lim_{N_{1} \to \infty} \frac{1}{|\Phi_{N_{1}}|^{2}} \sum_{(v,w) \in \Phi_{N_{1}}^{2}} \lim_{N_{k} \to \infty} \frac{1}{|\Phi_{N_{k}}|^{2}} \sum_{(v_{k},w_{k}) \in \Phi_{N_{k}}^{2}} \cdots \lim_{N_{2} \to \infty} \frac{1}{|\Phi_{N_{2}}|^{2}} \sum_{(v_{2},w_{2}) \in \Phi_{N_{2}}^{2}} \right) \\ &\int_{X} \prod_{\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{k} \in \{0,1\}} T^{\epsilon_{1}\varphi_{1}(v-w) + \epsilon_{2}(\varphi_{1}-\varphi_{2})(v_{2}-w_{2}) + \ldots + \epsilon_{k}(\varphi_{1}-\varphi_{k})(v_{k}-w_{k})} f_{1} \right)^{1/2^{k}}. \end{split}$$

Proof of Theorem 8. Because of the multilinearity of (3), it suffices to show that $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} T^{\varphi_1(u)} f_1 \cdots T^{\varphi_k(u)} f_k = 0$ in $L^1(X)$ whenever $E(f_1|Z_{k-1}(X,T)) = 0$. We may assume that the functions $\varphi_1, \ldots, \varphi_k$ are all nonzero and distinct. Then, combining Lemma 11 and Proposition 10, applied to the nonzero linear functions $\varphi_1(v-w)$, $(\varphi_1 - \varphi_2)(v-w), \ldots, (\varphi_1 - \varphi_k)(v-w)$ on Z^{2d} and the Følner sequence $\{\Phi_N^2\}_{N=1}^{\infty}$ in \mathbb{Z}^{2d} , we get $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{u\in\Phi_N} T^{\varphi_1(u)} f_1 \cdots T^{\varphi_k(u)} f_k = 0$ in $L^2(X)$ and so, in $L^1(X)$.

Bibliography

- [CL1] J.P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), no. 2, 143–175.
- [CL2] J.P. Conze and E. Lesigne, Sun un théorème ergodique pour des mesures diagonales, Probabilités, 1–31, Publ. Inst. Rech. Math. Rennes, 1987–1, Univ. Rennes I, Rennes, 1988.
- [CL3] J.P. Conze and E. Lesigne, Sun un théorème ergodique pour des mesures diagonales, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 12, 491–493.
- [F] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math. 31 (1977), 204–256.
- [HK1] B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, to appear in *Annals of Math.*
- [HK2] B. Host and B. Kra, Convergence of polynomial ergodic averages, to appear in *Israel J. of* Math.
- [Z] T. Ziegler, Universal characteristic factors and Furstenberg averages, preprint.