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Abstract

By a result due to Furstenberg, a homeomorphism T of a compact space is distal if and only if it
possesses the property of IP∗-recurrence, meaning that for any x0 ∈ X, for any open neighborhood U of
x0, and for any sequence (ni) in Z, the set RU (x0) = {n ∈ Z : Tnx0 ∈ U} has a non-trivial intersection
with the set of finite sums {ni1 + ni2 + · · · + nis : i1 < i2 < . . . < is, s ∈ N}. We show that translations
on compact nilmanifolds (which are known to be distal) are characterized by a stronger property of IP∗

r-
recurrence, which asserts that for any x0 ∈ X and any neighborhood U of x0 there exists r ∈ N such
that for any r-element sequence n1, . . . , nr in Z the set RU (x0) has a non-trivial intersection with the set
{ni1 + ni2 + · · · + nis : i1 < i2 < . . . < is, s ≤ r}. We also show that the property of IP∗

r-recurrence is
equivalent to an ostensibly much stronger property of polynomial IP∗

r-recurrence. (This should be juxtaposed
with the fact that for general distal transformations the polynomial IP∗-recurrence is strictly stronger than
the IP∗-recurrence.)

0. Introduction

Let (X,T ) be a topological dynamical system, meaning that X is a compact metric space and T is a
self-homeomorphism of X. Given a point x0 ∈ X and an open neighborhood U of x0, define RU (x0) =

{
n ∈

Z : Tnx0 ∈ U
}
, the set of returns of x0 into U . Sets of returns reflect the properties of topological system,

and it is of interest to characterize (and/or distinguish between) dynamical systems by arithmetic properties
of these sets. An example of this kind is provided by a theorem of Furstenberg on sets of returns in distal
systems. A system (X,T ) is said to be distal if for any distinct x, y ∈ X, infn∈Z dist(T

nx, Tny) > 0. Given
a sequence n1, n2, . . . in Z, the set

{
ni1 + · · ·+ nis : s ∈ N, i1 < · · · < is

}
of finite sums of distinct elements

of this sequence is called an IP-set. A subset E of Z is called an IP∗-set if it intersects every IP-set(1).
Furstenberg’s theorem says that distal systems are characterized by the IP∗-recurrence property:

Theorem 0.1. ([F], Theorem 9.11) A system (X,T ) is distal if and only if for any x0 ∈ X and any open
neighborhood U of x0 the set of returns RU (x0) is an IP∗-set.

Another relevant example involves translations on compact abelian groups. A set of differences is a set
of the form

{
ni − nj , j < i

}
, where (ni) is an infinite sequence in Z; a subset E of Z is said to be a ∆∗-set

if it has a nonempty intersection with every set of differences in Z. A point x in a system (X,T ) is said to
be almost automorphic if for any sequence (ni) in Z, Tnix −→ y implies T−niy −→ x. It is shown in [F],
Theorem 9.13, that a system has the ∆∗-recurrence property (that is, that every set of returns in the system
is a ∆∗-set) if and only if every point in the system is almost automorphic. Next, by a theorem of Veech
(see [V], Theorem 1.2; see also [AGN]) every point of a minimal(2) system (X,T ) is almost automorphic if
and only if the family {Tn, n ∈ Z} of powers of T is equicontinuous. Now, it is not hard to see that for a
minimal T the family {Tn, n ∈ Z} is equicontinuous if and only if (X,T ) is isomorphic to a translation on a
compact abelian group(3). Thus, the recurrence property characterizing minimal group translations is that

Partially supported by NSF grants DMS-1162073 and DMS-1500575.
(1) IP∗-sets can be defined, in total analogy, in any general abelian groupG. They possess the nice properties
of “largeness” and “regularity”: every IP∗-set E ⊆ G is syndetic (which means that G is covered by finitely
many shifts of E), and the intersection of any two IP∗-sets in G is an IP∗-set as well.
(2) A system (X,T ) is minimal if it has no proper closed subsystems, or, equivalently, if the orbit of every
point of X is dense in X.
(3) The “only if” implication follows from the fact that for any x0 ∈ X one can define an additive group
structure on the orbit {Tnx0, n ∈ Z} by Tnx0 + Tmx0 = Tn+mx0, n,m ∈ Z, and then extend it, with the
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of ∆∗.
Our goal in this paper is to provide a characterization, in terms of recurrence properties, of nilsystems ,

namely, systems of the form (X,T ) where X is a nilmanifold (a compact homogeneous space of a nilpotent
Lie group G) and T is a niltranslation (a translation on X defined by an element of G). The motivation
for this study comes from the fact that nilsystems are intrinsically related to various problems arising in
ergodic theory of multiple recurrence, combinatorics, and number theory, and better understanding of the
recurrence properties of niltranslations may lead to interesting applications in these areas. (See, for example,
[HK], [Z], [BLLe], [GT], [L].) It is well known that nilsystems are distal (see [AGH], [Ke1], [Ke2]), and thus
are IP∗-recurrent; however, not every minimal distal system is a nilsystem or a pre-nilsystem(4), and thus
there must be a stronger than IP∗ property of recurrence that characterizes nilsystems.

For an integer r ∈ N and an r-element sequence n1, . . . , nr in Z, we call the set
{
ni1 + · · ·+nis : 1 ≤ s ≤

r, i1 < · · · < is
}
of sums of distinct elements of this sequence an IPr-set. A set E ⊆ Z is called an IP∗

r-set
if it has a nonempty intersection with every IPr-set in Z. We say that a set is an IP∗

0-set if it is an IP∗
r-set

for some r ∈ N. IP∗
0-sets form a proper subfamily of the family of IP∗-sets: clearly, every IP∗

0-set is IP
∗, but

not vice versa(5).
A special class of nilsystems is provided by affine skew product transformations of tori(6); it follows

from [B], Theorem 7.7, that every such system has the IP∗
0-recurrence property: for every x0 ∈ T

k and any
open neighborhood U of x0 the set of returns RU (x0) is an IP∗

0-set. On the other hand, one can show that
not every minimal distal system is IP∗

0-recurrent (see [BL3], Section 1). It is tempting to conjecture that it
is the IP∗

0-recurrence property that characterizes the nilsystems. This, however, cannot be exactly so: any
recurrence property must be stable under passing to inverse limits whereas inverse limits of nilsystems do
not have to be nilsystems. Let us define a pre-nilsystem as the inverse limit of a sequence of nilsystems.
(Notice that, in contrast with the definition of the so-called pro-nilsystems, in the definition of pre-nilsystems
we don’t require the nilpotency class of the nilsystems in the sequence to be bounded.) The following result
provides a characterization of pre-nilsystems in terms of IP∗

0-recurrence:

Theorem 0.2. Any pre-nilsystem (and so, any nilsystem) is IP∗
0-recurrent. Any IP∗

0-recurrent system is a
disjoint union of pre-nilsystems. In particular, a minimal system is IP∗

0-recurrent iff it is a pre-nilsystem.

Remarks 0.3. (i) The IP∗
0-sets also appear in [HSY], Theorem 8.17, where they are used for characterization

of the so-called “∞-step AA” systems.

(ii) In analogy with IP∗
0-sets, one can define ∆∗

0-sets as those having a nonempty intersection with every
large enough finite set of differences. In contrast with IP∗/IP∗

0-recurrence, the classes of minimal ∆∗- and
∆∗

0-recurrent systems coincide. Indeed, as it was remarked above, any minimal ∆∗-recurrent system is a
translation on a compact abelian group, and it is easy to see that any such translation is ∆∗

0-recurrent as
well.

(iii) A different, and somewhat more technical, but similar in spirit characterization of pre-nilsystems via
“absence of pairs with arbitrarily long finite IP-independence sets” was obtained in [DDMSY] (where pre-
nilsystems are called infinite-step nilsystems).

The second statement of Theorem 0.2 is an easy corollary of the results from [HKM]. To prove the
first statement, we use a coordinate approach. On any nilmanifold X one has natural coordinates such
that under the action of a niltranslation T the sequence of coordinates of the image Tnx0 of any point
x0 ∈ X is given by generalized polynomials (see [BL2], Theorem A). We therefore need to deal with images
of IP-sets under generalized polynomial mappings; these images form a subclass of generalized polynomial

help of equicontinuity, to all of X. This makes X a compact abelian group on which T acts as a minimal
translation. (For details see, for example, [Ku], Theorem 2.42.)
(4) See, for example, [Ko], Theorem 7, [Iw], Corollary 3, or [DDMSY], Section 5.2.
(5) To see this, it is enough to exhibit an IP∗

0-set S which is not an IP∗
−set. One can take, for example

S =
⋃∞

r=1 Sr, where Sr = {22
r

, 2 · 22
r

, 3 · 22
r

, . . . , r · 22
r

}, r ∈ N. Since for each r, Sr is a dilation of the
set {1, 2, ..., r}, S contains arbitrarily large IPr-sets, but it contains no IP-sets since the distances between
consecutive elements of S form a non-decreasing sequence which tends to infinity.
(6) An affine skew product transformation of the k-dimensional torus Tk = R

k/Zk is defined by the formula
T (x1, . . . , xk) = (x1+α1, x2+a2,1x1+α2, . . . , xk+ak,k−1xk−1+ · · ·+ak,1x1+αk) with αi ∈ T and ai,j ∈ Z.
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IP-sets. Conventional IP- and IPr-sets in Z can be viewed as the images of mappings ϕ:F(A) −→ Z from
the semigroup F(A) of finite subsets of A, for A = N and, respectively, for A = {1, . . . , r}, defined by
ϕ(α) =

∑
i∈α ai. Such a mapping ϕ is “linear” in the following sense: ϕ(α ∪ β) = ϕ(α) + ϕ(β) whenever

α, β ∈ F(A) are disjoint. Let H be an additive abelian group; one can introduce the notion of polynomial
mappings F(A) −→ H as follows. For a mapping ϕ:F(A) −→ H and a set β ∈ F(A) let the β-derivative
Dβϕ be the mapping F(A \ β) −→ H defined by Dβϕ(α) = ϕ(α + β) − ϕ(α). Then we say that a
mapping ϕ:F({1, . . . , r}) −→ H is polynomial of degree ≤ d if for any disjoint β0, β1, . . . , βd ∈ F({1, . . . , r}),
Dβ0

Dβ1
· · ·Dβd

ϕ = 0. (See [BL1], Section 8.1.) Examples of quadratic (that is, of degree ≤ 2) polynomial

mappings are, in increasing generality, ϕ(α) =
(∑

i∈α ai
)2
, ϕ(α) =

(∑
i∈α ai

)(∑
i∈α bi

)
=

∑
i,j∈α aibj , and

ϕ(α) =
∑

i,j∈α ci,j , where ai, bj , ci,j ∈ H. Generalized polynomial mappings are the mappings built from
(conventional) polynomial mappings using the operations of addition, multiplication, and taking the integer
part. (An example is ϕ =

[
[ϕ1]ϕ2 + ϕ3

]
ϕ4 + [ϕ5][ϕ6]ϕ7, which is comprised of the polynomial mappings

ϕ1, . . . , ϕ7.) Let us say that a generalized polynomial mapping ϕ has total degree ≤ D if the sum
∑

i degϕi

of the degrees of all the “conventional” polynomial mappings ϕi of which ϕ is comprised does not exceed D,
and let us say that a generalized polynomial mapping is constant free if all the ϕi vanish at ∅: ϕi(∅) = 0.
Let us also say that a generalized polynomial mapping is open if it is contained in the ideal generated
by the conventional constant-free polynomial mappings of the ring of constant-free generalized polynomial
mappings. (In other words, a generalized polynomial mapping is open if it contains no “closed” summands
of the form [ϕ1] · · · [ϕk], where ϕi are generalized polynomial mappings.) For x ∈ R let ‖x‖ = dist(x,Z).
The following result, which will be used in the proof of Theorem 0.2, is of independent interest:

Theorem 0.4. (Cf. Theorem 1.11 below.) For any D ∈ N and ε > 0 there exists r = r(D, ε) ∈ N such that
for any open constant-free generalized polynomial mapping ϕ:F({1, . . . , r}) −→ R of total degree ≤ D there
exists a nonempty α ⊆ {1, . . . , r} for which ‖ϕ(α)‖ < ε.

The VIP-sets in Z
l are defined as the images

{
ϕ(α) : α ∈ F(N), α 6= ∅

}
of polynomial mappings

ϕ:F(N) −→ Z
l with ϕ(∅) = 0, and we say that a set E ⊆ Z

l is a VIP∗-set if E has a nonempty intersection
with every VIP-set in Z

l. Similarly, for all d, r ∈ N, we define VIPd,r-sets as the images
{
ϕ(α) : α ⊆

{1, . . . , r}, α 6= ∅
}
of polynomial mappings ϕ:F({1, . . . , r}) −→ Z

l of degree ≤ d and with ϕ(∅) = 0, and
say that a set E ⊆ Z

l is a VIP∗
d,r-set if it has a nonempty intersection with every VIPd,r-set. We will also

say that a set E ⊆ Z
l is a VIP∗

0-set if for any d ∈ N, E is an VIP∗
d,r-set for some r ∈ N.

We are now going to formulate a corollary of Theorem 0.4 that provides a strong enhancement and
generalization of some classical Diophantine results. Generalized polynomials Zl −→ R are functions obtained
from conventional polynomials Z

l −→ R using the operations of addition, multiplication, and taking the
integer part. (Note that unlike generalized polynomial mappings, whose domain is F(A), the generalized
polynomials are defined on Z

l.) In analogy with generalized polynomial mappings, we say that a generalized
polynomial is constant-free if it is comprised of conventional polynomials with zero constant term. The total
degree of a generalized polynomial is also defined as the sum of the degrees of the polynomials it is comprised
of.

Since the composition ψ◦ϕ of a polynomial mapping ϕ:F(A) −→ Z
l of dergree ≤ d and a generalized

polynomial ψ:Zl −→ R of total degree ≤ D is a generalized polynomial mapping of total degree ≤ dD,
Theorem 0.4 now implies the following result:

Theorem 0.5. (Cf. [F], Theorem 2.19, and [B], Theorem 7.7) For any D, d ∈ N and ε > 0 there exists
r = r(D, d, ε) ∈ N such that for any l ∈ N and any open constant-free generalized polynomial ψ:Zl −→ R of
total degree ≤ D the set

{
n ∈ Z

l : ‖ψ(n)‖ < ε
}
is a VIP∗

d,r-set.

Let G be a nilpotent Lie group; an l-parameter polynomial sequence in G is a mapping g:Zl −→ G of

the form T
p1(n)
1 · · ·T

pb(n)
b , n ∈ Z

l, where Ti ∈ G and pi are polynomials Z
l −→ Z; the naive degree of g is

defined as maxi deg pi.
(7) Using the fact that the coordinates of a point of a nilmanifold under the action of a

polynomial sequence of niltranslations are generalized polynomials, we obtain as a corollary of Theorem 0.5

(7) A more fundamental notion of degree of a polynomial sequence in a nilpotent group can be defined as
the number of “differentiations” which it takes in order to reduce the polynomial sequence to a constant.
For our purposes, however, the “naive” degree is quite sufficent.
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the following strengthening of the first part of Theorem 0.2:

Theorem 0.6. (Cf. Theorem 1.12 below.) Let X be a nilmanifold with metric ρ (compatible with the
homogeneous space structure on X). For any a, d ∈ N and ε > 0 there exists r = r(a, d, ε) ∈ N such that for
any x0 ∈ X, any l ∈ N, and any l-parameter polynomial sequence g of niltranslations on X of naive degree
≤ a and with g(0) = IdX , the set

{
n ∈ Z

l : ρ(g(n)x0, x0) < ε
}
is a VIP∗

d,r-set.

A shifted VIP∗
d,r-set, that is, a set of the form E+m where E ⊆ Z

l is a VIP∗
d,r-set and m ∈ Z

l, is called
an VIP∗

d,r,+-set . From Theorem 0.9 we get the following corollary:

Corollary 0.7. Let X be a nilmanifold with metric ρ. For any a, d ∈ N and ε > 0 there exists r =
r(a, d, ε) ∈ N such that for any x0 ∈ X, any l ∈ N, any l-parameter polynomial sequence g of niltranslations
on X of naive degree ≤ a, and any point y in the closure of the orbit {g(n)x0}n∈Zl of x0 under g, the set{
n ∈ Z

l : ρ(g(n)x0, y) < ε
}
is a VIP∗

d,r,+-set.

(Indeed, choose n0 ∈ Z
l such that the point y0 = g(n0)x0 satisfies ρ(y0, y) < ε/2, and let h(n) = g(n +

n0)g(n0)
−1, n ∈ Z

l. Then h(n)y0 = g(n + n0)x0, and for any n such that ρ(h(n)y0, y0) < ε/2 we have
ρ(g(n+n0)x0, y) < ε. So, the set

{
n ∈ Z

l : ρ(g(n)x0, y) < ε
}
−n0 contains the set

{
n ∈ Z

l : ρ(h(n)y0, y0) <

ε
}
, which is a VIP∗

d,r-set by Theorem 0.6.)

Remark 0.8. Corollary 0.7 can be viewed as a generalization and strengthening of a classical theorem of
Weyl ([W]) which says that if x0 is a point of the torus Tb = R

b/Zb, p is a polynomial Zl −→ T
b, and y is a

point in the closure in T
b of the orbit {x0 + p(n)}n∈Zl of x0 under the shifts by the values of p, then for any

ε > 0 the set
{
n ∈ Z

l : ρ(x0 + p(n), y) < ε
}
is syndetic.

We say that a dynamical system (X,T ) is VIP∗-recurrent if for any x0 ∈ X and any open neighborhood
U of x0 the set of returns RU (x0) =

{
n ∈ Z : Tnx0 ∈ U

}
is a VIP∗-set, and is VIP∗

0-recurrent if for any
x0 ∈ X and any open neighborhood U of x0 the set RU (x0) is a VIP∗

0-set. The VIP∗-recurrence property
turns out to be strictly stronger than that of the IP∗-recurrence: there exist distal but not VIP∗-recurrent
systems.(8) As for the VIP∗

0-recurrence, we get, as a corollary of Theorem 0.6, that, via Theorem 0.2,
VIP∗

0-recurrence is equivalent to IP∗
0-recurrence:

Theorem 0.9. Any pre-nilsystem is VIP∗
0-recurrent, and any VIP∗

0-recurrent system is a disjoint union of
pre-nilsystems.

In Section 1 of the paper we prove (a more precise version of) Theorems 0.4 and 0.5 and deduce
Theorem 0.6 from them. In Section 2 we obtain the second statement of Theorem 0.2.

1. Sets of visits of open bounded generalized polynomials with no constant term

to a neighborhood of zero

Let A be a set and (H,+) be an abelian group. For r ∈ N we will denote by [1, r] the interval {1, . . . , r}
in N. We denote by F(A) the set of finite subsets of A, by A(d), d ∈ N, the set of subsets of A of cardinality

d, and by A(≤d), d ∈ N, the set of nonempty subsets of A of cardinality ≤ d, A(≤d) =
⋃d

l=1A
(l).

We start with discussing polynomial mappings on F(A). We say that a mapping ϕ:F(A) −→ H is
linear if it satisfies the identity ϕ(α ∪ β) = ϕ(α) + ϕ(β) whenever α, β ∈ F(A) are disjoint, and will denote
the set of linear mappings F(A) −→ H by Lin(A,H). A mapping ϕ ∈ Lin(A,H) is uniquely defined by its
values at singletons: for any α ∈ F(A), ϕα =

∑
a∈α ϕ̂({a}). We will call the mapping ϕ̂:A −→ H defined

by ϕ̂(a) = ϕ({a}) the producing function for ϕ; we then have ϕ(α) =
∑

a∈α ϕ̂(a), α ∈ F(A).
For a mapping ϕ:F(A) −→ H and β ∈ F(A) we define the β-derivative Dβϕ of ϕ by Dβϕ(α) =

ϕ(α∪β)−ϕ(α), α ∈ F(A\β). We say that a mapping ϕ is polynomial of degree ≤ d if for any d+1 pairwise
disjoint sets β0, . . . , βd ∈ F(A) one has Dβd

· · ·Dβ0
ϕ = 0.

We will denote by Pold(A,H) the group of polynomial mappings F(A) −→ H of degree ≤ d. We
will mainly deal with polynomial mappings “having zero constant term”; let us denote by Pol0d(A,H) the

(8) See [P], Corollary 5.1, where it is shown that for any nonlinear polynomial p:Z −→ Z there exists an
affine skew product transformation T such that liminfndist(T

p(n)0, 0) > 0.
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subgroup
{
ϕ ∈ Pold(A,H) : ϕ(∅) = 0

}
of Pold(A,H). Notice that Lin(A,H) = Pol01(A,H).

One can show (see [BL1], sections 8.3-8.5) that any polynomial mapping ϕ ∈ Pol0d(A,H) can be repre-
sented in the form ϕ(α) = Φ(αd), α ∈ F(A), for some mapping Φ ∈ Lin(Ad, H), so that

ϕ(α) =
∑

v∈αd

Φ̂(v), α ∈ F(A),

where Φ̂:Ad −→ H is the producing function for Φ. We will call Φ̂ a q-producing function for ϕ.

The q-producing function for a polynomial mapping ϕ ∈ Pol0d(A,H) is not canonically defined. A more

natural is the t-producing function for ϕ, a function Φ̃:A(≤d) −→ H such that for any α ∈ F(A),

ϕ(α) =
∑

u∈α(≤d)

Φ̃(u).

The t-producing function Φ̃ for ϕ is defined uniquely (and provides a natural approach to the definition

of polynomial mappings in the case H is a commutative semigroup). In terms of Φ̃, ϕ is the sum of its

homogeneous components , ϕ = ϕ1 + · · · + ϕd, where for each i, ϕi(α) =
∑

δ∈α(d) Φ̃(δ). To obtain the

t-producing function Φ̃ for ϕ from a q-producing function Φ̂ one simply sums up the values of Φ̂ at the
elements of A(d) corresponding to the same element of A(≤d): for any u ∈ A(≤d),

Φ̃(u) =
∑

v=(a1,...,ad)∈αd

{a1,...,ad}=u

Φ̂(v).
(1.1)

Let B be a collection of pairwise disjoint finite subsets of A; we will call B a disjoint subcollection in
A; if |B| = s we will say that B is a disjoint s-subcollection. Given a disjoint subcollection B in A, we
have an injection F(B) −→ F(A) defined by γ 7→

⋃
γ, and we will identify F(B) with its image in F(A).

Given a polynomial mapping ϕ:F(A) −→ H, we call the polynomial mapping ϕ|F(B)
a subpolynomial of

ϕ corresponding to the disjoint subcollection B and denote it by ϕ↓B . Any disjoint subcollection B of a

disjoint subcollection in A induces the disjoint subcollection B′ =
{⋃

C : C ∈ B
}
in A; abusing notation,

we will denote the subpolynomial ϕ↓B′
of ϕ by ϕ↓B .

Let Φ̂:Ad −→ H be a q-producing function for a polynomial mapping ϕ:F(A) −→ H of degree ≤ d and

let Φ ∈ Lin(Ad, H) be the linear mapping produced by Φ̂. Given a disjoint s-subcollection B = {B1, . . . , Bs}
in A, one finds a q-producing function for the subpolynomial ϕ↓B as follows. For any β ⊆ B we have

ϕ↓B(β) = ϕ
( ⋃

C∈β

C
)
= Φ

(( ⋃

C∈β

C
)d)

=
∑

v∈(
⋃

C∈β
C)d

Φ̂(v)

=
∑

C1,...,Cd∈β

∑

v∈C1×···×Cd

Φ̂(v) =
∑

(C1,...,Cd)∈βd

Φ(C1, . . . , Cd);
(1.2)

thus, the mapping Φ|Bd is a q-producing function for ϕ↓B .

The following proposition establishes the IP∗
r-recurrence property of polynomial mappings with values

in the torus T = R/Z.

Proposition 1.1. (Cf. [B], Theorem 7.7) For any k, d ∈ N and ε > 0 there exists r = r(k, d, ε) ∈ N such
that for any ϕ1, . . . , ϕk ∈ Pol0d([1, r],T) there exists a nonempty α ∈ F([1, r]) such that dist(ϕi(α), 0) < ε for
all i ∈ {1, . . . , k} (where “dist” is the distance on T).
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Proof. Put c = ⌈1/ε⌉ and partition the torus T into c intervals of length ≤ 1/ε. By the Polynomial Hales-
Jewett theorem (see [BL1], Theorem 0.10), there exists r ∈ N such that for any partition of F([1, r]d × [k])
into c subsets there exist γ ⊂ [1, r]d × [k] and a nonempty α ⊆ [1, r] such that γ ∩ (αd × [k]) = ∅ and the sets
γ, γ∪(αd×{1}), . . . , γ∪(αd×{k}) belong to the same element of the partition. Let ϕ1, . . . , ϕk ∈ Pol0d([1, r],T).

For each i let Φ̂i: [1, r]
d −→ T be a q-producing function for ϕi. Define a mapping Φ̂: [1, r]d × [k] −→ T

k by

Φ̂(v, i) = Φ̂i(v), v ∈ [1, r]d, i ∈ [k], and let Φ ∈ Lin([1, r]d × [k],T) be the linear mapping produced by Φ̂.
Then, via Φ, the partition of T defines a partition of F([1, r]d× [k]) into c subsets. Applying the Polynomial
Hales-Jewett theorem, we can find γ ⊂ [1, r]d × [k] and a nonempty α ⊆ [1, r] such that γ ∩ (αd × [k]) = ∅
and the sets γ, γ ∪ (αd × {1}), . . . , γ ∪ (αd × {k}) belong to the same element of the partition; then for any
i, Φ(γ) and Φ(γ ∪ (αd × {i})) belong to the same partition of T, and so, dist

(
Φ(γ),Φ(γ ∪ (αd × {i}))

)
< ε.

Since Φ(γ ∪ (αd × {i})) = Φ(γ) + Φ(αd × {i}) = Φ(γ) + ϕi(α), this implies that dist(0, ϕi(α)) < ε.

Recall that by ‖x‖ we denote the distance from x ∈ R to Z. We may then reformulate Proposition 1.1
as follows:

Corollary 1.2. For any k, d ∈ N and ε > 0 there exists r = r(k, d, ε) ∈ N such that for any ϕ1, . . . , ϕk ∈
Pol0d([1, r],R) there exists a nonempty α ∈ F([1, r]) such that ‖ϕi(α)‖ < ε for all i ∈ {1, . . . , k}.

Next we show that if r is large enough, any polynomial mapping ϕ ∈ Pol0d([1, r],T) has a subpolynomial
whose q-producing function is arbitrarily small:

Proposition 1.3. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],T) there

exists a disjoint s-subcollection B in [1, r] such that a q-producing function Φ̂B for ϕ↓B satisfies dist(Φ̂B , 0) <
ε.

Proof. Take r0 = r(sd, d, ε) as in Corollary 1.2, and put A = [1, s] × [1, r0] (and r = |A| = sr0). Let

ϕ ∈ Pol0d([1, r],T). Let Φ̂: [1, r] −→ T be a q-producing function for ϕ and let Φ ∈ Lin([1, r]d,T) be the linear

mapping produced by Φ̂. For each i = (i1, . . . , id) ∈ [1, s]d define a polynomial mapping ϕI ∈ Pol0d([1, r0],T)
by ϕI(α) = Φ(({i1}×α)×· · ·×({id×α)}). By Corollary 1.2 there exists α ⊆ [1, r0] such that dist(ϕI(α), 0) < ε
for all I ∈ [1, s]d. Take the disjoint s-subcollection B =

{
{i}×α : i ∈ [1, s]

}
in A. By the choice of α, for any

w ∈ Bd we have dist(Φ(w), 0) < ε. Since, by (1.2), Φ|Bd is a q-producing function for ϕ↓B , we are done.

Replacing in Proposition 1.3 ε by ε/sd, we obtain:

Corollary 1.4. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],T) there
exists a disjoint s-subcollection B in [1, r] such that dist(ϕ↓B , 0) < ε.

By formula (1.1), any value of the t-producing function for ϕ ∈ Pol0d(A,R) is a sum of less than dd

values of the q-producing function for ϕ. Hence, Proposition 1.3 implies the following corollary:

Proposition 1.5. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],T)

there exists a disjoint s-subcollection B in [1, r] such that the t-producing function Φ̃B for ϕ↓B satisfies

dist(Φ̃B , 0) < ε.

In terms of polynomial mappings with values in R, Proposition 1.5 takes the following form:

Corollary 1.6. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],R) there

exists a disjoint s-subcollection B in [1, r] such that the t-producing function Φ̃B for ϕ↓B satisfies ‖Φ̃B‖ < ε.

Now let ϕ ∈ Pol0d([1, r],R) be a polynomial mapping whose t-producing function Φ̃ satisfies ‖Φ̃‖ < 1/rd.
We will denote by [x] the integer and by {x} the fractional parts of x ∈ R. If x ∈ R satisfies ‖x‖ < ε, then
either {x} < ε or {x} > 1− ε. If x1, . . . , xn ∈ R satisfy {xi} < 1/n, i = 1, . . . , n, then

[∑n
i=1 xi

]
=

∑n
i=1[xi].

Thus, if Φ̃ satisfies {Φ̃} < 1/rd, then for any α ⊆ [1, r],

[ϕ(α)] =
[ ∑

u∈α(≤d)

Φ̃(u)
]
=

∑

u∈α(≤d)

[Φ̃(u)]

and so, [ϕ] is also a polynomial mapping, [ϕ] ∈ Pol0d([1, r],Z), with the t-producing function [Φ̃].
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For any x ∈ R \ Z, [x] = −[−x] − 1 and {−x} = 1 − {x}, so, if x1, . . . , xn ∈ R satisfy {xi} > 1 − 1/n,
i = 1, . . . , n, then

[∑n
i=1 xi

]
= −

[
−
∑n

i=1 xi
]
− 1 = −

[∑n
i=1(−xi)

]
− 1 = −

∑n
i=1[−xi]− 1 =

∑n
i=1(−[−xi])− 1.

Applying this to Φ̃, we see that if Φ̃ satisfies {Φ̃} > 1− 1/rd, then for any α ⊆ [1, r],

[ϕ(α)] =
[ ∑

u∈α(≤d)

Φ̃(u)
]
=

∑

u∈α(≤d)

(
−[−Φ̃(u)]

)
− 1.

So, [ϕ] + 1 is a polynomial mapping, [ϕ] + 1 ∈ Pol0d([1, r],Z), with the t-producing function −[−Φ̃].

In the general case, when ‖Φ̃‖ < 1/rd, we may have neither {Φ̃} < 1/rd nor {Φ̃} > 1− 1/rd. However,

if ϕ is a homogeneous polynomial of degree l ≤ d (which means that ϕ(α) =
∑

u∈α(l) Φ̃(u)), then, given
s ∈ N, if r is large enough, by the classical Ramsey theorem we can choose an s-element subset B of [1, r]

such that either {Φ̃(u)} < 1/rd for all u ∈ B(d) or {Φ̃(u)} > 1 − 1/rd for all u ∈ B(d). Identifying B with
the “singleton disjoint ’-subcollection’ {{b} : b ∈ B} in [1, r], we will therefore have [ϕ↓B ] ∈ Pol0d(B,Z) + e

with e ∈ {0,−1}.
For a general ϕ ∈ Pol0d([1, r],R), applying this argument to all homogeneous components of ϕ and using

a diagonal process, we arrive at the following lemma:

Lemma 1.7. For any d, s ∈ N there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],R) whose t-producing

function Φ̃ satisfies ‖Φ̃‖ < 1/rd there exists a (singleton) disjoint subcollection B in [1, r] such that [ϕ↓B ] ∈

Pol0d(B,Z) + e with e ∈ {0,−1, . . . ,−d}.

Combining Lemma 1.7 with Corollary 1.6 we obtain:

Theorem 1.8. For any d, s ∈ N there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],R) there exists a
disjoint s-subcollection B in [1, r] such that [ϕ] ∈ Pol0d(B,Z) + e with e ∈ {0,−1, . . . ,−d}.

Using induction on k, one can extend Theorem 1.8 to the case of k polynomials:

Theorem 1.9. For any k, d1, . . . , dk, s ∈ N there exists r = r(k, (d1, . . . , dk), s) ∈ N such that for any
ϕi ∈ Pol0di

([1, r],R), i = 1, . . . , k, there exists a disjoint s-subcollection B in [1, r] such that for every

i ∈ {1, . . . , k}, [ϕi] ∈ Pol0di
(B,Z) + ei, with ei ∈ {0,−1, . . . ,−d}.

A generalized polynomial is a function obtained from conventional polynomials using the operations of
taking the integer part, addition, and multiplication. We say that a generalized polynomial ψ is constant
free if all polynomials involved in the expression of ψ have zero constant term. (More precisely, a generalized
polynomial is constant free if it has a representation in which all polynomials have zero constant term. A
similar convention applies to all the definitions below.) We say that a polynomial ψ is open if it is contained
in the ideal, in the ring of constant free generalized polynomials, generated by the ordinary polynomials.
This is equivalent to saying that ψ (or rather a representation of ψ) has no summand that is a product of
“closed” generalized polynomials [ψi]. Any open constant-free generalized polynomial is representable in the
form

ψ =

m∑

j=1

[ψj,1] · · · [ψj,lj ]ψj,0 (1.3)

where for every j, ψj,1, . . . , ψj,lj are open constant-free generalized polynomials and ψj,0 are conventional
polynomials with zero constant term.

We now introduce the notions of height, width, and degree for (a representation of) a generalized
polynomial ψ:
The height h(ψ) of ψ is the maximum length of sequences of nested brackets in ψ: we put h(ψ) = 0 if ψ is
a conventional polynomial and we say that h(ψ) ≤ h if ψ has a representation (1.3) where for all j and all
t ≥ 1, h(ψj,t) ≤ h− 1.
The width w(ψ) is the maximum number of components in ψ itself and in all its components: we put
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w(ψ) = 1 if ψ is a conventional polynomial and we say that w(ψ) ≤ w if ψ has a representation (1.3) where
w(ψj,t) ≤ w for all j and all t ≥ 1 and also

∑m
j=1(lj + 1) ≤ w.

The degree d(ψ) of ψ is defined as usual under the assumption that deg[ψ] = degψ: we say that d(ψ) ≤ d if

ψ has a representation (1.3) with maxmj=1

(∑lj
t=0 degψj,t

)
≤ d.

(For example, for ψ(x) = [[x2+1]x][x3+2x]x+[x2](x+1)+x3 we have h(ψ) = 2, w(ψ) = 6, and d(ψ) = 7.)

We extend the above definitions to generalized polynomial mappings with domain F(A), and will denote
by GPol0d,h,w(A,H) the set (the algebra) of open constant-free generalized polynomial mappings ϕ:F(A) −→

H, where H = R or Z, with d(ϕ) ≤ d, h(ϕ) ≤ h, and w(ϕ) ≤ w. Given ϕ ∈ GPol0d,h,w(A,H) and a disjoint

subcollection B in A, we define the generalized polynomial mapping ϕ↓B ∈ GPol0d,h,w(B,H) as the restriction

of ϕ to the set F(B) considered as a subset of F(A).

The following theorem says that generalized polynomial mappings turn into ordinary polynomial map-
pings after being restricted to a suitable disjoint subcollection in their domain:

Theorem 1.10. For any k, d1, . . . , dk, h, w, s ∈ N there exists r = r(k, (d1, . . . , dk), h, w, s) ∈ N such that
for any ϕi ∈ GPol0di,h,w

([1, r],R), i = 1, . . . , k, there exists a disjoint s-subcollection B in [1, r] such that

ϕi↓B ∈ Pol0di
(B,R), i = 1, . . . , k.

Proof. We will use induction on h; when h = 0 the statement is trivial. Take r0 to be the maximum
of the integers r(l, (b1, . . . , bl), s) in Theorem 1.9 over all integers l ≤ kw and all l-tuples (b1, . . . , bl) of

nonnegative integers with
∑l

j=1 bj ≤ w
∑k

i=1 di. By induction on h, let r be the maximum of the integers
r(l, (d1, . . . , dl), h − 1, w, r0) in the assertion of Theorem 1.10 over all integers l ≤ kw and all l-tuples

(b1, . . . , bl) of nonnegative integers with
∑l

j=1 bj ≤ w
∑k

i=1 di. Let ϕi ∈ GPol0di,h,w
([1, r],R), i = 1, . . . , k.

For each i reprsent ϕi in the form

ϕi =

mi∑

j=1

[ϕi,j,1] · · · [ϕi,j,li,j ]ϕi,j,0,

where for every i, j we have ϕi,j,0 ∈ Pol0di,j,0
([1, r],R) and for every t ≥ 1 we have ϕi,j,t ∈ GPol0di,j,t,h−1,w([1, r],R)

with

∑mi

j=1(li,j + 1) ≤ w for all i and
∑li,j

t=0 di,j,t ≤ di for all i, j,

so that

∑k
i=1

∑mi

j=1(li,j + 1) ≤ kw and
∑k

i=1

∑mi

j=1

∑li,j
t=0 di,j,t ≤ w

∑k
i=1 di.

By the choice of r there exists a disjoint r0-subcollection B0 ⊂ F([1, r]) such that ϕi,j,t↓B0
∈ Pol0di,j,t

(B0,R)

for all i, j, t. Then by the choice of r0 there exists a disjoint s-subcollection B in B0 such that for all i, j, t,[
ϕi,j,t↓B

]
∈ Pol0di,j,t

(B,Z). Hence for every i,

ϕi↓B =

mi∑

j=1

[
ϕi,j,1↓B

]
· · ·

[
ϕi,j,li,j↓B

]
ϕi,j↓B ∈ Pol0di

(B,R).

Combining Theorem 1.10 and Corollary 1.2, we obtain:

Theorem 1.11. For any k, d, h, w ∈ N there exists r = r(k, d, h, w) ∈ N such that for any ϕ1, . . . , ϕk ∈
GPol0d,h,w([1, r],R) there exists a nonempty α ∈ F([1, r]) such that ‖ϕi(α)‖ < ε, i = 1, . . . , k.
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Let X = G/Γ be a k-dimensional compact nilmanifold; we may and will assume that X is connected.
(Any nilmanifold is a subnilmanifold of a connected one.) Let ρ be a metric on X (induced by a metric on G
compatible with the Lie group structure thereon). Fix a point x0 ∈ X, and let τ = (τ1, . . . , τk):X −→ [0, 1)k

be Maltsev’s coordinates on X centered at x0. The inverse mapping τ−1 is continuous, and the distance
ρ(x, x0) from x ∈ X to x0 is continuous with respect to the distance from τ(x) to the set of vertices {0, 1}k

of the cube [0, 1]k. (See, for example, [BL2], Section 1.5.)
Let g be an (l-parameter) polynomial sequence in G, that is, a mapping g:Zl −→ G of the form

g(n) = T
p1(n)
1 · · ·T

pb(n)
b , n ∈ Z

l, where T1, . . . , Tb ∈ G, p1, . . . , pb are polynomials Zl −→ Z; we define n-deg g,
the naive degree of g, as maxbi=1 deg pi. Then for each i = 1, . . . , k, the sequences ψi(n) = τi(g(n)x0), n ∈ Z

c,
of coordinates of x0 under the action of g are open [0, 1)-valued generalized polynomials, with parameters
depending only on X and n-deg g (see [BL2], Theorem A and Theorem A∗∗), and if g(0) = 1G, these
polynomials can be assumed to be constant-free. For any polynomial mapping ϕ ∈ Pold([1, r]),Z

c), the
composition mappings ψi◦ϕ:F([1, r]) −→ [0, 1), i = 1, . . . , k, are open constant-free generalized polynomial
mappings, with parameters only depending on X, d, and n-deg g. From Theorem 1.11 we now obtain the
following result:

Theorem 1.12. Let X = G/Γ be a nilmanifold with metric ρ. For any a, d ∈ N and ε > 0 there exists
r = r(a, d, ε) ∈ N such that for any l, any l-parameter polynomial sequence g in G with n-deg g ≤ a and
g(0) = 1G, any x0 ∈ X, and any ϕ ∈ Pol0d([1, r],Z

l) there exists a nonempty α ∈ F([1, r]) such that
ρ
(
g(ϕ(α))x0, x0

)
< ε.

Remark 1.13. Theorem 1.12 easily extends to generalized polynomial sequences in nilpotent groups, that

is, to sequences of the form g(n) = T
p1(n)
1 · · ·T

pb(n)
b where pi are generalized polynomials Zl −→ Z.

2. IP∗
0-recurrence implies approximability by nilsystems

In this section we prove the second statement of Theorem 0.2. Let (X, ρ) be a compact metric space,
T be a self homeomorphism of X, and assume that (X,T ) is IP∗

0-recurrent. Then, in particular, (X,T ) is
IP∗-recurrent, so by Theorem 0.1, (X,T ) is distal, and thus is a disjoint union of minimal subsystems (see
[F], corollary to Theorem 8.7). Hence, we may assume that (X,T ) is minimal.

Now, by the way of contradiction, assume that a minimal system (X,T ) is not a pre-nilsystem, that is,
not an inverse limit of nilsystems; our goal is to show that there exists a point x ∈ X and ε > 0 such that for
every r ∈ N there exists a linear mapping ϕ ∈ Lin([1, r],Z) such that ρ(Tϕ(α))x, x) > ε for every nonempty
α ⊆ [1, r].

We will use the following result ([HKM] Theorem 1.3 and Corollary 4.2): for any r, the maximal r-
step pro-nilfactor of (X,T ) is defined by a closed T -invariant equivalence relation RP[r] ⊆ X2 (called the
regionally proximal relation of order r), with (x0, y0) ∈ RP[r] if and only if for any δ > 0 there exists a point
x ∈ X and a mapping ϕ ∈ Lin([1, r],Z) such that

ρ(x, x0) < δ and ρ(Tϕ(α)x, y0) < δ for all nonempty α ⊆ [1, r]. (2.1)

Our assumption that (X,T ) is not a pre-nilsystem is equivalent to the assumption that
⋂∞

r=1 RP[r] 6= ∆,
where ∆ is the diagonal of X2. Fix (x0, y0) ∈

⋂∞
r=1 RP[r] with x0 6= y0. Let ε = infn∈Z ρ(T

nx0, T
ny0);

since (X,T ) is distal, we have ε > 0. Since (X,T ) is minimal, the orbit {Tnx0}n∈Z of x0 is dense in X.
Let r ∈ N and let U ⊆ X be an open set. Choose n ∈ Z such that Tnx0 ∈ U and choose δ > 0 such
that ρ(Tnx, Tny) < ε/3 whenever ρ(x, y) < δ. Find x ∈ X such that (2.1) holds and Tnx ∈ U . Then
ρ(Tnx, Tnx0) < ε/3 and ρ(Tϕ(α)Tnx, Tny0) < ε/3 for all nonempty α ⊆ [1, r], and since ρ(Tnx0, T

ny0) ≥ ε,
we have that ρ(Tϕ(α)Tnx, Tnx) > ε/3 for all nonempty α ⊆ [1, r]. This proves that for any r ∈ N the open
set

Rr =
{
x ∈ X : there exists ϕ ∈ Lin([1, r],Z) such that ρ(Tϕ(α)x, x) > ε/3 for all nonempty α ∈ [1, r]

}

is dense in X. By Baire category theorem
⋂∞

r=1Rr is nonempty, which gives us what we wanted – a point
x ∈ X such that for every r ∈ N there exists a mapping ϕ ∈ Lin([1, r],Z) such that ρ(Tϕ(α))x, x) > ε/3 for
every nonempty α ⊆ [1, r].
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[L] A. Leibman, Nilsequences, null-sequences, and multiple correlation sequences, Ergodic Th. and Dynam.
Sys. 35 (2015), no. 1, 176-191.

[P] R. Pavlov, Some counterexamples in topological dynamics, Ergodic Th. and Dynam. Sys. 28 (2008), no.

4, 1291-1322.

[V] W. A. Veech, The equicontinuous structure relation for minimal abelian transformation groups, Amer. J.
Math. 90 (1968), 723-732.
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